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1 Introduction

Complete intersection Calabi-Yau manifolds in products of projective spaces (or CICY

manifolds, for short) were first constructed by Yau in ref. [2] and then Hübsch and Green

and Hübsch in refs. [3, 4]. Ever since then, they have provided a fruitful arena for studying

string compactifications. The construction was employed in refs. [5, 6] in order to com-

pile an exhaustive list of complete intersection Calabi-Yau three-folds and in refs. [7, 8]

for the case of four-folds. The CICY construction was recently generalised in ref. [9] to

include manifolds defined using local sections of mixed degree line bundles over products

of projective spaces.

Over the years, CICY manifolds have been employed in various string compactifica-

tions, including compactifications of the heterotic string (see, for example, refs. [10–39] for

some recent developments). For model building purposes, particularly in the context of

heterotic theory, the existence of freely acting discrete symmetry groups on CICY mani-

folds plays a crucial role. Dividing the original CICY by a freely-acting symmetry produces

a non-simply connected Calabi-Yau manifold, which in turn can be decorated with discrete

Wilson lines that break the intermediate GUT group to the Standard Model group. The

possibility of constructing realistic models from the E8×E8 heterotic string without an in-

termediate GUT phase, originally studied in [40–42], has been recently investigated in [33],
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showing that there is a tension between directly breaking E8 to the Standard Model group

and obtaining a particle spectrum free from exotics. This suggests that non-simply con-

nected Calabi-Yau manifolds are indeed a crucial ingredient for realistic model building in

the context of the heterotic string. More generally, finding the Hodge numbers for quotient

Calabi-Yau manifolds is an important task for string model building. This information has

already been used in the large scale searches [26–29] for heterotic vacua with a realistic

particle physics spectrum. The Hodge numbers are also important to determine the size

of the Kähler and complex structure moduli space and, therefore, enter the discussion of

moduli stabilization [17, 18, 20, 22–24].

A systematic study of discrete symmetry groups, G, on CICY manifolds X was initi-

ated by Candelas and Davies in ref. [43], and completed by Braun in ref. [1], who classified,

through an automated scan, all finite group actions that descend from linear automor-

phisms of the ambient space, given by a product of projective spaces, to free actions on

the CICY manifold. Clearly, Braun’s classification depends on the particular embedding

of the Calabi-Yau manifold into the ambient space, as constructed in ref. [5]. Since this

embedding is not unique, it is expected that other discrete symmetries can be found by

considering different embeddings of the same manifolds. Be that as it may, Braun’s clas-

sification reveals that 195 out of the 7890 manifolds in the CICY list admit freely acting

discrete symmetry groups. Many of these 195 CICY manifolds admit multiple freely-acting

discrete symmetries for a total of 1695 symmetries on these manifolds.

The enterprise of systematically computing Hodge numbers for CICY quotients X/G

has been undertaken in refs. [43–45] and summarised in ref. [46], using methods such as

the counting of parameters in the defining polynomials, the counting of Kähler classes for

favourable embeddings (including favourable embeddings in products of spaces containing

factors of del Pezzo surfaces). Though fruitful in many cases, the above methods were not

applicable to a significant number of quotients (∼ 300 quotients, mostly Z2-quotients, on

∼ 70 manifolds were left out). The purpose of the present note is to establish a generic algo-

rithm, relying on the computation of equivariant cohomologies, which can be applied in an

exhaustive manner to the computation of Hodge numbers for all CICY quotients. Thus we

aim to complete this task for the manifolds that were missed in refs. [43–45] and at the same

time provide an independent check of the previous results. It is remarkable that our results

agree with those found in the above references, in all 1426 cases that we could compare.

In the implementation of the algorithm described below we have made use of the CICY

package [47], especially for the computation of (equivariant) line bundle cohomologies.

In the next section, we begin by explaining how the cohomology H2,1(X) can be

computed using the normal bundle sequence and the Euler sequence. Further, we show

how this computation can be carried over to the quotient manifold X/G by writing down

the equivariant structures of the various bundles involved. In section 3 we illustrate this

method for several explicit examples. We conclude in section 4 by providing the updated

Hodge number plot in figure 1. The detailed results of our computation are given in

appendix A, where we have tabulated the Hodge numbers of all CICY quotients.

– 2 –



J
H
E
P
0
1
(
2
0
1
7
)
0
0
1

2 General method

In this section, we explain the general method to compute Hodge numbers of CICY quo-

tients. We being with a general set-up of CICY manifolds X and first review how to com-

pute the “upstairs” cohomology H2,1(X) of these manifolds. Then we introduce freely-

acting discrete symmetries G and consider the quotient X̃ = X/G. The “downstairs”

cohomology H2,1(X̃) of this quotient is given by the G-invariant part of the upstairs co-

homology H2,1(X) and we explain in detail how to calculate this G-invariant part. In this

way, we can obtain the Hodge number h2,1(X̃) of the quotient. Since the Euler number

of the quotient is easily obtained from its upstairs counterpart by dividing by the group

order |G|, this fixes h1,1(X̃) as well.

2.1 CICY manifolds and upstairs cohomology

The CICY manifolds are embedded in ambient spaces of the form A = Pn1×. . .×Pnm ,

consisting of m projective factors with dimensions nr, where r = 1, . . . ,m. The homoge-

neous ambient space coordinates for each Pnr factor are denoted by xr = (x0
r , . . . , x

nr
r ) and,

collectively for all of A, by x = (x1, . . . ,xm). The CICY three-folds X ⊂ A are defined as

the common zero locus of K polynomials, pa, where a = 1, . . . ,K, each with multi-degree

qa = (q1
a, . . . , q

m
a ). This means that the polynomial pa has degree qra in the homogeneous

coordinates xr of the rth projective factor of the ambient space. This information is fre-

quently summarised by writing down the configuration matrix

X =

 Pn1 q1
1 · · · q1

K
...

...
...

...

Pnm qm1 · · · qmK


h1,1(X),h2,1(X)

η(X)

, (2.1)

where the Hodge numbers h1,1(X), h2,1(X) are attached as a superscript and the Euler

number η(X) as a subscript. In order for this data to define a Calabi-Yau three-fold we

require that

m∑
r=1

nr −K = 3 ,
K∑
a=1

qra = nr + 1 for all r = 1, . . .m . (2.2)

The first of these equations ensures that the manifold X is indeed complex three-

dimensional, while the second equation is equivalent to the Calabi-Yau condition,

c1(X) = 0. Further, we will assume that X is not a direct product manifold, since the

structure of Hodge numbers is more complicated in this case. This means that the config-

uration matrix (2.1) cannot be brought into a block-diagonal form by any combination of

a row and column permutations.

We would now like to construct the tangent bundle, TX of the manifold X by com-

bining the Euler sequence for the tangent bundle TA of the ambient space with the

normal bundle sequence. To this end, we need to introduce line bundles on A and X.

For a single projective space Pn, we use the standard notation OPn(k) for the kth tensor

power of the hyperplane bundle. Line bundles on the full ambient space A are given by

– 3 –
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OA(k) = OPn1 (k1)⊗ · · · ⊗OPnm (km), where k = (k1, . . . , km), and their restrictions to the

CICY manifolds are denoted by OX(k) = OA(k)|X .

To a configuration matrix (2.1) we can associate the following sum of line bundles

N =

K⊕
a=1

OA(qa) (2.3)

whose sections are the defining polynomials p = (p1, . . . , pK). Its restriction N = N|X is

the normal bundle of X and the associated normal bundle sequence

0 −→ TX −→ TA|X −→ N −→ 0 . (2.4)

gives the tangent bundle TX of X in terms of the normal bundle and the tangent bundle

TA of the ambient space. This short exact sequence induces a long exact sequence in

cohomology which (using that H3,1(X) = H0,1(X) = 0 for Calabi-Yau three-folds which

are not direct products) is explicitly given by

0 −→ 0 −→ H0(X,TA|X) −→ H0(X,N) −→
−→ H2,1(X) −→ H1(X,TA|X) −→ H1(X,N) −→
−→ H1,1(X) −→ H2(X,TA|X) −→ H2(X,N) −→
−→ 0 −→ H3(X,TA|X) −→ H3(X,N) −→ 0 .

(2.5)

This implies for the cohomology H2,1(X) that

H2,1(X) ∼=
H0(X,N)

H0(X,TA|X)
⊕Ker

(
H1(X,TA|X)→ H1(X,N)

)
. (2.6)

Since N is a sum of line bundles, its cohomology can be relatively easily computed from

line bundle cohomology on A, using the Koszul spectral sequence, as we will discuss below.

