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HODGE THEORY FOR COMBINATORIAL GEOMETRIES

KARIM ADIPRASITO, JUNE HUH, AND ERIC KATZ

1. INTRODUCTION

The combinatorial theory of matroids starts with Whitney [Whi35], who introduced matroids

as models for independence in vector spaces and graphs. By definition, a matroid M is given by a

closure operator defined on all subsets of a finite set E satisfying the Steinitz-Mac Lane exchange

property:

For every subset I of E and every element a not in the closure of I ,

if a is in the closure of I ∪ {b}, then b is in the closure of I ∪ {a}.

The matroid is called loopless if the empty subset of E is closed, and is called a combinatorial

geometry if in addition all single element subsets of E are closed. A closed subset of E is called a

flat of M, and every subset of E has a well-defined rank and corank in the poset of all flats of M.

The notion of matroid played a fundamental role in graph theory, coding theory, combinatorial

optimization, and mathematical logic; we refer to [Wel71] and [Oxl11] for general introduction.

As a generalization of the chromatic polynomial of a graph [Bir12, Whi32], Rota defined for

an arbitrary matroid M the characteristic polynomial

χM(λ) =
∑

I⊆E

(−1)|I| λcrk(I),

where the sum is over all subsets I ⊆ E and crk(I) is the corank of I in M [Rot64]. Equivalently,

the characteristic polynomial of M is

χM(λ) =
∑

F

µ(∅, F )λcrk(F ),

where the sum is over all flats F of M and µ is the Möbius function of the poset of flats of M, see

Chapters 7 and 8 of [Whi87]. Among the problems that withstood many advances in matroid

theory are the following log-concavity conjectures formulated in the 1970s.

Write r + 1 for the rank of M, that is, the rank of E in the poset of flats of M.

Conjecture 1.1. Let wk(M) be the absolute value of the coefficient of λr−k+1 in the characteristic

polynomial of M. Then the sequence wk(M) is log-concave:

wk−1(M)wk+1(M) ≤ wk(M)2 for all 1 ≤ k ≤ r.
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In particular, the sequence wk(M) is unimodal:

w0(M) ≤ w1(M) ≤ · · · ≤ wl(M) ≥ · · · ≥ wr(M) ≥ wr+1(M) for some index l.

We remark that the positivity of the numbers wk(M) is used to deduce the unimodality from

the log-concavity [Wel76, Chapter 15].

For chromatic polynomials, the unimodality was conjectured by Read, and the log-concavity

was conjectured by Hoggar [Rea68, Hog74]. The prediction of Read was then extended to arbi-

trary matroids by Rota and Heron, and the conjecture in its full generality was given by Welsh

[Rot71, Her72, Wel76]. We refer to [Whi87, Chapter 8] and [Oxl11, Chapter 15] for overviews

and historical accounts.

A subset I ⊆ E is said to be independent in M if no element i in I is in the closure of I \ {i}.

A related conjecture of Welsh and Mason concerns the number of independent subsets of E of

given cardinality [Wel71, Mas72].

Conjecture 1.2. Let fk(M) be the number of independent subsets of E with cardinality k. Then

the sequence fk(M) is log-concave:

fk−1(M)fk+1(M) ≤ fk(M)2 for all 1 ≤ k ≤ r.

In particular, the sequence fk(M) is unimodal:

f0(M) ≤ f1(M) ≤ · · · ≤ fl(M) ≥ · · · ≥ fr(M) ≥ fr+1(M) for some index l.

We prove Conjecture 1.1 and Conjecture 1.2 by constructing a “cohomology ring” of M that

satisfies the hard Lefschetz theorem and the Hodge-Riemann relations, see Theorem 1.4.

1.1. Matroid theory has experienced a remarkable development in the past century, and has

been connected to diverse areas such as topology [GM92], geometric model theory [Pil96], and

noncommutative geometry [vN60]. The study of complex hyperplane arrangements provided

a particularly strong connection, see for example [Sta07]. Most important for our purposes is

the work of de Concini and Procesi on certain “wonderful” compactifications of hyperplane

arrangement complements [DP95]. The original work focused only on realizable matroids, but

Feichtner and Yuzvinsky [FY04] defined a commutative ring associated to an arbitrary matroid

that specializes to the cohomology ring of a wonderful compactification in the realizable case.

Definition 1.3. Let SM be the polynomial ring

SM := R
[
xF |F is a nonempty proper flat of M

]
.

The Chow ring of M is defined to be the quotient

A∗(M)R := SM/(IM + JM),

where IM is the ideal generated by the quadratic monomials

xF1xF2 , F1 and F2 are two incomparable nonempty proper flats of M,
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and JM is the ideal generated by the linear forms
∑

i1∈F

xF −
∑

i2∈F

xF , i1 and i2 are distinct elements of the ground set E.

Conjecture 1.1 was proved for matroids realizable over C in [Huh12] by relating wk(M) to

the Milnor numbers of a hyperplane arrangement realizing M over C. Subsequently in [HK12],

using the intersection theory of wonderful compactifications and the Khovanskii-Teissier in-

equality [Laz04, Section 1.6], the conjecture was verified for matroids that are realizable over

some field. Lenz used this result to deduce Conjecture 1.2 for matroids realizable over some

field [Len12].

After the completion of [HK12], it was gradually realized that the validity of the Hodge-

Riemann relations for the Chow ring of M is a vital ingredient for the proof of the log-concavity

conjectures, see Theorem 1.4 below. While the Chow ring of M could be defined for arbitrary

M, it was unclear how to formulate and prove the Hodge-Riemann relations. From the point

of view of [FY04], the ring A∗(M)R is the Chow ring of a smooth, but noncompact toric variety

X(ΣM), and there is no obvious way to reduce to the classical case of projective varieties. In fact,

we will see that X(ΣM) is “Chow equivalent” to a smooth or mildly singular projective variety

over K if and only if the matroid M is realizable over K, see Theorem 5.12.

1.2. We are nearing a difficult chasm, as there is no reason to expect a working Hodge theory

beyond the case of realizable matroids. Nevertheless, there was some evidence on the existence

of such a theory for arbitrary matroids. For example, it was proved in [AS14], using the method

of concentration of measure, that the log-concavity conjectures hold for c-arrangements in the

sense of Goresky and MacPherson [GM92].

We now state the main theorem of this paper. A function c on the set of nonempty proper

subsets of E is said to be strictly submodular if

cI1 + cI2 > cI1∩I2 + cI1∪I2 for any two incomparable subsets I1, I2 ⊆ E,

where we replace c∅ and cE by zero whenever they appear in the above inequality. A strictly

submodular function c defines an element

ℓ(c) :=
∑

F

cFxF ∈ A1(M)R,

where the sum is over all nonempty proper flats of M. Note that the rank function of any ma-

troid on E, and more generally any submodular function of the free matroid on E, can, when

restricted to the set of nonempty proper subsets of E, be obtained as a limit of strictly submod-

ular functions. We write “deg” for the isomorphism Ar(M)R ≃ R determined by the property

that

deg(xF1xF2 · · ·xFr
) = 1 for any flag of nonempty proper flats F1 ( F2 ( · · · ( Fr.

Theorem 1.4. Let ℓ be an element of A1(M)R associated to a strictly submodular function.
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(1) (Hard Lefschetz theorem) For every nonnegative integer q ≤ r
2 , the multiplication by ℓ

defines an isomorphism

Lq
ℓ : Aq(M)R −→ Ar−q(M)R, a 7−→ ℓr−2q · a.

(2) (Hodge–Riemann relations) For every nonnegative integer q ≤ r
2 , the multiplication by ℓ

defines a symmetric bilinear form

Qq
ℓ : Aq(M)R ×Aq(M)R −→ R, (a1, a2) 7−→ (−1)q deg(a1 · L

q
ℓ a2)

that is positive definite on the kernel of ℓ · Lq
ℓ .

In fact, we will prove that the Chow ring of M satisfies the hard Lefschetz theorem and the

Hodge-Riemann relations with respect to any strictly convex piecewise linear function on the

tropical linear space ΣM associated to M, see Theorem 8.8. This implies Theorem 1.4. Our

proof of the hard Lefschetz theorem and the Hodge-Riemann relations for general matroids is

inspired by an ingenious inductive proof of the analogous facts for simple polytopes given by

McMullen [McM93] (compare also [CM02] for related ideas in a different context). To show

that this program, with a considerable amount of work, extends beyond polytopes, is our main

purpose here.

In Section 9, we show that the Hodge-Riemann relations, which are in fact stronger than the

hard Lefschetz theorem, imply Conjecture 1.1 and Conjecture 1.2. We remark that, in the context

of projective toric varieties, a similar reasoning leads to the Alexandrov-Fenchel inequality on

mixed volumes of convex bodies. In this respect, broadly speaking the approach of the present

paper can be viewed as following Rota’s idea that log-concavity conjectures should follow from

their relation with the theory of mixed volumes of convex bodies, see [Kun95].

1.3. There are other combinatorial approaches to intersection theory for matroids. Mikhalkin

et. al. introduced an integral Hodge structure for arbitrary matroids modeled on the coho-

mology of hyperplane arrangement complements [IKMZ]. Adiprasito and Björner showed that

an analogue of the Lefschetz hyperplane section theorem holds for all smooth (i.e. locally ma-

troidal) projective tropical varieties [AB14]. We will discuss the relations with the above per-

spectives on Hodge theory for matroids in the upcoming paper [AHK15].

Theorem 1.4 should be compared with the counterexample to a version of Hodge conjecture

for positive currents in [BH15]: The example used in [BH15] gives a tropical variety that satisfies

the Poincaré duality, the hard Lefschetz theorem, but not the Hodge-Riemann relations. We will

also discuss this in detail in [AHK15].

Finally, we remark that Zilber and Hrushovski have worked on subjects related to inter-

section theory for finitary combinatorial geometries, see [Hru92]. At present the relationship

between their approach and ours is unclear.
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2. FINITE SETS AND THEIR SUBSETS

2.1. Let E be a nonempty finite set of cardinality n + 1, say {0, 1, . . . , n}. We write ZE for the

free abelian group generated by the standard basis vectors ei corresponding to the elements

i ∈ E. For an arbitrary subset I ⊆ E, we set

eI :=
∑

i∈I

ei.

We associate to the set E a dual pair of rank n free abelian groups

NE := ZE/〈eE〉, ME := e
⊥
E ⊂ ZE , 〈−,−〉 : NE ×ME −→ Z.

The corresponding real vector spaces will be denoted

NE,R := NE ⊗Z R, ME,R := ME ⊗Z R.

We use the same symbols ei and eI to denote their images in NE and NE,R.

The groups N and M associated to nonempty finite sets are related to each other in a natural

way. For example, if F is a nonempty subset of E, then there is a surjective homomorphism

NE −→ NF , eI 7−→ eI∩F ,

and an injective homomorphism

MF −→ ME , ei − ej 7−→ ei − ej .

If F is a nonempty proper subset of E, we have a decomposition

(e⊥F ⊂ ME) = (e⊥E\F ⊂ ME) = MF ⊕ME\F .

Dually, we have an isomorphism from the quotient space

NE/〈eF 〉 = NE/〈eE\F 〉 −→ NF ⊕NE\F , eI 7−→ eI∩F ⊕ eI\F .

This isomorphism will be used later to analyze local structure of Bergman fans.

More generally, for any map between nonempty finite sets π : E1 → E2, there is an associated

homomorphism

πN : NE2 −→ NE1 , eI 7−→ eπ−1(I),

and the dual homomorphism

πM : ME1 −→ ME2 , ei − ej 7−→ eπ(i) − eπ(j).

When π is surjective, πN is injective and πM is surjective.
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2.2. Let P(E) be the poset of nonempty proper subsets of E. Throughout this section the

symbol F will stand for a totally ordered subset of P(E), that is, a flag of nonempty proper

subsets of E:

F =
{
F1 ( F2 ( · · · ( Fl

}
⊆ P(E).

We write min F for the intersection of all members of F . By definition, min ∅ = E.

Definition 2.1. When I is a proper subset of min F , we say that I is compatible with F in E,

and write I < F .

The set of all compatible pairs in E form a poset under the relation

(I1 < F1) � (I2 < F2) ⇐⇒ I1 ⊆ I2 and F1 ⊆ F2.

We note that any maximal compatible pair I < F gives a basis of the group NE :
{
ei and eF for i ∈ I and F ∈ F

}
⊆ NE .

If 0 is the unique element of E not in I and not in any member of F , then the above basis of NE

is related to the basis {e1, e2, . . . , en} by an invertible upper triangular matrix.

Definition 2.2. For each compatible pair I < F in E, we define two polyhedra

△I<F := conv
{
ei and eF for i ∈ I and F ∈ F

}
⊆ NE,R,

σI<F := cone
{
ei and eF for i ∈ I and F ∈ F

}
⊆ NE,R.

Since maximal compatible pairs give bases of NE , the polytope △I<F is a simplex, and the

cone σI<F is unimodular. Any proper subset of E is compatible with the empty flag in P(E),

and the empty subset of E is compatible with any flag in P(E). Therefore we may write

△I<F = △I<∅ ∗ △∅<F and σI<F = σI<∅ + σ∅<F .

The set of all simplices of the form △I<F is in fact a simplicial complex, that is,

△I1<F1 ∩ △I2<F2=△I1∩I2<F1∩F2 .

This gives a geometric realization of the poset of compatible pairs in E.

2.3. An order filter P of P(E) is a collection of nonempty proper subsets of E with the follow-

ing property:

If F1 ⊆ F2 are nonempty proper subsets of E, then F1 ∈ P implies F2 ∈ P .

Any such order filter cuts out a simplicial sphere in the simplicial complex of compatible pairs.

Definition 2.3. The Bergman complex of an order filter P ⊆ P(E) is the collection of simplices

∆P :=
{
△I<F for I /∈ P and F ⊆ P

}
.
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The Bergman fan of an order filter P ⊆ P(E) is the collection of simplicial cones

ΣP :=
{
σI<F for I /∈ P and F ⊆ P

}
.

The Bergman complex ∆P is a simplicial complex because P is an order filter. We will see

below that the Bergman fan ΣP indeed is a fan, that is,

σI1<F1 ∩ σI2<F2 = σI1∩I2<F1∩F2 for σI1<F1 , σI2<F2 ∈ ΣP .

The extreme cases P = ∅ and P = P(E) correspond to familiar geometric objects. When

P is empty, the collection ΣP is the normal fan of the standard n-dimensional simplex

∆n := conv
{
e0, e1, . . . , en

}
⊆ RE .

When P contains all nonempty proper subsets of E, the collection ΣP is the normal fan of the

n-dimensional permutohedron

Πn := conv
{
(x0, x1, . . . , xn) | x0, x1, . . . , xn is a permutation of 0, 1, . . . , n

}
⊆ RE .

Proposition 2.4 below shows that, in general, the Bergman complex ∆P is a simplicial sphere

and ΣP is a complete unimodular fan.

Proposition 2.4. For any order filter P ⊆ P(E), the collection ΣP is the normal fan of a

polytope.

Proof. We show that ΣP can be obtained from Σ∅ by performing a sequence of stellar subdivi-

sions. In other words, a polytope corresponding to ΣP can be obtained by repeatedly truncating

faces of the standard simplex ∆n.

For this we choose a sequence of order filters obtained by adding a single subset in P at a

time:

∅, . . . ,P−,P+, . . . ,P with P+ = P− ∪ {Z}.

The corresponding sequence of Σ interpolates between the collections Σ∅ and ΣP :

Σ∅  . . . ΣP−  ΣP+  . . . ΣP.

The modification in the middle replaces the cones of the form σZ<F with the sums of the form

σ∅<{Z} + σI<F ,

where I is any proper subset of Z . In other words, the modification is the stellar subdivision of

ΣP− relative to the cone σZ<∅. Since a stellar subdivision of the normal fan of a polytope is the

normal fan of a polytope, by induction we know that the collection ΣP is the normal fan of a

polytope. �
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3. MATROIDS AND THEIR FLATS

3.1. Let M be a loopless matroid of rank r + 1 on the ground set E. We denote rkM, crkM, and

clM for the rank function, the corank function, and the closure operator of M respectively. We

omit the subscripts when M is understood from the context. If F is a nonempty proper flat of

M, we write

MF := the restriction of M to F , a loopless matroid on F of rank = rkM(F ),

MF := the contraction of M by F , a loopless matroid on E \ F of rank = crkM(F ).

We refer to [Oxl11] and [Wel76] for basic notions of matroid theory.

Let P(M) be the poset of nonempty proper flats of M. There is an injective map from the

poset of the restriction

ιF : P(MF ) −→ P(M), G 7−→ G,

and an injective map from the poset of the contraction

ιF : P(MF ) −→ P(M), G 7−→ G ∪ F.

We identify the flats of MF with the flats of M containing F using ιF . If P is a subset of P(M),

we set

P
F := (ιF )−1

P and PF := (ιF )
−1

P.

3.2. Throughout this section the symbol F will stand for a totally ordered subset of P(M),

that is, a flag of nonempty proper flats of M:

F =
{
F1 ( F2 ( · · · ( Fl

}
⊆ P(M).

