ERRATUM 1989

CONTENTS: The title of the third article is "Langlands's construction of the Tanivama group". General Introduction: The authors considered it so well-known that Grothendieck was the originator of the theory of motives and the theory of Tannakian categories that they neglected to mention it; perhaps they should have. p82: motivic Galois group p154: This is not quite so transparent as the "and so" suggests. p218: $0 \longrightarrow \mathcal{O}_{\mathbf{Y}}^{\mathbf{X}} \longrightarrow 0 \longrightarrow \dots$ p2711: ... and remain true, if ... $p28_2$: $H^i(X)(d)$ p423: from p42¹²: The complex conjugate $\overline{\mu(\lambda)}$ of $\mu(\lambda)$ satisfies $\overline{\mu(\lambda)} \cdot \mathbf{v}^{pq} = \overline{\lambda} \cdot q \cdot \mathbf{v}^{pq}$. p43₉: It is more natural to let ν act as ν . p456: complex conjugation on $H_{\sigma}(\mathbb{C})$ corresponds to σ •(complex conjugation) on H(℃). p569: and an p619: to $\psi = \operatorname{Tr}_{\mathbf{E}/\mathbf{O}}(\mathbf{f}\varphi)$. p752: There is no need to refer to Borel-Springer for the proof, since it is given in the remainder of the paragraph. pSO_3 : When all $a_i = 0$, the dimension of $H^{n}(V,\mathbb{C})_{a}$ is 1 only if n is even; otherwise it is zero.

pS5₆: Replace \mathbf{F}_q^{n+1} with \mathbf{F}_q^{n+2} . pS5₅: Replace \mathbf{P}^n with \mathbf{P}^{n+1} . pS9³: Σ a_i $\equiv 0 \pmod{d}$. pS¹⁵: Springer. p101⁶: Replace 149 with 147.

p104³: $(X,Y) \mapsto X \otimes Y$. p119¹: (<u>C</u>,*) p1249: indeterminate p1477: form p14810: representable p1547: if and only if p157⁵: Aut (ω) p1684: 10a-1 p1984: H^{2r-s}(X) p19910: id@ * p216₈: [2.0.10] p2188: Kuga-Satake p23111: For any L Galois over Q, p232⁷: $\lambda(\iota\sigma) + \lambda(\sigma)$ p2329: $\Lambda^{L} \subset \Lambda^{F}$ where $F = L \cap \mathbb{Q}^{cm}$ $p232^{11}$: $\Lambda^L \supset \Lambda^F$ p232₁: The diagram should be:

 $F^{x}/F_{0}^{x} \xrightarrow{\approx} S^{F}/hw(Q^{x})$ $\uparrow \qquad \uparrow$ $1 \rightarrow Ker \rightarrow F^{x} \rightarrow S^{F} \rightarrow 1$ $\uparrow^{\approx} \uparrow \uparrow hw$ $1 \rightarrow Ker \rightarrow F_{0}^{x} \xrightarrow{norm} Q^{x} \rightarrow 1$

p259¹: Delete the second b from the first diagram.

p264₁₄: $z^{-p}\bar{z}^{-q}$ p271²: ^KS[•] p286₄: $\phi^{0}(\tau;\mu',\mu) \cdot \phi^{0}_{\tau,\mu} = \phi^{0}_{\tau,\mu'}$. p331¹: Delete "Shimura Varieties V.7" p343⁴: being in G^{ad}(R)⁺. p381¹⁴: disco(H_d)