The tangent bundle TA can be obtained from the Euler sequence

0 −→ O⊕mA
f1−→ S

f2−→ TA −→ 0 where S =
m⊕
r=1

OA(er)
⊕(nr+1) , (2.7)

where er are the standard unit vectors in m dimensions. Since the normal bundle se-

quence (2.4) actually involves TA|X we require the restriction of the Euler sequence to X

which reads

0 −→ O⊕mX −→ S −→ TA|X −→ 0 where S =
m⊕
r=1

OX(er)
⊕(nr+1) . (2.8)

The associated long exact sequence in cohomology,

0 −→ H0(X,O⊕mX ) ∼= Cm −→ H0(X,S) −→ H0(X,TA|X) −→
−→ 0 −→ H1(X,S) −→ H1(X,TA|X) −→
−→ 0 −→ H2(X,S) −→ H2(X,TA|X) −→
−→ H3(X,O⊕mX ) ∼= Cm −→ H3(X,S) −→ H3(X,TA|X) −→ 0

(2.9)
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leads to the identifications

H0(X,TA|X) ∼= H0(X,S))/H0(X,O⊕mX ) (2.10)

H1(X,TA|X) ∼= H1(X,S) , (2.11)

where we have used the fact that H0(X,OX) ∼= H3(X,OX) ∼= C and that the cohomology

groupsH1(X,OX) andH2(X,OX) are trivial. Combining eq. (2.6) with these identification

leads to

H2,1(X) ∼=
H0(X,N)

H0(X,S))/H0(X,O⊕mX )
⊕Ker

(
H1(X,S)→ H1(X,N)

)
. (2.12)

It turns out that the kernel in the above equation vanishes for many cases of interest. In

particular, we have explicitly checked by directed computation that this is true for all entries

in the standard CICY list [5, 6] with freely-acting symmetries. Under this assumption, the

expression for H2,1(X) simplifies to

H2,1(X) ∼=
H0(X,N)

H0(X,S))/H0(X,O⊕mX )
, (2.13)

and the upstairs Hodge number can be obtained from

h2,1(X) = h0(X,N)− h0(X,S) +m. (2.14)

While the upstairs Hodge numbers for CICYs are well-known, a computation along the

above lines provides a basic check of our method. The upstairs Euler number, η(X), can

be computed by elementary methods from the data in the configuration matrix (2.1), as

explained in ref. [48]. The other non-trivial Hodge number h1,1(X) can then be obtained

from the standard formula

h1,1(X) = η(X)/2 + h2,1(X) . (2.15)

The computation of H2,1(X) outlined above requires the computation of line bundle

cohomology on X, specifically for the line bundle sums N and S. This is accomplished

by means of the Koszul sequence which relates cohomology on X to cohomology on the

ambient space A. In general, for any line bundle L on A and its restriction L = L|X the

Koszul sequence reads

0 −→ ∧KN ∗⊗ L pK−1−→ · · · p2−→ ∧2N ∗⊗ L p1−→ N ∗⊗ L p0=p−→ L −→ L −→ 0 , (2.16)

where the map p0 = p is given by the defining polynomials of the CICY X and the higher

maps p1, . . . ,pK−1 are the corresponding induced maps on the anti-symmetric powers of

N ∗. Using spectral sequence techniques (see, for example, refs. [49, 50] for an accessible

account) this sequence can be used to express the cohomology of L in terms of cohomologies

of ambient space line bundle sums ∧kN ∗ ⊗ L. Together with standard results for line

bundle cohomology on projective spaces [51] this allows for an explicit computation of line

bundle cohomology on X in terms of ambient space line bundle cohomology. From the two

sequences (2.4) and (2.8) the relevant line bundle sums on the ambient space are

O⊕mA , N =
K⊕
a=1

OA(qa) , S =
m⊕
r=1

OA(er)
⊕(nr+1) . (2.17)

– 5 –



J
H
E
P
0
1
(
2
0
1
7
)
0
0
1

All cohomology groups required for the calculation of H2,1(X) from eq. (2.12) can be

expressed in terms of ambient space cohomology of the above three line bundle sums and

their tensor powers, by means of the Koszul sequence. In particular, we always have1

H0(X,O⊕mX ) ∼= H0(OA)⊕m . (2.18)

For the other two required cohomologies, H0(X,N) and H0(X,S), the correspondence has

to be worked out case by case and we will do this explicitly for the examples in the next

section. This concludes the discussion of the upstairs manifold.

2.2 The quotient manifold and its Hodge numbers

Next, we assume that X has a freely-acting discrete symmetry, G, of order |G| and we define

the quotient manifold X̃ = X/G. Our goal is to compute the Hodge numbers h1,1(X̃) and

h2,1(X̃) of this quotient. Divisibility of the Euler number means that

η(X̃) = η(X)/|G| , (2.19)

so it is sufficient to compute only one of the downstairs Hodge numbers. Starting with the

discussion in the previous sub-section, we will set up an algorithm to compute h2,1(X̃).

In general, the downstairs cohomology H2,1(X̃) is given by the G-invariant part of the

upstairs cohomology H2,1(X), so

H2,1(X̃) ∼=
(
H2,1(X)

)
inv

. (2.20)

Hence, we should work out the equivariant structures on all bundles involved and determine

the G representation content of H2,1(X) (for similar work chasing equivariant structures

through sequences defining bundles see [26]). As we will see, there are three representations

of the groupG which enter this discussion. The first of these is the (projective/permutation)

representation on the homogeneous coordinates of the ambient space, denoted by

γ : G→ Sm n (PGL(Cn1+1)× · · · × PGL(Cnm+1)) . (2.21)

Further, we have a representation

ρ : G→ H0(A,N ∗ ⊗N ) (2.22)

which describes the symmetry action on the defining polynomials or, equivalently, an equiv-

ariant structure on the bundle N . The idea is that the CICY X is invariant under the

combined action of γ and ρ and these are precisely the representations which are pro-

vided by Braun’s classification in ref. [1]. The third required representation of G is the

permutation representation

π : G→ Sm (2.23)

which captures the part of the γ-action on the homogeneous ambient space coordinates

which permutes projective spaces of the same dimension. The representations π can be

1For simplicity of notation, here and in the following we omit the first argument, A, from cohomologies

whenever we refer to the ambient space.
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easily obtained from the representations γ, as provided in the classification of ref. [1], by

extracting the part of γ which permutes entire projective spaces, discarding any non-trivial

action on coordinates within each projective space.

In order to work out the G-invariant part of H2,1(X) we require the G-representation

content of the various cohomologies which appear in the formula (2.13). As we have

discussed, these cohomologies can, in turn, be expressed in terms of ambient space coho-

mologies of the three bundles (2.17) and their tensor powers.

The conclusion from this discussion is that the G-representation content of all relevant

cohomologies is determined once we fix equivariant structures on the three line bundle

sums (2.17) which constitute our basic building blocks. Since these three bundles are

globally generated an equivariant structure can be specified by a G-action on their sections

and this turns out to be a convenient way to proceed. The sections can be written as

homogeneous polynomials of appropriate degrees in the ambient space coordinates x and

they are explicitly given by

Γ(O⊕mA ) = {c ∈ Cm} , Γ(S) = {(l1(x1), . . . , . . . , lm(xm))} , Γ(N ) =

K⊕
a=1

C[x]qa ,

(2.24)

where lr = (lr,0, . . . , lr,nr) are nr + 1-dimensional vectors of polynomials linear in xr and

C[x]k denotes the multi-degree k part of the ambient space coordinate ring C[x]. A consis-

tent choice of G-actions on these sections which leads to the required equivariant structure

on N and TA is given by

RΓ(O⊕m
A ) = π , RΓ(S)(g)(l)(x) = γ(g)l

(
γ(g)−1x

)
, RΓ(N )(g)(n)(x) = ρ(g)n

(
γ(g)−1x

)
.

(2.25)

We would like to show that this is indeed the correct choice. First, the action of γ(g)−1 on

the argument x is the standard way by which G acts on sections. The overall multiplicative

action of G, on the other hand, corresponds to a choice of equivariant structure and needs

to be justified. For the bundle N the overall action by ρ is evidently correct, since ρ

provides an equivariant structure on N .