As before, we write min F for the intersection of all members of F inside E. We extend the

notion of compatibility in Definition 2.1 to the case when the matroid M is not Boolean.

Definition 3.1. When I is a subset of min F of cardinality less than rkM(min F ), we say that I

is compatible with F in M, and write I <M F .

Since any flag of nonempty proper flats of M has length at most r, any cone

σI<MF = cone
{
ei and eF for i ∈ I and F ∈ F

}

associated to a compatible pair in M has dimension at most r. Conversely, any such cone is

contained in an r-dimensional cone of the same type: For this one may take

I ′ = a subset that is maximal among those containing I and compatible with F in M,

F
′ = a flag of flats maximal among those containing F and compatible with I ′ in M,

or alternatively take

F
′ = a flag of flats maximal among those containing F and compatible with I in M,

I ′ = a subset that is maximal among those containing I and compatible with F
′ in M.
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We note that any subset of E with cardinality at most r is compatible in M with the empty

flag of flats, and the empty subset of E is compatible in M with any flag of nonempty proper

flats of M. Therefore we may write

△I<MF = △I<M∅ ∗ △∅<MF and σI<MF = σI<M∅ + σ∅<MF .

The set of all simplices associated to compatible pairs in M form a simplicial complex, that is,

△I1<MF1 ∩ △I2<MF2=△I1∩I2<MF1∩F2 .

3.3. An order filter P of P(M) is a collection of nonempty proper flats of M with the following

property:

If F1 ⊆ F2 are nonempty proper flats of M, then F1 ∈ P implies F2 ∈ P .

We write P̂ := P ∪ {E} for the order filter of the lattice of flats of M generated by P .

Definition 3.2. The Bergman fan of an order filter P ⊆ P(M) is the set of simplicial cones

ΣM,P :=
{
σI<F for clM(I) /∈ P̂ and F ⊆ P

}
.

The reduced Bergman fan of P is the subset of the Bergman fan

Σ̃M,P :=
{
σI<MF for clM(I) /∈ P̂ and F ⊆ P

}
.

When P = P(M), we omit P from the notation and write the Bergman fan by ΣM.

We note that the Bergman complex and the reduced Bergman complex ∆̃M,P ⊆ ∆M,P , defined in

analogous ways using the simplices △I<F and △I<MF , share the same set of vertices.

Two extreme cases give familiar geometric objects. When P is the set of all nonempty proper

flats of M, we have

ΣM = ΣM,P = Σ̃M,P = the fine subdivision of the tropical linear space of M [AK06].

When P is empty, we have

Σ̃M,∅ = the r-dimensional skeleton of the normal fan of the simplex ∆n,

and ΣM,∅ is the fan whose maximal cones are σF<∅ for rank r flats F of M. We remark that

∆M,∅ = the Alexander dual of the matroid complex IN(M∗) of the dual matroid M∗.

See [Bjo92] for basic facts on the matroid complexes and [MS05, Chapter 5] for the Alexander

dual of a simplicial complex.

We show that, in general, the Bergman fan and the reduced Bergman fan are indeed fans, and

the reduced Bergman fan is pure of dimension r.

Proposition 3.3. The collection ΣM,P is a subfan of the normal fan of a polytope.
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Proof. Since P is an order filter, any face of a cone in ΣM,P is in ΣM,P . Therefore it is enough

to show that there is a normal fan of a polytope that contains ΣM,P as a subset.

For this we consider the order filter of P(E) generated by P , that is, the collection of sets

P̃ :=
{

nonempty proper subset of E containing a flat in P
}
⊆ P(E).

If the closure of I ⊆ E in M is not in P̂ , then I does not contain any flat in P , and hence

ΣM,P ⊆ Σ
P̃
.

The latter collection is the normal fan of a polytope by Proposition 2.4. �

Since P is an order filter, any face of a cone in Σ̃M,P is in Σ̃M,P , and hence Σ̃M,P is a subfan

of ΣM,P . It follows that the reduced Bergman fan also is a subfan of the normal fan of a polytope.

Proposition 3.4. The reduced Bergman fan Σ̃M,P is pure of dimension r.

Proof. Let I be a subset of E whose closure is not in P , and let F be a flag of flats in P com-

patible with I in M. We show that there are I ′ containing I and F ′ containing F such that

I ′ <M F
′, clM(I ′) /∈ P̂, F

′ ⊆ P, and |I ′|+ |F ′| = r.

First choose any flag of flats F ′ that is maximal among those containing F , contained in

P , and compatible with I in M. Next choose any flat F of M that is maximal among those

containing I and strictly contained in min F ′.

We note that, by the maximality of F and the maximality of F ′ respectively,

rkM(F ) = rkM(min F
′)− 1 = r − |F ′|.

Since the rank of a set is at most its cardinality, the above implies

|I| ≤ r − |F ′| ≤ |F |.

This shows that there is I ′ containing I , contained in F , and with cardinality exactly r − |F ′|.

Any such I ′ is automatically compatible with F ′ in M.

We show that the closure of I ′ is not in P by showing that the flat F is not in P . If otherwise,

by the maximality of F ′, the set I cannot be compatible in M with the flag {F}, meaning

|I| ≥ rkM(F ).

The above implies that the closure of I in M, which is not in P , is equal to F . This gives the

desired contradiction. �

Our inductive approach to the hard Lefschetz theorem and the Hodge-Riemann relations for

matroids is modeled on the observation that any facet of a permutohedron is the product of two

smaller permutohedrons. We note below that the Bergman fan ΣM,P has an analogous local

structure when M has no parallel elements.
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Recall that the star of a cone σ in a fan Σ in a latticed vector space NR is the fan

star(σ,Σ) :=
{
σ′ | σ′ is the image in NR/〈σ〉 of a cone σ′ in Σ containing σ

}
.

When σ is a ray generated by its primitive generator e, we write star(e,Σ) for the star of σ in Σ.

Proposition 3.5. Let M be a loopless matroid on E, and let P be an order filter of P(M).

(1) If F is a flat in P , then the isomorphism NE/〈eF 〉 → NF ⊕NE\F induces a bijection

star(eF ,ΣM,P) −→ ΣMF ,PF × ΣMF
.

(2) If {i} is a proper flat of M, then the isomorphism NE/〈ei〉 → NE\{i} induces a bijection

star(ei,ΣM,P) −→ ΣM{i},P{i}
.

Under the same assumptions, the stars of eF and ei in the reduced Bergman fan Σ̃M,P admit

analogous descriptions.

When M is not a combinatorial geometry, the star of ei in ΣM,P is not necessarily a product

of smaller Bergman fans. However, when M is a combinatorial geometry, Proposition 3.5 shows

that the star of every ray in ΣM,P is a product of at most two Bergman fans.

4. PIECEWISE LINEAR FUNCTIONS AND THEIR CONVEXITY

4.1. Piecewise linear functions on possibly incomplete fans will play an important role through-

out the paper. In this section, we prove several general properties concerning convexity of such

functions, working with a dual pair free abelian groups

〈−,−〉 : N ×M −→ Z, NR := N ⊗Z R, MR := M ⊗Z R,

and a unimodular fan Σ in the latticed vector space NR. The set of primitive ray generators of Σ

will be denoted VΣ.

We say that a function ℓ : |Σ| → R is piecewise linear if it is continuous and the restriction of ℓ

to any cone in Σ is the restriction of a linear function on NR. The function ℓ is said to be integral

if

ℓ
(
|Σ| ∩N

)
⊆ Z,

and the function ℓ is said to be positive if

ℓ
(
|Σ| \ {0}

)
⊆ R>0.

An important example of a piecewise linear function on Σ is the Courant function xe associated

to a primitive ray generator e of Σ, whose values at VΣ are given by the Kronecker delta function.

Since Σ is unimodular, the Courant functions are integral, and they form a basis of the group of

integral piecewise linear functions on Σ:

PL(Σ) =

{ ∑

e∈VΣ

ce xe | ce ∈ Z

}
≃ ZVΣ .
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An integral linear function on NR restricts to an integral piecewise linear function on Σ, giving

a homomorphism

resΣ : M −→ PL(Σ), m 7−→
∑

e∈VΣ

〈e,m〉xe.

We denote the cokernel of the restriction map by

A1(Σ) := PL(Σ)/M.

In general, this group may have torsion, even under our assumption that Σ is unimodular.

When integral piecewise linear functions ℓ and ℓ′ on Σ differ by the restriction of an integral

linear function on NR, we say that ℓ and ℓ′ are equivalent over Z.

Note that the group of piecewise linear functions modulo linear functions on Σ can be iden-

tified with the tensor product

A1(Σ)R := A1(Σ)⊗Z R.

When piecewise linear functions ℓ and ℓ′ on Σ differ by the restriction of a linear function on

NR, we say that ℓ and ℓ′ are equivalent.

We describe three basic pullback homomorphisms between the groups A1. Let Σ′ be a subfan

of Σ, and let σ be a cone in Σ.

(1) The restriction of functions from Σ to Σ′ defines a surjective homomorphism

PL(Σ) −→ PL(Σ′),

and this descends to a surjective homomorphism

pΣ′⊆Σ : A1(Σ) −→ A1(Σ′).

In terms of Courant functions, pΣ′⊆Σ is uniquely determined by its values

xe 7−→




xe if e is in VΣ′ ,

0 if otherwise.

(2) Any integral piecewise linear function ℓ on Σ is equivalent over Z to an integral ℓ′ that is

zero on σ, and the choice of such ℓ′ is unique up to an integral linear function on NR/〈σ〉.

Therefore we have a surjective homomorphism

pσ∈Σ : A1(Σ) −→ A1(star(σ,Σ)),

uniquely determined by its values on xe for primitive ray generators e not contained in σ:

xe 7−→




xe if there is a cone in Σ containing e and σ,

0 if otherwise.

Here e is the image of e in the quotient space NR/〈σ〉.
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(3) A piecewise linear function on the product of two fans Σ1 × Σ2 is the sum of its restrictions

to the subfans

Σ1 × {0} ⊆ Σ1 × Σ2 and {0} × Σ2 ⊆ Σ1 × Σ2.

Therefore we have an isomorphism

PL(Σ1 × Σ2) ≃ PL(Σ1)⊕ PL(Σ2),

and this descends to an isomorphism

pΣ1,Σ2
: A1(Σ1 × Σ2) ≃ A1(Σ1)⊕A1(Σ2).

4.2. We define the link of a cone σ in Σ to be the collection

link(σ,Σ) :=
{
σ′ ∈ Σ | σ′ is contained in a cone in Σ containing σ, and σ ∩ σ′ = {0}

}
.

Note that the link of σ in Σ is a subfan of Σ.

Definition 4.1. Let ℓ be a piecewise linear function on Σ, and let σ be a cone in Σ.

(1) The function ℓ is convex around σ if it is equivalent to a piecewise linear function that is zero

on σ and nonnegative on the link of σ.

(2) The function ℓ is strictly convex around σ if it is equivalent to a piecewise linear function that

is zero on σ and positive on the link of σ.

The function ℓ is convex if it is convex around every cone in Σ, and strictly convex if it is strictly

convex around every cone in Σ.

When Σ is complete, the function ℓ is convex in the sense of Definition 4.1 if and only if it is

convex in the usual sense:

ℓ(u1 + u2) ≤ ℓ(u1) + ℓ(u2) for u1,u2 ∈ NR.

In general, writing ι for the inclusion of the torus orbit closure corresponding to σ in the toric

variety of Σ, we have

ℓ is convex around σ ⇐⇒ ι∗ of the class of the divisor associated to ℓ is effective.

For a detailed discussion and related notions of convexity from the point of view of toric geom-

etry, see [GM12].

Definition 4.2. The ample cone of Σ is the open convex cone

KΣ :=
{

classes of strictly convex piecewise linear functions on Σ
}
⊆ A1(Σ)R.

The nef cone of Σ is the closed convex cone

NΣ :=
{

classes of convex piecewise linear functions on Σ
}
⊆ A1(Σ)R.

Note that the closure of the ample cone KΣ is contained in the nef cone NΣ. In many inter-

esting cases, the reverse inclusion also holds.
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Proposition 4.3. If KΣ is nonempty, then NΣ is the closure of KΣ.

Proof. If ℓ1 is a convex piecewise linear function and ℓ2 is strictly convex piecewise linear func-

tion on Σ, then the sum ℓ1 + ǫ ℓ2 is strictly convex for every positive number ǫ. This shows that

the nef cone of Σ is in the closure of the ample cone of Σ. �

We record here that the various pullbacks of an ample class are ample. The proof is straight-

forward from Definition 4.1.

Proposition 4.4. Let Σ′ be a subfan of Σ, σ be a cone in Σ, and let Σ1 × Σ2 be a product fan.

(1) The pullback homomorphism pΣ′⊆Σ induces a map between the ample cones

KΣ −→ KΣ′ .

(2) The pullback homomorphism pσ∈Σ induces a map between the ample cones

KΣ −→ Kstar(σ,Σ).

(3) The isomorphism pΣ1,Σ2
induces a bijective map between the ample cones

KΣ1×Σ2 −→ KΣ1 × KΣ2 .

It follows from the first item that any subfan of the normal fan of a polytope has a nonempty

ample cone. In particular, by Proposition 3.3, the Bergman fan ΣM,P has a nonempty ample

cone.

Strictly convex piecewise linear functions on the normal fan of the permutohedron can be

described in a particularly nice way: A piecewise linear function on ΣP(E) is strictly convex if

and only if it is of the form
∑

F∈P(E)

cFxF , cF1 + cF2 > cF1∩F2 + cF1∪F2 for any incomparable F1, F2, with c∅ = cE = 0.

For this and related results, see [BB11]. The restriction of any such strictly submodular function

gives a strictly convex function on the Bergman fan ΣM, and defines an ample class on ΣM.

4.3. We specialize to the case of matroids and prove basic properties of convex piecewise linear

functions on the Bergman fan ΣM,P . We write KM,P for the ample cone of ΣM,P , and NM,P

for the nef cone of ΣM,P .

Proposition 4.5. Let M be a loopless matroid on E, and let P be an order filter of P(M).

(1) The nef cone of ΣM,P is equal to the closure of the ample cone of ΣM,P :

KM,P = NM,P .

(2) The ample cone of ΣM,P is equal to the interior of the nef cone of ΣM,P :

KM,P = N
◦
M,P .
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Proof. Propositions 3.3 shows that the ample cone KM,P is nonempty. Therefore, by Proposi-

tion 4.3, the nef cone NM,P is equal to the closure of KM,P .

The second assertion can be deduced from the first using the following general property of

convex sets: An open convex set is equal to the interior of its closure. �

The main result here is that the ample cone and its ambient vector space

KM,P ⊆ A1(ΣM,P)R

depend only on P and the combinatorial geometry of M, see Proposition 4.8 below. We set

E :=
{
A | A is a rank 1 flat of M

}
.

Definition 4.6. The combinatorial geometry of M is the simple matroid M on E determined by its

poset of nonempty proper flats P(M) = P(M).

The set of primitive ray generators of ΣM,P is the disjoint union
{
ei | the closure of i in M is not in P

}
∪
{
eF | F is a flat in P

}
⊆ NE,R,

and the set of primitive ray generators of ΣM,P is the disjoint union
{
eA | A is a rank 1 flat of M not in P

}
∪
{
eF | F is a flat in P

}
⊆ NE,R.

The corresponding Courant functions on the Bergman fans will be denoted xi, xF , and xA, xF

respectively.

Let π be the surjective map between the ground sets of M and M given by the closure operator

of M. We fix an arbitrary section ι of π by choosing an element from each rank 1 flat:

π : E −→ E, ι : E −→ E, π ◦ ι = id.

The maps π and ι induce the horizontal homomorphisms in the diagram

PL(ΣM,P)
πPL // PL(ΣM,P)
ιPL

oo

ME

πM //

res

OO

ME,

res

OO

ιM
oo

where the homomorphism πPL is obtained by setting

xi 7−→ xπ(i), xF 7−→ xF , for elements i whose closure is not in P , and for flats F in P ,

and the homomorphism ιPL is obtained by setting

xA 7−→ xι(A), xF 7−→ xF , for rank 1 flats A not in P , and for flats F in P .

In the diagram above, we have

πPL ◦ res = res ◦ πM , ιPL ◦ res = res ◦ ιM , πPL ◦ ιPL = id, πM ◦ ιM = id.
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Proposition 4.7. The homomorphism πPL induces an isomorphism

πPL : A1(ΣM,P) −→ A1(ΣM,P).

The homomorphism ιPL induces the inverse isomorphism

ιPL : A1(ΣM,P) −→ A1(ΣM,P).

We use the same symbols to denote the isomorphisms A1(ΣM,P)R ⇆ A1(ΣM,P)R.

Proof. It is enough to check that the composition ιPL ◦ πPL is the identity. Let i and j be elements

whose closures are not in P . Consider the linear function on NE,R given by the integral vector

ei − ej ∈ ME.

The restriction of this linear function to ΣM,P is the linear combination

res(ei − ej) =
(
xi +

∑

i∈F∈P

xF

)
−
(
xj +

∑

j∈F∈P

xF

)
.

