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Abstract. First-order modal logics (FMLs) can be modeled as natural
fragments of classical higher-order logic (HOL). The FMLtoHOL tool ex-
ploits this fact and it enables the application of off-the-shelf HOL provers
and model finders for reasoning within FMLs. The tool bridges between
the qmf-syntax for FML and the TPTP thf0-syntax for HOL. It currently
supports logics K, K4, D, D4, T, S4, and S5 with respect to constant,
varying and cumulative domain semantics. The approach is evaluated in
combination with a meta-prover for HOL, which sequentially schedules
various HOL reasoners. The resulting system is very competitive.

1 Introduction

First-order modal logics (FMLs) [7] have many applications and these applica-
tions motivate the use of automated theorem proving systems for FMLs. Until
recently no (correct) ATP systems for FMLs were available.3 However, good
progress has been made in the last two years, and novel provers have recently
been implemented and compared [1]. Among these systems is also an approach
based on classical higher-order logic (HOL) [3, 2]. This HOL approach, which is
further improved and evaluated here, is the focus of this paper. The particular
contributions include:

(A) The FMLtoHOL tool is presented, which converts problems in FML, for-
mulated in qmf-syntax [13] (which extends the TPTP fol-syntax [15] with opera-
tors #box and #dia), into HOL problems in thf0-syntax [16].4 FMLtoHOL imple-
ments a semantic embedding of constant domain FMLs in HOL [3]. The tool has
been extended to also support varying and cumulative domains. FMLtoHOL turns
any thf0-compliant HOL ATP system into a flexible ATP system for FMLs.
At present FMLtoHOL supports modal logics from L := {K,K4,D,D4,T,S4,S5}.
However, its extension to further normal FMLs is straightforward.

(B) The FMLtoHOL tool is exemplarily applied in combination with a meta-
prover for HOL, called HOL-P in the remainder. This meta-prover exploits the

⋆ Supported by the German Research Foundation (grants BE2501/9-1 & KR858/9-1).
3 A pioneering prover is GQML [17]. However, GQML has been excluded in recent
experiments (in [1] or here) since it returned incorrect results for several formulae.

4 thf stands for typed higher-order form and it refers to family of syntax formats for
higher-order logic. So far only the fully developed thf0 format, for simply typed
lambda calculus, is in practical use.



SystemOnTPTP infrastructure [15] and sequentially schedules the HOL reason-
ers LEO-II [4], Satallax [6], Isabelle [10], agsyHOL [9] and Nitpick [5]. HOL-P is
evaluated with respect to 580 benchmark problems in the QMLTP library [13].
As a side contribution a complete translation of the QMLTP library (for all log-
ics in L, all different domain conditions, and both options as explained in (C))
into HOL (resp. thf0) is achieved, resulting in 7 × 3 × 2 × 580 = 24360 prob-
lems. The 3480 problems for logic S4 can be download from http://christoph-
benzmueller.de/papers/THF-S4-ALL.zip; others can be requested by EMail.

(C) There are different options in the HOL approach for the modeling of
logics in L. One is to state the conditions on the accessibility relation R associ-
ated with ✷ ‘semantically’, e.g, ∀x∃yRxy expresses that R is serial. Exploiting
quantification over booleans (∀p) (cf. [3]) the corresponding ‘syntactical’ axiom
∀pp(✷p ⇒ ✸p) may instead be postulated. FMLtoHOL so far only supports the
‘semantical’ approach. A first evaluation of both options is provided in this pa-
per. To enable this the semantical example problems have been converted into
their syntactical counterparts by hand.

The structure of the paper is as follows: §2 outlines FML. §3 and §4 describe
the theory and implementation of FMLtoHOL. §5 introduces prover HOL-P. Ex-
periments are presented in §6, and §7 concludes the paper.

2 First-Order Modal Logic

The syntax of FML adopted in this paper is: F,G ::= P (t1, . . . , tn) | ¬F | F ∧G |
F ∨ G | F ⇒ G | ✷F | ✸F | ∀xF | ∃xF . The symbols P are n-ary (n ≥ 0)
relation constants which are applied to terms t1, . . . , tn. The ti (0 ≤ i ≤ n) are
ordinary first-order terms and they may contain function and constant symbols.
The usual precedence rules for logical constants are assumed. The formula E1
:= (✸∃xPfx ∧✷∀y(✸Py ⇒ Qy)) ⇒ ✸∃zQz is used as a running example.

