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Deep brain stimulation (DBS) of the subthalamic nucleus markedly improves the motor symptoms
of Parkinson’s disease, but causes cognitive side effects such as impulsivity. We showed that
DBS selectively interferes with the normal ability to slow down when faced with decision conflict.
While on DBS, patients actually sped up their decisions under high-conflict conditions. This form of
impulsivity was not affected by dopaminergic medication status. Instead, medication impaired
patients’ ability to learn from negative decision outcomes. These findings implicate independent
mechanisms leading to impulsivity in treated Parkinson’s patients and were predicted by a single
neurocomputational model of the basal ganglia.

Should you vacation in Montreal or Rome,
eat chocolate fondue or tiramisu, go ski-
ing, or visit world-class museums? Such

win/win decisions are notoriously difficult to
make, often leading to seemingly counterpro-
ductive deliberation and hesitation. Intuitively,
either option should produce satisfactory results,
so why wait? Mathematical models of decision-
making suggest that individuals only execute a
choice once the “evidence” in its favor crosses a
critical decision threshold (1, 2). But the notion
of decision threshold need not imply some fixed
value. Indeed, individuals can optimally adjust
decision thresholds to meet current task demands
(3–5). At the neurobiological level, one model
posits that the subthalamic nucleus (STN) dy-
namically modulates decision thresholds in pro-
portion to reinforcement and decision conflict
(6). In essence, this model predicts that when
faced with multiple seemingly good options, the
STN enables you to adaptively “hold your
horses,” buying more time to settle on the best
one. Supporting this account, STN dysfunction
in rats causes premature responding in choice
paradigms (7, 8). Here we provide direct evi-
dence in humans and show that STN disruption
causes impulsive responding during high-conflict
win/win decisions.

We administered computerized decision-
making tasks to two groups of patients with
Parkinson’s disease (PD), and age-matched
control participants (table S1). One group of
patients (n = 17) was tested in different sessions
on and off deep brain stimulation (DBS) of the
STN, an increasingly common surgical proce-
dure to treat motor symptoms of the disease (9).
[See (10) for DBS surgical procedures, stimula-
tion parameters (table S2), and confirmation of
electrode implants in the STN (fig S1).] DBS
patients were on relatively low doses of medica-

tion in both sessions (9, 10). The second patient
group (n = 15) was tested on and off dopamin-
ergic medication. The purpose of the medication
manipulation was twofold: (i) to test whether
any effects of DBS on conflict-based decisions
were selective to that treatment; and (ii) to
replicate findings that dopaminergic medication
impairs patients’ ability to learn from the nega-

tive outcomes of their decisions (11–13), which
could account for pathological gambling behav-
ior (14). Thus, we tested two potentially distinct
mechanisms by which Parkinsonian treatments
can cause impulsive behavior (14, 15).

Participants were tested with a probabilistic
selection task (12, 16). Three different stimulus
pairs (AB, CD, EF) were presented in random
order, and participants had to choose one of the
two stimuli (Fig. 1A). Feedback followed the
choice to indicate whether it was correct or
incorrect, but this feedback was probabilistic. In
the most reliable AB pair, a choice of stimulus
A led to positive feedback in 80% of trials,
whereas a choice of stimulus B led to negative
feedback in these trials. In a subsequent “test
phase,” participants chose between novel com-
binations of all stimuli. Positive-feedback learning
was indicated by reliable choice of the most
positive stimulus A in these novel test pairs,
whereas negative-feedback learning was indicated
by reliable avoidance of stimulus B (12, 16).
To examine conflict effects, we measured re-
action times for test pairs having similar re-
inforcement values (e.g., 80 versus 70%; high
conflict) compared with low-conflict pairs having
more easily discriminable values (6, 16) (Fig. 1A).
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Fig. 1. (A) Probabilistic selection task. Each stimulus pair is presented separately in different trials, in
random order. Correct choices are determined probabilistically (percent positive/negative feedback is
shown in parentheses for each stimulus). A test phase ensues that presents all novel recombinations to
assess positive/negative learning biases and conflict (12, 16). (B) PD and medication effects, showing
selectively impaired avoid-B performance in medicated patients. Nonmedicated patients performed
similarly to controls, but were slower to acquire probabilistic contingencies in the learning phase (10).
(C) DBS effects. DBS patients were more advanced in their disease progression than the medication
group (table S1); within-patient treatment effects are therefore more interpretable than between-group
effects. Error bars are SEs.
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It is precisely in these high-conflict choices that
it may be adaptive to “hold your horses,” in-
creasing the likelihood of settling on the more
optimal choice (6). We predicted that compared
with controls, PD patients (regardless of treatment)
would show reinforcement learning deficits (11).
We further predicted that dopaminergic medica-
tion would impair negative-feedback learning
(12, 13), whereas DBS would cause impulsive
responding in the face of conflict (6).