If i and j have the same closure, then a flat contains i if and only if it contains j, and hence the

linear function witnesses that the piecewise linear functions xi and xj are equivalent over Z. It

follows that ιPL ◦ πPL = id. �

The maps π and ι induce simplicial maps between the Bergman complexes

∆M,P

π∆ // ∆M,P ,
ι∆

oo △I<F 7−→ △π(I)<F , △I<F 7−→ △ι(I )<F .

The simplicial map π∆ collapses those simplices containing vectors of parallel elements, and

π∆ ◦ ι∆ = id.

The other composition ι∆ ◦ π∆ is a deformation retraction. For this note that

△I<F ∈ ∆M,P =⇒ ι∆ ◦ π∆(△I<F ) ∪ △I<F ⊆ △π−1πI<F .

The simplex △π−1πI<F is in ∆M,P , and hence we can find a homotopy ι∆ ◦ π∆ ≃ id.

Proposition 4.8. The isomorphism πPL restricts to a bijective map between the ample cones

KM,P −→ KM,P .

Proof. By Proposition 4.5, it is enough to show that πPL restricts to a bijective map

NM,P −→ NM,P .

We use the following maps corresponding to π∆ and ι∆:

ΣM,P

πΣ // ΣM,P ,
ιΣ

oo σI<F 7−→ σπ(I)<F , σI<F 7−→ σι(I )<F .
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One direction is more direct: The homomorphism ιPL maps a convex piecewise linear func-

tion ℓ to a convex piecewise linear function ιPL(ℓ). Indeed, for any cone σI<F in ΣM,P ,

(
ℓ is zero on σπ(I)<F and nonnegative on the link of σπ(I)<F in ΣM,P

)
=⇒

(
ιPL(ℓ) is zero on σπ−1π(I)<F and nonnegative on the link of σπ−1π(I)<F in ΣM,P

)

=⇒
(
ιPL(ℓ) is zero on σI<F and nonnegative on the link of σI<F in ΣM,P

)
.

Next we show the other direction: The homomorphism πPL maps a convex piecewise linear

function ℓ to a convex piecewise linear function πPL(ℓ). The main claim is that, for any cone

σI<F in ΣM,P ,

ℓ is convex around σπ−1(I )<F =⇒ πPL(ℓ) is convex around σI<F .

This can be deduced from the following identities between the subfans of ΣM,P :

π−1
Σ

(
the set of all faces of σI<F

)
=
(

the set of all faces of σπ−1(I )<F

)
,

π−1
Σ

(
the link of σI<F in ΣM,P

)
=
(

the link of σπ−1(I )<F in ΣM,P

)
.

It is straightforward to check the two equalities from the definitions of ΣM,P and ΣM,P . �

Remark 4.9. Note that a Bergman fan and the corresponding reduced Bergman fan share the

same set of primitive ray generators. Therefore we have isomorphisms

A1(ΣM,P) //

��

A1(ΣM,P)

��

oo

A1(Σ̃M,P) //

OO

A1(Σ̃M,P).oo

OO

We remark that there are inclusion maps between the corresponding ample cones

KM,P

��

KM,P

��

K̃M,P K̃M,P.oo

In general, all three inclusions shown above may be strict.

5. HOMOLOGY AND COHOMOLOGY

5.1. Let Σ be a unimodular fan in an n-dimensional latticed vector space NR, and let Σk be the

set of k-dimensional cones in Σ. If τ is a codimension 1 face of a unimodular cone σ, we write

eσ/τ := the primitive generator of the unique 1-dimensional face of σ not in τ .
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Definition 5.1. A k-dimensional Minkowski weight on Σ is a function

ω : Σk −→ Z

which satisfies the balancing condition: For every (k − 1)-dimensional cone τ in Σ,
∑

τ⊂σ

ω(σ)eσ/τ is contained in the subspace generated by τ.

The group of Minkowski weights on Σ is the group

MW∗(Σ) :=
⊕

k∈Z

MWk(Σ),

where MWk(Σ) :=
{
k-dimensional Minkowski weights on Σ

}
⊆ ZΣk .

The group of Minkowski weights was studied by Fulton and Sturmfels in the context of toric

geometry [FS97]. An equivalent notion of stress space was independently pursued by Lee in

[Lee96]. We record here some immediate properties of the group of Minkowski weights on Σ.

(1) The group MW0(Σ) is canonically isomorphic to the group of integers:

MW0(Σ) = ZΣ0 ≃ Z.

(2) The group MW1(Σ) is perpendicular to the image of the restriction map from M :

MW1(Σ) = im(resΣ)
⊥ ⊆ ZΣ1 .

(3) The group MWk(Σ) is trivial for k negative or k larger than the dimension of Σ.

If Σ is in addition complete, then an n-dimensional weight on Σ satisfies the balancing con-

dition if and only if it is constant. Therefore, in this case, there is a canonical isomorphism

MWn(Σ) ≃ Z.

We show that the Bergman fan ΣM has the same property with respect to its dimension r.

Proposition 5.2. An r-dimensional weight on ΣM satisfies the balancing condition if and only

if it is constant.

It follows that there is a canonical isomorphism MWr(ΣM) ≃ Z.

Lemma 5.3. The Bergman fan ΣM is connected in codimension 1.

We remark that Lemma 5.3 is a direct consequence of the shellability of ∆M, see [Bjo92].

Proof. The claim is that, for any two r-dimensional cones σF , σG in ΣM, there is a sequence

σF = σ0 ⊃ τ1 ⊂ σ1 ⊃ · · · ⊂ σl−1 ⊃ τl ⊂ σl = σG ,

where τi is a common facet of σi−1 and σi in ΣM. We express this by writing σF ∼ σG .
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We prove by induction on the rank of M. If min F = min G , then the induction hypothesis

applied to Mmin F shows that

σF ∼ σG .

If otherwise, we choose a flag of nonempty proper flats H maximal among those satisfying

min F ∪ min G < H . By the induction hypothesis applied to Mmin F , we have

σF ∼ σ{min F}∪H .

Similarly, by the induction hypothesis applied to Mmin G , we have

σG ∼ σ{min G}∪H .

Since any 1-dimensional fan is connected in codimension 1, this complete the induction. �

Proof of Proposition 5.2. The proof is based on the flat partition property for matroids M on E:

If F is a flat of M, then the flats of M that cover F partition E \ F .

Let τG be a codimension 1 cone in the Bergman fan ΣM, and set

Vstar(G ) := the set of primitive ray generators of the star of τG in ΣM ⊆ NE,R/〈τF 〉.

The flat partition property applied to the restrictions of M shows that, first, the sum of all the

vectors in Vstar(G ) is zero and, second, any proper subset of Vstar(G ) is linearly independent.

Therefore, for an r-dimensional weight ω on ΣM,

ω satisfies the balancing condition at τG ⇐⇒ ω is constant on cones containing τG .

By the connectedness of Lemma 5.3, the latter condition for every τG implies that ω is constant.

�

5.2. We continue to work with a unimodular fan Σ in NR. As before, we write VΣ for the set of

primitive ray generators of Σ. Let SΣ be the polynomial ring over Z with variables indexed by

VΣ:

SΣ := Z[xe]e∈VΣ .

For each k-dimensional cone σ in Σ, we associate a degree k square-free monomial

xσ :=
∏

e∈σ

xe.

The subgroup of SΣ generated by all such monomials xσ will be denoted

Zk(Σ) :=
⊕

σ∈Σk

Zxσ.

Let Z∗(Σ) be the sum of Zk(Σ) over all nonnegative integers k.
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Definition 5.4. The Chow ring of Σ is the commutative graded algebra

A∗(Σ) := SΣ/(IΣ + JΣ),

where IΣ and JΣ are the ideals of SΣ defined by

IΣ := the ideal generated by the square-free monomials not in Z∗(Σ),

JΣ := the ideal generated by the linear forms
∑

e∈VΣ

〈e,m〉xe for m ∈ M .

We write Ak(Σ) for the degree k component of A∗(Σ), and set

A∗(Σ)R := A∗(Σ)⊗Z R and Ak(Σ)R := Ak(Σ)⊗Z R.

If we identify the variables of SΣ with the Courant functions on Σ, then the degree 1 compo-

nent of A∗(Σ) agrees with the group introduced in Section 4:

A1(Σ) = PL(Σ)/M.

Note that the pullback homomorphisms between A1 introduced in that section uniquely extend

to graded ring homomorphisms between A∗:

(1) The homomorphism pΣ′⊆Σ uniquely extends to a surjective graded ring homomorphism

pΣ′⊆Σ : A∗(Σ) −→ A∗(Σ′).

(2) The homomorphism pσ∈Σ uniquely extends to a surjective graded ring homomorphism

pσ∈Σ : A∗(Σ) −→ A∗(star(σ,Σ)).

(3) The isomorphism pΣ1,Σ2
uniquely extends to a graded ring isomorphism

pΣ1,Σ2
: A∗(Σ1 × Σ2) −→ A∗(Σ1)⊗Z A∗(Σ2).

We remark that the Chow ring A∗(Σ)R can be identified with the ring of piecewise polynomial

functions on Σ modulo linear functions on NR, see [Bil89].

Proposition 5.5. The group Ak(Σ) is generated by Zk(Σ) for each nonnegative integer k.

In particular, if k larger than the dimension of Σ, then Ak(Σ) = 0.

Proof. Let σ be a cone in Σ, let e1, e2, . . . , el be its primitive ray generators. and consider a degree

k monomial of the form

xk1
e1
xk2
e2

· · ·xkl
el
, k1 ≥ k2 ≥ · · · ≥ kl ≥ 1.

We show that the image of this monomial in Ak(Σ) is in the span of Zk(Σ).

We do this by descending induction on the dimension of σ. If dim σ = k, there is nothing to

prove. If otherwise, we use the unimodularity of σ to choose m ∈ M such that

〈e1,m〉 = −1 and 〈e2,m〉 = · · · = 〈el,m〉 = 0.
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This shows that, modulo the relations given by IΣ and JΣ, we have

xk1
e1
xk2
e2

· · ·xkl
ek

= xk1−1
e1

xk2
e2

· · ·xkl
el

∑

e∈link(σ)

〈e,m〉xe,

where the sum is over the set of primitive ray generators of the link of σ in Σ. The induction

hypothesis applies to each of the terms in the expansion of the right-hand side. �

The group of k-dimensional weights on Σ can be identified with the dual of Zk(Σ) under the

tautological isomorphism

tΣ : ZΣk −→ HomZ(Z
k(Σ),Z), ω 7−→

(
xσ 7−→ ω(σ)

)
.

By Proposition 5.5, the target of tΣ contains HomZ(A
k(Σ),Z) as a subgroup.

Proposition 5.6. The isomorphism tΣ restricts to the bijection between the subgroups

MWk(Σ) −→ HomZ(A
k(Σ),Z).

The bijection in Proposition 5.6 is an analogue of the Kronecker duality homomorphism in

algebraic topology. We use it to define the cap product

Al(Σ)× MWk(Σ) −→ MWk−l(Σ), ξ ∩ ω (σ) := tΣ ω (ξ · xσ).

This makes the group MW∗(Σ) a graded module over the Chow ring A∗(Σ).

Proof. The homomorphisms from Ak(Σ) to Z bijectively correspond to the homomorphisms

from Zk(Σ) to Z which vanish on the subgroup

Zk(Σ) ∩ (IΣ + JΣ) ⊆ Zk(Σ).

The main point is that this subgroup is generated by polynomials of the form

( ∑

e∈link(τ)

〈e,m〉xe

)
xτ ,

where τ is a (k − 1)-dimensional cone of Σ and m is an element perpendicular to 〈τ〉. It follows

that a k-dimensional weight ω corresponds to a homomorphism Ak(Σ) → Z if and only if

∑

τ⊂σ

ω(σ) 〈eσ/τ ,m〉 = 0 for all m ∈ 〈τ〉⊥,

where the sum is over all k-dimensional cones σ in Σ containing τ . Since 〈τ〉⊥⊥ = 〈τ〉, the latter

condition is equivalent to the balancing condition on ω at τ . �
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5.3. The ideals IΣ and JΣ have a particularly simple description when Σ = ΣM. In this case,

we label the variables of SΣ by the nonempty proper flats of M, and write

SΣ = Z[xF ]F∈P(M).

For a flag of nonempty proper flats F , we set xF =
∏

F∈F
xF .

(Incomparability relations) The ideal IΣ is generated by the quadratic monomials

xF1xF2 ,

where F1 and F2 are two incomparable nonempty proper flats of M.

(Linear relations) The ideal JΣ is generated by the linear forms
∑

i1∈F

xF −
∑

i2∈F

xF ,

where i1 and i2 are distinct elements of the ground set E.

The quotient ring A∗(ΣM) and its generalizations were studied by Feichtner and Yuzvinsky in

[FY04].

Definition 5.7. To an element i in E, we associate linear forms

αM,i :=
∑

i∈F

xF , βM,i :=
∑

i/∈F

xF .

Their classes in A∗(ΣM), which are independent of i, will be written αM and βM respectively.

We show that Ar(ΣM) is generated by the element αr
M, where r is the dimension of ΣM.

Proposition 5.8. Let F1 ( F2 ( · · · ( Fk be any flag of nonempty proper flats of M.

(1) If the rank of Fm is not m for some m ≤ k, then

xF1xF2 · · ·xFk
αr−k
M = 0 ∈ Ar(ΣM).

(2) If the rank of Fm is m for all m ≤ k, then

xF1xF2 · · ·xFk
αr−k
M = αr

M ∈ Ar(ΣM).

In particular, for any two maximal flags of nonempty proper flats F1 and F2 of M,

xF1 = xF2 ∈ Ar(ΣM).

Since MWr(ΣM) is isomorphic to Z, this implies that Ar(ΣM) is isomorphic to Z, see Proposi-

tion 5.10.

Proof. As a general observation, we note that for any element i not in a nonempty proper flat F ,

xF αM = xF

(∑

G

xG

)
∈ A∗(ΣM),
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where the sum is over all proper flats containing F and {i}. In particular, if the rank of F is r,

then the product is zero.

We prove the first assertion by descending induction on k, which is necessarily less than r.

If k = r − 1, then the rank of Fk should be r, and hence the product is zero. For general k, we

choose an element i not in Fk. By the observation made above, we have

xF1xF2 · · ·xFk
αr−k
M = xF1xF2 · · ·xFk

(∑

G

xG

)
αr−k−1
M ,

where the sum is over all proper flats containing F and {i}. The right-hand side is zero by the

induction hypothesis for k + 1 applied to each of the terms in the expansion.

We prove the second assertion by ascending induction on k. When k = 1, we choose an

element i in Fk . By the first part of the proposition for k = 1, we have

xF1 α
r−1
M = αr

M.

For general k, we choose an element i in Fk \ Fk−1. By the first part of the proposition for k, we

have

xF1xF2 · · ·xFk−1
xFk

αr−k
M = xF1xF2 · · ·xFk−1

(∑

G

xG

)
αr−k
M ,

where the sum is over all proper flats containing Fk−1 and {i}. The right-hand side is αr
M by the

induction hypothesis for k − 1. �

When Σ is complete, Fulton and Sturmfels showed in [FS97] that there is an isomorphism

Ak(Σ) −→ MWn−k(Σ), ξ 7−→
(
σ 7−→ deg ξ · xσ

)
,

where n is the dimension of Σ and “deg” is the degree map of the complete toric variety of Σ.

In Theorem 6.19, we show that there is an isomorphism for the Bergman fan

Ak(ΣM) −→ MWr−k(ΣM), ξ 7−→
(
σF 7−→ deg ξ · xF

)
,

where r is the dimension of ΣM and “deg” is a homomorphism constructed from M. These

isomorphisms are analogues of the Poincaré duality homomorphism in algebraic topology.

Definition 5.9. The degree map of M is the homomorphism obtained by taking the cap product

deg : Ar(ΣM) −→ Z, ξ 7−→ ξ ∩ 1M,

where 1M = 1 is the constant r-dimensional Minkowski weight on ΣM.

By Proposition 5.5, the homomorphism deg is uniquely determined by its property

deg(xF ) = 1 for all monomials xF corresponding to an r-dimensional cone in ΣM.

Proposition 5.10. The degree map of M is an isomorphism.

Proof. The second part of Proposition 5.8 shows that Ar(ΣM) is generated by the element αr
M,

and that deg(αr
M) = deg(xF ) = 1. �
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5.4. We remark on algebraic geometric properties of Bergman fans, working over a fixed field

K. For basics on toric varieties, we refer to [Ful93]. The results of this subsection will be inde-

pendent from the remainder of the paper.

The main object is the smooth toric variety X(Σ) over K associated to a unimodular fan Σ in

NR:

X(Σ) :=
⋃

σ∈Σ

Spec K[σ∨ ∩M ].

It is known that the Chow ring of Σ is naturally isomorphic to the Chow ring of X(Σ):

A∗(Σ) −→ A∗(X(Σ)), xσ 7−→ [X(star(σ))].

See [Dan78, Section 10] for the proof when Σ is complete, and see [BDP90] and [Bri96] for the

general case.

Definition 5.11. A morphism between smooth algebraic varieties X1 → X2 is a Chow equivalence

if the induced homomorphism between the Chow rings A∗(X2) → A∗(X1) is an isomorphism.

