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HOG-like Gradient-based Descriptor for Visual Vehicle Detection 

Jon Arróspide, Luis Salgado and Javier Marinas 

Abstract— One of the main challenges for intelligent vehicles 
is the capability of detecting other vehicles in their environment, 
which constitute the main source of accidents. Specifically, many 
methods have been proposed in the literature for video-based 
vehicle detection. Most of them perform supervised classifi
cation using some appearance-related feature, in particular, 
symmetry has been extensively utilized. However, an in-depth 
analysis of the classification power of this feature is missing. 
As a first contribution of this paper, a thorough study of 
the classification performance of symmetry is presented within 
a Bayesian decision framework. This study reveals that the 
performance of symmetry-based classification is very limited. 
Therefore, as a second contribution, a new gradient-based 
descriptor is proposed for vehicle detection. This descriptor 
exploits the known rectangular structure of vehicle rears 
within a Histogram of Gradients (HOG)-based framework. 
Experiments show that the proposed descriptor outperforms 
largely symmetry as a feature for vehicle verification, achieving 
classification rates over 90%. 

I. INTRODUCTION 

The increasing awareness of road accident severity and 

impact has fostered the research on pre-crash sensing and, in 

general, on advanced driver assistance systems. In particular, 

most of the accidents are caused by other cars, therefore 

vehicle detection has become a central topic of investigation 

in the last years. Aside of active sensors such as radar and 

LIDAR, computer vision-based approaches for the detection 

of vehicles in traffic environments are gaining interest due 

to their flexibility, low cost and increased processing capa

bilities. 

Most of video-based vehicle detection methods in the 

literature proceed in a two-stage fashion: hypothesis genera

tion, and hypothesis verification. In the hypothesis generation 

stage, a quick search is performed throughout the image so 

that only a small subset of regions likely containing vehicles 

are retained. The search is typically based on some expected 

feature of vehicles, such as color [1], shadow [2], vertical 

edges [1], [3], or motion [4]. 

In the second stage, the presence of objects in the hypothe

sized regions is checked. Verification of hypothesis is usually 

addressed as a two-class supervised classification problem, 

in which a set of vehicle and non-vehicle samples are trained 

to derive representative features. Although complex features 

such as Wavelet decomposition and Histograms of Gradients 

are typically used for many applications, the need of real

time operation in traffic environment poses an important 

computational constraint. Therefore, simple features relating 

to the appearance of the vehicles are often preferred. In 

particular, the inherent symmetry of vehicle rear has been 

extensively used for vehicle verification [5], [6], [7], [8], [9]. 

However, an study of the real classification potential 

of symmetry is missing. Indeed, although this feature is 

very appealing due to its low computational load and its 

intuitively high perceptual power, we feel that its intrin

sic simplicity may also pose an important limitation in 

the achievable separability between vehicle and non-vehicle 

classes. Therefore, in this paper an in-depth study of the 

vehicle classification performance of symmetry is carried 

out by adopting the classical symmetry feature definition 

in [10] within a Bayesian decision framework. Specifically, 

the distribution of the vehicle and the non-vehicle classes 

in the symmetry feature space is analyzed using a public 

database, and the best-fit distributions are found for each of 

them. The study reveals that the performance of symmetry-

based classification is indeed limited to a rate of around 80%. 

In order to overcome this limitation, in this paper a 

new vehicle descriptor based on gradient analysis within an 

HOG-like framework is proposed. In contrast to traditional 

HOG-based approaches, which involve heavy computation 

and training requirements, the descriptor is designed to be 

simple and fast by taking advantage of the knowledge of the 

structure of vehicles in order to comply with the real-time 

operation constraint. In particular, two different properties 

of a canonical vehicle in terms of gradient are exploited. 

First, vehicle rear features mainly horizontal and vertical 

edges, since both its contour and its inner elements (e.g., 

rear window, license plate) have a nearly rectangular shape. 

Second, vehicles typically have larger edge density than a 

random image in traffic environments. These properties are 

exploited by dividing the image into smaller cells (as done in 

HOG) and locally comparing the observed features with the 

expected patterns. Exhaustive experiments are performed in 

the same database, and the proposed descriptor is proven 

to largely outperform symmetry and to yield very good 

classification results. 