Patients were slower than controls to learn
probabilistic reinforcement contingencies (10).
As shown previously (12), patients on medica-
tion were selectively impaired at learning from
negative decision outcomes [Fig. 1B; see (10)
for detailed analysis]. Notably, DBS status (on
versus off) did not affect positive- or negative-
feedback learning (Fig. 1C). Rather, DBS in-
duced impulsive responding under high-conflict
conditions. Overall, participants significantly
slowed responses for correct high- relative to
low-conflict decisions (F[1,51] = 13.5, P < 0.001;
Fig. 2, A and C). This conflict-induced slowing is
reminiscent of the deferred decisions under
conflict observed in other contexts, including
economic decisions (17). In contrast, patients on
DBS failed to slow down with increased de-
cision conflict (group by conflict interaction,
F[4,51] = 4.9, P = 0.002). The within-subject
effect of DBS (on versus off) on conflict-induced
slowingwas significant (F[1,51] = 4.6, P= 0.036).
Patients on DBS even responded marginally faster
under high- than under low-conflict conditions
(F[1,51] = 3.6, P = 0.06). Finally, dopaminergic
medication had no effect on conflict-induced
slowing (F[1,51] = 0.5), and there were no other
group/conflict differences.

In models and animals with STN dysfunction,
premature responding is associated with sub-
optimal choices (6–8). Notably, the tendency for
DBS patients to show speeded high-conflict
responses was especially pronounced when
choosing the less optimal stimulus (“error trials”;
F[1,51] = 16.1, P = 0.0002; Fig. 2, B and D).
Further, the more DBS patients exhibited high-
conflict premature responding (as defined by
faster error than correct choices), the more errors
they made in high- than in low-conflict con-
ditions [r(13) = 0.53, P = 0.05; P’s > 0.3 for all
other groups]. Thus, high-conflict premature
responding led to suboptimal choices under DBS.

Why should DBS patients respond even faster
to high- than to low-conflict choices? We posited
that the presence of two positive stimuli in high-
conflict “win/win” choices could lead to such
impulsive responding. Indeed, patients on DBS
responded significantly faster during high-conflict
win/win conditions (Fig. 3A; F[1,51] = 5.2, P =
0.027); this faster responding was not observed
for lose/lose decisions (fig. S2).

Finally, to control for a possible confounding
effect of DBS during the learning phase, we also
used a “retrograde DBS” procedure. All patients
who had learned the task off DBS were sub-
sequently tested again in a second test phase,

identical to the first, after having their stimula-
tors turned on (and a 10-min delay). If DBS
genuinely and primarily interferes with the abil-
ity to modulate decision times as a function of
conflict, these patients should no longer show a
conflict-induced slowing effect in the second
test phase.

Indeed, the conflict-induced slowing effect
was reversed in the second test phase, with DBS
patients responding significantly faster to win/win
decisions (Fig. 3B; F[1,51] = 4.7, P = 0.03).
These same patients had exhibited the oppo-
site pattern—slowing responses for win/win
conditions—just minutes before in the off-DBS

