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Abstract In this paper, we present a Hodge decomposition for the L p-space of some par-
abolic first-order partial differential operators with non-constant coefficients. This is done
over different types of domains in Euclidean space R

n and on some conformally flat cylinders
and the n-torus associated with different spinor bundles. Initially, we apply a regularization
procedure in order to control the non-removable singularities over the hyperplane t = 0.
Using the setting of Clifford algebras combined with a Witt basis, we introduce some spe-
cific integral and projection operators. We present an L p-decomposition where one of the
components is the kernel of the regularized parabolic Dirac operator with non-constant coef-
ficients. After that, we study the behavior of the solutions and the validity of our results when
the regularization parameter tends to zero. To round off, we give some analytic solution
formulas for the special context of domains on cylinders and n-tori.

Keywords Schrödinger equation on manifolds · Regularized parabolic Dirac operator ·
Hypoelliptic equations · Regularization procedure · Hodge decomposition
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1 Introduction

Time evolution problems are of extreme importance in mathematical physics. Although such
kind of problems are being studied by a large community of mathematicians and physicists,
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there is nevertheless still a strong need to develop further special techniques, in particular if
we want to construct analytic representations for the solutions in special geometric settings.

One useful method that one frequently applies in the study of PDE’s is the factorization
of their associated second-order operators in terms of first-order operators. Under certain
conditions, this factorization procedure allows us to obtain an orthogonal decomposition of
the L2-space. In that orthogonal decomposition, one of the components is the kernel of the
corresponding first-order operator. This decomposition, when applicable, is one of the most
interesting aspects of complex and hypercomplex analysis which in turn offers quite use-
ful applications, especially to the theory of partial differential equations. In [7,12], such an
orthogonal decomposition has been used in order to study elliptic boundary value problems
of mathematical physics over bounded domains in scales of Hilbert spaces, like the stationary
Navier–Stokes equations. The treatment of the non-stationary cases, however, carries addi-
tional difficulties due to the time-dependence. The time-dependence implies a much more
complicated structure of the singularities of the corresponding fundamental solutions.

The aim of this paper is to present a Hodge decomposition for the case of the non-stationary
operator D−M D−−i∂t operator, where D− is the backward parabolic Dirac operator (used
for instance in [4]) and where M is a non-constant scalar L2− homeomorphism such that
D−M D− is invertible. Then, we also extend some of the results that we are going to develop
in the first part of the paper to the geometric context of some higher dimensional conformally
flat cylinders and the n-torus with different conformally inequivalent spin structures. The
treatment of this time-dependent operator involves an additional difficulty since the funda-
mental solution of D− possesses non-removable singularities in the hyperplane t = 0. To
overcome this problem, we use a standard regularization procedure (cf. for instance [13,14])
which gives us some degree of control over these singularities. This procedure then enables
us to apply the well-known theory of hypoelliptic operators. For more details about the
hypoelliptic theory, we refer the interested reader to [1].

To summarize, the paper is structured as follows: in the section “Preliminaries,” we intro-
duce some basic notions about Clifford analysis, we introduce a Witt basis and we present
the regularization procedure that will be implemented. In the same section, we recall the
definition of the regularized Teodorescu operator, the regularized Cauchy–Bitsadze operator
and the regularized parabolic Dirac operator [4,9].

In the third section, we are going to prove a regularized Hodge decomposition for the
space L p(�), where � is a time-dependent and non-cylindrical domain. Furthermore, we
will study the behavior of this decomposition for the limit case.

In Sect. 4, we revisit the particular geometric context of considering these boundary value
problems for spinor sections on some conformally flat-n-dimensional cylinder and tori. As
an application of the Hodge decomposition theorems proved in Sect. 3, we present some
representation formulas for the solutions for the non-stationary Schrödinger-type operator
D−M D− − i M∂t expressed in terms of the explicitly computed fundamental solution for
these manifolds. These geometric models belong to the most basic ones in modern quantum
theory and quantum gravity and serve as useful models in cosmology.

2 Preliminaries

2.1 Hypercomplex and hypoelliptic analysis

We consider the n-dimensional vector space R
n endowed with an orthonormal basis

{e1, · · · , en}. We define the universal real Clifford algebra C�0,n as the 2n-dimensional
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Hodge decomposition and solution formulas 1809

associative algebra in which the multiplication rules ei e j + e j ei = −2δi, j hold. A vec-
tor space basis for C�0,n is given by the elements e0 = 1 and eA = eh1 . . . ehk , where
A = {h1, . . . , hk} ⊂ M = {1, . . . , n}, for 1 ≤ h1 < · · · < hk ≤ n. Each element x ∈ C�0,n

can be represented in the form x = ∑
A xAeA, xA ∈ R. The Clifford conjugation is defined

by e j = −e j for all j = 1, . . . , n, and we have ab = ba.
We introduce the complexified Clifford algebra Cn as the tensor product

C ⊗ C�0,n =
{

w =
∑

A

wAeA, wA ∈ C, A ⊂ M

}

where the imaginary unit i of C commutes with the basis elements, that means ie j = e j i
for all j = 1, . . . , n. To avoid ambiguities with the Clifford conjugation, we denote the
complex conjugation, which maps a complex scalar aA = aA0 + iaA1 with real components
aA0 and aA1 onto aA = aA0 − iaA1, by �. The complex conjugation leaves the elements
e j invariant, i.e., e�

j = e j for all j = 1, . . . , n. We also have a pseudonorm on C defined by
|a| := ∑