II. SYMMETRY 

Symmetry is one of the most outstanding shape features 

for recognition of many types of objects, including vehicles. 

In particular, mirror symmetry with respect to a vertical axis 

is characteristic of vehicle rears when projected onto the 

image plane. This feature has been widely used by many 

authors for applications relating to car-following situations. 

Many of them (e.g., [5],[9]) rely on the symmetry feature 



definition introduced by Zielke in [10]. This method searches 

for symmetry around a vertical axis in the intensity of a 

grayscale image of size R x C by first scanning horizontal 

lines. The symmetry axis, xs, is shifted along the definition 

interval, and all possible widths are considered up to size 

of the input image, w < C . Taking into account the range 

of these parameters, for each row of the image a matrix of 

symmetry values is computed as: 

SiD(x3,w,yo) = 
J En(u, xs,w, yo)

2
du — J 0(u, xs,w,yo)

2
du 

J E„(u, xs, w, yo)
2
du + / 0(u, xs, w, yo)

2
du 

where En and O represent the even and odd parts of the 

image intensity function, I, and u scans the hypothesized 

width, u = x — xs, —w/2 <u< w/2. These parts are given 

by [10]: 

1 r
w
/
2 

E„(u, xs, w,yo) = E(u, xs, w,yo) / E(v,xs,w,yo)dv 
w J—w/2 

E(u,xa,w,yo) = ) 2 
\ (I(xs + u, j/o) + I(xs - u, 2/0)) , 

O(u,xa,w,y0) = <
 2 \ (I(xs + u, j/o) - I(xs - u, 2/0)) , 

otherwise 

otherwise 

The final symmetry measure is the average of the ID 

symmetry values along the vertical direction. In addition, 
—

 1 < SID(
X
S,

W
, VO) < L so appropriate scaling is per

formed so that the final measure is within the normalized 

range [0,1]. Hence, it is: 

SID{XS 

The parameters 

(xs,w,y) 1 

maximizing the matrix 

S-2D{XS,W) determine the potential vehicle boundaries 

within the input image, and the value S-2D{X°S,W°) relates 

to the probability that it be a vehicle according to symmetry 

analysis. 

III. SYMMETRY-BASED BAYESIAN CLASSIFIER 

The described symmetry feature definition has been 

adopted in this study. The purpose is to analyze whether this 

feature conveys relevant information for vehicle classifica

tion, both individually or in a multi-cue scheme. Let us first 

visualize the distribution of the symmetry feature in our im

age database (presented in [11], available in the Internet [12]) 

in order to analyze the vehicle/non-vehicle separability. This 

database contains images extracted from highway video 

sequences, which are divided in four categories according to 

the relative pose of the vehicle with respect to the camera: 

close/middle range in the front, in the left, and in the right, 

and far range. For each of these regions, the database consists 

of 1000 positive (i.e. containing vehicles) and 1000 negative 

samples, selected to emulate the output of a hypothesis 

generator. As an example, Fig. 1 displays the normalized 

symmetry histogram for vehicle and non-vehicle classes in 

the front close/middle range. The lines joining the histogram 
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Fig. 1. Normalized histogram of symmetry feature for vehicle (blue) and 

non-vehicle (red) classes in the front close/middle range. 
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Fig. 2. Fitting of different pdfs to the observed data distribution for the front 
close/middle range. For the non-vehicle class (red), a i-Student distribution 
with v = 3 degrees of freedom, a shift of A = 0.4873 and a scaling 
of s = 0.045 with respect to the standard i-Student is fitted, whereas for 
the vehicle class (blue) Gaussian ([/i, <J] = [0.6112, 0.0967]) and Rayleigh 
([<j, A] = [0.1452, 0.43]) pdfs are proposed. The solid lines correspond to 
the data distribution in Fig. 1. 

values have also been painted to get an approximation to the 

underlying probability density function. As expected, there 

is a high-degree of overlapping between the classes, which 

limits the performance of symmetry-based classification. 

A. Likelihood Modeling 

A Bayesian classification framework is proposed for the 

symmetry feature. As opposed to traditional approaches 

based on hard decision, this allows not only to perform 

classification but also to have the probability that a given 

new sample belongs to the vehicle class. This is valuable in

formation, especially in multi-feature classification schemes, 

where it can be used to weigh the contribution of each feature 

to the final decision. 