To discuss the other two bundles we should first introduce the global vector fields

Γ(TA) =

{[
m∑
r=1

lr(xr) ·
∂

∂xr

]}
(2.26)

on A where the lr are (nr+1)-dimensional vectors of linear polynomials in xr, as before, and

the square bracket indicates equivalence classes taken with respect to the subset spanned

by xr · ∂
∂xr

for r = 1, . . . ,m. We should now look at the Euler sequence (2.7). The maps

f1 and f2 in this sequence induce the following maps

f1(c) = (c1x1, . . . , cmxm) f2(l) =

[
m∑
r=1

lr(xr) ·
∂

∂xr

]
(2.27)

on the sections. Evidently, given the equivalence class taken on the r.h.s. of the second

equation, we have f2 ◦ f1 = 0, as should be the case for a complex. We can also verify that

f1 ◦RΓ(O⊕m
A )(g) = RΓ(S)(g) ◦ f1 f2 ◦RΓ(S)(g) = RΓ(TA)(g) ◦ f2 (2.28)

– 7 –
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where RΓ(TA)(g) is the obvious action of G on the vector fields. This means that the chosen

representations intertwine the maps in the Euler sequence for the canonical G-action on

the vector fields and, therefore, represent the correct choice. Note in particular, that

the non-trivial choice of π acting on the sections of O⊕mA is required and that the trivial

representation RΓ(O⊕m
A ) = id would not satisfy the intertwining conditions.

From these equivariant structures and the Koszul sequence, we can work out the G-

representation content of all relevant cohomologies and obtain the characters

χH0(X,O⊕m
X ) , χH0(X,S) , χH0(X,N) , (2.29)

of the cohomologiesH0(X,O⊕mX ), H0(X,S) andH0(X,N). Provided the kernel in eq. (2.12)

vanishes the character for H2,1(X) is then given by

χH2,1(X) = χH0(X,N) − χH0(X,S) + χH0(X,O⊕m
X ) . (2.30)

In general, for a character χ, the number of singlets, ν, can be computed from the formula

ν =
1

|G|
∑
g∈G

χ(g) . (2.31)

Let us denote by νH0(X,O⊕m
X ), νH0(X,N), and νH0(X,S) the number of G-singlets in the three

relevant cohomologies. In practice, these numbers are most easily obtained by demanding

invariance under the transformations (2.25) and the corresponding transformations induced

on tensor bundles. From eq. (2.20) the downstairs Hodge number h2,1(X̃) equals the

number of G-singlets in H2,1(X) and hence, by applying eq. (2.31) to eq. (2.30), we find that

h2,1(X̃) = νH0(X,N) − νH0(X,S) + νH0(X,O⊕m
X ) , (2.32)

provided the kernel in eq. (2.12) vanishes. Eq. (2.32) is our key result for the computation of

the downstairs Hodge number h2,1(X̃). Given that the index divides, so η(X̃) = η(X)/|G|,
the other downstairs Hodge number is easily obtained from

h1,1(X̃) =
η(X)

2|G|
+ h2,1(X̃) . (2.33)

2.3 Summary of algorithm

We would now briefly like to summarise our algorithm before we discuss a number of

explicit applications in the next section.

• Set-up. Define the ambient space and the CICY by providing the configuration

matrix (2.1) and write down the bundles O⊕mA , S and N for this manifold.

• Cohomologies. Compute the cohomologies H0(X,O⊕mX ), H0(X,S) and H0(X,N)

in terms of cohomologies of the ambient space bundles (2.17) and their tensor powers.

(Also check that the kernel in eq. (2.12) vanishes.)

• Upstairs Hodge number. As a basic check, compute the upstairs Hodge number

h2,1(X) from eq. (2.14).
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• Symmetry. Define the action of the freely-acting symmetry G by providing the

representations γ in eq. (2.21) and ρ in eq. (2.22). Also compute the permutation

representation π in eq. (2.23).

• Singlets. Compute, in turn, the number of G-singlets in H0(X,O⊕mX ), H0(X,S)

and H0(X,N).

• Downstairs Hodge numbers. Compute h2,1(X̃) from eq. (2.32) and h1,1(X̃) from

eq. (2.33).

3 Explicit examples

In this section, we will explicitly illustrate the above algorithm by computing the downstairs

Hodge numbers for a number of CICYs. The CICY data is taken from the standard list [5, 6]

and the freely acting symmetries are taken from Braun’s classification in ref. [1]. The

relevant CICY data required for this paper is available at the website [52]. This includes

the configuration matrices for the relevant CICYs, their identifying number which gives

their position in the original list of ref. [5, 6], the upstairs Hodge numbers h1,1(X), h2,1(X)

and a list of symmetries, each specified by the matrices γ(g), ρ(g) (see eqs. (2.21), (2.22)).

If a CICY has more than one symmetry we will refer to a specific symmetry by its position

in this list.

3.1 Example 1: a Z4 symmetry on the tetra-quadric

Set-up. We consider the tetra-quadric CICY with number 7862, defined as the zero locus

of a multi-degree q = (2, 2, 2, 2) polynomial p in the ambient space A = P1×P1×P1×P1.

The configuration matrix is given by

X =


P1 2

P1 2

P1 2

P1 2


4,68

−128

, (3.1)

and the three relevant ambient space line bundle sums are

O⊕4
A , S = OA(e1)⊕2 ⊕ · · ·OA(e4)⊕2 , N = OA(2, 2, 2, 2) . (3.2)

Cohomologies. For the bundles S and N , the long exact sequences associated to their

Koszul sequences are given by

h0(·)
h1(·)
h2(·)
h3(·)

N ∗ ⊗S
p→ S → S

0 16 16

0 0 0

0 0 0

0 0 0

OA
p→ N → N

1 81 80

0 0 0

0 0 0

0 0 0

(3.3)
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where we have omitted the zeros to the left and right of these sequences. This shows that

H0(X,S) ∼= H0(S) , H0(X,N) ∼=
H0(N )

p(H0(OA))
. (3.4)

Further, since all higher cohomologies of N and S are zero, the kernel in eq. (2.12) vanishes.

Upstairs Hodge number. From the previous results we conclude that h0(X,S) = 16

and h0(X,N) = 80 which implies for the upstairs Hodge number

h2,1(X) = h0(X,N)− h0(X,S) + 4 = 80− 16 + 4 = 68 , (3.5)

in line with expectations.

Symmetry. We would like to consider the second freely-acting symmetry of the tetra-

quadric which corresponds to the group G = Z4 with generator g. It is defined by the

representations

γ(g) =


0 σ3 0 0

12 0 0 0

0 0 0 σ3

0 0 12 0

 , ρ(g) = 1 , σ3 = diag(1,−1) . (3.6)

The associated permutation representation π acts on the four P1 factors as

π(g) =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 . (3.7)

Singlets.

a) First, we compute the number of singlets in H0(X,O⊕mX ) by solving the constraint

π(g)c = c for a four-dimensional complex vector c = (c1, c2, c3, c4)T and π(g) as given in

eq. (3.7). Clearly, the solution space is two-dimensional so that

νH0(X,O⊕m
X ) = 2 . (3.8)

b) In order to compute the number of singlets in H0(X,S) ∼= H0(A,S) we first observe

that the matrix (3.6) splits into two 4 × 4 blocks with the same structure. It is, there-

fore, sufficient to calculate for one of these blocks. From eq. (2.25), the action of the

representation RΓ(S) (for one of the blocks) is

RΓ(S)(g)


c0x0 + c1x1

c̃0x0 + c̃1x1

d0y0 + d1y1

d̃0y0 + d̃1y1

 =


d0x0 − d1x1

−d̃0x0 + d̃1x1

c0y0 + c1y1

c̃0y0 + c̃1y1

 . (3.9)

For a singlet, the r.h.s. needs to equal the argument on the l.h.s. which implies c0 = d0,

c̃1 = d̃1 and the vanishing of all other coefficients. This means we have two singlets in each

4× 4 block, for a total of

νH0(X,S) = 4 . (3.10)
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c) Finally, we require the number of G-singlets in H0(X,N) which is simply given by the

number of G-invariant tetra-quadric minus one (corresponding to the defining polynomial

which has to be taken off due to the quotient in H0(X,N) ∼= H0(A,N )/p(H0(A,OA))).

The number of G-invariant tetra-quadrics is 21, hence,

νH0(X,N) = 20 . (3.11)

Downstairs Hodge numbers. Altogether, from eq. (2.32), this lead to the downstairs

Hodge number

h2,1(X̃) = νH0(X,N) − νH0(X,S) + νH0(X,O⊕m
X ) = 20− 4 + 2 = 18 . (3.12)

From eq. (2.33), the other downstairs Hodge number is given by

h1,1(X̃) = η(X)/8 + h2,1(X̃) = −128/8 + 18 = 2 . (3.13)

These results agree with the ones obtained in refs. [43, 45].