A |aA| where a = ∑
A aAeA, as usual. Notice also that for a, b ∈ Cn we only have

|ab| ≤ 2n |a||b|. The other norm criteria are fulfilled.
Next, we introduce the Euclidean Dirac operator D = ∑n

j=1 e j∂x j . The latter factorizes

the n-dimensional Euclidean Laplacian, that is, D2 = −� = −∑n
j=1 ∂x2

j . A Cn-valued
function that is defined on an open set U ⊆ R

n, u : U �→ Cn, is called left-monogenic if it
satisfies Du = 0 on U (resp. right-monogenic if it satisfies u D = 0 on U ).

A function u : U �→ Cn has a representation u = ∑
A u AeA with C-valued components

u A. Such a function is continuous if each complex component is continuous in the usual way.
In order to deal with time-dependent problems, we will embed R

n into R
n+2 in the same

way as done in [5]. For that purpose, we add two new basis elements f and f† that satisfy

f2 = f†2 = 0, ff† + f†f = 1, fe j + e j f = f†e j + e j f
† = 0, j = 1, . . . , n. (1)

The extended basis is often called a Witt basis. This construction allows us to use a suitable
factorization of the time evolution operators where only partial derivatives are used.

In all that follows, we shall consider Cn-valued maps f from a time-dependent domain
� ⊆ R

n × R
+, i.e., functions in the variables (x1, x2, . . . , xn; t) where xi ∈ R for

i = 1, . . . , n and t ∈ R
+ where Cn is the complexified Clifford algebra generated by

the extended basis e1, . . . , en, f, f†. For the sake of readability we abbreviate the space-time
tuple (x1, x2, . . . , xn; t) simply by (x, t), assigning x = x1e1 + · · · xnen . For additional
details on Clifford analysis, we refer the interested reader for instance to [6,7].

In the sequel we will also use the short notation L p(�), Ck(�), etc., to abbreviate for
instance L p(�, Cn) := { f : � → Cn | ∫

�
| f (x1, . . . , xn; t)|pdx1 . . . dxndt < +∞} and

Ck(�, Cn). For convenience, we also recall the notation W a
p (�) for the Sobolev space of

L p(�) functions that are a-times weakly differentiable in the sense of Sobolev. Furthermore,

as usual, the notation
◦

W a
p (�) will be used for the subspace of functions of W a

p (�) that
satisfy f = 0 at the boundary of �.

In the particular case p = 2 one can endow the Banach space L2(�) with the structure of
a Hilbert Cn-module by introducing the following sort of “inner product”

〈 f, g〉L2 :=
∫

�

f (x, t)
�
g(x, t) dxdt, f, g ∈ L2(�).

Actually, this inner product is Cn-valued; however, this is a rather broadly used definition
in Clifford analysis. In the real Clifford analysis setting this inner product has already used
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in the 1980s, see for instance [2]. In [3] this inner product has been used in the context of
complexified Clifford analysis where explicit reproducing Hilbert space kernels have been
computed.

Next, following for instance [1] (Section 1.1), a partial differential operator is hypoelliptic
if and only if its fundamental solution is a C∞ function in R

n × R
+
0 \ {(0, 0)}.

2.2 Regularization procedure

2.2.1 Regularized fundamental solution and regularized Teodorescu operator

Following for instance [4], we know that the fundamental solution E− for the parabolic
Dirac operator D± = D + f∂t ± i f† has singularities at all the points of the hyperplane
t = 0. This represents an important difference to the nature of the fundamental solution
of hypoelliptic operators, involving only the classical 1-point singularity. Moreover, these
singularities are not removable by standard calculation methods. This property carries an
additional problem for the study of the related Teodorescu and Cauchy–Bitsadze operators.
One cannot guarantee the convergence of the integrals that define those operators in the
classical sense, and that appear in the construction of the Hodge decomposition for the
L p-space with general 1 ≤ p < ∞ in terms of the integral kernel of the first-order operator.

In order to overcome and to solve this problem we need to regularize the fundamental
solution as well as the associated operators (cf. [4,9,13]). This process of regularization
creates a sequence of operators and associated fundamental solutions Eε−, which are locally
integrable in R

n × R
+
0 \ {(0, 0)}. Moreover, these families of operators (resp. families of

the associated fundamental solutions) will converge to the original operators (resp. to their
fundamental solutions) when the regularization parameter ε → 0+.

In this sense we recall the following definitions and results.

Definition 1 (cf. [4]). For a function u ∈ W a
p (�), with 1 ≤ p < +∞ and a ∈ N, we define

the forward/backward regularized parabolic Dirac operator as

Dε±u = (
D + f∂t ± kf†)u, (2)

where k = ε+i
ε2+1

and D = ∑n
j=1 e j∂x j stands for the (spatial) Dirac operator.

For this regularized operator we have that Dε± : W 1
p(�) → L p(�). We have the following

result

Theorem 1 (cf. [4]). For the sequence of parabolic Dirac operators Dε−, with ε > 0, we
have the following convergence

||D− − Dε−||L p(�) → 0,

where D− := D + f∂t − i f†, when ε → 0.

