ERRATUM

CONTENTS: The title of the third article is "Langlands's construction of the Taniyama group".
General Introduction: The authors considered it so well-known that Grothendieck was the originator of the theory of motives and the theory of Tannakian categories that they neglected to mention it; perhaps they should have. ps_{2} : motivic Galois group p154: This is not quite so transparent as the "and so" suggests.
$\mathrm{p} 21^{8}: 0 \rightarrow 0 \times \mathrm{X} \rightarrow 0 \rightarrow \ldots$
p27 11 : ... and remain true, if ...
$\mathrm{p} 28_{2}$: $\mathrm{H}^{\mathrm{i}}(\mathrm{X})(\mathrm{d})$
p423: from
p4212: The complex conjugate $\overline{\mu(\lambda)}$ of
$\mu(\lambda)$ satisfies $\overline{\mu(\lambda) \cdot v p q}=\lambda-q \cdot v^{p q}$.
p439: It is more natural to let ν act as ν.
p456: complex conjugation on $\mathrm{H}_{\sigma}(\mathbb{C})$ corresponds to σ_{0} (complex conjugation) on H(C).
p. 569 : and an
$\mathrm{p} 61^{9}:$ to $\psi=\mathrm{Tr}_{\mathrm{E} / \mathrm{Q}}{ }^{(\mathrm{f} \varphi)}$.
p752: There is no need to refer to BorelSpringer for the proof, since it is given in the remainder of the paragraph.
pSO_{3} : When all $\mathbf{a}_{\mathbf{i}}=0$, the dimension of $\mathrm{H}^{\mathrm{n}}(\mathrm{V}, \mathrm{C})_{\mathbf{a}}$ is 1 only if n is even; otherwise it is zero.
p 856 : Replace $\mathrm{F}_{\mathrm{q}}^{\mathrm{n}+1}$ with $\mathbf{F}_{\mathrm{q}}^{\mathrm{n}+2}$.
p S55: Replace P^{n} with $\mathbf{P}^{\mathrm{n}+1}$.
ps93: $\Sigma \mathrm{a}_{\mathrm{i}} \equiv 0(\bmod d)$.
p9815: Springer.
p1016: Replace 149 with 147.
pl043: $(X, Y) \mapsto X \otimes Y$.
pl191: (C, (8)
p1249: indeterminate
p1477: form
p148 ${ }^{10}$: representable
p1547: if and only if
p1575: Aut ${ }^{\otimes}(\omega)$
p1684: $\xrightarrow{1 * a^{-1}}$
p1984: $\mathrm{H}^{2 r-s}(\mathrm{X})$
p19910: $\xrightarrow{\text { id } *}$
p2168: [2.0.10]
p2188: Kuga-Satake
p23111: For any L Galois over \mathbf{Q},
p2327: $\lambda(\iota \sigma)+\lambda(\sigma)$
p2329: $\Lambda^{\mathrm{L}} \mathrm{C} \Lambda^{\mathrm{F}}$ where $\mathrm{F}=\mathrm{L} \mathrm{Q}^{\mathrm{cm}}$
p23211: $\Lambda^{L} \supset \Lambda^{F}$
p232 : The diagram should be:

p2591: Delete the second b from the first diagram.
p26414: $z^{-P} \bar{z}^{-q}$
p2712: ${ }^{\mathrm{K}} \mathrm{S}^{\circ}$
p 2864 : $\phi^{0}\left(\tau ; \mu^{\prime}, \mu\right) \cdot \phi_{\tau, \mu}^{0}=\phi_{\tau, \mu^{\prime}}^{0}$.
p3311: Delete "Shimura Varieties V.7"
p3434: being in $\mathrm{G}^{\text {ad }}(\mathbf{R})^{+}$.
p3814: $\operatorname{disco}\left(\mathrm{H}_{\mathrm{d}}\right)$