We first aim at finding the distributions that best fit the 

data. As regards the non-vehicle class observe that the curve 

is similar to Gaussian, i.e., symmetric and bell-shaped, but 

has larger tails. This is suitably modeled by a t-Student 

distribution, characterized by its degree of freedom v. The 

parameter v that best adapts the curve is selected for each 

image region, and the distribution is shifted and scaled ac

cording to the observed mean and variance. The vehicle class, 

in turn, seems more challenging to characterize. In search of 

simplicity, let us first attempt to fit a Gaussian distribution 

to the data. Parallelly, let us make a second hypothesis: the 

mass of the distribution is slightly concentrated on the left 

side, i.e., it is right-skewed, therefore we shall propose a 

Rayleigh distribution. Since by definition this distribution is 

zero at the origin, this must be appropriately shifted. 



TABLE I 

RESULTS OF KOLMOGOROV-SMIRNOV TEST 

K-S-Test 

Front 

Left 

Right 

Far 

Gaussian 

h 

1 

1 

1 

1 

p-value 

0.0144 

0.0029 

0.0028 

0.0091 

ks 

0.0495 

0.0570 

0.0571 

0.0517 

Rayleigh 

h 

0 

0 

0 

0 

p-value 

0.1407 

0.7930 

0.1721 

0.7436 

ks 

0.0363 

0.0204 

0.0348 

0.0214 

TABLE II 

PERFORMANCE OF SYMMETRY FEATURE 

Accuracy 
Front 

80.18 

Left 

80.46 

Right 

78.54 

Far 

80.50 

Fig. 2 shows the fitting of the aforementioned distributions 

to the data for the front close/middle range. Specifically, 

the left and right figures display Gaussian and Rayleigh 

fitting to the vehicle class, respectively, while the t-Student 

models non-vehicle data in both figures. Observe that the 

t-Student distribution fits almost perfectly the non-vehicle 

class data. In turn, visual inspection reveals that Rayleigh 

distribution adapts the vehicle data better than the Gaussian. 

Fig. 3 shows analogous results for the remaining regions. The 

better behavior of the Rayleigh distribution is confirmed by 

the Kolmogorov-Smirnov test. This test compares a sample 

with a reference probability distribution, and gives an idea of 

the probability that the sample is drawn from the distribution 

(null hypothesis). In particular, the test returns a statistic 

ks that measures the supremum of the difference between 

the theoretical and the empirical cumulative distribution 

function, and a p-value, which is the probability of obtaining 

a statistic at least as extreme as the one that was actually 

observed, assuming that the null hypothesis is true. If the 

p-value is above a given significance level, the null hypo

thesis cannot be rejected (h = 0), otherwise it is rejected 

(h = 1). Table I summarizes the results of the test assum

ing that the vehicle data are either Gaussian or Rayleigh-

distributed. As expected, with the conventional significance 

level of 5%, the Rayleigh hypothesis cannot be rejected for 

any of the image regions and the p-value is well above the 

significance level, which supports its election to model the 

symmetry distribution associated to the vehicle class. 

B. Experiments and Results 

Once the probability densities have been modeled for 

both classes, classification experiments are performed in the 

database [12] using 50% holdout cross-validation 5-fold. As 

stated, a Bayesian classifier is employed: prior probabilities 

of the classes are assumed to be equal, thus classification 

is performed only with regard to conditional densities. The 

results of the experiments are enclosed in Table II in terms 

of accuracy (i.e., proportion of correctly classified test sam

ples) As can be observed, there are no big differences in 

performance between the image regions and the accuracy is 

around 80%. This value is rather low, which leads us to the 

proposal of a new descriptor based on gradient within a HOG 

framework, which largely outperforms symmetry, as will be 
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Fig. 3. Fitting of pdfs to the vehicle and non-vehicle classes for the 
left, right and far regions. The solid lines correspond to the observed data 
distribution in these regions. The parameters of the i-Student, Gaussian and 
Rayleigh functions are (v = 5, A = 0.4639, s = 0.045),(V = 5, A = 
0.4568, s = 0.045);(V = 3, A = 0.4679, s = 0.05);(¿t = 0.5667, a = 
0.0729), (¿t = 0.5426,cr = 0.063), (¿t = 0.6019, a = 0.097);(cr = 
0.1096, A = 0.43), (cr = 0.0912, A = 0.43), (a = 0.1458, A = 0.42) 
respectively for the left, right and far regions. 

shown in Section V. 