3.2 Example 2: a co-dimension two CICY with a Z2 symmetry

Set-up. This co-dimension two CICY carries the number 2565 and has only a single

freely-acting symmetry with group G = Z2. The Hodge numbers for this quotient have not

been computed before. The manifold is defined in the ambient space A = P1×P1×P1×P2

with configuration matrix

X =


P1 0 2

P1 2 0

P1 2 0

P2 1 2


10,26

−32

. (3.14)

The relevant ambient space bundles are O⊕4
A and

S = OA(e1)⊕2 ⊕OA(e2)⊕2 ⊕OA(e3)⊕2 ⊕OA(e1)⊕3 (3.15)

N = N1 ⊕N2 = OA(0, 2, 2, 1)⊕OA(2, 0, 0, 2) . (3.16)

Cohomologies. The Koszul sequence for S = S|X shows that

H0(X,S)∼=H0(S) = H0(AA(e1))⊕2︸ ︷︷ ︸
4 dim.

⊕H0(AA(e2))⊕2︸ ︷︷ ︸
4 dim.

⊕H0(AA(e3))⊕2︸ ︷︷ ︸
4 dim.

⊕H0(AA(e4))⊕3︸ ︷︷ ︸
9 dim.

,

(3.17)

so that

h0(X,S) = 21 . (3.18)

For the normal bundle N = N|X the Koszul sequence leads to

H0(X,N) ∼=
H0(N )

H0(N ∗ ⊗N )
, (3.19)

– 11 –



J
H
E
P
0
1
(
2
0
1
7
)
0
0
1

where

H0(N ) = H0(N1)︸ ︷︷ ︸
27 dim.

⊕H0(N2)︸ ︷︷ ︸
18 dim.

(3.20)

H0(N ∗ ⊗N ) = H0(N ∗1 ⊗N1)︸ ︷︷ ︸
1 dim.

⊕H0(N ∗2 ⊗N2)︸ ︷︷ ︸
1 dim.

= H0(OA)⊕2 . (3.21)

Hence, we have

h0(X,N) = h0(N )− h0(N ∗ ⊗N ) = 45− 2 = 43 . (3.22)

Further, it turns out that h1(X,S) = 3 and h1(X,N) = 9. Even though both of these

cohomologies are non-trivial it can be checked that the map between them is injective and,

hence, that the kernel in eq. (2.12) vanishes.

Upstairs Hodge number. Combining the above results, we find for the upstairs Hodge

number

h2,1(X) = h0(X,N)− h0(X,S) + 4 = 43− 21 + 4 = 26 , (3.23)

in line with expectations.

Symmetry. The relevant representations of the symmetry group G = Z2 with generator

g are

γ(g) = diag(−1, 1,−1, 1,−1, 1,−1,−1, 1) (3.24)

ρ(g) = diag(−1, 1) (3.25)

π(g) = 14 . (3.26)

Singlets.

a) Since the π-action is trivial it is immediately clear that

νH0(X,O⊕4
X ) = 4 . (3.27)

b) We denote the projective ambient space coordinates by ((x0, x1), (y0, y1), (z0, z1),

(t0, t1, t2)). From eq. (3.17), the cohomology H0(X,S) can be represented by a vector

l(x) = (a1x0 + b1x1, a
′
1x0 + b′1x1, a2y0 + b2y1, a

′
2y0 + b′2y1, a3z0 + b3z1, a

′
3z0 + b′3z1, (3.28)

a4t0 + b4t1 + c4t2, a
′
4t0 + b′4t1 + c′4t2, a

′′
4t0 + b′′4t1 + c′′4t2)T . (3.29)

with a total of h0(X,S) = 21 arbitrary coefficients. Applying to this vector the constraint

l(x) = γ(g)l(γ(g)−1x) we learn that the number of invariants is

νH0(X,S) = 11 . (3.30)

c) For H0(X,N) we require the representations

H0(N1) = H0(OA(0, 2, 2, 1)) = Span(y2
0, y0y1, y

2
1)⊗Span(z2

0 , z0z1, z
2
1)⊗Span(t0, t1, t1)

(3.31)

H0(N2) = H0(OA(2, 0, 0, 2)) = Span(x2
0, x0x1, x

2
1)⊗ Span(t20, t0t1, t

2
1) (3.32)

H0(N ∗⊗N ) = H0(OA)⊕2 (3.33)
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Finding the invariants by a straightforward application of the last eq. (2.25) leads to

νH0(N1) = 14 , νH0(N2) = 10 , νH0(N ∗⊗N ) = 2 , (3.34)

and, hence,

νH0(X,N) = νH0(N1) + νH0(N2) − νH0(N ∗⊗N ) = 14 + 10− 2 = 22 . (3.35)

Downstairs Hodge numbers. Altogether, this leads to the downstairs Hodge numbers

h2,1(X̃) = νH0(X,N) − νH0(X,S) + νH0(X,O⊕4
X ) = 22− 11 + 4 = 15 (3.36)

h1,1(X̃) = η(X)/4 + h2,1(X̃) = −32/4 + 15 = 7 . (3.37)

3.3 Example 3: a co-dimension three CICY with Z2 × Z2 symmetry

Set-up. The CICY with number 2568 is a co-dimension three manifold in the ambient

space A = (P1)×6, defined by the configuration matrix

X =

P1

P1

P1

P1

P1

P1



1 1 0

1 1 0

0 2 0

1 0 1

1 0 1

0 0 2



12,28

−32

. (3.38)

Reading off from the columns of this matrix, the bundle N is explicitly given by

N = N1⊕N2⊕N3 = OA(1, 1, 0, 1, 1, 0)⊕OA(1, 1, 2, 0, 0, 0)⊕OA(0, 0, 0, 1, 1, 2) . (3.39)

The other two relevant ambient space bundles are

O⊕6
A , S = OA(e1)⊕2 ⊕ · · · ⊕ OA(e6)⊕2 . (3.40)

Cohomologies. The Koszul sequence for N can be broken up into the three short exact

sequences

h0(·)
h1(·)
h2(·)
h3(·)
h4(·)
h5(·)
h6(·)

∧3N ∗ ⊗N →∧2N ∗ ⊗N →K2

0 0 0

0 0 0

0 1 1

0 6 6

0 0 0

0 0 0

0 0 0

K2→N ∗ ⊗N →K1

0 3 3

0 8 9

1 0 6

6 0 0

0 0 0

0 0 0

0 0 0

K1→N →N

3 40 46

9 0 6

6 0 0

0 0 0

0 0 0

0 0 0

0 0 0

(3.41)

– 13 –



J
H
E
P
0
1
(
2
0
1
7
)
0
0
1

where K1 and K2 are suitable co-kernels. Combining the information from these sequences

we learn that

H0(X,N)∼=
H0(N )

H0(N ∗ ⊗N )
⊕H1(N ∗ ⊗N )⊕H2(∧2N ∗ ⊗N )

=
H0(N )

H0(O⊕3
A )
⊕H1(N2 ⊗N ∗1 ⊕N2 ⊗N ∗3 )⊕H2(N2 ⊗N ∗1 ⊗N ∗3 )

=
H0(N )

H0(O⊕3
A )︸ ︷︷ ︸

40-3=37 dim.

⊕H1(OA(−2,0,0,0,1,1)⊕OA(0,−2,1,1,0,0))︸ ︷︷ ︸
4+4=8 dim.

⊕H2(OA(−2,−2,0,0,0,0))︸ ︷︷ ︸
1 dim.

(3.42)

h0(X,N)= (40− 3) + (4 + 4) + 1 = 46 (3.43)

The situation is much simpler for S whose only non-zero cohomology is

H0(X,S) ∼= H0(S)︸ ︷︷ ︸
24 dim.

. (3.44)

Since H1(X,S) = 0 the kernel in eq. (2.12) vanishes.

Upstairs Hodge number. From the above cohomologies, we have

h2,1(X) = h0(X,N)− h0(X,S) + 6 = 46− 24 + 6 = 28 (3.45)

which is the correct result.

Symmetry. We consider the symmetry with number 25 which corresponds to the group

G = Z2 × Z2. The relevant representation matrices of the generators g1 and g2 are

γ(g1) = diag(σ3, σ3, σ3,−σ3, σ3, σ3) γ(g2) = diag(12 × σ1, σ1 × 12,12 × σ1)

ρ(g1) = 13 ρ(g2) = diag(1,−1, 1)

π(g1) = 16 π(g2) = diag(12, σ1,12) .

(3.46)

Singlets.

a) In order to compute the number of singlets in H0(X,O⊕6
X ) we impose the constraints

π(g1)c = c and π(g2)c = c on an arbitrary six-dimensional complex vector c which,

obviously, leads to a five-dimensional space. Hence

νH0(X,O⊕6
X ) = 5 . (3.47)

b) Next, we need to find the G-singlets in H0(X,S) ∼= H0(A,S). We can split up this

problem by first considering the first and last two P1 factors which are not permuted under

π. Each of these four factors is similar so we can focus on the first with coordinates u0, u1.