Regarding semantics, a Kripke style semantics for FML is adopted [7]. In
particular, it is assumed that constants and terms are denoting and rigid, i.e. they
always pick an object and this pick is the same object in all worlds. Regarding the
universe of discourse constant domain, varying domain and cumulative domain
semantics are considered. With respect to these base choices the normal modal
logics K, K4, K5, B, D, D4, T, S4, and S5 are studied.

3 Theory of FMLtoHOL

FMLtoHOL exploits the fact that Kripke structures can be elegantly embedded
in HOL [3]: FML propositions F are associated with HOL terms Fρ of pred-
icate type ρ := ι � o. Type o denotes the set of truth values and type ι is
associated with the domain of possible worlds. Thus, the application (Fρwι)
corresponds to the evaluation of FML proposition F in world w. Consequently,
validity is formalized as vldρ�o = λFρ∀wιFw. Classical connectives like ¬ and
∨ are simply lifted to type ρ as follows: ¬ρ�ρ = λFρλwι¬Fw and ∨ρ�ρ�ρ =
λFρλGρλwι(Fw∨Gw). ✷ is modeled as ✷ρ�ρ = λFρλwι∀vι(¬Rwv∨Fv), where



constant symbol Rι�ρ denotes the accessibility relation of the ✷-operator, which
remains unconstrained in logic K. Further logical connectives are defined as
usual: ∧ = λFρλGρ¬(¬F ∨ ¬G), ⇒ = λFρλGρ(¬F ∨G), ✸ = λFρ¬✷¬F .

For individuals a further base type µ is reserved in HOL. Universal quan-
tification ∀xF is introduced as syntactic sugar for ΠλxF , where constant Π

is defined as follows: Π(µ�ρ)�ρ = λHµ�ρλwι∀xµHxw. For existential quantifi-
cation, Σ = λHµ�ρ¬Πλxι¬Hx is introduced. ∃xF is then syntactic sugar for
ΣλxF . n-ary relation symbols P, n-ary function symbols f and individual con-
stants c in FML obtain types µ1 � . . . � µn � ρ, µ1 � . . . � µn � µn+1 (both
with µi = µ for 0 ≤ i ≤ n+ 1) and µ, respectively.

Moreover, universal quantification over propositional variables is added. Sim-
ilar to above this can be done by introducing a constant Πp. Πp and Π are
similar and only differ wrt the argument type: Πp

(ρ�ρ)�ρ
= λHρ�ρλwι∀pρHpw.

Again, ∀ppF is introduced as syntactic sugar for ΠpλpF , etc.

For any FML formula F holds: F is a valid in modal logic K for constant
domain semantics if and only if vld Fρ is valid in HOL for Henkin semantics.
This correspondence provides the foundation for proof automation of FMLs with
HOL-ATP systems. The correspondence is shown in [3].

To extend the above result for logic K to modal logics K4, K5, B, D, D4, T,
S4, S5 etc., one may choose between a ‘syntactical’ and a ‘semantical’ approach:
(Semantical) Axioms such as ∀xRxx or ∀x∀y∀z(Rxy∧Ryz ⇒ Rxz) are postu-
lated to ensure that accessibility relation R obeys certain restrictions, here reflex-
ivity and transitivity. (Syntactical) Propositional quantification is exploited to
postulate corresponding axioms such as ∀pp(✷p ⇒ p) or ∀pp(✷p ⇒ ✷✷p). These
axioms characterize R as reflexive and transitive. Similar axioms exist for other
FMLs. Respective correspondences between semantical properties of R and re-
spective syntactical axioms are well known.

Arbitrary normal modal logics extending K can be axiomatized this way.
There are cases where only the semantical approach is applicable. For example,
irreflexivity of accessibility relation R cannot be axiomatized in the syntactic
approach. However, it can trivially be modeled in the semantic approach. In
other cases the syntactical approach appears more suitable. Examples are non-
Stahlquist formulas like the Löb axiom or the McKinsey formula, for which there
are no corresponding first-order semantical conditions on R. Note, however, that
the HOL approach is not restricted to first-order conditions on R.

The above approach realizes constant domain semantics. For varying domain
semantics it is modified: (1) Π is defined as Π = λHµ�ρλwι∀xµ(exInWxw ⇒
Hxw), where relation exInWµ�ι�o (for ‘exists in world’) relates individuals with
worlds. (2) The non-emptiness axiom ∀wι∃xµexInWxw for these individual do-
mains is added. (3) For each individual constant symbol c an axiom ∀wιexInWcw

is postulated; these axioms enforce the designation of c in the individual domain
of each world w. Analogous designation axioms are added for function symbols.
For cumulative domains the axiom ∀xµ∀vι∀wι(exInWxv ∧ Rvw ⇒ exInWxw)
is additionally postulated. It states that the individual domains are increasing
along accessibility relation R.