IV. GRADIENT-BASED DESCRIPTOR 

Once the symmetry feature has been proven to have 

limited performance for vehicle classification, the challenge 

remains to find another descriptor that, on the one hand, 

involves lower processing requirements than traditional com

plex features such as HOG or Wavelet features, thus enabling 

real-time operation, and on the other hand maintains good 

performance. In this study, we propose to use the previous 

knowledge about the structure of the vehicle to define a 

new feature based on HOG [13], which alleviates the severe 

computational load of traditional HOG approaches while 

achieving much better performance than symmetry. In partic

ular, two different properties are considered that characterize 

a canonical vehicle instance in terms of gradient. On the 

one hand, vertical and horizontal gradients are expected to 

be dominant. On the other hand, due to the rich texture 

content of vehicles, they are supposed to typically have larger 

gradient density than a random image in traffic environments. 

These properties are exploited within a HOG-like framework: 

the image is divided in cells of size s, and for each cell 

a histogram of the gradient
1
 orientations over the pixels 

1 Gradient is computed using a 3 x 3 Sobel operator. 
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Fig. 4. Possible configurations of HOG regarding the number of orientation 
bins. Configurations with (a) 8, (b) 12, and (c) 18 bins are considered. 

is constructed according to a previously defined orientation 

binning. Specifically, the range of gradient orientation angles 

[0,180) is divided in uniformly spaced sectors. Pixels with 

gradient orientations inside each sector accumulate to the 

corresponding bin of the histogram proportionally to the 

magnitude of their gradient. Three possible configurations 

are considered, with ¡3 = 8,12 and 18 bins respectively, as 

shown in Fig. 4. 

A two-feature descriptor is defined to discriminate be

tween vehicle and non-vehicle samples. The first feature 

measures the distance of each cell to a vertical/horizontal 

gradient cell. Specifically, the dominant orientation, oa, of 

the HOG associated to the cell is retained, and the number 

of bins in between the dominant orientation and the vertical 

(ov) and horizontal (oh) orientations, is counted: 

dv = d(od - ov) 

dh = d(od - oh) 
(1) 

where d(-) denotes distance in number of bins, and dv and dh 

are the distances to the vertical and horizontal orientations, 

respectively. Then, the first feature is the distance to the 

vertical or the horizontal orientation, which is defined as 

/ i = mm(dv,dh). For example, if ¡3 = 18 it is ov = 1 

and Oh = 10 (see Fig. 4). Then, if o a = 4 (which means 

that the gradient orientation histogram of the cell has a 

maximum between 25° and 35°), the distances are dv = 3 

and dh = 6, therefore the first feature computed in cell c is 

fl = 3. As stated, this feature measures the distance to the 

vertical or horizontal orientations, which are expected in a 

typical vehicle rear pattern (see Fig. 5 (a)). Note that the used 

database contains instances including vehicles only partially, 

hence shifts of the expected vehicle structure in Fig. 5 (a) 

can occur both sidewards or up/downward. That is the reason 

why vertical and horizontal gradients are searched for in all 

the cells instead of particularizing the search according to 

the cell position. 

Although the defined feature fits roughly the expected 

pattern of the vehicle, there is a part of the image in which 

vertical and horizontal gradients are not exclusive. Indeed, 

due to the perspective effect, the upper-left and right contours 
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Fig. 5. Sketches of vehicle rear views from different perspectives: (a) the 
vehicle is in the front of the observer, (b) the vehicle is shifted to the left 
hand side of the observer. 

of the vehicle are often tilted. Hence, in the right upper-

half cells, gradients with angle below a certain threshold tr 

(experimentally set to 25°) are considered consistent with the 

expected vehicle pattern and included in the first orientation 

bin. Analogously, for the left upper-half cells, gradients with 

angle above í¡ = 180 — tr = 155° are also included in the 

expected pattern. 