Moreover, we have the family of regularized fundamental solutions for this first-order operator

Definition 2 (cf. [4]). A fundamental solution Eε−(x, t) of the first-order operator Dε− is
defined as follows

Eε−(x, t) = eε−(x, t)

[ −x

2(ε + i)t
+ f

(−n

2t
+ |x |2

4(ε + i)t2

)

− kf†
]

. (3)
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Here eε−(x, t) := (ε + i)e−(x, (ε + i)t), where

e−(x, t) = i
H(t)

(4π i t)n/2 exp

(

−i
|x |2
4t

)

.

is the fundamental solution of the usual Schrödinger operator � − i∂t , � = ∑n
i=1 ∂x2

i and
H(t) represents the ordinary Heaviside function.

The fundamental solution of the regularized operator Dε− now allows us to explicitly express
and to introduce the corresponding Teodorescu operator and Cauchy–Bitsadze operator for
Dε−. Again, following [4], we may introduce

Definition 3 Let u ∈ L p(�). The regularized Teodorescu operator is defined as

T ε−u(x, t) =
∫

�

Eε−(x − z, t − s)u(z, s)dzds, (x, t) /∈ ∂�. (4)

As in the stationary elliptic cases, treated for instance in [7] (Chapter 3), also in this context
here the regularized Teodorescu operator represents the right inverse of the regularized Dirac
operator. To be more precise we recall

Theorem 2 (cf. [4]). The regularized Teodorescu operator T ε− is the right inverse of the reg-
ularized parabolic Dirac operator Dε−, i.e., for a function u ∈ L p(�) we have the following
equality

(Dε−T ε−u)(x, t) = u(x, t),

for every (x, t) ∈ �.

The Teodorescu operator has a natural analogue for the integration over the boundary, namely

Definition 4 (c.f. [4]) Let u ∈ W
a− 1

p
p (∂�), a ∈ N. We define the regularized Cauchy–

Bitsadze operator as

Fε−u(x, t) =
∫

∂�

Eε−(x − z, t − r)dσz,r u(z, r), (x, t) /∈ ∂�. (5)

Instead of ∂� we often also use the abbreviated notation � := ∂� when no ambiguity or
misunderstanding may occur.

These two integral operators will provide us with the fundamental tools to express the
solution of the related boundary value problems that we want to discuss later in this paper in
the particular context of cylinders and tori.

3 L p-decomposition in a general Lipschitz domain � ⊂ R
n

3.1 The regularized case

In all that follows we always assume that � ⊆ R
n × R

+ is a strongly Lipschitz domain. For
convenience we recall its definition.
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Definition 5 (c.f. [11]) A domain G ⊂ R
n is called a strongly Lipschitz if the boundary

∂G can be covered by a finite number of open sets Vi , (i = 1, . . . , k) such that each set
G ∩ Vi , (i = 1, . . . , k) can be represented by the inequality yn > g(y1, . . . , yn−1), where g
is a Lipschitz continuous function.

Moreover, the symbol ⊕M stands for a direct sum, in which all the terms are multiplied by
the function M . Here, and in all that follows, M is a non-constant scalar L2-homeomorphism
such that the operator D−M D− is invertible. The ideas presented in [5] allow us to establish
the following results about the decomposition of L p-spaces.

Theorem 3 The space L p(�), 1 ≤ p < +∞ admits the following decomposition

L p(�) = (
L p(�) ∩ (

Mker
(
Dε−

))) ⊕M Dε−
( ◦

W 1
p(�)

)

, (6)

for all ε > 0, and we can define the following projectors

Pε
M : L p(�) → L p(�) ∩ (

Mker
(
Dε−

))

Qε
M : L p(�) → Dε−

( ◦
W 1

p(�)

)

,

where Pε
M and Qε

M are called Bergman projectors.

Proof Since the operator Dε− is hypoelliptic, i.e., its fundamental solution (3) is a C∞ function
in R

n × R
+
0 \ {(0, 0)} (for more details see [1], Section 1.1), we may immediately infer that

the operator Dε−M Dε− is hypoelliptic, too. Under these conditions and in view of [7] (Section
3.6), [14], we can guarantee the existence and uniqueness of the operator (Dε−M Dε−)−1

0 for
the boundary value problem

{
(Dε−M Dε−)u = f in �

u = 0 in ∂�
,

i.e., (Dε−M Dε−)−1
0 is such that

{
u = (Dε−M Dε−)−1 f in �

(Dε−M Dε−)−1u = 0 in ∂�
.

As a first step we take a look at the intersection of the two subspaces Dε−
( ◦

W 1
p (�)

)

and

L p(�)∩(
M ker

(
Dε−

))
. Consider a function u in

(
L p(�) ∩ (

Mker
(
Dε−

)))∩Dε−
( ◦

W 1
p (�)

)

.

It is immediate to see that u = Dε−v, with M Dε−v = 0 in �. There exists a function w ∈
◦

W 1
p

(�) such that Dε−w = u and Dε−M Dε−w = 0. This ia a consequence of u ∈ Dε−
( ◦

W 1
p (�)

)

.