Using the action defined in eq. (2.25), invariance under g1 in the first factor implies the

constraint (
au0 + bu1

ãu0 + b̃u1

)
=

(
au0 − bu1

−ãu0 + b̃u1

)
(3.48)
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on the two linears involved. It follows that b = 0 and ã = 0. Acting with the constraint

from g2 on the remaining degrees of freedom gives(
au0

b̃u1

)
=

(
b̃u0

au1

)
, (3.49)

which leads to a = b̃ and, hence, one invariant. This makes for a total of four invariants

from the four P1 factors invariant under π. For the remaining third and fourth P1 with

coordinates w0, w1, x0x1 the invariant constraint from g1 reads
aw0 + bw1

ãw0 + b̃w1

cx0 + dx1

c̃x0 + d̃x1

 =


aw0 − bw1

−ãw0 + b̃w1

cx0 − dx1

−c̃x0 + d̃x1

 (3.50)

leading to b = ã = d = c̃ = 0. For the remaining vector, the constraint from g2 takes

the form 
aw0

b̃w1

cx0

d̃x1

 =


cw0

d̃w1

ax0

b̃x1

 , (3.51)

which implies a = c and b̃ = d̃, leaving us with two invariants. Altogether, this means

νH0(X,S) = 4× 1 + 2 = 6 . (3.52)

c) Finally, we need to count the number of singlets in H0(X,N), using the decompo-

sition (3.42). We know that there are 11 polynomial invariants so that νH0(A,N ) =

11. Clearly, we have νH0(A,O⊕3
A ) = 3. Let us denote the homogeneous coordinates for

the six P1 factors by ((u0, u1), (v0, v1), (w0, w1), (x0, x1), (y0, y1), (z0, z1)). Starting with

H1(A,OA(−2,0,0,0,1,1)) we can represent this cohomology as

H1(A,OA(−2,0,0,0,1,1)) ∼=
1

u0u1
Span(y0z0, y0z1, y1z0, y1z1) . (3.53)

Within this four-dimensional space, there is precisely one G-singlet given by

1

u0u1
(y0z1 + y1z0) (3.54)

Here, we have taken into account the anti-symmetric nature of the pre-factor 1/(u0u1)

which makes it odd under both g1 and g2 and the negative sign for g2 from the equivari-

ant structure ρ in eq. (2.22), given that the line bundle in question is a tensor product

which contains N2. This means that νH1(A,OA(−2,0,0,0,1,1)) = 1. The next contribution,

H1(A,OA(0,−2,1,1,0,0)), can be represented as

H1(A,OA(0,−2,1,1,0,0)) ∼=
1

v0v1
Span(w0x0, w0x1, w1x0, w1x1) . (3.55)
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This contains two G-invariants, namely

1

v0v1
w0x0 ,

1

v0v1
w1x1 , (3.56)

so that νH1(A,OA(0,−2,1,1,0,0)) = 2. The final contribution in eq. (3.42) to be considered is

H2(A,OA(−2,−2,0,0,0,0)) ∼=
1

u0u1v0v1
C . (3.57)

This representative is not G-invariant and, hence, there is no contribution from this part.

Altogether, we have

νH0(X,N) = νH0(A,N )−νH0(A,N ∗⊗N ) +νH1(A,N ∗⊗N ) +νH2(A,∧2N ∗⊗N ) = 11−3+3+0 = 11 .

(3.58)

Downstairs Hodge numbers. Combining the above results, we finally find for the

downstairs Hodge numbers

h2,1(X̃) = νH0(X,N) − νH0(X,S) + νH0(X,O⊕m
X ) = 11− 6 + 5 = 10 (3.59)

h1,1(X̃) = η(X)/8 + h2,1(X̃) = −32/8 + 10 = 6 (3.60)

which agrees with the results in ref. [45].

3.4 Example 4: a co-dimension three CICY with a Z4 symmetry

Set-up. This example is for the CICY with number 2568, the same as in Example 3.

The basic set-up and the computation of cohomologies is identical to Example 3.

Symmetry. We consider the 8th symmetry of this manifold, a G = Z4 symmetry with

generator g and associated representations

γ(g) =



0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0



(3.61)

ρ(g) =

 0 0 1

0 1 0

1 0 0

 π(g) =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0


. (3.62)
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Singlets.

a) We start with H0(X,O⊕6
X ) which we represent by a six-dimensional complex vector c.

Imposing π(g)c = c shows that

νH0(X,O⊕6
X ) = 2 . (3.63)

b) From eq. (3.44), the cohomology H0(X,S) can be represented by a 12-dimensional

vector l of linears in the appropriate coordinates and imposing l(x) = γ(g)l(γ(g)−1x)

shows that the number of singlets is given by

νH0(X,S) = 6 . (3.64)

c) For H0(X,N) we need to go through the various pieces which appear in eq. (3.42) begin-

ning with H0(N ). Representing this by a three-dimensional vector v, containing polyno-

mials of degrees as given by the configuration matrix and imposing v(x) = ρ(g)v(γ(g)−1x)

gives

νH0(N ) = 13 . (3.65)

Elements of H0(N ∗ ⊗ N ) can be represented by diagonal matrices M = diag(a, b, c) and

imposing ρ(g)†Mρ(g) = M shows that

νH0(N ∗⊗N ) = 2 . (3.66)

Denoting the projective ambient space coordinates by x = ((x0, x1), (y0, y1), (z0, z1), (t0, t1),

(u0, u1), (v0, v1)), the cohomology H1(N ∗ ⊗ N ) can be represented by two-dimensional

vectors of the form

v(x) =

(
1

x0x1
(a1u0v0 + a2u0v1 + a3u1v0 + a4u1v1)

1
y0y1

(b1z0t0 + b2z0t1 + b3z1t0 + b4z1t1)

)
. (3.67)

Under the induced action of ρ the two entries of this vector are exchanged (since ρ exchanges

N1 with N3 while leaving N2 invariant). Performing this transformation, together with the

action of γ(g)−1 on the coordinates and demanding invariance as usual leads to

νH1(N ∗⊗N ) = 1 . (3.68)

The final piece is

H2(∧2N ∗ ⊗N ) ∼= Span

(
1

x0x1y0y1

)
. (3.69)

This is odd under the action of g and, hence, νH2(∧2N ∗⊗N ) = 0. Combining all this we

finally find

νH0(X,N) = νH0(N )−νH0(N ∗⊗N ) +νH1(N ∗⊗N ) +νH2(∧2N ∗⊗N ) = 13−2+1+0 = 12 . (3.70)

Downstairs Hodge numbers. This leads to the downstairs Hodge numbers

h2,1(X̃) = νH0(X,N) − νH0(X,S) + νH0(X,O⊕6
X ) = 12− 6 + 2 = 8 (3.71)

h1,1(X̃) = η(X)/8 + h2,1(X̃) = −32/8 + 8 = 4 . (3.72)
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3.5 Example 5: a co-dimension four CICY with a Z2 × Z8 symmetry

Set-up. This example is for the CICY with number 6836, embedded in the ambient space

A = P1 × P1 × P1 × P1 × P3 and specified by the configuration matrix

X =


P1 0 0 0 2

P1 0 2 0 0

P1 0 0 2 0

P1 2 0 0 0

P3 1 1 1 1



5,37

−64

. (3.73)

The relevant ambient space bundles, besides O⊕5
A , are

S = OA(e1)⊕2 ⊕OA(e2)⊕2 ⊕OA(e3)⊕2 ⊕OA(e4)⊕2 ⊕OA(e5)⊕4 (3.74)

N = N1 ⊕N2 ⊕N3 ⊕N4

= OA(0, 0, 0, 2, 1)⊕OA(0, 2, 0, 0, 1)⊕OA(0, 0, 2, 0, 1)⊕OA(2, 0, 0, 0, 1) (3.75)

Cohomologies. Chasing through the Koszul sequence for S = S|X it follows that

H0(X,S) ∼= H0(S)⊕H1(N ∗ ⊗S) (3.76)

H0(S) = H0(OA(e1))⊕2︸ ︷︷ ︸
4 dim.

⊕H0(OA(e2))⊕2︸ ︷︷ ︸
4 dim.

⊕H0(OA(e3))⊕2︸ ︷︷ ︸
4 dim.

⊕H0(OA(e4))⊕2︸ ︷︷ ︸
4 dim.

⊕H0(OA(e5))⊕4︸ ︷︷ ︸
16 dim.

(3.77)

H1(N ∗ ⊗S) =
[
H1(N ∗1 ⊗OA(e5))⊕H1(N ∗2 ⊗OA(e5))⊕H1(N ∗3 ⊗OA(e5))

⊕ H1(N ∗4 ⊗OA(e5))
]⊕4

=

H1(OA(0, 0, 0,−2, 0))︸ ︷︷ ︸
1 dim.