In fact, the results of this subsection will be valid for any variety that is locally a quotient of

a manifold by a finite group so that A∗(X) ⊗Z Q has the structure of a graded algebra over Q.

Matroids provide nontrivial examples of Chow equivalences. For example, consider the subfan

Σ̃M,P ⊆ ΣM,P and the corresponding open subset

X(Σ̃M,P) ⊆ X(ΣM,P).

In Proposition 6.2, we show that the above inclusion is a Chow equivalence for any M and P .

We remark that, when K = C, a Chow equivalence need not induce an isomorphism between

singular cohomology rings. For example, consider any line in a projective plane minus two

points

CP1 ⊆ CP2 \ {p1, p2}.

The inclusion is a Chow equivalence for any two distinct points p1, p2 outside CP1, but the two

spaces have different singular cohomology rings.

We show that the notion of Chow equivalence can be used to characterize the realizability of

matroids.

Theorem 5.12. There is a Chow equivalence from a smooth projective variety over K to X(ΣM)

if and only if the matroid M is realizable over K.

Proof. This is a classical variant of the tropical characterization of the realizability of matroids in

[KP11]. We write r for the dimension of ΣM, and n for the dimension of X(ΣM). As before, the

ground set of M will be E = {0, 1, . . . , n}.

The “if” direction follows from the construction of De Concini-Procesi wonderful models

[DP95]. Suppose that the loopless matroid M is realized by a spanning set of nonzero vectors

R = {f0, f1, . . . , fn} ⊆ V/K.
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The realization R gives an injective linear map between two projective spaces

LR : P(V ∨) −→ X(Σ∅), LR = [f0 : f1 : · · · : fn],

whereΣ∅ is the complete fan in NE,R corresponding to the empty order filter of P(E). Note that

the normal fan of the n-dimensional permutohedron ΣP(E) can be obtained from the normal

fan of the n-dimensional simplex Σ∅ by performing a sequence of stellar subdivisions. In other

words, there is a morphism between toric varieties

π : X(ΣP(E)) −→ X(Σ∅),

which is the composition of blowups of torus-invariant subvarieties. To be explicit, consider a

sequence of order filters of P(E) obtained by adding a single subset at a time:

∅, . . . ,P−,P+, . . . ,P(E) with P+ = P− ∪ {Z}.

The corresponding sequence of Σ interpolates between the collections Σ∅ and ΣP(E):

Σ∅  . . . ΣP−  ΣP+  . . . ΣP(E).

The modification in the middle replaces the cones of the form σZ<F with the sums of the form

σ∅<{Z} + σI<F ,

where I is any proper subset of Z . The wonderful model YR associated to R is by definition the

strict transform of P(V ∨) under the composition of toric blowups π. The torus-invariant prime

divisors of X(ΣP(E)) correspond to nonempty proper subsets of E, and those divisors inter-

secting YR exactly correspond to nonempty proper flats of M. Therefore, the smooth projective

variety YR is contained in the open subset

X(ΣM) ⊆ X(ΣP(E)).

The inclusion YR ⊆ X(ΣM) is a Chow equivalence [FY04, Corollary 2].

The “only if” direction follows from computations in A∗(ΣM) made in the previous subsec-

tion. Suppose that there is a Chow equivalence from a smooth projective variety

f : Y −→ X(ΣM).

Proposition 5.5 and Proposition 5.10 show that

Ar(Y ) ≃ Ar(ΣM) ≃ Z and Ak(Y ) ≃ Ak(ΣM) ≃ 0 for all k larger than r.

Since Y is complete, the above implies that the dimension of Y is r. Let g be the composition

Y
f // X(ΣM)

πM // X(Σ∅) ≃ Pn,

where πM is the restriction of the composition of toric blowups π. We use Proposition 5.8 to

compute the degree of the image g(Y ) ⊆ Pn.

For this we note that, for any element i ∈ E, we have

π−1
M {zi = 0} =

⋃

i∈F

DF ,
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where zi is the homogeneous coordinate of Pn corresponding to i and DF is the torus-invariant

prime divisor of X(ΣM) corresponding to a nonempty proper flat F . All the components of

π−1
M {zi = 0} appear with multiplicity 1, and hence

π∗
M OPn(1) = αM ∈ A1(ΣM).

Hence, under the isomorphism f∗ between the Chow rings, the 0-dimensional cycle (g∗OPn(1))r

is the image of the generator

(π∗
M OPn(1))r = αr

M ∈ Ar(ΣM) ≃ Z.

By the projection formula, the above implies that the degree of the image of Y in Pn is 1. In other

words, g(Y ) ⊆ Pn is an r-dimensional linear subspace defined over K. We express the inclusion

in the form

LR : P(V ∨) −→ Pn, LR = [f0 : f1 : · · · : fn].

Let M′ be the loopless matroid on E defined by the set of nonzero vectors R ⊆ V/K. The

image of Y in X(ΣM) is the wonderful model YR , and hence

X(ΣM′) ⊆ X(ΣM).

Observe that none of the torus-invariant prime divisors of X(ΣM) are rationally equivalent to

zero. Since f is a Chow equivalence, the observation implies that the torus-invariant prime divi-

sors of X(ΣM′) and X(ΣM) bijectively correspond to each other. Since a matroid is determined

by its set of nonempty proper flats, this shows that M = M′. �

6. POINCARÉ DUALITY FOR MATROIDS

6.1. The principal result of this section is an analogue of Poincaré duality for A∗(ΣM,P), see

Theorem 6.19. We give an alternative description of the Chow ring suitable for this purpose.

Definition 6.1. Let SE∪P be the polynomial ring over Z with variables indexed by E ∪ P :

SE∪P := Z[xi, xF ]i∈E,F∈P .

The Chow ring of (M,P) is the commutative graded algebra

A∗(M,P) := SE∪P/(I1 + I2 + I3 + I4),

where I1, I2, I3, I4 are the ideals of SE∪P defined below.

(Incomparability relations) The ideal I1 is generated by the quadratic monomials

xF1xF2 ,

where F1 and F2 are two incomparable flats in the order filter P .

(Complement relations) The ideal I2 is generated by the quadratic monomials

xi xF ,

where F is a flat in the order filter P and i is an element in the complement E \ F .
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(Closure relations) The ideal I3 is generated by the monomials

∏

i∈I

xi,

where I is an independent set of M whose closure is in P ∪ {E}.

(Linear relations) The ideal I4 is generated by the linear forms

(
xi +

∑

i∈F

xF

)
−
(
xj +

∑

j∈F

xF

)
,

where i and j are distinct elements of E and the sums are over flats F in P .

When P = P(M), we omit P from the notation and write the Chow ring by A∗(M).

When P is empty, the relations in I4 show that all xi are equal in the Chow ring, and hence

A∗(M,∅) ≃ Z[x]/(xr+1).

When P is P(M), the relations in I3 show that all xi are zero in the Chow ring, and hence

A∗(M) ≃ A∗(ΣM).

In general, if i is an element whose closure is in P , then xi is zero in the Chow ring. The square-

free monomial relations in the remaining set of variables bijectively correspond to the non-faces

of the Bergman complex ∆M,P , and hence

A∗(M,P) ≃ A∗(ΣM,P).

We show that the Chow ring of (M,P) is also isomorphic to the Chow ring of the reduced

Bergman fan Σ̃M,P .

Proposition 6.2. Let I be a subset of E, and let F be a flat in an order filter P of P(M).

(1) If I has cardinality at least the rank of F , then

(∏

i∈I

xi

)
xF = 0 ∈ A∗(M,P).

(2) If I has cardinality at least r + 1, then

∏

i∈I

xi = 0 ∈ A∗(M,P).

In other words, the inclusion of the open subset X(Σ̃M,P) ⊆ X(ΣM,P) is a Chow equiva-

lence. Since the reduced Bergman fan has dimension r, this implies that

Ak(M,P) = 0 for k > r.
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Proof. For the first assertion, we use complement relations in I2 to reduce to the case when

I ⊆ F . We prove by induction on the difference between the rank of F and the rank of I .

When the difference is zero, I contains a basis of F , and the desired vanishing follows from

a closure relation in I3. When the difference is positive, we choose a subset J ⊆ F with

rk(J) = rk(I) + 1, I \ J = {i} and J \ I = {j}.

From the linear relation in I4 for i and j, we deduce that

xi +
∑

i∈G
j/∈G

xG = xj +
∑

j∈G
i/∈G

xG,

where the sums are over flats G in P . Multiplying both sides by
(∏

i∈I∩J xi

)
xF , we get

(∏

i∈I

xi

)
xF =

(∏

j∈J

xj

)
xF .

Indeed, a term involving xG in the expansions of the products is zero in the Chow ring by

(1) an incomparability relation in I1, if G * F ,

(2) a complement relation in I2, if I ∩ J * G,

(3) the induction hypothesis for I ∩ J ⊆ G, if otherwise.

The right-hand side of the equality is zero by the induction hypothesis for J ⊆ F .

The second assertion can be proved in the same way, by descending induction on the rank of

I , using the first part of the proposition. �

We record here that the isomorphism of Proposition 4.7 uniquely extends to an isomorphism

between the corresponding Chow rings.

Proposition 6.3. The homomorphism πPL induces an isomorphism of graded rings

πPL : A∗(M,P) −→ A∗(M,P).

The homomorphism ιPL induces the inverse isomorphism of graded rings

ιPL : A∗(M,P) −→ A∗(M,P).

Proof. Consider the extensions of πPL and ιPL to the polynomial rings

SE∪P

π̃PL // SE∪P
.

ι̃PL

oo

The result follows from the observation that π̃PL and ι̃PL preserve the monomial relations in I1,

I2, and I3. �
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6.2. Let P− be an order filter of P(M), and let Z be a flat maximal in P(M) \ P−. We set

P+ := P− ∪ {Z} ⊆ P(M).

The collection P+ is an order filter of P(M).

Definition 6.4. The matroidal flip from P− to P+ is the modification of fans ΣM,P− ΣM,P+ .

The flat Z will be called the center of the matroidal flip. The matroidal flip removes the cones

σI<F with clM(I) = Z and min F 6= Z,

and replaces them with the cones

σI<F with clM(I) 6= Z and min F = Z.

The center Z is necessarily minimal in P+, and we have

star( σZ<∅ , ΣM,P−) ≃ ΣMZ
,

star(σ∅<{Z},ΣM,P+) ≃ ΣMZ ,∅ × ΣMZ
.

Remark 6.5. The matroidal flip preserves the homotopy type of the underlying simplicial com-

plexes ∆M,P− and ∆M,P+ . To see this, consider the inclusion

∆M,P+ ⊆ ∆∗
M,P−

:= the stellar subdivision of ∆M,P− relative to △Z<∅.

We claim that the left-hand side is a deformation retract of the right-hand side. More precisely,

there is a sequence of compositions of elementary collapses

∆∗
M,P−

= ∆1,1
M,P−

 ∆1,2
M,P−

 · · ·  ∆
1,crk(Z)−1
M,P−

 

∆
1,crk(Z)
M,P−

= ∆2,1
M,P−

 ∆2,2
M,P−

 · · ·  ∆
2,crk(Z)−1
M,P−

 

∆
2,crk(Z)
M,P−

= ∆3,1
M,P−

 ∆3,2
M,P−

 · · ·  ∆
3,crk(Z)−1
M,P−

 · · ·  ∆M,P+ ,

where ∆m,k+1
M,P−

is the subcomplex of ∆m,k
M,P−

obtained by collapsing all the faces △I<F with

clM(I) = Z, min F 6= Z, |Z \ I| = m, |F | = crkM(Z)− k.

The faces △I<F satisfying the above conditions can be collapsed in ∆m,k
M,P−

because

link(△I<F ,∆m,k
M,P−

) = {eZ}.

It follows that the homotopy type of the Bergman complex ∆M,P is independent of P . For

basics of elementary collapses of simplicial complexes, see [Koz08, Chapter 6]. The special case

that ∆M,∅ is homotopic to ∆M is known in combinatorial topology as the crosscut theorem, see

for example [Koz08, Chapter 13].

We construct homomorphisms associated to the matroidal flip, the pullback homomorphism

and the Gysin homomorphism.
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Proposition 6.6. There is a graded ring homomorphism between the Chow rings

ΦZ : A∗(M,P−) −→ A∗(M,P+)

uniquely determined by the property

xF 7−→ xF and xi 7−→




xi + xZ if i ∈ Z ,

xi if i /∈ Z .

We call this map the pullback homomorphism associated to the matroidal flip from P− to P+.

The pullback homomorphism will later shown to be injective, see Theorem 6.18.

Proof. Consider the homomorphism between the polynomial rings

φZ : SE∪P− −→ SE∪P+

defined by the same rule determining ΦZ . We claim that

φZ(I1) ⊆ I1, φZ(I2) ⊆ I1 + I2, φZ(I3) ⊆ I2 + I3, φZ(I4) ⊆ I4.

The first and the last inclusions are straightforward to verify.

We check the second inclusion. For an element i in E \ F , we have

φZ(xixF ) =




xixF + xZxF if i ∈ Z ,

xixF if i /∈ Z .

If i is in Z \ F , then the monomial xZxF is in I1 because Z is minimal in P+.

We check the third inclusion. For an independent set I whose closure is in P− ∪ {E},

φZ

(∏

i∈I

xi

)
=
∏

i∈I\Z

xi

∏

i∈I∩Z

(xi + xZ).

The term
∏

i∈I xi in the expansion of the right-hand side is in I3. Since Z is minimal in P+,

there is an element in I \ Z , and hence all the remaining terms in the expansion are in I2. �

Proposition 6.7. The pullback homomorphism ΦZ is an isomorphism when rkM(Z) = 1.

Proof. Let j1 and j2 be distinct elements of Z . If Z has rank 1, then a flat contains j1 if and only

if it contains j2. It follows from the linear relation in SE∪P− for j1 and j2 that

xj1 = xj2 ∈ A∗(M,P−).

We choose an element j ∈ Z , and construct the inverse Φ′
Z of ΦZ by setting

xZ 7−→ xj , xF 7−→ xF , and xi 7−→




0 if i ∈ Z ,

xi if i /∈ Z .

It is straightforward to check that Φ′
Z is well-defined, and that Φ′

Z = Φ−1
Z . �
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As before, we identify the flats of MZ with the flats of M containing Z , and identify the flats

of MZ with the flats of M contained in Z .

Proposition 6.8. Let p and q be positive integers.

(1) There is a group homomorphism

Ψp,q
Z : Aq−p(MZ) −→ Aq(M,P+)

uniquely determined by the property xF 7−→ xp
Z xF .

(2) There is a group homomorphism

Γp,q
Z : Aq−p(MZ) −→ Aq(M)

uniquely determined by the property xF 7−→ xp
Z xF .

We call the map Ψp,q
Z the Gysin homomorphism of type p, q associated to the matroidal flip from

P− to P+. The Gysin homomorphism will later shown to be injective when p < rkM(Z), see

Theorem 6.18.

Proof. It is clear that the Gysin homomorphism Ψp,q
Z respects the incomparability relations. We

check that Ψp,q
Z respects the linear relations.

Let i1 and i2 be elements in E \ Z , and consider the linear relation in SE∪P+ for i1 and i2:
(
xi1 +

∑

i1∈F

xF

)
−
(
xi1 +

∑

i2∈F

xF

)
∈ I4.

Since i1 and i2 are not in Z , multiplying the linear relation with xp
Z gives

xp
Z

( ∑

Z∪{i1}⊆F

xF −
∑

Z∪{i2}⊆F

xF

)
∈ I1 + I2 + I4.

The second statement on Γp,q
Z can be proved in the same way, using i1 and i2 in Z . �

Let P be any order filter of P(M). We choose a sequence of order filters of the form

∅,P1,P2, . . . ,P, . . . ,P(M),

where an order filter in the sequence is obtained from the preceding one by adding a single flat.

The corresponding sequence of matroidal flips interpolates between ΣM,∅ and ΣM:

ΣM,∅  ΣM,P1  . . . ΣM,P  . . . ΣM.

Definition 6.9. We write ΦP and ΦPc for the compositions of pullback homomorphisms

ΦP : A∗(M,∅) −→ A∗(M,P) and ΦPc : A∗(M,P) −→ A∗(M).

Note that ΦP and ΦPc depend only on P and not on the chosen sequence of matroidal flips.

The composition of all the pullback homomorphisms ΦPc ◦ ΦP is uniquely determined by its

property

ΦPc ◦ ΦP (xi) = αM.
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6.3. Let P− and P+ be as before, and let Z be the center of the matroidal flip from P− to P+.

For positive integers p and q, we consider the pullback homomorphism in degree q

Φq
Z : Aq(M,P−) −→ Aq(M,P+)

and the Gysin homomorphism of type p, q

Ψp,q
Z : Aq−p(MZ) −→ Aq(M,P+).

Proposition 6.10. For any positive integer q, the sum of the pullback homomorphism and Gysin

homomorphisms

Φq
Z ⊕

rk(Z)−1⊕

p=1

Ψp,q
Z

is a surjective group homomorphism.

The proof is given below Lemma 6.16. In Theorem 6.18, we will show that the sum is in fact

an isomorphism.