If we apply (Dε−M Dε−)−1
0 , then we get w = 0. Consequently, u = 0, i.e., the intersection of

these subspaces only contains the zero function. Therefore, our sum is a direct sum.
Now, let us consider u ∈ L p(�). We have

u2 = M Dε−(Dε−M Dε−)−1
0 Dε−u ∈ Dε−

( ◦
W 1

p (�)

)

.
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Applying Dε− to uε
1 = u − uε

2, we obtain

M Dε−u1 = M Dε−u − M Dε−u2

= M Dε−u − M Dε−M Dε−(Dε−M Dε−)−1
0 Dε−u

= M Dε−u − M(Dε−M Dε−)(Dε−M Dε−)−1
0 Dε−u

= M Dε−u − M Dε−u

= 0,

i.e., M Dε−u1 ∈ Mker
(
Dε−

)
. ��

Corollary 1 For the particular case of p = 2, this decomposition is orthogonal.

Proof The right linear sets A = L2(�) ∩ (
Mker(Dε−)

)
and B = L2(�) � A are subspaces

of L2(�). For every function u ∈ L2(�), we have that T ε−u ∈ W 1
2 (�). From this property,

we may conclude that there exists a function v ∈ W 1
2 (�) with u = Dε−v. Let u = Dε−v ∈ B.

Then, we have for all g ∈ A
∫

�

M−1 D−v M−1g dx dt = 0,

which proves the orthogonality of our decomposition in the special case p = 2. ��
3.2 The limit case of the operator D−M D− − i M∂t

The aim of this section is to generalize the previous L p-decomposition to the limit case
ε → 0 where we deal with the original parabolic Dirac operator D−; whence, we are
in the framework of the generalized non-stationary Schrödinger-type operator of the form
D−M D−−i M∂t , where M is a non-constant scalar L2-homeomorphism such that D−M D−
is invertible.

In order to achieve this, we first recall the following two results proved in [4] concerning the
convergence of the families of fundamental solutions (Eε−)ε>0 and the regularized Teodorescu
operators (T ε−)ε>0.

Theorem 4 (cf. [4]) For all 1 ≤ p < +∞, we have the following weak convergence in

W
− n

2 −1
p (�),

〈
Eε−, ϕ

〉 → 〈E−, ϕ〉 , ϕ ∈ W
n
2 +1
p (�), (7)

when ε → 0.

Theorem 5 (cf. [4]) The family of regularized Teodorescu operators T ε− converges weakly

to T− in W
− n

2 −1
p (�) for all 1 ≤ p < +∞.

With these results, we are in position to study the convergence of the family of projectors

Qε
M to the projector QM , with QM : L p(�) → D−

( ◦
W 1

p(�)

)

.

Theorem 6 The family of projectors Qε
M is a fundamental family in W

− n
2 −1

p (�) for all
1 ≤ p < +∞.
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Proof Let us start with the proof of the convergence. Consider u ∈ L p(�) and ϕ ∈
W

n
2 +1
p (�), where 1 ≤ p < +∞. For all ε > 0, we have (Qε

M )2 = Qε
M and Qε

M (Pε
M u) = 0.

Therefore, we have for any ε1, ε2 > 0
∣
∣〈Qε1

M u − Qε2
M u, ϕ〉∣∣ = ∣

∣〈Qε1
M (Pε1

M u + Qε1
M u) − Qε2

M (Pε1
M u + Qε1

M u), ϕ〉∣∣
= ∣

∣〈Qε1
M u − Qε2

M Pε2
M u − Qε2

M Qε1
M u, ϕ〉∣∣

≤ ∣
∣〈Qε2

M Pε1
M u, ϕ〉∣∣

︸ ︷︷ ︸
(A)

+ ∣
∣〈(I − Qε2

M )Qε1
M u, ϕ〉∣∣

︸ ︷︷ ︸
(B)

.

For the projector Pε
M and Qε

M defined in Theorem 3, taking into account the mapping proper-
ties of the regularized operators Dε−, T ε− and Fε− studied in [4], and after some calculations,
we obtain for the term (A)

∣
∣〈Qε2

M Pε1
M u, ϕ〉∣∣ = ∣

∣〈Qε2
M (Fε1− Pε1

M − Qε2
M Fε2− )Pε1

M u, ϕ〉∣∣
= ∣

∣〈Qε2
M (I − T ε1− Dε1− − (I − T ε2− Dε2− ))Pε1

M u, ϕ〉∣∣
= ∣

∣〈Qε2
M (T ε1− Dε1− − T ε2− Dε2− )Pε1

M u, ϕ〉∣∣
= ∣

∣〈Qε2
M (T ε1− (Dε1− − Dε2− ) + (T ε1− − T ε2− )Dε2− )Pε1

M u, ϕ〉∣∣

Relying on Theorems 1 and 5, we obtain the weak convergence of (A), in W
− n

2 −1
p (�) for

all 1 ≤ p < +∞ to zero. Finally, since Qε1
M u ∈ D−

( ◦
W 1

p (�)

)

, there exists a g ∈
◦

W 1
p (�)

such that u = Dε−g. Therefore, (B) becomes
∣
∣〈(I − Qε2

M )Qε1
M u, ϕ〉∣∣ = ∣

∣〈(I − Qε2
M )Dε−g, ϕ〉∣∣

= ∣
∣〈Dε1− g − Qε2

M Dε1− g + Dε2− g − Dε2− g ϕ〉∣∣
= ∣

∣〈Qε2
M (Dε−g − D−g) + (D−g − Dε−g), ϕ〉∣∣

= ∣
∣〈(D−g − Dε−g)(I − Qε1

M ), ϕ〉∣∣ .
By Theorem 1, we conclude that the preceding expression tends to zero as ε → 0. ��

Now it remains to prove that QM is idempotent. Hereby, we have

Q2
M = lim

ε→0
(Qε

M )2 = lim
ε→0

Qε
M = QM .