4 Implementation and Functionality of FMLtoHOL

FMLtoHOL is implemented as part of the TPTP2X tool [15], and it is included in
the QMLTP—v1.1 package.5 It is written in Prolog and it can be easily modified
and extended.

The tool is invoked as

./tptp2X -f thf:<logic>:<domain> <qmf-file>

where <logic> ∈ {k,k4,d,d4,t,s4,s5} and <domain> ∈ {const, vary, cumul}.
Assume that file E1.qmf contains example problem E1 in qmf-syntax:

qmf(con,conjecture,

( ((#dia: ? [X] : p(f(X))) & (#box: ! [Y]: ((#dia: p(Y)) => q(Y))))

=> #dia: ? [Z] : q(Z) )).

The command ‘./tptp2X -f thf:d:const E1.qmf’ generates a corresponding
HOL problem file E1.thf in thf0-syntax6 [16] for constant domain logic D:

%----Include axioms for modal logic D under constant domains

include(’Axioms/LCL013^0.ax.const’).

include(’Axioms/LCL013^2.ax’).

%---------------------------------------------------------------------

thf(q_type,type,( q: mu > $i > $o )).

thf(p_type,type,( p: mu > $i > $o )).

thf(f_type,type,(f: mu > mu )).

thf(con,conjecture, ( mvalid @

( mimplies @

( mand @

( mdia_d @ ( mexists_ind @ ^ [X: mu] : ( p @ ( f @ X ) ) ) ) @

( mbox_d @ ( mforall_ind @ ^ [Y: mu] :

( mimplies @ ( mdia_d @ ( p @ Y ) ) @ ( q @ Y ) ) ) ) ) @

( mdia_d @ ( mexists_ind @ ^ [Z: mu] : ( q @ Z ) ) ) ) )).

mimplies, mand, mbox d, etc. should be read as ‘modal-implies’, ‘modal-and’,
‘modal-box-d’, respectively. The included axiom files contain the definitions of
these connectives as outlined in §2. E.g., the definition for mforall ind (which
realizes Π for constant domain semantics) is given in LCL013^0.ax.const:

thf(mforall_ind,definition,( mforall_ind =

( ^ [Phi: mu > $i > $o, W: $i] : ! [X: mu] : ( Phi @ X @ W ) ) )).

File LCL013^2.ax contains the definition of the serial ✷-operator in logic D:

5 The QMLTP library is available online at http://www.iltp.de/qmltp/problems.html.
6 Some explanations: ^ is λ-abstraction and @ an (explicit) application operator. !,
?, ~, |, and => encode universal and existential quantification, negation, disjunction
and implication in HOL. mu > $i > $o encodes the HOL type µ � ι � o. mimplies,
mforall ind, and mbox d are embedded logical connectives as described in §2. Their
denotation is fixed by adding definition axioms; see e.g. mforall ind below.



thf(mbox_d,definition,( mbox_d =

( ^ [Phi: $i > $o,W: $i] :

! [V: $i] : ( ~ ( rel_d @ W @ V ) | ( Phi @ V ) ) ) )).

thf(a1,axiom,( mserial @ rel_d )).

Similar definitions are provided in the included axiom files for the other logical
connectives and for auxiliary terms like mserial. For problem E1.thf Nitpick

finds a countermodel in 8 seconds (when run with a 20s time limit).
When FMLtoHOL is called with option ‘-f thf:s5:vary’ a modified file

E1.thf is created containing a conjecture identical to above except that mbox d

is replaced by mbox s5 and rel d by rel s5. Moreover, E1.thf now includes
different axiom files LCL013^0.ax.vary and LCL013^6.ax. The former contains
a modified definition of mforall ind, adds a non-emptiness axiom, and adds
further axioms as required (cf. conditions (1)-(3) in §3). Axiom file LCL013^6.ax
specifies mbox s5 as follows:

thf(mbox_s5,definition,( mbox_s5 =

( ^ [Phi: $i > $o,W: $i] :

! [V: $i] : ( ~ ( rel_s5 @ W @ V ) | ( Phi @ V ) ) ) )).

thf(a1,axiom,( mreflexive @ rel_s5 )).

thf(a2,axiom,( mtransitive @ rel_s5 )).

thf(a3,axiom,( msymmetric @ rel_s5 )).

The modified problem in file E1.thf is proved by Satallax and LEO-II within
milliseconds.