The second feature counts the number of gradient-wise 

significant cells. Indeed, a typical vehicle instance is ex

pected to have more gradient content than random back

ground images in traffic environments, which usually contain 

homogeneous patches corresponding to the road and the 

sky. The HOG cell-structure allows to locally measure the 

gradient density and to define a global feature as the count 

of gradient-wise significant cells. In order not to lose sen

sitivity, a very low gradient magnitude threshold is defined 

to consider a pixel significant. Then, a cell is deemed to be 

significant if the proportion of pixels in the cell is above a 

certain threshold tp (this is set experimentally, as shown in 

Section V). 

The final gradient-based descriptor is composed of the 

number of significant cells, ji,
 a n

d the mean distance to the 

vertical and horizontal bins taking into account the significant 

cells, i.e., / i = j - ^2Cs /f (
w n e r e

 Cs is the set of significant 

cells in the image). If /2 = 0 , it indicates that the image is 

nearly homogeneous, therefore it is considered to belong to 

the non-vehicle class. 

A. Descriptor for Left, Right and Far Regions 

The descriptor explained above is designed for vehicles 

rears. It must be taken into account that the projection of 

vehicles in the left, right and far regions does not exactly 

project the pattern in Fig. 5 (a) into the image, since the 

perspective is not perpendicular to the vehicle rear. In many 

cases, the hypothesized bounding boxes for vehicles (and 

accordingly the samples included in the database) contain 

a part of the vehicle side, which in turn typically leads to 

additional gradients in the image. 

For instance, a vehicle samples of the left close/middle 

region could have a structure similar to that shown in Fig. 5 

(b). This pattern displays several differences with respect to 

the pattern in Fig 5 (a). To begin with, a lower edge appears 



in the right side of the vehicle pointing to the vanishing 

point (which is in the horizon line, i.e., the edge has a 

positive slope, and the gradient a negative slope). Therefore, 

in order to include this in the designed model, the descriptor 

for the left region is changed not to penalize negative-slope 

gradients in the lower rightmost cells. Observe that some 

other edges appear in the upper right part of the vehicle, 

however, these are usually close-to-horizontal, therefore they 

are supported by the original descriptor. In turn, the tilted 

edges in the upper part of the vehicle structure also change: 

the left edge is even more tilted due to the perspective effect, 

whereas the right edge turns almost vertical. The threshold i& 

is accordingly relaxed to 135° in the upper-left cells, while 

only horizontal and vertical edges are expected in the upper-

right cells. 

Furthermore, the descriptor also addresses the special 

cases produced by continuous slope structures such as lane 

markings and guardrails. Indeed, although most of those are 

appropriately handled by the original descriptor (they are 

diagonal due to the perspective, hence their distance j \ is 

large), they can lead to trouble in road sides since they 

are almost horizontal. For instance, when ¡3 = 18, a lane 

marking of angle 14° results in several cells of j \ = 1 

throughout the image, which is relatively low and could be 

classified as vehicle. So as to tackle this, the central cells of 

the image penalize all negative-slope gradients with neither 

horizontal nor vertical dominant angle to have a maximum 

difference j \ = f™
ax

, which depends on the configuration 

(fmax = 2 ; 3 ; a nd 4 for /3 = 8,12 and 18, respectively; 

see Fig. 4). This is only applied in the central and not in 

the outer (25% leftmost and rightmost) cells, since vehicle 

instances often contain heterogeneous background elements 

in the latter. For the same reason, the information content is 

deemed to be more trustworthy in the central cells, therefore 

a weighting function is applied to the image that doubles the 

importance of the central cells with respect to the outer cells 

in the final computation of j \ . 

The descriptor for the right region is completely analogous 

to the left pattern, only mirrored. As for the far region, 

similar reasoning is followed. In this case, tilted edges are 

expected both in the upper left and right parts of the vehicle, 

hence tr = 25° and t¡ = 155°, as in the front close/middle 

range. In turn, this range includes the left and right far 

regions, therefore in order to avoid conflicts due to nearly-

horizontal lane markings or guardrails, penalization /f = 

jmax ŝ performed for aji c e n s featuring neither vertical nor 

horizontal dominant orientation. Furthermore, a weighting 

function similar to that explained for the left region is applied 

favoring the central cells. 