state (Fig. 3A). A subset of senior controls (n =
14) who were also tested in a second test phase,
with the same temporal delay between phases,
continued to show conflict-induced slowing
(F[1,51] = 4.3, P = 0.04). Furthermore, to pro-
vide a treatment control, patients who learned
off medication were also tested in a second test
phase after taking their regular dose of levodopa
medication [but with a longer delay to allow
medication to be absorbed (10)]. Critically, there
was a significant treatment by conflict interac-
tion (F[1,51] = 6.0, P = 0.017], such that DBS
reversed conflict-induced slowing but medication
did not.
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Fig. 2. Conflict effects on decision times. Mean of median reaction times (RTs) are shown for low- and
high-conflict conditions in (A) correct and (B) error trials. Within-subject RT differences (high−low
conflict) are also shown in (C) correct and (D) error trials. The DBS (on versus off) effect on conflict-
induced slowing was significant (*P < 0.05). Patients on DBS actually responded more rapidly to high-
conflict choices, particularly in error trials (**P < 0.001).
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Fig. 3. High-conflict win/win decisions (correct trials; similar results in error trials, not shown). (A)
Patients on DBS responded significantly faster during high-conflict win/win decisions. (B) “Retrograde
DBS.” Patients who acquired the reinforcement contingencies off DBS were then tested again in a
second test phase, after their DBS units were turned back on (*P < 0.05).
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Taken together, our findings provide evi-
dence for two distinct computational roles of the
basal ganglia in decision-making. Dopaminergic
medication altered patients’ relative tendency to
learn from positive versus negative outcomes
(12, 13, 18), without affecting conflict-induced
slowing. In contrast, DBS induced speeded
high-conflict choices, without affecting learning
biases. Both of these findings are captured by a
single a priori computational model of the basal
ganglia in learning and decision-making (6).

As in other models, the basal ganglia in our
model supports adaptive decision-making by
modulating the selection of frontal cortical action
plans (5, 6, 11, 19–21). In brief, two main neu-
ronal populations in the striatum have opposing
effects on action selection via output projections
through the globus pallidus, thalamus, and back
to the cortex (Fig. 4A). Activity in “Go”
neurons facilitates the execution of a cortical
response, whereas “NoGo” activity suppresses

competing responses. Dopamine bursts and dips
that occur during positive and negative out-
comes (22) drive Go learning (via D1 receptors)
to seek rewarding actions, and NoGo learning
(via D2 receptors) to avoid actions that are
nonrewarding (11). Complementing this func-
tionality, the STN provides a self-adaptive
dynamic control signal that temporarily prevents
the execution of any response, depending on
decision conflict (6). Notably, the STN receives
direct projections from the presupplementary
motor area (preSMA) and cingulate cortex re-
gions that detect and integrate response conflict
(23–25). In turn, the STN sends a “Global
NoGo” signal via diffuse excitatory projections
to basal ganglia output nuclei (19, 26) with
consequent inhibition of thalamocortical activity.
This STN mechanism provides a means to
implement cognitive control, by effectively raising
decision thresholds in the face of conflict (6).
Supporting this notion, neuroimaging studies have

found that preSMA and STN coactivation is as-
sociated with slowed response times under deci-
sion conflict (25), and STN-DBS reduces coupling
between cingulate and basal ganglia output (27).

This single model captures both medication
and DBS effects, as revealed in computational
simulations of these dynamics [Fig. 4, B to D;
see (6, 10) for detailed modeling methods]. To
simulate PD, we decreased dopamine levels. To
simulate medication, we maintained relatively
elevated dopamine levels but prevented them
from sufficiently decreasing during negative
feedback, due to tonic D2 stimulation (11, 12).
The resulting Go/NoGo learning and medication
effects replicate those reported with an earlier
basal ganglia model that did not include the STN
(12) and show that these learning biases are in-
sensitive to STN manipulation. Here, we focus on
DBS simulations in high-conflict decision-making.

The mechanisms underlying the therapeutic
effects of DBS are controversial (28). One domi-
nant theory is that high-frequency DBS paradox-
ically acts like a lesion [e.g., via “depolarization
block” (29)]. Indeed, like DBS, both real and
simulated STN lesions ameliorate abnormal
network oscillations and motor symptoms of
PD (6, 30). To simulate STN lesions, we simply
removed STN from processing altogether (6). A
second theory is that DBS induces regular high-
frequency STN firing patterns (31) and actually
enhances STN output (28). To simulate this
version, we externally applied high-frequency
excitatory input to the STN [see (10) for details].
We posited that either DBS mechanism would
prevent the STN from naturally and dynamically
responding to its cortical inputs and would
therefore disrupt conflict-induced slowing.