The above explanations are all with respect to the adapted tptp2X com-
mand that comes with the QMLTP package. The included axiom files, like
LCL013ˆ6.ax etc., are also provided by this package, so that only the QMLTP
package is required for installing the FMLtoHOL tool.

5 The Prover HOL-P

In the experiments the following HOL provers were applied: Satallax (2.6) [6],
Isabelle (2012) [10], LEO-II [4] (1.5.0), Nitpick (2012) [5] and agsyHOL (1.0) [9].
Isabelle, Satallax, LEO-II and agsyHOL are theorem provers. Nitpick is a (counter-)
model finder. Satallax, and to a lesser extend LEO-II, are also capable of find-
ing countermodels. These systems work for Henkin semantics and they support
the thf0-syntax as a common input language. Moreover, the SystemOnTPTP
infrastructure [15] enables remote calls to instances of these provers at the Uni-
versity of Miami (running on 2.80GHz computers with 1GB memory). Exploit-
ing these features, a simple shell script has been written that bundles these
systems into a HOL meta-prover, called HOL-P in the remainder. HOL-P has
been employed in the experiments. Using the SystemOnTPTP infrastructure
the experiments below can be easily replicated.



6 Evaluation

The QMLTP library [13] is a benchmark library for testing and evaluating ATP
systems for FML. It is similar to the TPTP library for classical logic [15] and
the ILTP library for intuitionistic logic [14]. Version 1.1 of the QMLTP library
includes 600 FML problems divided into 11 problem domains. The problems were
taken from different applications, various textbooks, and Gödel’s embedding of
intuitionistic logic. It also includes 20 problems in multimodal logic. Only the
HOL approach is applicable to them do date. Therefore these multimodal logic
problems have not been included in our experiments.

HOL-P has been applied in several experiment runs to all 580 monomodal
problems in the QMLTP library. The overall time limit of 600s for each problem
was equally distributed over the five subprovers of HOL-P. Thus, each subprover
was given a 120s time limit per problem. In each experiment run, a different
setting with respect to the selected logic (here D and S4) and the domain condi-
tion (constant, cumulative, varying) was chosen. The results for HOL-P are pre-
sented in Table 1. Moreover, in Table 1 the performance of HOL-P is compared
to corresponding results as reported on the QMLTP-website7 for the provers f2p-
MSPASS—3.0 (an instance-based prover which employs MSPASS [8] to prove or
refute the propositional formulas it generates), MleanSeP—1.2 (a sequent prover;
its calculus extends the classical sequent calculus with specific rules for ✷ and
✸), MleanTAP—1.3 (a tableaux prover; a classical tableaux calculus is extended
by adding and employing prefixes to each formula), and MleanCoP—1.2 (a con-
nection prover based on leanCoP [12, 11]; again formula prefixes are employed).
Previous results on the HOL provers LEO-II and Satallax (cf. [1]) have not been
included in Table 1; they are now subsumed by HOL-P which is significantly
stronger than both of them.

The HOL approach has the broadest coverage of logics and domain conditions
(and, as mentioned before, it can easily be adapted to support further logics):

ATP system supported modal logics supported domain cond.
MleanSeP 1.2 K,K4,D,D4,T,S4 constant,cumulative
MleanTAP 1.3 D,T,S4,S5 constant,cumulative,varying
MleanCoP 1.2 D,T,S4,S5 constant,cumulative,varying
f2p-MSPASS 3.0 K,K4,K5,B,D,T,S4,S5 constant,cumulative
HOL-P K,K4,K5,B,D,D4,T,S4,S5 constant,cumulative,varying

The experiments show that the HOL approach is very competitive. In partic-
ular, with respect to the accumulated numbers of solved problems in each cat-
egory HOL-P has a slight lead (HOL-P solved 2225 problems, MleanCoP 2129).
This is due to the excellent performance of the (counter-)model finder Nitpick

(which fully subsumes Satallax in the Non-Theorem-category of the experiments
and beats MleanCoP by quite a margin). In both categories, Theorems and Non-
Theorems, HOL-P solved many problems whose QMLTP status was ‘Unsolved’.

7 Cf. http://www.iltp.de/qmltp/download/QMLTP-v1.1-comparison.txt



Table 1. No. of proved monomodal problems (for constant/cumulative/varying domain
semantics, in this order) of the QMLTP library. All provers were run with a 600s time
limit. In HOL-P a timeout of 120s was given to each subprover.