Theorem 7 For a given f ∈ L p(�), consider the solutions (uε) to the problem
{

(Dε−M Dε−)uε = f
uε |� = 0

, (8)

for each ε > 0. Then, the family of such solutions (uε) is a fundamental family in W
− n

p −1
p (�),

for all 1 ≤ p < +∞. Moreover, (Dε−uε) is a fundamental family in W
− n

p −1
p (�).

Proof Let us consider ϕ ∈ W
n
2 +1
p (�), f ∈ L p(�) and a family of functions (uε), such that

uε ∈ Dε−(�) with ε > 0, and ε1, ε2 > 0. Since the elements of the family are solution of
the Problem (8), we have that

uε = T ε−M−1 Qε
M T ε− f, (9)
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(for more details about this assertion, we refer the reader to [4]). Then
∣
∣
〈
uε1 − uε2 , ϕ

〉∣
∣ = ∣

∣
〈
T ε1− M−1 Qε1

M T ε1− f − T ε2− M−1 Qε2
M T ε2− f, ϕ

〉∣
∣

= ∣
∣
〈(

T ε1− M−1 Qε1
M T ε1− − T ε2− M−1 Qε2

M T ε2−
)

f, ϕ
〉∣
∣

≤ ∣
∣
〈(

T ε1− M−1 Qε1
M

(
T ε1− − T ε2−

))
f, ϕ

〉∣
∣ + ∣

∣
〈((

T ε1− − T ε2−
)
M−1 Qε2

M T ε2−
)

f, ϕ
〉∣
∣

+ ∣
∣
〈 (

T ε1− M−1(Qε1
M − Qε2

M

)
T ε2−

)
f, ϕ

〉∣
∣ .

From Theorem 5 and 6, we may conclude that the right-hand side of the previous inequality
tends to zero when ε1, ε2 → 0. Moreover, we can guarantee that there exists a function
f ∈ L p(�) such that

Dε1− uε1 = M−1 Qε1
M T ε1− f and Dε2− uε2 = M−1 Qε2

M T ε2− f.

This in turn implies that
∣
∣
〈 (

M−1 Qε1
M T ε1− − M−1 Qε2

M T ε2−
)

f, ϕ
〉∣
∣ ≤ ∣

∣
〈 (

M−1 Qε1
M

(
T ε1− − T ε2−

))
f, ϕ

〉∣
∣

+ ∣
∣
〈 (

M−1 (
Qε1

M − Qε2
M

)
T ε2−

)
f, ϕ

〉∣
∣ .

By Theorem 6 and 7, we conclude that the right-hand side of the previous expression con-

verges weakly to zero when |ε1 − ε2| → 0, in W
− n

2 −1
p (�), for all 1 ≤ p < +∞. ��

This result can be refined. In fact, let us denote by u2 ∈ W
− n

2 −1
p (�) the function limit of

the Cauchy family that we studied. Relying on Theorem 7, we can guarantee the existence
of f ∈ L p(�) such that

(D−M D−)u2 = f and (D−M D−)uε
2 = f,

with u2|� = 0 = uε
2|� . Since (D−)−1 exists and since it is unique (for more details see

[4,14]), we can establish the following equality

u2 − uε
2 = (D−M D−)−1 ((D−M D−) − (D−M D−)) uε

2,

which implies that

||u2 − uε
2||L p(�) = ||(D−M D−)−1|| ||(Dε−M Dε−) − (D−M D−)|| ||uε

2||L p(�).

Since ||(Dε−M Dε−) − (D−M D−)|| converges to zero when ε → 0, we may conclude that
the right-hand side of the last expression also converges to zero. This fact implies that
u2 ∈ L p(�).

Moreover, we can guarantee

(i) For any two elements uε1
2 and uε2

2 of the fundamental family studied in Theorems 6 and

7, there exist functions gε1
2 , gε2

2 ∈
◦

W 1
p (�) such that

uε1
2 = Dε1− gε1

2 and uε2
2 = Dε2− gε1

2

and

||Dε2− (gε1
2 − gε2

2 )||L p(�) = ||Dε2− gε1
2 − Dε1− gε1

2 + Dε1− gε2
2 − Dε2− gε2

2 ||L p(�)

≤ || (Dε2− − Dε1−
)

gε1
2 ||L p(�) + ||uε1

2 − uε2
2 ||L p(�).
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By Theorem 1 and 7 and in view of the above described considerations, we conclude that
the right-hand side of the previous expression converges to zero, when |ε1 − ε2| → 0,

i.e.,

||Dε2− (gε1
2 − gε2

2 )||L p(�) → 0, when |ε1 − ε2| → 0.