⊕H1(OA(0,−2, 0, 0, 0))︸ ︷︷ ︸
1 dim.

⊕H1(OA(0, 0,−2, 0, 0))︸ ︷︷ ︸
1 dim.

⊕H1(OA(−2, 0, 0, 0, 0))︸ ︷︷ ︸
1 dim.

⊕4

(3.78)

Altogether we have h0(X,S) = 4× 4 + 16 + 4× 4 = 48. Carrying out a similar discussion

starting from the Koszul sequence for N = N|X we find

H0(X,N) ∼=
H0(N )

H0(N ∗ ⊗N )
⊕H1(N ∗ ⊗N ) (3.79)

H0(N ) =

4⊕
a=1

H0(Na)︸ ︷︷ ︸
12 dim., each

(3.80)

H0(N ∗ ⊗N ) =

4⊕
a=1

H0(N ∗a ⊗Na) =

4⊕
a=1

H0(OA)︸ ︷︷ ︸
1 dim., each

(3.81)

H1(N ∗ ⊗N ) =
⊕
a 6=b

H1(N ∗a ⊗Nb)︸ ︷︷ ︸
12 terms, each 3 dim.

(3.82)

This gives h0(X,N) = 48−4+36 = 80. Since h1(X,S) = 0 the kernel in eq. (2.32) vanishes.
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Upstairs Hodge number. From the above cohomologies we find

h2,1(X) = h0(X,N)− h0(X,S) + 5 = 80− 48 + 5 = 37 (3.83)

as expected.

Symmetry. We consider the symmetry with number 117 on this manifold, with group

G = Z2×Z8, Z2 generator g1 and Z8 generator g2. The action on the homogenous ambient

space coordinate is given by

γ(g1) = diag(1,−1,−1, 1, 1,−1,−1, 1, 1,−1, 1,−1) (3.84)

γ(g2) =



0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 −1 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 i 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −i
0 0 0 0 0 0 0 0 0 0 1 0



, (3.85)

while the action on the defining polynomials is

ρ(g1) =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 ρ(g2) =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 −1 0

 . (3.86)

The associated permutation representation reads

π(g1) = 15 π(g2) =


0 0 1 0 0

0 0 0 1 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

 . (3.87)

Singlets.

a) We begin by computing the number of G-singlets in H0(X,O⊕5
X ). Imposing π(g2)c = c

on c = (c1, . . . , c5)T immediately shows that there are two singlets so

νH0(X,O⊕5
X ) = 2 . (3.88)

b) For H0(X,S) we have to go through the various pieces in eqs. (3.76)–(3.78). Setting up

a 12-dimensional vector l of general linear polynomials, representing H0(S) and imposing

γ(g)l(γ(g)−1x) = l(x) for g = g1, g2 shows that

νH0(S) = 3 . (3.89)
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The other relevant cohomology, H1(N ∗ ⊗S), is represented by a vector

v(x) =

(
a1

t0t1
,
a2

y0y1
,
a3

z0z1
,
a4

x0x1

)T
(3.90)

where ((x0, x1), (y0, y1), (z0, z1), (t0, t1), (u0, u1, u2, u3)) are the projective ambient space co-

ordinates and ai are arbitrary constants. Imposing ρ(g)†v(γ(g)−1(x)) = v(x) shows that

νH1(N 2⊗S) = 0 . (3.91)

Combining these results we find that

νH0(X,S) = νH0(S) + νH1(N ∗⊗S) = 3 + 0 = 3 . (3.92)

c) For the final piece, H0(X,N), we have to consider the various contributions in

eqs. (3.79)–(3.82), beginning with H0(N ). We set up a four dimensional vector v of

general polynomials describing H0(N ) and imposing ρ(g)v(γ(g)−1(x)) = v(x) shows that

νH0(N ) = 4 . (3.93)

The cohomology H0(N ∗ ⊗ N ) can be represented by a diagonal matrix

M = diag(a1, a2, a3, a4) and imposing the constraints ρ(g)Mρ(g)† = M shows that

νH0(N ∗⊗N ) = 1 . (3.94)

Finally, H1(N ∗ ⊗ N ) can be represented by a polynomial 4 × 4 matrix M(x) which has

zero diagonal entries and 12 general polynomials of the appropriate degree, as in eq. (3.82),

in the off-diagonal entries. Imposing ρ(g)M(γ(g)−1x)ρ(g)† = M(x) leads to

νH1(N ∗⊗N ) = 2 . (3.95)

Combining these three results we have

νH0(X,N) = νH0(N ) − νH0(N ∗⊗N ) + νH1(N ∗⊗N ) = 4− 1 + 2 = 5 . (3.96)

Downstairs Hodge numbers. For the Hodge numbers these results imply

h2,1(X̃) = νH0(X,N) − νH0(X,S) + νH0(X,O⊕5
X ) = 5− 3 + 2 = 4 (3.97)

h1,1(X̃) = η(X)/32 + h2,1(X̃) = −64/32 + 4 = 2 (3.98)

4 Conclusion

The present work concludes and completes the series of papers [43–45] whose purpose is the

computation of Hodge numbers for smooth quotients of CICY manifolds. Our results are

summarised in figure 1. This figure represents the tip of the Hodge plot of all Calabi-Yau

manifolds presently known, highlighting CICY quotients and the new results obtained in

the present paper.
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Figure 1. The tip of the Hodge number plot for all the Calabi-Yau three-folds that we know.

Coloured points correspond to CICY quotients together their mirrors; the red points correspond to

quotients studied only in the present paper. Monochrome points indicate quotients whose Hodge

numbers fall onto sites previously unoccupied, while the multicoloured points correspond to multiply

occupied sites.

The detailed results of our computation, that is, the Hodge numbers for all smooth

CICY quotients, can be found in the appendix. These numbers are important for string

model building on CICY quotients, particularly in the context of the heterotic compact-

ifications. At the same time, CICY quotients provide examples of manifolds with small

Hodge numbers - such examples are rare in the space of known Calabi-Yau manifolds. To

our knowledge, the present method for computing Hodge numbers of CICY quotients based

on equivariant cohomology has not been systematically applied before. The methods for

computing equivariant cohomology developed in this context will be crucial for the analysis

of the large dataset of heterotic models in ref. [29].
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A Table of Hodge numbers

In this appendix we cover all CICYs which appear in the original list [5, 6] and which

have freely-acting symmetries according to the classification by Braun in ref. [1]. The

Hodge numbers of all resulting quotients are listed in the table below. We have marked

in red the Hodge numbers which have not been computed elsewhere, to our knowledge.

For convenience, the underlying data can be obtained from the website [52]. This data

also contains the explicit CICY configuration matrices and the representations γ, ρ of the

freely-acting symmetries which have not been included in the table below in order to keep

the size manageable. Instead, the table refers to the relevant CICYs and their symmetries

by identifier numbers (in the first and fourth column, respectively), which directly refer to

the data at [52]. Further, the second column lists the upstairs Hodge numbers, the third

column the symmetry group G and the last column the downstairs Hodge numbers.

CICY # (h1,1(X), h2,1(X)) G Symm # (h1,1(X/G), h2,1(X/G))

4 (15, 15) Z2 1− 16 (9, 9)

5 (15, 15) Z2 1− 32 (9, 9)

6 (15, 15) Z2 1− 32 (9, 9)

Z3 33 (7, 7)

Z6 34− 41 (3, 3)

14 (19, 19) Z3 1− 3 (7, 7)

Z3 × Z3 4− 39 (3, 3)

15 (15, 15) Z2 1− 4 (9, 9)

Z2 × Z2 5− 20 (6, 6)

18 (19, 19) Z3 1− 3 (7, 7)

19 (19, 19) Z2 1− 3 (11, 11)

Z4 4− 9 (5, 5)

Z2 × Z2 10− 16 (7, 7)

Z8 17 (3, 3)

Z4 × Z2 18− 20 (4, 4)

Q8 21− 29 (3, 3)

20 (19, 19) Z2 1− 2 (11, 11)

Z4 3− 7 (5, 5)

Continued on next page
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CICY # (h1,1(X), h2,1(X)) G Symm # (h1,1(X/G), h2,1(X/G))

Z2 × Z2 8− 14 (7, 7)

21 (19, 19) Z2 1− 3 (11, 11)

Z4 4− 9 (5, 5)

Z2 × Z2 10− 16 (7, 7)

Z8 17 (3, 3)

Z4 × Z2 18− 28 (3, 3)

Z4 × Z2 29− 31 (4, 4)

Q8 32− 34 (3, 3)

Z4 × Z4 35− 37 (2, 2)

Z4 o Z4 38− 40 (2, 2)

Z8 × Z2 41− 43 (2, 2)