MleanSeP MleanTAP f2p-MSPASS MleanCoP HOL-P

Logic D: constant/cumulative/varying domains

Theorem 135/130/– 134/120/100 076/079/– 217/200/170 208/184/163
Non-Thm 001/004/– 004/004/004 107/108/– 209/204/243 250/269/295
Solved 136/134/– 138/124/104 183/187/– 426/424/413 458/453/458

Logic S4: constant/cumulative/varying domains

Theorem 197/197/– 220/205/169 111/121/– 352/338/274 300/278/245
Non-Thm 001/004/– 004/004/004 036/041/– 082/094/119 132/146/184
Solved 198/201/– 224/209/173 147/162/– 434/432/393 432/424/429

Table 2. No. of monomodal problems in the QMLTP library proved or refuted by
HOL-P. The timeout was set to 600s. 60s was given to each subprover of HOL-P; each
subprover was applied to both the semantical (sem) and the syntactical (syn) variant.

Logic S4 constant domains cumulative domains varying domains
all (sem/syn) all (sem/syn) all (sem/syn)

Theorem 295 (294/282) 267 (265/256) 241 (238/233)
Non-Theorem 132 (132/132) 146 (146/145) 186 (185/185)
Solved 427 (426/414) 413 (411/401) 427 (423/418)

In terms of theorem proving performance MleanCoP is still the leading system,
but its margin of lead over the HOL approach has further decreased (cf. the
previous results reported in [1]).

In Table 1 HOL-P has been applied in combination with the semantical en-
coding of accessibility conditions only. An obvious idea, however, is to test both
the semantical and the syntactical encoding. For studying the potential impact
of this idea we have conducted further experiments (so far only for S4) in which
HOL-P was applied to both versions. Since the overall time limit of 600s per
problem was kept, each HOL-P subprover was now given a 60s time limit per
problem. Table 2 presents the results of the modified experiment for S4. The
first and second numbers in brackets indicate how many problems were solved
by the semantical (sem) and the syntactical (syn) approach respectively.

In the Theorem-category the semantical approach performs better. No sig-
nificant difference can be observed in Non-Theorem-category. The comparison
of the overall performance results from Table 2 with those for S4 in Table 1 in-
dicates the following: It makes more sense to run HOL-P in the semantical mode
only than to split the time resources and to run HOL-P in both modi (however,
what has not been studied yet is the performance of HOL-P when both axiom
versions are simply added to one the same problem file).

The individual performances of the subprovers of HOL-P with respect to
the experiments in Table 2 are also interesting. They are presented in Table 3.



Table 3. Individual performances of the subprovers of HOL-P in the Theorem-category
with respect to the experiments in Table 2. Results are presented for constant domain
(const), cumulative domain (cum) and varying domain (vary) semantics.

Logic S4 Isabelle LEO-II agsyHOL Satallax

Theorem const/cum/vary const/cum/vary const/cum/vary const/cum/vary

syn 177/126/120 213/187/163 231/192/171 244/233/207
sem 252/215/192 227/203/183 247/206/183 257/239/214

total 1082 1176 1230 1394

Table 4. Individual performances of the subprovers of HOL-P in the Non-Theorem-
category with respect to the experiments in Table 2.

Logic S4 Satallax Nitpick

Non-Theorem const/cum/vary const/cum/vary

syn 0/0/0 132/145/185
sem 48/56/68 132/146/185

total 172 925

Satallax is the strongest prover in the Theorem-category both in the syntactical
and the semantical mode. The weak performance of Isabelle in the syntactic
mode is surprising, in particular, since Isabelle has performed strong in recent
CASC competitions.

In the Non-Theorem-category Nitpick performs significantly stronger than
Satallax. The other HOL-P subprovers didn’t solve any problems in this category.
Interestingly, Nitpick shows nearly equal performance in both the syntactical
and the semantical mode, while Satallax solves problems in this category in the
semantical mode only.

As a side-result of our experiments we detected some syntax issues in QMLTP
problems which were undetected so far: Identifiers for axioms and conjectures
were reused; according to TPTP conventions this is not allowed. Examples in-
clude ‘substitution of equivalents’, ‘reflexivity’ and ‘transitivity’. These issues
were solved manually in the generated thf0-files.

7 Summary and Outlook

The FMLtoHOL tool enables the application of higher-order automated theorem
provers and model finders for solving FML problems encoded in the new qmf-
syntax. The tool has been evaluated in combination with the higher-order meta-
prover HOL-P on the QMLTP library. The experiments show that the HOL
approach to automate FMLs is very competitive. Regarding the combined per-
formance (no. of proved or refuted problems) the HOL approach performed best.

Future work includes optimizations and extensions of HOL-P and FMLtoHOL.
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