Since ||Dε−|| → ||D−|| < ∞, when ε → 0, we conclude that g → gε2
2 + C, when

|ε1 − ε2| → 0 and ε1, ε2 → 0, where C ∈ ker(D−).
Under these conditions, we showed that for any function u ∈ L p(�), there exists an

function v ∈
◦

W 1
p (�) such that u = D−v.

(ii) Suppose that there are two functions g1, g2 ∈
◦

W 1
p (�) that satisfy

u = D−g1 and u = D−g2,

for the same function u ∈ L p(�). We have

(D−M D−)g1 = (D−M D−)g2 ⇔ g1 = (D−M D−)−1(D−M D−)g2 ⇔ g1 = g2,

which proves our assertion.

Theorem 8 For each u ∈ L p(�), the family of Pε
M u converges to û in

(
Mker(Dε−)

)∩L p(�),
for all ε > 0 and 1 ≤ p < +∞.

Proof The proof is made in three steps. First consider ϕ ∈ W
n
2 +1
p (�), a function u ∈ L p(�),

and a family of functions (uε
1), where uε

1 ∈ (
Mker(Dε−)

) ∩ L p(�) with ε > 0, with 1 ≤
p < +∞.

Let ε1, ε2 > 0. In view of the decomposition (6) we have for uε1
1 , uε2

1 in Mker(Dε1− ),

Mker(Dε2− )
∣
∣
〈
uε1

1 − uε2
1 , ϕ

〉∣
∣ = ∣

∣
〈
(u − uε1

2 ) − (u − uε2
2 ), ϕ

〉∣
∣ ≤ ∣

∣
〈
uε2

2 − uε1
2 , ϕ

〉∣
∣ ,

where uε1
2 and uε1

2 are elements of the fundamental family (uε
2), where uε

2 ∈ Dε−(
◦

W 1
p (�)) for

ε > 0. From Theorem 7, we may conclude that the right-hand side of the previous expression

converges weakly to zero, in W
− n

2 −1
p (�), when |ε1 − ε2| → 0. This establishes that (Pε

M )

is a fundamental family in W
− n

2 −1
p (�).

Now we can refine our conclusion. On the basis of the techniques and arguments that we
deduced for the family Dε−uε, with ε > 0 and in view of Theorem 7, we can prove that the
function limit belongs to L p(�).

Finally, let us denote by u1 the function limit of this fundamental family. For a given

ϕ ∈ W
n
2 +1
p (�), with 1 ≤ p < +∞, we have

∣
∣〈Dε−u1, ϕ〉∣∣ = ∣

∣〈Dε−u1 − Dε−uε
1, ϕ〉∣∣ ≤ ∣

∣〈Dε−(u1 − uε
1), ϕ〉∣∣ + ∣

∣〈(D− − Dε−)uε
1(x, t), ϕ〉∣∣ .

Theorems 8 and 1 guarantee that the first and the second term of the right-hand side of the
previous expression converges to 0 when ε → 0. ��

In conclusion, for each u ∈ L p(�), we obtain u = Pε
M u + Qε

M u. Also, we proved that

Qε
M u → QM u and Q2

M u = QM u,

which implies that QM is a projector and that we can define a projector PM as
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PM u = u − QM u,

with PM u ∈ (Mker(D−)) ∩ L p(�).
As a consequence, we may establish the following main result of this section

Theorem 9 For 1 ≤ p < +∞, the following decomposition holds,

L p(�) = (
L p(�) ∩ (Mker(D−))

) ⊕M D−(

◦
W 1

p(�)).

This theorem allows us now to introduce the following projectors in a meaningful way

PM : L p(�) → L p(�) ∩ (Mker (D−))

QM : L p(�) → D−
( ◦

W 1
p(�)

)

.

PM and QM are usually called Bergman projectors. Notice that QM = I − PM , where I is
the identity operator.

4 Some applications for related BVP on cylinders and tori

As an application of the results and techniques that we developed in the previous section, we
are going to present in this section an analytic representation formula for the solutions of the
non-stationary inhomogeneous Schrödinger problem

{
(D−M D− − i∂t )u(x, t) = f (x, t)
u(x, t) = g(x, t) ∈ ∂�

, (x, t) ∈ � = U × (0,+∞) ⊆ R
n × R

+,

where M is a non-constant scalar L2-homeomorphism such that D−M D− is invertible, and
where U is a bounded strongly Lipschitz domain lying on a class of conformally flat cylinders
and n-tori endowed with different spin structures. As mentioned in the introduction, these
geometries serve as the most basic geometric examples in quantum theory and cosmology;
therefore, we revisit them in detail.

First of all, we call from previous works that a conformally flat manifold in n real variables
is a Riemannian manifold with an atlas whose transition functions are Möbius transforma-
tions. Notice that in R

n with n ≥ 3, the set of Möbius transformations are the only conformal
maps in the sense of Gauss. Under this viewpoint, one may regard conformally flat manifolds
as higher dimensional generalizations of holomorphic Riemann surfaces.