Corollary 6.11. The pullback homomorphism ΦZ is an isomorphism in degree r:

Φr
Z : Ar(M,P−) ≃ Ar(M,P+).

Repeated application of the corollary shows that, for any order filter P , the homomorphisms

ΦP and ΦPc are isomorphisms in degree r:

Φr
P : Ar(M,∅) ≃ Ar(M,P) and Φr

Pc : Ar(M,P) ≃ Ar(M).

Proof of Corollary 6.11. The contracted matroid MZ has rank crkM(Z), and hence

Ψp,q
Z = 0 when p < rkM(Z) and q = r.

Therefore, Proposition 6.10 for q = r says that the homomorphism ΦZ is surjective in degree r.

Choose a sequence of matroidal flips

ΣM,∅  . . . ΣM,P−  ΣM,P+  . . . ΣM,

and consider the corresponding group homomorphisms

Ar(M,∅)
ΦP− // Ar(M,P−)

ΦPZ // Ar(M,P2)
ΦPc

+ // Ar(M).

Proposition 6.10 applied to each matroidal flips in the sequence shows that all three homomor-

phisms are surjective. The first group is clearly isomorphic to Z, and by Proposition 5.10, the last

group is also isomorphic to Z. It follows that all three homomorphisms are isomorphisms. �

Let βMZ
be the element β in Definition 5.7 for the contracted matroid MZ . The first part of

Proposition 6.8 shows that the expression xZ βMZ
defines an element in A∗(M,P+).
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Lemma 6.12. For any element i in Z , we have

xixZ + x2
Z + xZβMZ

= 0 ∈ A∗(M,P+).

Proof. We choose an element j in E \ Z , and consider the linear relation in SE∪P+ for i and j:
(
xi +

∑

i∈F
j /∈F

xF

)
−

(
xj +

∑

j∈F
i/∈F

xF

)
∈ I4.

Since i is in Z and Z is minimal in P+, multiplying the linear relation with xZ gives

xZxi + x2
Z +

( ∑

Z(F(F∪{j}

xZxF

)
∈ I1 + I2 + I4.

The sum in the parenthesis is the image of βMZ
under the homomorphism Ψ1,2

Z . �

Let αMZ be the element α in Definition 5.7 for the restricted matroid MZ . The second part of

Proposition 6.8 shows that the expression xZ αMZ defines an element in A∗(M).

Lemma 6.13. If Z is maximal among flats strictly contained in a proper flat Z̃, then

xZxZ̃(xZ + αMZ ) = 0 ∈ A∗(M).

If Z is maximal among flats strictly contained in the flat E, then

xZ(xZ + αMZ ) = 0 ∈ A∗(M).

Proof. We justify the first statement; the second statement can be proved in the same way.

Choose an element i in Z and an element j in Z̃ \Z . The linear relation for i and j shows that
∑

i∈F
j /∈F

xF =
∑

j∈F
i/∈F

xF ∈ A∗(M).

Multiplying both sides by the monomial xZ xZ̃ , the incomparability relations give

x2
Z xZ̃ +

( ∑

i∈F(Z

xF xZ

)
xZ̃ = 0 ∈ A∗(M).

The sum in the parenthesis is the image of αMZ under the homomorphism Γ1,2
Z . �

Lemma 6.14. The sum of the images of Gysin homomorphisms is the ideal generated by xZ :
∑

p>0

∑

q>0

im Ψp,q
Z = xZ A∗(M,P+).

Proof. It is enough to prove that the right-hand side is contained in the left-hand side. Since Z is

minimal in P+, the incomparability relations in I1 and the complement relations in I2 show

that any nonzero degree q monomial in the ideal generated by xZ is of the form

xk
Z

∏

F∈F

xkF

F

∏

i∈I

xki

i , I ⊆ Z < F ,
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where the sum of the exponents is q. Since the exponent k of xZ is positive, Lemma 6.12 shows

that this monomial is in the sum

im Ψk,q
Z + im Ψk+1,q

Z + · · ·+ im Ψq,q
Z . �

Lemma 6.15. For positive integers p and q, we have

xZ im Φq
Z ⊆ im Ψ1,q+1

Z and xZ im Ψp,q
Z ⊆ im Ψp+1,q+1

Z .

If F is a proper flat strictly containing Z , then

xF im Φq
Z ⊆ im Φq+1

Z and xF im Ψp,q
Z ⊆ im Ψp,q+1

Z .

Proof. Only the first inclusion is nontrivial. Note that the left-hand side is generated by elements

of the form

ξ = xZ

∏

F∈F

xkF

F

∏

i∈I\Z

xki

i

∏

i∈I∩Z

(xi + xZ)
ki ,

where I is a subset of E and F is a flag in P−. When I is contained in Z , Lemma 6.12 shows

that

ξ = xZ

∏

F∈F

xkF

F

∏

i∈I

(−βMZ
)ki ∈ im Ψ1,q+1

Z .

When I is not contained in Z , a complement relation in SE∪P+ shows that ξ = 0. �

Lemma 6.16. For any integers k ≥ rkM(Z) and q ≥ k, we have

im Ψk,q
Z ⊆ im Φq

Z +

k−1∑

p=1

im Ψp,q
Z .

Proof. By the second statement of Lemma 6.15, it is enough to prove the assertion when q = k:

The general case can be deduced by multiplying both sides of the inclusion by xF for Z < F .

By the first statement of Lemma 6.15, it is enough to justify the above when k = rkM(Z): The

general case can be deduced by multiplying both sides of the inclusion by powers of xZ .

We prove the assertion when k = q = rkM(Z). For this we choose a basis I of Z , and expand

the product ∏

i∈I

(xi + xZ) ∈ im Φk
Z .

The closure relation for I shows that the term
∏

i∈I xi in the expansion is zero, and hence, by

Lemma 6.12, ∏

i∈I

(xi + xZ) = (−βMZ
)k − (−xZ − βMZ

)k ∈ im Φk
Z .

Expanding the right-hand side, we see that

xk
Z ∈ im Φk

Z +
k−1∑

p=1

im Ψp,k
Z .

Since im Ψk,k
Z is generated by xk

Z , this implies the asserted inclusion. �
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Proof of Proposition 6.10. By Lemma 6.16, it is enough to show that the sum Φq
Z ⊕

⊕q
p=1 Ψ

p,q
Z is

surjective. By Lemma 6.14, the image of the second summand is the degree q part of the ideal

generated by xZ .

We show that any monomial is in the image of the pullback homomorphism ΦZ modulo the

ideal generated by xZ . Note that any degree q monomial not in the ideal generated by xZ is of

the form
∏

F∈F

xkF

F

∏

i∈I

xki

i , Z /∈ F .

Modulo the ideal generated by xZ , this monomial is equal to

ΦZ

( ∏

F∈F

xkF

F

∏

i∈I

xki

i

)
=
∏

F∈F

xkF

F

∏

i∈I\Z

xki

i

∏

i∈I∩Z

(xi + xZ)
ki . �

We use Proposition 6.10 to show that the Gysin homomorphism between top degrees is an

isomorphism.

Proposition 6.17. The Gysin homomorphism Ψp,q
Z is an isomorphism when p = rk(Z) and q = r:

Ψp,q
Z : Acrk(Z)−1(MZ) ≃ Ar(M,P+).

Proof. We consider the composition

Acrk(Z)−1(MZ)
Ψp,q

Z // Ar(M,P+)
ΦPc

+ // Ar(M), xF 7−→ x
rk(Z)
Z xF .

The second map is an isomorphism by Corollary 6.11, and therefore it is enough to show that

the composition is an isomorphism.

For this we choose two flags of nonempty proper flats of M:

Z1 = a flag of flats strictly contained in Z with |Z1| = rk(Z)− 1,

Z2 = a flag of flats strictly containing Z with |Z2| = crk(Z)− 1.

We claim that the composition maps a generator to a generator:

(−1)rk(Z)−1 x
rk(Z)
Z xZ2 = xZ1 xZ xZ2 ∈ A∗(M).

Indeed, the map Γ
1,rk(Z)
Z applied to the second formula of Proposition 5.8 for MZ gives

xZ1 xZ xZ2 = (αMZ )rk(Z)−1 xZ xZ2 ∈ A∗(M),

and, by Lemma 6.13, the right-hand side of the above is equal to

(−1)rk(Z)−1 x
rk(Z)
Z xZ2 ∈ A∗(M). �
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6.4. Let P−, P+, and Z be as before, and let P be any order filter of P(M).

Theorem 6.18 (Decomposition). For any positive integer q, the sum of the pullback homomor-

phism and the Gysin homomorphisms

Φq
Z ⊕

rk(Z)−1⊕

p=1

Ψp,q
Z

is an isomorphism.

Theorem 6.19 (Poincaré Duality). For any nonnegative integer q ≤ r, the multiplication map

Aq(M,P)×Ar−q(M,P) −→ Ar(M,P)

defines an isomorphism between groups

Ar−q(M,P) ≃ HomZ(A
q(M,P), Ar(M,P)).

In particular, the groups Aq(M,P) are torsion free. We simultaneously prove Theorem 6.18

(Decomposition) and Theorem 6.19 (Poincaré Duality) by lexicographic induction on the rank

of matroids and the cardinality of the order filters. The proof is given below Lemma 6.21.

Lemma 6.20. Let q1 and q2 be positive integers.

(1) For any positive integer p, we have

im Ψp,q1
Z · im Φq2

Z ⊆ im Ψp,q1+q2
Z

(2) For any positive integers p1 and p2, we have

im Ψp1,q1
Z · im Ψp2,q2

Z ⊆ im Ψp1+p2,q1+q2
Z .

The first inclusion shows that, when q1 + q2 = r and p is less than rk(Z),

im Ψp,q1
Z · im Φq2

Z = 0.

The second inclusion shows that, when q1 + q2 = r and p1 + p2 is less than rk(Z),

im Ψp1,q1
Z · im Ψp2,q2

Z = 0.

Proof. The assertions are direct consequences of Lemma 6.15. �

Lemma 6.21. Let q be a positive integer, and p1, p2 be distinct positive integers less than rk(Z).

(1) If Poincaré Duality holds for A∗(M,P−), then

ker Φq
Z = 0 and im Φq

Z ∩

rk(Z)−1∑

p=1

im Ψp,q
Z = 0.

(2) If Poincaré Duality holds for A∗(MZ), then

ker Ψp1,q
Z = ker Ψp2,q

Z = 0 and im Ψp1,q
Z ∩ im Ψp2,q

Z = 0
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Proof. Let ξ be a nonzero element in the domain of Φq
Z . Since ΦZ is an isomorphism between

top degrees, Poincaré Duality for (M,P−) implies that

ΦZ(ξ) · im Φr−q
Z 6= 0.

This shows that Φq
Z is injective. On the other hand, Lemma 6.20 shows that

(
rk(Z)−1∑

p=1

im Ψp,q
Z

)
· im Φr−q

Z = 0.

This shows that the image of Φq
Z intersects the image of ⊕

rk(Z)−1
p=1 Ψp,q

Z trivially.

Let ξ be a nonzero element in the domain of Ψp,q
Z , where p = p1 or p = p2. Since ΨZ is an

isomorphism between top degrees, Poincaré Duality for MZ implies that

Ψp,q
Z (ξ) · im Ψ

rk(Z)−p,r−q
Z 6= 0.

This shows that Ψp,q
Z is injective. For this assertion on the intersection, we assume that p = p1 >

p2. Under the assumption Lemma 6.20 shows

im Ψp2,q
Z · im Ψ

rk(Z)−p,r−q
Z = 0.

This shows that the image of Ψp2,q
Z intersects the image of Ψp2,q

Z trivially. �

Proofs of Theorem 6.18 and Theorem 6.19. We simultaneously prove Decomposition and Poincaré

Duality by lexicographic induction on the rank of M and the cardinality of P and P−. Note

that both statements are valid when r = 1, and Poincaré Duality holds when q = 0 or q = r.

Assuming that Poincaré Duality holds for A∗(MZ), we show the implications

(
Poincaré Duality holds for A∗(M,P−)

)
=⇒

(
Poincaré Duality holds for A∗(M,P−) and Decomposition holds for P− ⊆ P+

)

=⇒
(

Poincaré Duality holds for A∗(M,P+)
)
.

The base case of the induction is provided by the isomorphism

A∗(M,∅) ≃ Z[x]/(xr+1).

The first implication follows from Proposition 6.10 and Lemma 6.21.

We prove the second implication. Decomposition for P− ⊆ P+ shows that, for any positive

integer q < r, we have

Aq(M,P+) = im Φq
Z ⊕ im Ψ1,q

Z ⊕ im Ψ2,q
Z ⊕ · · · ⊕ im Ψ

rk(Z)−1,q
Z , and

Ar−q(M,P+) = im Φr−q
Z ⊕ im Ψ

rk(Z)−1,r−q
Z ⊕ im Ψ

rk(Z)−2,r−q
Z ⊕ · · · ⊕ im Ψ1,r−q

Z .

By Poincaré Duality for (M,P−) and Poincaré Duality for MZ , all the summands above are

torsion free. We construct bases of the sums by choosing bases of their summands.
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We use Corollary 6.11 and Proposition 6.17 to obtain isomorphisms

Ar(M,P−) ≃ Ar(M,P+) ≃ Acrk(Z)−1(MZ) ≃ Z.

For a positive integer q < r, consider the matrices of multiplications

M+ :=
(
Aq(M,P+)×Ar−q(M,P+) −→ Z

)
,

M− :=
(
Aq(M,P−)×Ar−q(M,P−) −→ Z

)
,

and, for positive integers p < rk(Z),

Mp :=
(
Aq−p(MZ)×Ar−q−rk(Z)+p(MZ) −→ Z

)
.

By Lemma 6.20, under the chosen bases ordered as shown above, M+ is a block upper triangular

matrix with block diagonals M− and Mp, up to signs. It follows from Poincaré Duality for

(M,P−) and Poincaré Duality for MZ that

det M+ = ±det M− ×

rk(Z)−1∏

p=1

det Mp = ±1.

This proves the second implication, completing the lexicographic induction. �

7. HARD LEFSCHETZ PROPERTY AND HODGE-RIEMANN RELATIONS

7.1. Let r be a nonnegative integer. We record basic algebraic facts concerning the Poincaré

duality, the hard Lefschetz property, and the Hodge-Riemann relations.

Definition 7.1. A graded Artinian ring R∗ satisfies the Poincaré duality of dimension r if

(1) there are isomorphisms R0 ≃ R and Rr ≃ R,

(2) for every integer q > r, we have Rq ≃ 0, and,

(3) for every integer q ≤ r, the multiplication defines an isomorphism

Rr−q −→ HomR(R
q, Rr).

In this case, we say that R∗ is a Poincaré duality algebra of dimension r.

In the remainder of this subsection, we suppose that R∗ is a Poincaré duality algebra of di-

mension r. We fix an isomorphism, called the degree map for R∗,

deg : Rr −→ R.

Proposition 7.2. For any nonzero element x in Rd, the quotient ring

R∗/ann(x), where ann(x) := {a ∈ R∗ | x · a = 0},

is a Poincaré duality algebra of dimension r − d.
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By definition, the degree map for R∗/ann(x) induced by x is the homomorphism

deg(x · −) : Rr−d/ann(x) −→ R, a+ ann(x) 7−→ deg(x · a).

The Poincaré duality for R∗ shows that the degree map for R∗/ann(x) is an isomorphism.

Proof. This is straightforward to check, see for example [MS05, Corollary I.2.3]. �

Definition 7.3. Let ℓ be an element of R1, and let q be a nonnegative integer ≤ r
2 .

(1) The Lefschetz operator on Rq associated to ℓ is the linear map

Lq
ℓ : R

q −→ Rr−q, a 7−→ ℓr−2q a.

(2) The Hodge-Riemann form on Rq associated to ℓ is the symmetric bilinear form

Qq
ℓ : Rq ×Rq −→ R, (a1, a2) 7−→ (−1)q deg (a1 · L

q
ℓ(a2)).

(3) The primitive subspace of Rq associated to ℓ is the subspace

P q
ℓ := {a ∈ Rq | ℓ · Lq

ℓ(a) = 0} ⊆ Rq.

Definition 7.4 (Hard Lefschetz property and Hodge-Riemann relations). We say that

(1) R∗ satisfies HL(ℓ) if the Lefschetz operator Lq
ℓ is an isomorphism on Rq for all q ≤ r

2 , and

(2) R∗ satisfies HR(ℓ) if the Hodge-Riemann form Qq
ℓ is positive definite on P q

ℓ for all q ≤ r
2 .

If the Lefschetz operator Lq
ℓ is an isomorphism, then there is a decomposition

Rq+1 = P q+1
ℓ ⊕ ℓRq.

Consequently, when R∗ satisfies HL(ℓ), we have the Lefschetz decomposition of Rq for q ≤ r
2 :

Rq = P q
ℓ ⊕ ℓP q−1

ℓ ⊕ · · · ⊕ ℓq P 0
ℓ .