Z8 o Z2 44− 46 (2, 2)

Z2 ×Q8 47− 53 (2, 2)

22 (15, 15) Z2 1− 9 (9, 9)

Z2 × Z2 10− 15 (7, 7)

26 (19, 19) Z3 1− 3 (7, 7)

27 (19, 19) Z2 1− 2 (11, 11)

28 (19, 19) Z2 1− 3 (11, 11)

30 (19, 19) Z2 1− 3 (11, 11)

Z4 4 (6, 6)

90 (13, 17) Z2 1 (9, 11)

95 (16, 20) Z2 1 (10, 12)

111 (14, 18) Z2 1 (9, 11)

242 (12, 18) Z3 1 (6, 8)

261 (11, 19) Z2 1 (8, 12)

343 (11, 19) Z2 1 (8, 12)

376 (11, 19) Z2 1 (8, 12)

379 (11, 19) Z2 1 (8, 12)

381 (14, 22) Z2 1 (9, 13)

382 (14, 22) Z2 1− 3 (9, 13)

397 (12, 20) Z2 1 (8, 12)

399 (12, 20) Z2 1− 8 (8, 12)

400 (12, 20) Z2 1− 8 (8, 12)

401 (12, 20) Z2 1− 16 (8, 12)

402 (12, 20) Z2 1− 16 (8, 12)

480 (13, 21) Z2 1− 21 (9, 13)

Z4 22− 26 (5, 7)

Z2 × Z2 27− 394 (7, 9)

Continued on next page
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CICY # (h1,1(X), h2,1(X)) G Symm # (h1,1(X/G), h2,1(X/G))

536 (14, 23) Z3 1 (6, 9)

1144 (11, 23) Z2 1− 20 (8, 14)

1215 (9, 21) Z3 1 (5, 9)

1257 (12, 24) Z2 1− 2 (8, 14)

1262 (9, 21) Z2 1 (7, 13)

1268 (12, 24) Z2 1 (8, 14)

1270 (10, 22) Z2 1 (7, 13)

1295 (11, 23) Z2 1− 5 (8, 14)

1298 (10, 22) Z2 1 (7, 13)

1306 (9, 21) Z3 1 (5, 9)

1441 (10, 22) Z2 1 (7, 13)

1701 (9, 23) Z2 1 (7, 14)

2104 (11, 26) Z3 1 (5, 10)

2357 (9, 25) Z2 1− 10 (7, 15)

Z2 × Z2 11− 98 (6, 10)

2360 (10, 26) Z2 1 (7, 15)

2374 (9, 25) Z2 1 (6, 14)

2383 (9, 25) Z2 1− 5 (7, 15)

2533 (10, 26) Z2 1− 4 (7, 15)

2534 (9, 25) Z2 1− 5 (7, 15)

Z2 × Z2 6− 27 (6, 10)

2535 (9, 25) Z2 1− 8 (7, 15)

2536 (9, 25) Z2 1− 8 (7, 15)

2543 (9, 25) Z2 1− 4 (7, 15)

2544 (7, 23) Z2 1 (6, 14)

2564 (12, 28) Z2 1 (8, 16)

Z4 2− 3 (4, 8)

Z2 × Z2 4 (6, 10)

Z8 5 (2, 4)

Z4 × Z2 6 (3, 5)

Q8 7− 9 (2, 4)

2565 (10, 26) Z2 1 (7, 15)

2566 (12, 28) Z2 1− 3 (8, 16)

Z2 × Z2 4− 10 (6, 10)

2568 (12, 28) Z2 1− 7 (8, 16)

Z4 8 (4, 8)

Z2 × Z2 9− 40 (6, 10)

Z4 × Z2 41− 42 (3, 5)

Continued on next page
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CICY # (h1,1(X), h2,1(X)) G Symm # (h1,1(X/G), h2,1(X/G))

2570 (8, 24) Z2 1 (6, 14)

2572 (9, 25) Z2 1 (7, 15)

Z4 2 (4, 8)

2639 (9, 25) Z2 1− 16 (7, 15)

Z4 17− 20 (4, 8)

2640 (9, 25) Z2 1− 5 (7, 15)

Z2 × Z2 6− 27 (6, 10)

2654 (9, 25) Z2 1− 8 (7, 15)

2655 (10, 26) Z2 1− 8 (7, 15)

2660 (9, 25) Z2 1− 10 (7, 15)

2839 (9, 25) Z2 1− 5 (7, 15)

3381 (9, 27) Z2 1 (7, 16)

3388 (11, 29) Z3 1 (5, 11)

3406 (11, 29) Z3 1− 3 (5, 11)

3413 (6, 24) Z3 1 (4, 10)

3496 (8, 26) Z2 1 (6, 15)

3620 (9, 27) Z3 1 (5, 11)

3929 (7, 27) Z2 1 (6, 16)

3939 (8, 28) Z2 1− 5 (6, 16)

4071 (7, 27) Z2 1− 2 (6, 16)

4078 (7, 27) Z2 1− 4 (6, 16)

4086 (8, 28) Z2 1 (6, 16)

4108 (7, 27) Z2 1 (6, 16)

4109 (6, 26) Z2 1 (5, 15)

4185 (7, 27) Z2 1− 8 (6, 16)

4197 (9, 29) Z2 1 (6, 16)

4216 (8, 28) Z2 1 (5, 15)

4224 (10, 30) Z2 1− 8 (7, 17)

4227 (8, 28) Z2 1− 5 (6, 16)

4335 (7, 27) Z2 1 (6, 16)

Z5 2 (3, 7)

Z10 3 (2, 4)

4415 (8, 29) Z3 1 (4, 11)

4738 (7, 29) Z2 1 (5, 16)

5141 (7, 31) Z2 1− 4 (6, 18)

5248 (7, 31) Z2 1− 4 (6, 18)

5254 (10, 34) Z2 1− 2 (7, 19)

5256 (5, 29) Z2 1− 2 (5, 17)

Continued on next page
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CICY # (h1,1(X), h2,1(X)) G Symm # (h1,1(X/G), h2,1(X/G))

Z2 × Z2 3− 6 (5, 11)

5257 (10, 34) Z2 1− 6 (7, 19)

5259 (7, 31) Z2 1− 8 (6, 18)

5273 (6, 30) Z2 1 (5, 17)

5277 (7, 31) Z2 1 (6, 18)

5300 (10, 34) Z2 1 (7, 19)

5301 (5, 29) Z2 1 (5, 17)

Z4 2 (3, 9)

Z2 × Z2 3 (5, 11)

5302 (6, 30) Z2 1− 4 (6, 18)

Z2 × Z2 5− 20 (6, 12)

5306 (10, 34) Z2 1− 3 (7, 19)

5310 (7, 31) Z2 1 (5, 17)

5311 (7, 31) Z2 1− 2 (6, 18)

5406 (7, 31) Z2 1− 4 (6, 18)

5421 (8, 32) Z2 1− 5 (6, 18)

Z2 × Z2 6− 27 (5, 11)

5423 (7, 31) Z2 1 (6, 18)

5425 (6, 30) Z2 1 (5, 17)

5449 (7, 31) Z2 1− 5 (5, 17)

5452 (5, 29) Z2 1− 4 (5, 17)

Z4 5− 6 (3, 9)

Z2 × Z2 7− 22 (5, 11)

5826 (6, 32) Z2 1 (4, 17)

5958 (6, 32) Z2 1 (5, 18)

5967 (6, 33) Z3 1 (4, 13)

5982 (6, 33) Z3 1 (4, 13)

6021 (8, 35) Z3 1 (4, 13)

6024 (5, 32) Z3 1 (3, 12)

6173 (7, 35) Z2 1 (6, 20)

6178 (7, 35) Z2 1− 4 (6, 20)

6187 (6, 34) Z2 1− 4 (5, 19)

6201 (6, 34) Z2 1− 4 (5, 19)

6202 (6, 34) Z2 1 (5, 19)

6204 (5, 33) Z2 1 (4, 18)

6225 (5, 33) Z2 1 (4, 18)

6229 (6, 34) Z2 1 (5, 19)

6231 (6, 34) Z2 1 (5, 19)

Continued on next page
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CICY # (h1,1(X), h2,1(X)) G Symm # (h1,1(X/G), h2,1(X/G))

6281 (6, 34) Z2 1− 4 (5, 19)

6502 (7, 37) Z3 1 (3, 13)

6655 (6, 36) Z5 1 (2, 8)

6715 (5, 37) Z2 1 (5, 21)

Z2 × Z2 2 (5, 13)

6724 (5, 37) Z2 1 (4, 20)

6732 (5, 37) Z2 1− 2 (5, 21)

6738 (6, 38) Z2 1 (5, 21)