Following for instance the classical work by Kuiper [10], a large class of conformally
flat manifolds can be constructed by factoring out a simply connected domain U ⊆ R

n by a
Kleinian group � that acts totally discontinuously on U . In particular, we obtain a number of
higher dimensional conformally flat cylinders Ck in n real variables by taking for U = R

n

and for � a k-dimensional lattice, for simplicity Z
k = Ze1 + · · · + Zek where k may be a

positive integer from the set {1, . . . , n}. In the case k = n, we obtain a flat n-torus. In another
interesting subcase case represented by n = 2, k = 1, we re-obtain the classical infinity
cylinder of radius 1 embedded in the three-dimensional Euclidean space.

Let us now fix the notation

Ck := R
n/Z

k, k = 1, . . . , n.

Since R
n is the universal covering space of all these generalized cylinders Ck , there exists

a well-defined projection map pk : R
n → Ck, x �→ x mod Z

k . One has pk(x) = pk(y) if
and only if there exists an ω ∈ Z

k such that x = y + ω.
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Next, every subset U ⊂ R
n that has the property that x ∈ U also implies that x + ω ∈ U

for all ω = ∑k
i=1 ωi ei ∈ Z

k gives rise to an open subset U ′ on Ck defined by U ′ := pk(U ).
More generally, one can consider on Ck 2k different spinor bundles. To construct them,

we decompose the lattice Z
k , as suggested in [8], into the direct sum of the sublattices

Z
l := Ze1 + · · · + Zel and Z

k−l := Zel+1 + · · · + Zek where l is some integer from
{1, . . . , k}. We now obtain 2k conformally inequivalent different spinor bundles E (l) on Ck

by making the identification (x, X) ⇐⇒ (x +ω, (−1)ω1+···+ωl X) with x ∈ R
n and X ∈ Cn .

4.1 Regularized case

We now briefly recall (for details, see [9]), how we can construct the fundamental solution
to the regularized Dirac operator Dε− on the generalized cylinders Ck with values in one of
the chosen spinor bundles E (l). This is needed, if we want to evaluate our operator equations
that we developed in the preceding part of this paper.

First of all, the projection map pk naturally induces a regularized Dirac operator on Ck

associated with the chosen bundle E (l), viz Dε−′ = pk(Dε−).
Let U ⊂ R

n be an open set. Now one has to bear in mind that every function f : U ×R
+ →

Cn of the particular quasi-periodicity behavior of the form

f (x + ω, t) = (−1)ω1+···+ωl f (x, t) ∀ω ∈ Z
k (10)

descends to a well-defined spinor section on Ck×R
+ with values in the spinor bundle E (l) such

as constructed above, again by applying the projection map pk( f ) =: f ′ : U ′ × R
+ → Cn .

If additionally f is a null solution to the regularized Dirac operator Dε− on Euclidean space,
then its projection f ′ := pk( f ) turns out to be a well-defined hypoelliptic spinor section on
Ck × R

+ that is annihilated by the cylindrical regularized Dirac operator Dε−′.
As shown in [9], we can construct a fundamental solution for the regularized Dirac operator

on Ck × R
+ with values in E (l) by periodizing the fundamental solution Eε−(x, t) over the

period lattice Z
k in a way taking care of the right transformation behavior (10). This is

achieved by taking the infinite multiple sum

℘ε
k,l(x, t) :=

∑

m∈Zl

∑

n∈Zk−l

(−1)m1+···+···ml Eε−(x + m + n, t). (11)

The normal convergence of this series is proved in [9]. By a direct rearrangement argument,
one directly verifies that

℘ε
k,l(x + ω, t) = (−1)m1+···+ml ℘ε

k,l(x, t), ∀ω ∈ Z
k .

Its projection G ′ε
k,l(x ′, t) := pk(℘

ε
k,l(x, t)) is well defined and represents the fundamental

solution of the regularized cylindrical regularized Dirac operator on the manifold Ck × R
k

with values in the spinor bundle E (l).
Now suppose that �′ ⊂ Ck ×R

+ is a bounded domain with a strongly Lipschitz boundary
∂�′ and that u′ : U ′ × R

+ → Cn is an L p-section with values in the chosen spinor bundle
E (l).

The associated Teodorescu transformation and Cauchy–Bitsadze operator for the regular-
ized Dirac operators on these cylinders can now explicitly be expressed by

T ε−Ck ,lu
′(x ′, t) =

∫

�′
G ′ε

k,l(x ′ − z′, t − s)u(z′, s) dz′ ds, (x ′, t) /∈ ∂�′.
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and, analogously,

Fε
Ck ,lu

′(x ′, t) =
∫

∂�′
G ′ε

k,l Eε−(x ′ − z′, t − r)dσz′,r u′(z′, r), (x ′, t) /∈ ∂�′.

By means of these properly adapted operators, we can establish a similar direct decomposition
of the L p(�

′) space as presented earlier in Theorem 3.1. in the particular context of these
cylinders. By completely analogous arguments, we can also establish

L p(�
′) = (

L p(�
′) ∩ (

Mker
(
Dε−

′))) ⊕M Dε−
′
( ◦

W 1
p(�′)

)

.