An important basic fact is that the Lefschetz decomposition of Rq is orthogonal with respect to

the Hodge-Riemann form Qq
ℓ : For nonnegative integers q1 < q2 ≤ q, we have

Qq
ℓ

(
ℓq1a1, ℓ

q2a2

)
= (−1)qdeg

(
ℓq2−q1ℓr−2q2a1a2

)
= 0, a1 ∈ P q−q1

ℓ , a2 ∈ P q−q2
ℓ .

Proposition 7.5. The following conditions are equivalent for ℓ ∈ R1:

(1) R∗ satisfies HL(ℓ).

(2) The Hodge-Riemann form Qq
ℓ on Rq is nondegenerate for all q ≤ r

2 .

Proof. The Hodge-Riemann form Qq
ℓ on Rq is nondegenerate if and only if the composition

Rq
Lq

ℓ // Rr−q // HomR(R
q, Rr)

is an isomorphism, where the second map is given by the multiplication in R∗. Since R∗ satisfies

Poincaré duality, the composition is an isomorphism if and only if Lq
ℓ is an isomorphism. �
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If Lq
ℓ(a) = 0, then Qq

ℓ(a, a) = 0 and a ∈ P q
ℓ . Thus the property HR(ℓ) implies the property

HL(ℓ).

Proposition 7.6. The following conditions are equivalent for ℓ ∈ R1:

(1) R∗ satisfies HR(ℓ).

(2) The Hodge-Riemann form Qq
ℓ on Rq is nondegenerate and has signature

q∑

p=0

(−1)q−p
(

dimRR
p − dimRR

p−1
)

for all q ≤
r

2
.

Proof. If R∗ satisfies HR(ℓ), then R∗ satisfies HL(ℓ), and therefore we have the Lefschetz decom-

position

Rq = P q
ℓ ⊕ ℓP q−1

ℓ ⊕ · · · ⊕ ℓq P 0
ℓ .

Note that the Lefschetz decomposition of Rq is orthogonal with respect to Qq
ℓ , and that there is

an isometry

(
P p
ℓ , Q

p
ℓ

)
≃
(
ℓq−pP p

ℓ , (−1)q−pQq
ℓ

)
for every nonnegative integer p ≤ q.

Therefore, the condition HR(ℓ) implies that

(
signature of Qq

ℓ on Rq
)
=

q∑

p=0

(−1)q−p
(

signature of Qp
ℓ on P p

ℓ

)

=

q∑

p=0

(−1)q−p
(

dimRR
p − dimRR

p−1
)
.

Conversely, suppose that the Hodge-Riemann forms Qq
ℓ are nondegenerate and their signa-

tures are given by the stated formula. Proposition 7.5 shows that R∗ satisfies HL(ℓ), and hence

Rq = P q
ℓ ⊕ ℓP q−1

ℓ ⊕ · · · ⊕ ℓq P 0
ℓ .

The Lefschetz decomposition of Rq is orthogonal with respect to Qq
ℓ , and therefore

(
signature of Qq

ℓ on P q
ℓ

)
=
(

signature of Qq
ℓ on Rq

)
−
(

signature of Qq−1
ℓ on Rq−1

)
.

The assumptions on the signatures of Qq
ℓ and Qq−1

ℓ show that the right-hand side is

dimRR
q − dimRR

q−1 = dimRP
q
ℓ .

Since Qq
ℓ is nondegenerate on P q

ℓ , this means that Qq
ℓ is positive definite on P q

ℓ . �



HODGE THEORY FOR COMBINATORIAL GEOMETRIES 41

7.2. In this subsection, we show that the properties HL and HR are preserved under the tensor

product of Poincaré duality algebras.

Let R∗
1 and R∗

2 be Poincaré duality algebras of dimensions r1 and r2 respectively. We choose

degree maps for R∗
1 and for R∗

2, denoted

deg1 : Rr1
1 −→ R, deg2 : Rr2

2 −→ R.

We note that R1 ⊗R R2 is a Poincaré duality algebra of dimension r1 + r2: For any two graded

components of the tensor product with complementary degrees
(
Rp

1 ⊗R R0
2

)
⊕
(
Rp−1

1 ⊗R R1
2

)
⊕ · · · ⊕

(
R0

1 ⊗R Rp
2

)
,

(
Rq

1 ⊗R R0
2

)
⊕
(
Rq−1

1 ⊗R R1
2

)
⊕ · · · ⊕

(
R0

1 ⊗R Rq
2

)
,

the multiplication of the two can be represented by a block diagonal matrix with diagonals
(
Rp−k

1 ⊗R Rk
2

)
×
(
Rq−r2+k

1 ⊗R Rr2−k
2

)
−→ Rr1

1 ⊗R Rr2
2 .

By definition, the induced degree map for the tensor product is the isomorphism

deg1 ⊗R deg2 : Rr1
1 ⊗R Rr2

2 −→ R.

We use the induced degree map whenever we discuss the property HR for tensor products.

Proposition 7.7. Let ℓ1 be an element of R1
1, and let ℓ2 be an element of R1

2.

(1) If R∗
1 satisfies HL(ℓ1) and R∗

2 satisfies HL(ℓ2), then R∗
1 ⊗R R∗

2 satisfies HL(ℓ1 ⊗ 1 + 1⊗ ℓ2).

(2) If R∗
1 satisfies HR(ℓ1) and R∗

2 satisfies HR(ℓ2), then R∗
1 ⊗R R∗

2 satisfies HR(ℓ1 ⊗ 1 + 1⊗ ℓ2).

We begin the proof with the following special case.

Lemma 7.8. Let r1 ≤ r2 be nonnegative integers, and consider the Poincaré duality algebras

R∗
1 = R[x1]/(x

r1+1
1 ) and R∗

2 = R[x2]/(x
r2+1
2 )

equipped with the degree maps

deg1 : Rr1
1 −→ R, xr1

1 7−→ 1,

deg2 : Rr2
2 −→ R, xr2

2 7−→ 1.

Then R∗
1 satisfies HR(x1), R2 satisfies HR(x2), and R∗

1 ⊗R R∗
2 satisfies HR(x1 ⊗ 1 + 1⊗ x2).

The first two assertions are easy to check, and the third assertion follows from the Hodge-

Riemann relations for the cohomology of the compact Kähler manifold CPr1 × CPr2 . Below we

give a combinatorial proof using the Lindström-Gessel-Viennot lemma.

Proof. For the third assertion, we identify the tensor product with

R∗ := R[x1, x2]/(x
r1+1
1 , xr2+1

2 ), and set ℓ := x1 + x2.



42 KARIM ADIPRASITO, JUNE HUH, AND ERIC KATZ

The induced degree map for the tensor product will be written

deg : Rr1+r2 −→ R, xr1
1 xr2

2 7−→ 1.

Claim. For some (equivalently any) choice of basis of Rq, we have

(−1)
q(q+1)

2 det
(
Qq

ℓ

)
> 0 for all nonnegative integers q ≤ r1.

We show that it is enough to prove the claim. The inequality of the claim implies that Qq
ℓ is

nondegenerate for q ≤ r1, and hence Lq
ℓ is an isomorphism for q ≤ r1. The Hilbert function of

R∗ forces the dimensions of the primitive subspaces to satisfy

dimRP
q
ℓ =




1 for q ≤ r1,

0 for q > r1,

and that there is a decomposition

Rq = P q
ℓ ⊕ ℓP q−1

ℓ ⊕ · · · ⊕ ℓqP 0
ℓ for q ≤ r1.

Every summand of the above decomposition is 1-dimensional, and hence
(

signature of Qq
ℓ on Rq

)
= ±1−

(
signature of Qq−1

ℓ on Rq−1
)
.

The claim on the determinant of Qq
ℓ determines the sign of ±1 in the above equality:

(
signature of Qq

ℓ

)
= 1−

(
signature of Qq−1

ℓ

)
.

It follows that the signature of Qq
ℓ on P q

ℓ is 1 for q ≤ r1, and thus R satisfies HR(ℓ).

We now prove the claim on det (Qq
ℓ) = det ((−1)q Qq

ℓ) for q ≤ r1. We use the monomial basis
{
xi
1x

q−i
2 | i = 0, 1, . . . , q

}
⊆ Rq.

The matrix [aij ] which represents (−1)q Qq
ℓ has binomial coefficients as its entries:

[aij ] :=

[
deg

(
(x1 + x2)

r1+r2−2qxi+j
1 xq−i+q−j

2

)]
=

[(
r1 + r2 − 2q

r1 − i− j

)]
.

We determine the sign of the determinant of [aij ] using the Lindström-Gessel-Viennot lemma,

see [Aig07, Section 5.4] for an exposition and similar examples.

Consider the grid graph in the plane with vertices Z2 and edges directed in the positive x-

directions and the positive y-directions. We place the starting points P0, . . . ,Pq and the ending

points Q0 . . . ,Qq on two parallel diagonal lines, Pi from northwest to southeast and Qj from

southeast to northwest:

P0 = (−r1, q), P1 = (1− r1, q − 1), . . . Pq = (q − r1, 0),

Qq = (−q, r2), Qq−1 = (1− q, r2 − 1), . . . Q0 = (0, r2 − q).

Note that there are exactly aij distinct lattice paths from Pi to Qj .
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The Lindström-Gessel-Viennot lemma says that

det [aij ] =
∑

σ

sign(σ),

where the sum is over tuples of non-intersecting lattice paths σ : {P0, . . . ,Pq} → {Q0, . . . ,Qq}

and sign(σ) is the sign of the induced permutation of {0, 1, . . . , q}. In our case, any tuple of

non-intersecting lattice paths σ as above should go from Pi to Qq−i, and hence

sign(σ) = (−1)q(q+1)/2.

It is clear that there is at least one such tuple of non-intersecting lattice paths; for example, for

all Pi one may first go east r1 − q times and then go north r2 − q times to arrive at Qq−i. This

gives

(−1)q(q+1)/2det [aij ] > 0. �

Now we reduce Proposition 7.7 to the case of Lemma 7.8. We first introduce some useful

notions to be used in the remaining part of the proof.

Let R∗ be a Poincaré duality algebra of dimension r, and let ℓ be an element of R1.

Definition 7.9. Let V ∗ be a graded subspace of R∗. We say that

(1) V ∗ satisfies HL(ℓ) if Qq
ℓ restricted to V q is nondegenerate for all nonnegative q ≤ r

2 .

(2) V ∗ satisfies HR(ℓ) if Qq
ℓ restricted to V q is nondegenerate and has signature

q∑

p=0

(−1)q−p
(

dimRV
p − dimRV

p−1
)

for all nonnegative q ≤
r

2
.

Propositions 7.5 and 7.6 show that this agrees with the previous definition when V ∗ = R∗.

Definition 7.10. Let V ∗
1 and V ∗

2 be graded subspaces of R∗. We write

V ∗
1 ⊥PD V ∗

2

to mean that V ∗
1 ∩ V ∗

2 = 0 and V r−q
1 V q

2 = 0 for all nonnegative integers q ≤ r, and write

V ∗
1 ⊥Q∗

ℓ
V ∗
2

to mean that V ∗
1 ∩ V ∗

2 = 0 and Qq
ℓ(V

q
1 , V

q
2 ) = 0 for all nonnegative integers q ≤ r

2 .

We record here basic properties of the two notions of orthogonality. Let S∗ be another

Poincaré duality algebra of dimension s.

Lemma 7.11. Let V ∗
1 , V

∗
2 ⊆ R∗ and W ∗

1 ,W
∗
2 ⊆ S∗ be graded subspaces.

(1) If V ∗
1 ⊥Q∗

ℓ
V ∗
2 and if both V ∗

1 , V ∗
2 satisfy HL(ℓ), then V ∗

1 ⊕ V ∗
2 satisfy HL(ℓ).

(2) If V ∗
1 ⊥Q∗

ℓ
V ∗
2 and if both V ∗

1 , V ∗
2 satisfy HR(ℓ), then V ∗

1 ⊕ V ∗
2 satisfy HR(ℓ).

(3) If V ∗
1 ⊥PD V ∗

2 and if ℓ V ∗
1 ⊆ V ∗

1 , then V ∗
1 ⊥Q∗

ℓ
V ∗
2 .
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(4) If V ∗
1 ⊥PD V ∗

2 , then (V ∗
1 ⊗R W ∗

1 ) ⊥PD (V ∗
2 ⊗R W ∗

2 ).

Proof. The first two assertions are straightforward. We justify the third assertion: For any non-

negative integer q ≤ r
2 , the assumption on V ∗

1 implies Lq
ℓV

q
1 ⊆ V r−q

1 , and hence

Qq
ℓ(V

q
1 , V

q
2 ) ⊆ deg(V r−q

1 V q
2 ) = 0.

For the fourth assertion, we check that, for any nonnegative integers p1, p2, q1, q2 whose sum is

r + s,

V p1

1 V p2

2 ⊗R W q1
1 W q2

2 = 0.

The assumption on V ∗
1 and V ∗

2 shows that the first factor is trivial if p1 + p2 ≥ r, and the second

factor is trivial if otherwise. �

Proof of Proposition 7.7. Suppose that R∗
1 satisfies HR(ℓ1) and that R∗

2 satisfies HR(ℓ2). We set

R∗ := R∗
1 ⊗R R∗

2, ℓ := ℓ1 ⊗ 1 + 1⊗ ℓ2.

We show that R∗ satisfy HR(ℓ). The assertion on HL can be proved in the same way.

For every p ≤ r1
2 , choose an orthogonal basis of P p

ℓ1
⊆ Rp

1 with respect to Qp
ℓ1

:
{
vp1 , v

p
2 , . . . , v

p
m(p)

}
⊆ P p

ℓ1
.

Similarly, for every q ≤ r2
2 , choose an orthogonal basis of P q

ℓ2
⊆ Rq

2 with respect to Qq
ℓ2

:
{
wq

1, w
q
2, . . . , w

q
n(q)

}
⊆ P q

ℓ2
.

Here we use the upper indices to indicate the degrees of basis elements. To each pair of vpi and

wq
j , we associate a graded subspace of R∗:

B∗(vpi , w
q
j ) := B∗(vpi )⊗R B∗(wq

j ), where

B∗(vpi ) := 〈vpi 〉 ⊕ ℓ1〈v
p
i 〉 ⊕ · · · ⊕ ℓr1−2p

1 〈vqi 〉 ⊆ R∗
1,

B∗(wq
j ) := 〈wq

j 〉 ⊕ ℓ2〈w
q
j 〉 ⊕ · · · ⊕ ℓr2−2q〈wq

j 〉 ⊆ R∗
2,

Let us compare the tensor product B∗(vpi , w
q
j ) with the truncated polynomial ring

S∗
p,q := R[x1, x2]/(x

r1−2p+1
1 , xr2−2q+1

2 ).

The properties HR(ℓ1) and HR(ℓ2) show that, for every nonnegative integer k ≤ r1+r2−2p−2q
2 ,

there is an isometry
(
Bk+p+q(vpi , w

q
j ), Q

k+p+q
ℓ

)
≃
(
Sk
p,q, (−1)p+qQk

x1+x2

)
.

Therefore, by Lemma 7.8, the graded subspace B∗(vpi , w
q
j ) ⊆ R∗ satisfies HR(ℓ).

The properties HL(ℓ1) and HL(ℓ2) imply that there is a direct sum decomposition

R∗ =
⊕

p,q,i,j

B∗(vpi , w
q
j ).

It is enough to prove that the above decomposition is orthogonal with respect to Q∗
ℓ :
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Claim. Any two distinct summands of R∗ satisfy B∗(v, w) ⊥Q∗
ℓ
B∗(v′, w′).

For the proof of the claim, we may suppose that w 6= w′. The orthogonality of the Lefschetz

decomposition for R∗
2 with respect to Q∗

ℓ2
shows that

B(w) ⊥PD B(w′).

By the fourth assertion of Lemma 7.11, the above implies

B∗(v, w) ⊥PD B∗(v′, w′).

By the third assertion of Lemma 7.11, this gives the claimed statement. �

7.3. Let Σ be a unimodular fan in NR. For our purposes, it will be enough to assume that Σ is

simplicial.

Definition 7.12. We say that Σ satisfies the Poincaré duality of dimension r if A∗(Σ)R is a Poincaré

duality algebra of dimension r.

In the remainder of this subsection, we suppose that Σ satisfies the Poincaré duality of di-

mension r. We fix an isomorphism, called the degree map for Σ,

deg : Ar(Σ)R −→ R.

As before, we write VΣ for the set of primitive ray generators of Σ.

Note that for any nonnegative integer q and e ∈ VΣ there is a commutative diagram

Aq(Σ)
p
e //

xe·−

''PP
P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Aq(star(e,Σ))

xe·−

��
Aq+1(Σ),

where pe is the pullback homomorphism pe∈Σ and xe ·− are the multiplications by xe. It follows

that there is a surjective graded ring homomorphism

πe : A∗(star(e,Σ)) −→ A∗(Σ)/ann(xe).

Proposition 7.13. The star of e in Σ satisfies the Poincaré duality of dimension r− 1 if and only

if πe is an isomorphism:

A∗(star(e,Σ)) ≃ A∗(Σ)/ann(xe).

Proof. The ”if” direction follows from Proposition 7.2: The quotient A∗(Σ)/ann(xe) is a Poincaré

duality algebra of dimension r − 1.