After training networks with probabilistic re-
inforcement, we tested them with low- and high-
conflict trials, in which two responses were
associated with competing reinforcement prob-
abilities (6, 10). Whereas intact networks showed
substantial conflict-induced slowing, those with
either STN lesions or external stimulation
exhibited the same speeded win/win responding
observed in DBS patients (Fig. 4C). This
“impulsive” speeding resulted from the presence
of two striatal “Go” unit populations (one for
each rewarding response), which enhanced the
probability that one of them surpassed threshold
(6). Counteracting this factor, in intact networks,
cortical response conflict led to an initial STN
surge, postponing responding until this STN
activity subsided (Fig. 4D). In STN-lesioned
networks, there was no such mechanism to
allow this slowing to occur. In networks with
external stimulation, the idiosyncratic, non–task-
related STN firing prevented it from responding
naturally and adaptively to conflict signals.
Accordingly, the network could select a re-
sponse earlier in time (Fig. 4D). In sum, our
model captures the main observed effects of
different PD treatments and in so doing may
reveal different computational functions of the
basal ganglia in decision-making.
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Fig. 4. (A) Neural network model of the basal ganglia (squares represent units, with height and color
reflecting neural activity). The preSMA selects a response (R1 or R2) via direct projections from the
sensory input and is modulated by basal ganglia (BG) output via the thalamus. Go and NoGo units are,
respectively, in the left and right halves of the striatum, with separate columns for each response, and
receive dopaminergic (DA) learning signals from the substantia nigra pars compacta (SNc). The STN
sends a Global NoGo signal by exciting globus pallidus, internal segment (GP Int) in proportion to
response conflict in preSMA (these projections shown in red). In the case shown, conflict is low because
only a single response (R1) is active. (B) Model predictions for reinforcement learning. Plots show
striatal activation-based receptive fields indicating summed Go-A and NoGo-B associations (10, 12). (C)
The same model’s predictions for conflict-induced slowing. Reaction times are indexed by the number of
processing cycles before a given response is selected (10). Simulation results reflect mean values across
25 network runs with random initial synaptic weights. (D) Normalized activity in the model STN and
thalamus, in a representative high-conflict win/win trial. The model selects a response when thalamus
activity rises. The model selects a response when thalamus activity rises and subsequently facilitates the
associated preSMA units.
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STN dysfunction does not lead to impulsivity
in all behavioral situations. For example, STN-
lesioned rats show enhanced preference for
choices that lead to large delayed rewards
compared with those that yield small immediate
rewards, in so-called delay-discounting tasks
(32, 33). Thus, the STN is not required to value
large rewards per se, or even to “wait” for the
reward once the response is made. Our model
predicts that STN-lesioned rats would indeed
respond impulsively in a modified discounting
paradigm in which larger rewards could only be
obtained by delaying the response itself.

Clinically, our findings point to two mech-
anisms that lead to distinct forms of impulsivity
in treated Parkinson’s patients. Dopaminergic
medication, by tonically elevating dopamine levels
and stimulating D2 receptors, prevents learning
from negative decision outcomes (11, 13, 18).
This mechanism may explain pathological
gambling behavior in patients treated with D2
agonists (14). It is possible that genetic factors
conspire with medication to induce impulsive
behaviors, given that a gene coding for striatal
D2 receptor density predicts negative outcome
learning (34). In contrast, DBS patients typically
take substantially lower doses of medication (9),
as was the case here (10). Their impulsive
decision-making (15, 35) may be explained by
an inability to self-modulate decision times as a
function of conflict. For example, the first DBS
patient in our study, when asked whether he
might be more comfortable in a different chair
situated across the room, immediately advanced
toward that chair, ignoring the fact that he was
not able to walk properly and was likely to fall.

It is plausible that the “rewarding” prospect of
the comfortable chair was not appropriately
offset by a functional STN that would have
prevented him from reacting so rashly. Such
anecdotal evidence is supported by laboratory
studies showing DBS-induced impairments in
cognitive control (27, 36). Thus, future research
should evaluate alternative DBS protocols that
take cognitive conflict into account.
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