V. EXPERIMENTS AND DISCUSSION 

A Bayesian classifier is used to evaluate the performance 

of the above defined gradient-based descriptor. Since there is 

no prior information about the probability that the samples 

belong to one class or the other, the decision rule reduces 

to selecting the class with the largest likelihood. Those 

are defined to be normal, as usually done in multivariate 

Front Left 

h h 

Fig. 6. Vehicle (red) and non-vehicle (blue) data distribution in the gradient-
based descriptor space. The corresponding linear and quadratic decision 
surfaces are also shown. 

density modeling. Two different classifiers have been used. 

The first assumes that the covariance matrices of the vehicle 

and non-vehicle classes are equal, which results in a linear 

decision surface [14]. The second classifier allows different 

covariance matrices for each class, thus involving quadratic 

decision surfaces. Examples of the data distribution and the 

corresponding decision surfaces are illustrated in Fig. 6 for 

s = 8 and ¡3 = 18 for all the image regions. 

In order to find the testing error, experiments are per

formed in the same manner as with the symmetry feature, 

i.e., 50% holdout cross-validation is used 5 times. Different 

experiments are carried out according to the parameters 

of the descriptor: the size of the cells, s, the number of 

orientations, ¡3 (both as defined in Section IV), and the 

proportion of pixels to consider a cell significant gradient-

wise, tp. Accuracy rates as a function of s and ¡3 are given in 

Table III, and the tp yielding the best performance, tp, is 

specified for each case (experiments are performed by vary

ing tp between 5% and 50%). The first conclusion is that the 

quadratic classifier largely outperforms the linear classifier 

regardless of the remaining parameter configuration (almost 

2% accuracy gain in average). In addition, performance is 

enhanced by increasing the orientation binning, especially 

for the left, right and far regions, and by increasing the cell 

size s. The best results are thus obtained for s = 16 and 

¡3 = 18. The parameter tp is heuristically set for each 

configuration, and typically ranges between 5% and 10% 

for s = 16 (a larger threshold is too stringent: many cells 

containing edge pixels are below it, as many homogeneous 

patches are also included on account of the large size of the 

cells). For the best configuration, the accuracy is 92.48%, 

which is significantly better than that of the most widely 

used explicit descriptor, i.e. symmetry. 



TABLE III 

PERFORMANCE OF GRADIENT-BASED DESCRIPTOR IN TERMS OF ACCURACY AS A FUNCTION OF THE PARAMETERS S, /3 AND t
y
p 

(m) 

s = A 

Front 

Left 

Right 

Far 

Mean 

13 = 
linear 

Rate 

95.46 

84.50 

84.04 

80.60 

86.15 

t
(
r\%) 

15 

5 

20 

15 

= 8 

quadratic 

Rate 

96.90 

86.36 

86.70 

83.50 

86.37 

t
(
r\%) 

15 

5 

5 

15 

ii = 
linear 

Rate 

95.52 

87.24 

87.54 

84.08 

88.60 

t
(
r\%) 

30 

15 

20 

15 

12 

quadratic 

Rate 

97.14 

89.96 

88.92 

86.22 

90.56 

t
(
r\%) 

10 

30 

15 

35 

ii = 
linear 

Rate 

95.40 

89.52 

88.96 

86.06 
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VI. CONCLUSIONS 

The contributions of this paper are two-fold. First, a 

study has been presented that analyzes the performance 

of the most widely used feature for vehicle verification, 

i.e., symmetry. In particular, this has been introduced into 

a two-class Bayesian classification framework. Appropriate 

modeling of the likelihood of each class has been carried 

out by finding the best-fitting distributions via Kolmogorov-

Smirnov tests. The performance of the symmetry feature 

has been shown to have an upper limit of around 80% for 

all image regions. As a second contribution, a new HOG-

like gradient-based descriptor has been proposed for vehicle 

verification. This has been tested under a similar Bayesian 

classification framework, and proven to yield much higher 

separability between classes than symmetry. In particular, 

the optimal configuration reaches a correct classification rate 

of 92.48% in average, which is as high as 96.94% for the 

front close/middle range. The effectiveness of the proposed 

descriptor is thus proven, and hence we propose its use for 

vehicle verification either as a single cue or within a multi-

feature scheme. 
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