The ”only if” direction follows from the observation that any surjective graded ring homo-

morphism between Poincaré duality algebras of the same dimension is an isomorphism. �

Definition 7.14. Let Σ be a fan that satisfies Poincaré duality of dimension r. We say that
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(1) Σ satisfies the hard Lefschetz property if A∗(Σ)R satisfies HL(ℓ) for all ℓ ∈ KΣ,

(2) Σ satisfies the Hodge-Riemann relations if A∗(Σ)R satisfies HR(ℓ) for all ℓ ∈ KΣ, and

(3) Σ satisfies the local Hodge-Riemann relations if the Poincaré duality algebra

A∗(Σ)R/ann(xe)

satisfies HR(ℓe) with respect to the degree map induced by xe for all ℓ ∈ KΣ and e ∈ VΣ.

Hereafter we write ℓe for the image of ℓ in the quotient A∗(Σ)R/ann(xe).

Proposition 7.15. If Σ satisfies the local Hodge-Riemann relations, then Σ satisfies the hard

Lefschetz property.

Proof. By definition, for ℓ ∈ KΣ there are positive real numbers ce such that

ℓ =
∑

e∈VΣ

ce xe ∈ A1(Σ)R.

We need to show that the Lefschetz operator Lq
ℓ on Aq(Σ)R is injective for all q ≤ r

2 . Nothing is

claimed when r = 2q, so we may assume that r − 2q is positive.

Let f be an element in the kernel of Lq
ℓ , and write fe for the image of f in the quotient

Aq(Σ)R/ann(xe). Note that the element f has the following properties:

(1) For all e ∈ VΣ, the image fe belongs to the primitive subspace P q
ℓe

, and

(2) for the positive real numbers ce as above, we have
∑

e∈VΣ

ceQ
q
ℓe
(fe, fe) = Qq

ℓ(f, f) = 0.

By the local Hodge-Riemann relations, the two properties above show that all the fe are zero:

xe · f = 0 ∈ A∗(Σ)R for all e ∈ VΣ.

Since the elements xe generate the Poincaré duality algebra A∗(Σ)R, this implies that f = 0. �

Proposition 7.16. If Σ satisfies the hard Lefschetz property, then the following are equivalent:

(1) A∗(Σ)R satisfies HR(ℓ) for some ℓ ∈ KΣ.

(2) A∗(Σ)R satisfies HR(ℓ) for all ℓ ∈ KΣ.

Proof. Let ℓ0 and ℓ1 be elements of KΣ, and suppose that A∗(Σ)R satisfies HR(ℓ0). Consider the

parametrized family

ℓt := (1 − t) ℓ0 + t ℓ1, 0 ≤ t ≤ 1.

Since KΣ is convex, the elements ℓt are ample for all t.

Note that Qq
ℓt

are nondegenerate on Aq(Σ)R for all t and q ≤ r
2 because Σ satisfies the hard

Lefschetz property. It follows that the signatures of Qq
ℓt

should be independent of t for all q ≤ r
2 .
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Since A∗(Σ)R satisfies HR(ℓ0), the common signature should be

q∑

p=0

(−1)q−p
(

dimR Ap(Σ)R − dimR Ap−1(Σ)R

)
.

We conclude by Proposition 7.6 that A∗(Σ)R satisfies HR(ℓ1). �

8. PROOF OF THE MAIN THEOREM

8.1. As a final preparation for the proof of the main theorem, we show that the property HR is

preserved by a matroidal flip for particular choices of ample classes.

Let M be as before, and consider the matroidal flip from P− to P+ with center Z . We will

use the following homomorphisms:

(1) The pullback homomorphism ΦZ : A∗(M,P−) −→ A∗(M,P+).

(2) The Gysin homomorphisms Ψp,q
Z : Aq−p(MZ) −→ Aq(M,P+).

(3) The pullback homomorphism pZ : A∗(M,P−) −→ A∗(MZ).

The homomorphism pZ is the graded ring homomorphism pσZ<∅∈ΣM,P−
obtained from the

identification

star(σZ<∅,ΣM,P−) ≃ ΣMZ
.

In the remainder of this section, we fix a strictly convex piecewise linear function ℓ− on ΣM,P− .

For nonnegative real numbers t, we set

ℓ+(t) := ΦZ(ℓ−)− txZ ∈ A1(M,P+)⊗Z R.

We write ℓZ for the pullback of ℓ− to the star of the cone σZ<∅ in the Bergman fan ΣM,P− :

ℓZ := pZ(ℓ−) ∈ A1(MZ)⊗Z R.

Proposition 4.4 shows that ℓZ is the class of a strictly convex piecewise linear function on ΣMZ
.

Lemma 8.1. ℓ+(t) is strictly convex for all sufficiently small positive t.

Proof. It is enough to show that ℓ+(t) is strictly convex around a given cone σI<F in ΣM,P+ .

When Z /∈ F , the cone σI<F is in the fan ΣM,P− , and hence we may suppose that

ℓ− is zero on σI<F and positive on the link of σI<F in ΣM,P− .

It is straightforward to deduce from the above that, for all sufficiently small positive t,

ℓ+(t) is zero on σI<F and positive on the link of σI<F in ΣM,P+ .

More precisely, the statement is valid for all t that satisfies the inequalities

0 < t <
∑

i∈Z\I

ℓ−(ei).

Note that Z \ I is nonempty and each of the summands in the right-hand side is positive.
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When Z ∈ F , the cone σZ<F\{Z} is in the fan ΣM,P− , and hence we may suppose that

ℓ− is zero on σZ<F\{Z} and positive on the link of σZ<F\{Z} in ΣM,P− .

Let J be the flat min F \ {Z}, and let m(t) be the linear function on NE defined by setting

ei 7−→





t
|Z\I| if i ∈ Z \ I,
−t

|J\Z| if i ∈ J \ Z,

0 if otherwise.

It is straightforward to deduce from the above that, for all sufficiently small positive t,

ℓ+(t) +m(t) is zero on σI<F and positive on the link of σI<F in ΣM,P+ .

More precisely, the latter statement is valid for all t that satisfies the inequalities

0 < t < min
{
ℓ−(eF ), eF is in the link of σZ<F\{Z} in ΣM,P−

}
.

Here the minimum of the empty set is defined to be ∞. �

We write “deg” for the degree map of M and of MZ , and fix the degree maps

deg+ : Ar(M,P+) −→ Z, a 7−→ deg
(
ΦPc

+
(a)
)
,

deg− : Ar(M,P−) −→ Z, a 7−→ deg
(
ΦPc

−
(a)
)
,

see Definition 6.9. We omit the subscripts + and − from the notation when there is no danger

of confusion. The goal of this subsection is to prove the following.

Proposition 8.2. Let ℓ−, ℓZ , and ℓ+(t) be as above, and suppose that

(1) the Chow ring of ΣM,P− satisfies HR(ℓ−), and

(2) the Chow ring of ΣMZ
satisfies HR(ℓZ).

Then the Chow ring of ΣM,P+ satisfies HR(ℓ+(t)) for all sufficiently small positive t.

Hereafter we suppose HR(ℓ−) and HR(ℓZ). We introduce the main characters appearing in

the proof of Proposition 8.2:

(1) A Poincaré duality algebra of dimension r:

A∗
+ :=

r⊕

q=0

Aq
+, Aq

+ := Aq(M,P+)⊗Z R.

(2) A Poincaré duality algebra of dimension r:

A∗
− :=

r⊕

q=0

Aq
−, Aq

− :=
(

im Φq
Z

)
⊗Z R.

(3) A Poincaré duality algebra of dimension r − 2:

T ∗
Z :=

r−2⊕

q=0

T q
Z , T q

Z :=
(
Z[xZ ]/(x

rk(Z)−1
Z )⊗Z A∗(MZ)

)q
⊗Z R.
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(4) A graded subspace of A∗
+, the sum of the images of the Gysin homomorphisms:

G∗
Z :=

r−1⊕

q=1

Gq
Z , Gq

Z :=

rk(Z)−1⊕

p=1

(
im Ψp,q

Z

)
⊗Z R.

The truncated polynomial ring in the definition of T ∗
Z is given the degree map

(−xZ)
rk(Z)−2 7−→ 1,

so that the truncated polynomial ring satisfies HR(−xZ). The tensor product T ∗
Z is given the

induced degree map

(−xZ)
rk(Z)−2xZ 7−→ 1.

It follows from Proposition 7.7 that the tensor product satisfies HR(1⊗ ℓZ − xZ ⊗ 1).

Definition 8.3. For nonnegative q ≤ r
2 , we write the Poincaré duality pairings for A∗

− and T ∗
Z by

〈
−,−

〉q
A∗

−

: Aq
− ×Ar−q

− −→ R,

〈
−,−

〉q−1

T∗
Z

: T q−1
Z × T r−q−1

Z −→ R.

We omit the superscripts q and q − 1 from the notation when there is no danger of confusion.

Theorem 6.18 shows that ΦZ defines an isomorphism between the graded rings

A∗(M,P−)⊗Z R ≃ A∗
−,

and that there is a decomposition into a direct sum

A∗
+ = A∗

− ⊕G∗
Z .

In addition, it shows that xZ · − is an isomorphism between the graded vector spaces

T ∗
Z ≃ G∗+1

Z .

The inverse of the isomorphism xZ · − will be denoted x−1
Z · −.

We equip the above graded vector spaces with the following symmetric bilinear forms.

Definition 8.4. Let q be a nonnegative integer ≤ r
2 .

(1)
(
Aq

+, Q
q
− ⊕Qq

Z

)
: Qq

− and Qq
Z are the bilinear forms on Aq

− and Gq
Z defined below.

(2)
(
Aq

−, Q
q
−

)
: Qq

− is the restriction of the Hodge-Riemann form Qq
ℓ+(0) to Aq

−.

(3)
(
T q
Z , Q

q
T

)
: Qq

T
is the Hodge-Riemann form associated to T :=

(
1⊗ ℓZ − xZ ⊗ 1

)
∈ T 1

Z .

(4)
(
Gq

Z , Q
q
Z

)
: Qq

Z is the bilinear form defined by saying that xZ · − gives an isometry
(
T q−1
Z , Qq−1

T

)
≃
(
Gq

Z , Qq
Z

)
.

We observe that Qq
− ⊕Qq

Z satisfies the following version of Hodge-Riemann relations:
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Proposition 8.5. The bilinear form Qq
− ⊕Qq

Z is nondegenerate on Aq
+ and has signature

q∑

p=0

(−1)q−p
(

dimRA
p
+ − dimRA

p−1
+

)
for all nonnegative q ≤

r

2
.

Proof. Theorem 6.18 shows that ΦZ ⊗Z R defines an isometry

(
Aq(M,P−)R , Q

q
ℓ−

)
≃
(
Aq

− , Qq
−

)
.

It follows from the assumption on ΣM,P− that Qq
− is nondegenerate on Aq

− and has signature

q∑

p=0

(−1)q−p
(

dimRA
p
− − dimRA

p−1
−

)
.

It follows from the assumption on ΣMZ
that Qq

Z is nondegenerate on Gq
Z and has signature

q−1∑

p=0

(−1)q−p−1
(

dimRT
p
Z − dimRT

p−1
Z

)
=

q−1∑

p=0

(−1)q−p−1
(

dimRG
p+1
Z − dimRG

p
Z

)

=

q∑

p=0

(−1)q−p
(

dimRG
p
Z − dimRG

p−1
Z

)
.

The assertion is deduced from the fact that the signature of the sum is the sum of the signatures.

�

We now construct a continuous family of symmetric bilinear forms Qq
t on Aq

+ parametrized

by positive real numbers t. This family Qq
t will shown to have the following properties:

(1) For every positive real number t, there is an isometry

(
Aq

+ , Qq
t

)
≃
(
Aq

+ , Qq
ℓ+(t)

)
.

(2) The sequence Qq
t as t goes to zero converges to the sum of Qq

− and Qq
Z :

lim
t→0

Qq
t = Qq

− ⊕Qq
Z .

For positive real numbers t, we define a graded linear transformation

St : A
∗
+ −→ A∗

+

to be the sum of the identity on A∗
− and the linear transformations

(
im Ψp,q

Z

)
⊗Z R −→

(
im Ψp,q

Z

)
⊗Z R, a 7−→ t−

rk(Z)
2 +p a.

The inverse transformation S−1
t is the sum of the identity on A∗

− and the linear transformations

(
im Ψp,q

Z

)
⊗Z R −→

(
im Ψp,q

Z

)
⊗Z R, a 7−→ t

rk(Z)
2 −p a.
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Definition 8.6. The symmetric bilinear form Qq
t is defined so that St defines an isometry

(
Aq

+ , Qq
t

)
≃
(
Aq

+ , Qq
ℓ+(t)

)
for all nonnegative integers q ≤

r

2
.

In other words, for any elements a1, a2 ∈ Aq
+, we set

Qq
t (a1, a2) := (−1)q deg

(
St(a1) · ℓ+(t)

r−2q · St(a2)
)
.

The first property of Qq
t mentioned above is built into the definition. We verify the assertion

on the limit of Qq
t as t goes to zero.

Proposition 8.7. For all nonnegative integers q ≤ r
2 , we have

lim
t→0

Qq
t = Qq

− ⊕Qq
Z .

Proof. We first construct a deformation of the Poincaré duality pairing Aq
+ ×Ar−q

+ −→ R:

〈
a1, a2

〉q
t
:= deg

(
St(a1), St(a2)

)
, t > 0.

We omit the upper index q when there is no danger of confusion.

Claim (1). For any b1, b2 ∈ A∗
− and c1, c2 ∈ G∗

Z and a1 = b1 + c1, a2 = b2 + c2 ∈ A∗
+,

〈
a1, a2

〉
0
:= lim

t→0

〈
a1, a2

〉
t
=
〈
b1, b2

〉
A∗

−

−
〈
x−1
Z c1, x

−1
Z c2

〉
T∗
Z

.

We write z := rk(Z) and choose bases of Aq
+ and Ar−q

+ that respect the decompositions

Aq
+ = Aq

− ⊕
(

im Ψ1,q
Z ⊕ im Ψ2,q

Z ⊕ · · · ⊕ im Ψz−1,q
Z

)
⊗Z R, and

Ar−q
+ = Ar−q

− ⊕
(

im Ψz−1,r−q
Z ⊕ im Ψz−2,r−q

Z ⊕ · · · ⊕ im Ψ1,r−q
Z

)
⊗Z R.

Let M− be the matrix of the Poincaré duality pairing between Aq
− and Ar−q

− , and let Mp1,p2 is the

matrix of the Poincaré duality pairing between im Ψp1,q
Z ⊗ZR and im Ψp2,r−q

Z ⊗ZR. Lemma 6.20

shows that the matrix of the deformed Poincaré pairing on A∗
+ is




M− 0 0 0 · · · 0

0 M1,z−1 tM2,z−1 t2M3,z−1 · · · tz−2Mz−1,z−1

0 0 M2,z−2 tM3,z−2 tz−3Mz−1,z−2

0 0 0 M3,z−3 · · · tz−4Mz−1,z−3

...
...

...
...

. . .
...

0 0 0 0 0 Mz−1,1




.

The claim on the limit of the deformed Poincaré duality pairing follows. The minus sign on the

right-hand side of the claim comes from the following computation made in Proposition 6.17:

deg
(
x

rk(Z)
Z xZ

)
= (−1)rk(Z)−1.
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We use the deformed Poincaré duality pairing to understand the limit of the bilinear form

Qq
t . For an element a of A1

+, we write the multiplication with a by

Ma : A∗
+ −→ A∗+1

+ , x 7−→ a · x,

and define its deformation Ma
t := S−1

t ◦Ma ◦ St. In terms of the operator M
ℓ+(t)
t , the bilinear

form Qq
t can be written

Qq
t (a1, a2) = (−1)q deg

(
St(a1) ·M

ℓ+(t) ◦ · · · ◦M ℓ+(t) ◦ St (a2)
)

= (−1)q deg
(
St(a1) · St ◦M

ℓ+(t)
t ◦ · · · ◦M

ℓ+(t)
t (a2)

)

= (−1)q
〈
a1 , M

ℓ+(t)
t ◦ · · · ◦M

ℓ+(t)
t (a2)

〉
t

Define linear operators M1⊗ℓZ , MxZ⊗1, and MT on G∗
Z by the isomorphisms

(
G∗

Z ,M
1⊗ℓZ

)
≃
(
T ∗−1, 1⊗ ℓZ · −

)
,

(
G∗

Z ,M
xZ⊗1

)
≃
(
T ∗−1, xZ ⊗ 1 · −

)
,

(
G∗

Z ,M
T

)
≃
(
T ∗−1,T · −

)
.

Note that the linear operator MT is the difference M1⊗ℓZ −MxZ⊗1.

Claim (2). The limit of the operator M
ℓ+(t)
t as t goes to zero decomposes into the sum

(
A∗

+ , lim
t→0

M
ℓ+(t)
t

)
=
(
A∗

− ⊕G∗
Z , M ℓ+(0) ⊕MT

)
.