In the case p = 2, this decomposition turns again out to be orthogonal.
The arising Bergman projectors will be denoted by Pε

M Ck ,l and Qε
M Ck ,l . Alternatively, the

latter projectors can also be obtained by periodizing the Bergman kernels of the operators PM

resp. QM in a same way as we obtain from the usual Cauchy kernel E the periodized kernel
G, namely by making precisely the analogous series constructions over the period lattice,
but taking care of the special minus sign associated with the special spinor bundle. However,
to do this, we need to know first the kernels for PM and QM . This, however, is very difficult
in general, because the Bergman kernel depends on the geometry of the domain. Actually,
following [7] (Sections 3.6 and 4.2), the projector Qε

M,Ck,l
can also directly be expressed in

terms of the cylindrical Teodorescu and Cauchy–Bitsadze operator, namely as:

Qε
M Ck ,l = I − [Fε

Ck ,l(tr�T ε−Ck ,l Fε
Ck ,l)

−1]tr�T ε−
ε
Ck ,l ,

where � = ∂�, and tr� stands for the usual trace operator used for instance in [7] (Sections
3.6 and 4.2) in a similar context. This is an advantage. In terms of these operators, we may
express the kernel function, namely G ′ε

k,l .
The explicit knowledge of the fundamental solution G ′ε

k,l thus enables us already com-
pletely to express the solutions to the boundary value problem, where now f ′ is a spinor
valued L p-section on a domain �′ ⊂ Ck × R (with values in the bundle E (l))

{
(Dε−

′
M Dε−

′
)u′ε = f ′

u′ε |� = 0
, (12)

explicitly analytically, by

u′ε(x ′, t) = T ε−Ck ,l M−1 Qε
M Ck ,l T

ε−Ck ,l f ′(x ′, t).

Notice, that all these integral operators only involve the kernel functions G ′ε
k,l .

The other Bergman projector Pε
MCk ,l

= I −Qε
MCk ,l

allows us finally to express the solutions

of the more general boundary value problem of the form
{

(Dε−
′
M Dε−

′
)u′ε(x ′, t) = f ′(x ′, t)

u′ε |�(x ′, t) = g′(x ′, t)
. (13)

In view of the validity of our decomposition theorem (Theorem 3.1.), we are allowed to apply
the same calculation steps as in the stationary case performed in [7] (Section 4.2) so that we
obtain the following representation for the solution:

u′ε(x ′, t) = Fε
Ck ,l g

′(x ′, t) + T ε−Ck ,l M−1 Pε
M Ck ,l D−ε

Ck ,l h
′(x ′, t)

+T ε−Ck ,l M−1 Qε
M Ck ,l T

ε−Ck ,l f ′(x ′, t),

where h′ represents the unique W 2
p+2(�

′) extension of g′.
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4.2 The limit case

In view of Theorem 3.3, we can construct the fundamental solution of D− on the manifolds
Ck × R

+ associated with the spinor bundle E (l) by simply taking the limit

℘k,l(x, t) := lim
ε→0+

∑

m∈Zl

∑

n∈Zk−l

(−1)m1+···+···ml Eε−(x + m + n, t).

and by applying after that the projection map pk(℘k,l(x, t)) =: G ′
k,l(x ′, t). In view of The-

orem 3.8., the Hodge decomposition remains valid in the limit case (under the mentioned
conditions in which convergence is guaranteed). Consequently, we obtain the same repre-
sentation formulas for the solution of the boundary value problem

{
(D−

′
M D−

′
)u′ε(x ′, t) = f ′(x ′, t)

u′ε |�(x ′, t) = g′(x ′, t)
, (14)

just by replacing the kernel function G ′ε
k,l(x ′, t) by its limit G ′

k,l(x ′, t) when evaluating the
integral operators in the solution formulas.

Acknowledgments M. M. Rodrigues and N. Vieira were supported by FEDER founds through COMPETE–
Operational Program Factors of Competitivy (“Programa Operacional Factores de Competitividade”) and
by Portuguese funds through the Center for Research and Development in Mathematics and Applications
(University of Aveiro) and the Portuguese Foundation for Science and Technology (“FCT–Fundação para a
Ciência e a Tecnologia”), within Project PEst-C/MAT/UI4106/2011 with COMPETE Number FCOMP-01-
0124-FEDER-022690. The authors would like to express their gratitude to the referees. Their suggestions and
corrections lead to an important improvement in the quality of the paper.

References

1. Artino, R., Barros-Neto, J.: Hypoelliptic boundary-value problems. In: Lectures Notes in Pure and Applied
Mathematics, vol. 53. Marcel Dekker, New York–Bassel (1980)

2. Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis. In: Research Notes in Mathematics, vol. 76.
Pitman Research Notes, Boston–London–Melbourne (1982)

3. Constales, D., Kraußhar, R.S.: Hilbert spaces of solutions to polynomial Dirac equations. Fourier trans-
forms and reproducing kernel functions for cylindrical domains. Z. Anal. Anw. 24(3), 611–636 (2005)

4. Cerejeiras, P., Vieira, N.: Regularization of the non-stationary Schrödinger operator. Math. Methods Appl.
Sci. 32(4), 535–555 (2009)

5. Cerejeiras, P., Kähler, U., Sommen, F.: Parabolic Dirac operators and the Navier–Stokes equations over
time-varying domains. Math. Methods Appl. Sci. 28, 1715–1724 (2005)
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