6770 (5, 37) Z2 1− 2 (5, 21)

6777 (5, 37) Z2 1− 4 (5, 21)

6780 (5, 37) Z2 1− 4 (4, 20)

6784 (4, 36) Z2 1− 2 (4, 20)

Z2 × Z2 3− 6 (4, 12)

6785 (8, 40) Z2 1− 4 (6, 22)

6788 (5, 37) Z2 1− 3 (5, 21)

Z2 × Z2 4− 12 (5, 13)

6802 (5, 37) Z2 1 (5, 21)

6804 (5, 37) Z2 1 (4, 20)

6826 (8, 40) Z2 1 (6, 22)

Z4 2 (3, 11)

Z2 × Z2 3 (5, 13)

6828 (4, 36) Z2 1 (4, 20)

Z2 × Z2 2 (4, 12)

6829 (8, 40) Z2 1− 3 (6, 22)

Z2 × Z2 4− 10 (5, 13)

6830 (5, 37) Z2 1 (4, 20)

6831 (4, 36) Z2 1 (3, 19)

6834 (5, 37) Z2 1− 2 (5, 21)

6836 (5, 37) Z2 1− 11 (5, 21)

Z4 12− 14 (3, 11)

Z2 × Z2 15− 92 (5, 13)

Z8 93 (2, 6)

Z4 × Z2 94− 111 (3, 7)

Q8 112− 113 (2, 6)

Z4 o Z4 114− 115 (2, 4)

Z8 × Z2 116− 117 (2, 4)

6890 (5, 37) Z2 1− 2 (5, 21)

6896 (5, 37) Z2 1 (5, 21)

Continued on next page
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CICY # (h1,1(X), h2,1(X)) G Symm # (h1,1(X/G), h2,1(X/G))

6927 (5, 37) Z2 1− 2 (5, 21)

Z4 3 (3, 11)

Z2 × Z2 4− 5 (5, 13)

Z4 × Z2 6− 8 (3, 7)

6947 (5, 37) Z2 1 (5, 21)

Z4 2 (3, 11)

Z2 × Z2 3 (5, 13)

Z8 4 (2, 6)

Z4 × Z2 5− 6 (3, 7)

Q8 7 (2, 6)

Z4 o Z4 8 (2, 4)

Z8 × Z2 9 (2, 4)

7204 (4, 40) Z2 1− 2 (4, 22)

7206 (8, 44) Z2 1− 2 (6, 24)

Z3 3− 5 (4, 16)

Z6 6− 11 (2, 8)

7218 (4, 40) Z2 1 (4, 22)

7240 (3, 39) Z3 1 (3, 15)

Z3 × Z3 2− 3 (3, 7)

7241 (4, 40) Z2 1 (4, 22)

7245 (4, 40) Z2 1 (3, 21)

7246 (8, 44) Z2 1 (6, 24)

Z3 2− 10 (4, 16)

Z4 11 (3, 12)

Z6 12− 20 (2, 8)

Z3 o Z4 21− 23 (1, 4)

Z12 24− 26 (1, 4)

7247 (4, 40) Z3 1 (2, 14)

7270 (4, 40) Z2 1− 2 (4, 22)

7279 (5, 41) Z2 1 (4, 22)

7300 (8, 44) Z2 1− 4 (6, 24)

Z3 5 (4, 16)

Z4 6− 7 (3, 12)

Z6 8− 11 (2, 8)

Z3 o Z4 12− 13 (1, 4)

Z12 14− 15 (1, 4)

7403 (4, 42) Z2 1 (3, 22)

7435 (4, 44) Z2 1 (4, 24)

Continued on next page
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CICY # (h1,1(X), h2,1(X)) G Symm # (h1,1(X/G), h2,1(X/G))

Z2 × Z2 2 (4, 14)

7447 (5, 45) Z2 1 (5, 25)

Z2 × Z2 2 (5, 15)

Z5 3 (1, 9)

Z10 4 (1, 5)

Z10 × Z2 5 (1, 3)

7450 (3, 43) Z2 1− 2 (3, 23)

7462 (4, 44) Z2 1− 2 (4, 24)

Z2 × Z2 3− 4 (4, 14)

7468 (4, 44) Z2 1 (3, 23)

7481 (3, 43) Z2 1 (3, 23)

7484 (3, 43) Z2 1 (3, 23)

Z4 2 (2, 12)

Z2 × Z2 3 (3, 13)

7487 (5, 45) Z2 1− 2 (5, 25)

Z2 × Z2 3− 6 (5, 15)

7491 (4, 44) Z2 1− 4 (4, 24)

Z2 × Z2 5− 19 (4, 14)

7522 (4, 44) Z2 1 (4, 24)

Z2 × Z2 2 (4, 14)

7636 (3, 47) Z2 1 (2, 24)

7647 (3, 47) Z2 1 (2, 24)

7664 (5, 50) Z3 1 (3, 18)

7669 (3, 48) Z3 1− 2 (3, 18)

Z3 × Z3 3− 8 (3, 8)

7709 (6, 54) Z2 1− 2 (5, 29)

7714 (3, 51) Z2 1 (3, 27)

Z2 × Z2 2 (3, 15)

7719 (4, 52) Z2 1 (4, 28)

7731 (6, 54) Z2 1 (5, 29)

7735 (3, 51) Z2 1− 2 (3, 27)

Z4 3 (2, 14)

Z2 × Z2 4− 5 (3, 15)

Z4 × Z2 6− 8 (2, 8)

7736 (4, 52) Z2 1− 3 (4, 28)

7742 (4, 52) Z2 1 (4, 28)

7745 (3, 51) Z2 1 (3, 27)

Z4 2 (2, 14)

Continued on next page

– 29 –



J
H
E
P
0
1
(
2
0
1
7
)
0
0
1

CICY # (h1,1(X), h2,1(X)) G Symm # (h1,1(X/G), h2,1(X/G))

Z2 × Z2 3 (3, 15)

Z4 × Z2 4− 5 (2, 8)

7761 (2, 52) Z2 1 (1, 26)

Z5 2 (2, 12)

Z10 3 (1, 6)

7788 (3, 55) Z2 1 (3, 29)

7792 (3, 55) Z2 1 (3, 29)

7800 (5, 59) Z3 1 (3, 21)

7808 (2, 56) Z3 1 (2, 20)

Z3 × Z3 2− 3 (2, 8)

7810 (5, 59) Z3 1− 3 (3, 21)

7819 (2, 58) Z2 1 (2, 30)

Z2 × Z2 2 (2, 16)

7822 (2, 58) Z2 1 (2, 30)

7823 (2, 58) Z2 1 (2, 30)

Z2 × Z2 2 (2, 16)

7861 (1, 65) Z2 1 (1, 33)

Z4 2 (1, 17)

Z2 × Z2 3 (1, 17)

Z8 4 (1, 9)

Z4 × Z2 5− 6 (1, 9)

Q8 7 (1, 9)

Z2 × Z2 × Z2 8 (1, 9)

Z4 × Z4 9− 11 (1, 5)

Z4 o Z4 12 (1, 5)

Z8 × Z2 13 (1, 5)

Z4 × Z2 × Z2 14− 16 (1, 5)

Z2 ×Q8 17− 19 (1, 5)

(Z4 × Z2) o Z4 20− 23 (1, 3)

Z8 × Z4 24− 25 (1, 3)

Z8 o Z4 26 (1, 3)

(Z8 × Z2) o Z2 27 (1, 3)

Z8 o Z4 28 (1, 3)

Z4 × Z4 × Z2 29− 36 (1, 3)

Z2 × (Z4 o Z4) 37 (1, 3)

Z2 × (Z4 o Z4) 38 (1, 3)

Z4 oQ8 39 (1, 3)

Z2 × Z2 ×Q8 40− 45 (1, 3)

7862 (4, 68) Z2 1 (4, 36)
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CICY # (h1,1(X), h2,1(X)) G Symm # (h1,1(X/G), h2,1(X/G))

Z4 2 (2, 18)

Z2 × Z2 3 (4, 20)

Z8 4 (1, 9)

Z4 × Z2 5 (2, 10)

Q8 6 (1, 9)

Z4 × Z4 7 (1, 5)

Z4 o Z4 8 (1, 5)

Z8 × Z2 9 (1, 5)

Z8 o Z2 10 (1, 5)

Z2 ×Q8 11 (1, 5)

7878 (1, 73) Z3 1 (1, 25)

Z3 × Z3 2− 3 (1, 9)

7884 (2, 83) Z3 1 (2, 29)

Z3 × Z3 2− 5 (2, 11)

7890 (1, 101) Z5 1 (1, 21)

Z5 × Z5 2− 5 (1, 5)
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