Assuming the second claim, we finish the proof as follows: We have

lim
t→0

Qq
t (a1, a2) = (−1)q lim

t→0

〈
a1 , M

ℓ+(t)
t ◦ · · · ◦M

ℓ+(t)
t (a2)

〉
t

and from the first and the second claim, we see that the right-hand side is

(−1)q
〈
a1 , (M

ℓ+(0) ⊕MT ) ◦ · · · ◦ (M ℓ+(0) ⊕MT ) (a2)
〉
0
= Qq

−(b1, b2) +Qq
Z(c1, c2),

where ai = bi + ci for bi ∈ A∗
− and ci ∈ G∗

Z . Notice that the minus sign in the first claim cancels

with (−1)q−1 in the Hodge-Riemann form
(
T q−1
Z , Qq−1

T

)
≃
(
Gq

Z , Qq
Z

)
.

We now prove the second claim made above. Write M
ℓ+(t)
t as the difference

M
ℓ+(t)
t = S−1

t ◦M ℓ+(t) ◦ St = S−1
t ◦

(
M ℓ+(0) −M txZ

)
◦ St = M

ℓ+(0)
t −M txZ

t .

By Lemma 6.20, the operators M ℓ+(0) and St commute, and hence
(
A∗

+ , M
ℓ+(0)
t

)
=
(
A∗

+ , M ℓ+(0)
)
=
(
A∗

− ⊕G∗
Z , M ℓ+(0) ⊕M1⊗ℓZ

)
.
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Lemma 6.20 shows that the matrix of MxZ in the chosen bases of Aq
+ and Aq+1

+ is of the form



0 0 0 · · · 0 B0

A 0 0 · · · 0 B1

0 Id 0 · · · 0 B2

...
...

. . .
. . .

...
...

0 0 · · · Id 0 Bz−2

0 0 · · · 0 Id Bz−1




,

where “Id” are the identity matrices representing

Aq−p(MZ)R ≃ im Ψp,q
Z −→ im Ψp+1,q+1

Z ≃ Aq−p(MZ)R.

Note that the matrix of the deformed operator M txZ

t can be written



0 0 0 · · · 0 t
rk(Z)

2 B0

t
rk(Z)

2 A 0 0 · · · 0 trk(Z)−1B1

0 Id 0 · · · 0 trk(Z)−1B2

...
...

. . .
. . .

...
...

0 0 · · · Id 0 t2Bz−2

0 0 · · · 0 Id tBz−1




.

At the limit t = 0, the matrix represents the sum 0⊕MxZ⊗1, and therefore
(
A∗

+ , lim
t→0

M
ℓ+(t)
t

)
=
(
A∗

− ⊕G∗
Z , M ℓ+(0) ⊕M1⊗ℓZ

)
−
(
A∗

− ⊕G∗
Z , 0⊕MxZ⊗1

)

=
(
A∗

− ⊕G∗
Z , M ℓ+(0) ⊕MT

)
.

This completes the proof of the second claim. �

Proof of Proposition 8.2. By Proposition 8.5 and Proposition 8.7, we know that limt→0 Q
q
t is non-

degenerate on Aq
+ and has signature

q∑

p=0

(−1)q−p
(

dimRA
p
+ − dimRA

p−1
+

)
for all nonnegative q ≤

r

2
.

Therefore the same must be true for Qq
t for all sufficiently small positive t. By construction, there

is an isometry (
Aq

+ , Qq
t

)
≃
(
Aq

+ , Qq
ℓ+(t)

)
,

and thus A∗
+ satisfies HR(ℓ+(t)) for all sufficiently small positive t. �

8.2. We are now ready to prove the main theorem. We write “deg” for the degree map of M

and, for an order filter P of PM, fix an isomorphism

Ar(M,P) −→ Z, a 7−→ deg
(
ΦPc(a)

)
.

Theorem 8.8 (Main Theorem). Let M be a loopless matroid, and let P be an order filter of PM.
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(1) The Bergman fan ΣM,P satisfies the hard Lefschetz property.

(2) The Bergman fan ΣM,P satisfies the Hodge-Riemann relations.

When P = PM, the above implies Theorem 1.4 in the introduction because any strictly

submodular function defines a strictly convex piecewise linear function on ΣM.

We prove Theorem 8.8 by lexicographic induction on the rank of M and the cardinality of P .

Set P = P+, and consider the matroidal flip from P− to P+ with center Z .

Proof. By Proposition 4.7 and Proposition 4.8, we may replaceM by the associated combinatorial

geometry M. Thus we may assume that M has no rank 1 flat of cardinality greater than 1. In

this case, Proposition 3.5 shows that the star of every ray in ΣM,P is a product of at most two

smaller Bergman fans to which the induction hypothesis applies.

By Proposition 7.7 and the induction hypothesis applied to the stars, ΣM,P satisfies the lo-

cal Hodge-Riemann relations. By Proposition 7.15, this implies that ΣM,P satisfies the hard

Lefschetz property.

Lastly, we show that ΣM,P satisfies the Hodge-Riemann relations. Since ΣM,P satisfies the

hard Lefschetz property, Proposition 7.16 shows that it is enough to prove HR(ℓ) for some ℓ ∈

KM,P . This follows from Proposition 8.2 and the induction hypothesis applied to ΣM,P− and

ΣMZ
. �

We remark that the same inductive approach can be used to prove the following stronger

statement (see [Cat08] for an overview of the analogous facts in the context of convex polytopes

and compact Kähler manifolds). We leave details to the interested reader.

Theorem 8.9. Let M be a loopless matroid on E, and let P be an order filter of PM.

(1) The Bergman fan ΣM,P satisfies the mixed hard Lefschetz theorem: For any multiset

L :=
{
ℓ1, ℓ2, . . . , ℓr−2q

}
⊆ KM,P,

the linear map given by the multiplication

Lq
L

: Aq(M,P)R −→ Ar−q(M,P)R, a 7−→
(
ℓ1ℓ2 · · · ℓr−2q

)
· a

is an isomorphism for all nonnegative integers q ≤ r
2 .

(2) The Bergman fan ΣM,P satisfies the mixed Hodge-Riemann Relations: For any multiset

L :=
{
ℓ1, ℓ2, . . . , ℓr−2q

}
⊆ KM,P and any ℓ ∈ KM,P,

the symmetric bilinear form given by the multiplication

Qq
L

: Aq(M,P)R ×Aq(M,P)R −→ R, (a1, a2) 7−→ (−1)qdeg
(
a1 · L

q
L
(a2)

)

is positive definite on the kernel of ℓ · Lq
L

for all nonnegative integers q ≤ r
2 .
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9. LOG-CONCAVITY CONJECTURES

9.1. Let M be a loopless matroid of rank r + 1 on the ground set E = {0, 1, . . . , n}. The charac-

teristic polynomial of M is defined to be

χM(λ) =
∑

I⊆E

(−1)|I| λcrk(I),

where the sum is over all subsets I ⊆ E and crk(I) is the corank of I in M. Equivalently,

χM(λ) =
∑

F⊆E

µM(∅, F ) λcrk(F ),

where the sum is over all flats F ⊆ E and µM is the Möbius function of the lattice of flats of M.

Any one of the two descriptions clearly shows that

(1) the degree of the characteristic polynomial is r + 1,

(2) the leading coefficient of the characteristic polynomial is 1, and

(3) the characteristic polynomial satisfies χM(1) = 0.

See [Zas87, Aig87] for basic properties of the characteristic polynomial and its coefficients.

Definition 9.1. The reduced characteristic polynomial χM(λ) is

χM(λ) := χM(λ)/(λ − 1).

We define a sequence of integers µ0(M), µ1(M), . . . , µr(M) by the equality

χM(λ) =

r∑

k=0

(−1)kµk(M)λr−k.

The first number in the sequence is 1, and the last number in the sequence is the absolute

value of the Möbius number µM(∅, E). In general, µk(M) is the alternating sum of the absolute

values of the coefficients of the characteristic polynomial

µk(M) = wk(M)− wk−1(M) + · · ·+ (−1)kw0(M).

We will show that the Hodge-Riemann relations for A∗(M)R imply the log-concavity

µk−1(M)µk+1(M) ≤ µk(M)2 for 0 < k < r.

Because the convolution of two log-concave sequences is log-concave, the above implies the

log-concavity of the sequence wk(M).

Definition 9.2. Let F = {F1 ( F2 ( · · · ( Fk} be a k-step flag of nonempty proper flats of M.

(1) The flag F is said to be initial if r(Fm) = m for all indices m.

(2) The flag F is said to be descending if min(F1) > min(F2) > · · · > min(Fk) > 0.

We write Dk(M) for the set of initial descending k-step flags of nonempty proper flats of M.
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For inductive purposes it will be useful to consider the truncation of M, denoted tr(M). This

is the matroid on E whose rank function is defined by

rktr(M)(I) := min(rkM(I), r).

The lattice of flats of tr(M) is obtained from the lattice of flats of M by removing all the flats of

rank r. It follows that, for any nonnegative integer k < r, there is a bijection

Dk(M) ≃ Dk(tr(M)),

and an equality between the coefficients of the reduced characteristic polynomials

µk(M) = µk(tr(M)).

The second equality shows that all the integers µk(M) are positive, see [Zas87, Theorem 7.1.8].

Lemma 9.3. For every positive integer k ≤ r, we have

µk(M) = |Dk(M)|.

Proof. The assertion for k = r is the known fact that µr(M) is the number of facets of ∆M that are

glued along their entire boundaries in its lexicographic shelling; see [Bjo92, Proposition 7.6.4].

The general case is obtained from the same equality applied to repeated truncations of M. See

[HK12, Proposition 2.4] for an alternative approach using Weisner’s theorem. �

We now show that µk(M) is the degree of the product αr−k
M βk

M. See Definition 5.7 for the

elements αM, βM ∈ A1(M), and Definition 5.9 for the degree map of M.

Lemma 9.4. For every positive integer k ≤ r, we have

βk
M =

∑

F

xF ∈ A∗(M),

where the sum is over all descending k-step flags of nonempty proper flats of M.

Proof. We prove by induction on the positive integer k. When k = 1, the assertion is precisely

that βM,0 represents βM in the Chow ring of M:

βM = βM,0 =
∑

0/∈F

xF ∈ A∗(M).

In the general case, we use the induction hypothesis for k to write

βk+1
M =

∑

F

βM xF ,

where the sum is over all descending k-step flags of nonempty proper flats of M. For each of the

summands βM xF , we write

F =
{
F1 ( F2 ( · · · ( Fk

}
, and set iF := min(F1).
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By considering the representative of βM corresponding to the element iF , we see that

βM xF =
( ∑

iF /∈F

xF

)
xF =

∑

G

xG ,

where the second sum is over all descending flags of nonempty proper flats of M of the form

G =
{
F ( F1 ( · · · ( Fk

}
.

This complete the induction. �

Combining Lemma 9.3, Lemma 9.4, and Proposition 5.8, we see that the coefficients of the

reduced characteristic polynomial of M are given by the degrees of the products αr−k
M βk

M:

Proposition 9.5. For every nonnegative integer k ≤ r, we have

µk(M) = deg(αr−k
M βk

M).

9.2. Now we explain why the Hodge-Riemann relations imply the log-concavity of the re-

duced characteristic polynomial. We first state a lemma involving inequalities among degrees

of products:

Lemma 9.6. Let ℓ1 and ℓ2 be elements of A1(M)R. If ℓ2 is nef, then

deg(ℓ1 ℓ1 ℓ
r−2
2 ) deg(ℓ2 ℓ2 ℓ

r−2
2 ) ≤ deg(ℓ1 ℓ2 ℓ

r−2
2 )2.

Proof. We first consider the case when ℓ2 is ample. Let Q1
ℓ2

be the Hodge-Riemann form

Q1
ℓ2 : A1(M)R ×A1(M)R −→ R, (a1, a2) 7−→ −deg(a1 ℓ

r−2
2 a2).

Since the Chow ring A∗(M) satisfies HL(ℓ2), we have the Lefschetz decomposition

A1(M)R = 〈ℓ2〉 ⊕ P 1
ℓ2(M).

Note that the decomposition is orthogonal with respect to the Hodge-Riemann form Q1
ℓ2

. The

property HR(ℓ2) shows that Q1
ℓ2

is negative definite on 〈ℓ2〉 and positive definite on its orthog-

onal complement P 1
ℓ2
(M).

We consider Q1
ℓ2

restricted to the subspace 〈ℓ1, ℓ2〉 ⊆ A1(M)R. If ℓ1 is not a multiple of ℓ2, then

the restriction of Q1
ℓ2

is neither positive definite nor negative definite, and hence

deg(ℓ1 ℓ1 ℓ
r−2
2 ) deg(ℓ2 ℓ2 ℓ

r−2
2 ) < deg(ℓ1 ℓ2 ℓ

r−2
2 )2.

Next consider the case when ℓ2 is nef. By Proposition 3.3, there is an element ℓ in the ample

cone of M. Since ℓ2 is nef, we have

ℓ2(t) := ℓ2 + t ℓ ∈ KM for all positive real numbers t.

Therefore for all positive real numbers t we have

deg(ℓ1 ℓ1 ℓ2(t)
r−2) deg(ℓ2(t) ℓ2(t) ℓ2(t)

r−2) ≤ deg(ℓ1 ℓ2(t) ℓ2(t)
r−2)2.

By taking the limit t → 0, we obtain the desired inequality. �
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Lemma 9.7. Let M be a loopless matroid.

(1) The element αM is the class of a convex piecewise linear function on ΣM.

(2) The element βM is the class of a convex piecewise linear function on ΣM.

In other words, αM and βM are nef.

Proof. For the first assertion, it is enough to show that αM is the class of a nonnegative piecewise

linear function that is zero on a given cone σ∅<F in ΣM. For this we choose an element i not in

any of the flats in F . The representative αM,i of αM has the desired property.

Similarly, for the second assertion, it is enough to show that βM is the class of a nonnegative

piecewise linear function that is zero on a given cone σ∅<F in ΣM. For this we choose an

element i in the flat min F . The representative βM,i of βM has the desired property. �

Proposition 9.8. For every positive integer k < r, we have

µk−1(M)µk+1(M) ≤ µk(M)2.

Proof. We prove by induction on the rank of M. When k is less than r− 1, the induction hypoth-

esis applies to the truncation of M. When k is r − 1, Proposition 9.5 shows that the assertion is

equivalent to the inequality

deg(α2
M βr−2

M )deg(β2
M βr−2

M ) ≤ deg(α1
M βr−1

M )2.

This follows from Lemma 9.6 applied to the nef classes αM and βM. �

As an implication of Proposition 9.8, we conclude with the proof of the announced log-

concavity results.

Theorem 9.9. Let M be a matroid, and let G be a graph.

(1) The coefficients of the reduced characteristic polynomial of M form a log-concave sequence.

(2) The coefficients of the characteristic polynomial of M form a log-concave sequence.

(3) The number of independent subsets of size i of M form a log-concave sequence in i.

(4) The coefficients of the chromatic polynomial of G form a log-concave sequence.

The second item proves the aforementioned conjecture of Heron [Her72], Rota [Rot71], and

Welsh [Wel76]. The third item proves the conjecture of Mason [Mas72] and Welsh [Wel71]. The

last item proves the conjecture of Read [Rea68] and Hoggar [Hog74].

Proof. It follows from Proposition 9.8 that the coefficients of the reduced characteristic polyno-

mial of M form a log-concave sequence. Since the convolution of two log-concave sequences

is a log-concave sequence, the coefficients of the characteristic polynomial of M also form a

log-concave sequence.
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To justify the third assertion, we consider the free dual extension of M. It is defined by taking

the dual of M, placing a new element p in general position (taking the free extension), and again

taking the dual. In symbols,

M× p := (M∗ + p)∗.

The free dual extension M× p has the following property: The number of independent subsets

of size k of M is the absolute value of the coefficient of λr−k of the reduced characteristic poly-

nomial of M. We refer to [Len12] and also to [Bry77, Bry86] for these facts. It follows that the

number of independent subsets of size k of M form a log-concave sequence in k.

For the last assertion, we recall that the chromatic polynomial of a graph is given by the

characteristic polynomial of the associated graphic matroid [Wel76]. More precisely, we have

χG(λ) = λnG · χMG
(λ),

where nG is the number of connected components of G. It follows that the coefficients of the

chromatic polynomial of G form a log-concave sequence. �
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rary Mathematicians, Birkhäuser Boston, Boston, MA, 1995.

[Laz04] Robert Lazarsfeld, Positivity in Algebraic Geometry I, Ergebnisse der Mathematik und ihrer Grenzgebiete 48,

Springer-Verlag, Berlin, 2004.

[Lee96] Carl Lee, P.L.-spheres, convex polytopes, and stress, Discrete and Computational Geometry 15 (1996), no. 4, 389–

421.

[Len12] Matthias Lenz, The f-vector of a representable-matroid complex is log-concave, Advances in Applied Mathematics

51 (2013), no. 5, 543–545.

[Mas72] John Mason, Matroids: unimodal conjectures and Motzkin’s theorem, Combinatorics (Proc. Conf. Combinatorial

Math., Math. Inst., Oxford, 1972), pp. 207–220. Inst. Math. Appl., Southend-on-Sea, 1972.

[McM93] Peter McMullen, On simple polytopes, Inventiones mathematicae 113 (1993), no. 2, 419–444.
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