Holder a priori estimates for second order
tangential operators on CR manifolds
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Abstract

On a real hypersurface M in C™! of class C** we consider a local CR structure by choosing
n complex vector fields W; in the complex tangent space. Their real and imaginary parts span a
2n-dimensional subspace of the real tangent space, which has dimension 2n + 1. If the Levi matrix
of M is different from zero at every point, than we can generate the missing direction. Under this
assumption we prove interior a priori estimates of Schauder type for solutions of a class of second
order partial differential equations with C'* coefficients, which are not elliptic because they involve
second-order differentiation only in the directions of the real and imaginary part of the tangential
operators Wj. In particular, our result applies to a class of fully nonlinear PDE’s naturally arising
in the study of domains of holomorphy in the theory of holomorphic functions of several complex
variables.
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Holder a priori estimates.
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1 Introduction

In this paper we prove a priori estimates for solutions of the linear subelliptic equation Hv = f in
R27+1 where

2n
H= Y hmiZmZ;— Ny, (1)
m,j=1
the coefficients A, h,,; are a-Holder continuous and such that Ay = hjm, m,5 =1,...,2n, and
2n 2n
> hmjtmn; = MY 07, Y= (n1,...,n2m) € R (2)
m,j=1 j=1
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for a suitable positive constant M. Here the first order differential operators Z; are

0 0
oy = 2 4wy
21 o0 +w2l8t’
0
Za—1= Ry +w2zf1a7 (3)

Z = (217Z27"'7Z2n)7

where (71,91, -, Tn, Yn,t) € R?"F1 and the coefficients w = (w1, ...,ws,) are of class C1*.

The operator H in (1) is not elliptic at any point. In order to overcome the lack of ellipticity we
make the following crucial hypothesis: we assume that the missing direction is generated by one of the
commutators [Z;, Zp),l # p.

We explicitly remark that we can not apply to our operator H the regularity theory developed in [15],
[16], [25], [3], because in those works the smoothness hypothesis on the coefficients of the vector fields
is crucial.

Schauder-type estimates for sum of squares of smooth linear vector fields satisfying Hormander
condition have been proved by C. J. Xu in [31]. In that paper also operators formally of the type (1)
were considered, with coeflicients w; € C* and h;; € C1*, but neither that result nor that technique
work in our situation, because in our case the coefficients w of Z are only C'™®. Moreover, even if the
coefficients of the vector fields were smooth, operators of the type H as in (1) are studied in [31] by
simple using a change of variables, which transforms the operator in a sum of squares. If the coeflicients
hi; are only C®, as for the linearized Levi Monge-Ampere equation (see [22]), this change of variable is
not possible.

The motivation for studying operators of the type (1) in our assumptions is very strong. Indeed, the
vector fields in (3) naturally arise in the study of envelopes of holomorphy in the theory of holomorphic
functions in C"*1 (see [14], [18], [20], [24], [27], [28], [30] for details).

In order to clarify our motivation let us introduce some notations. Denote by z = (z1,...,2,41) &
point of C"*! and by M = {z : p(z) = 0} a real hypersurface in C"*!. Assume for example 9., ,,p # 0
at zp € M. Denote by T(()CM the complex tangent hyperplane to M at zp, and choose

20
hi= e — 5= en41,

Zn4+1
with (ep)p=1,..,n+1 the canonical basis of (OUaE
Since, for every [ =1,...,n
) P n+1 ) p
<hl’85p> = <€l - azjlenﬁ’l? Z(asz)ej> = 8Zzp - P - aZ—,L+1p = 0)
Zn+1 j=1 Zn+1p

where (-,-) denotes the inner product in C**!, then U = {h;,l = 1,...,n} is a complex basis of T5 M.
By identifying e, with the first order complex differential operator 0., for every p = 1,...,n +1
and h; with the first order complex differential operator

0.,p
W = azl - ) : azn+17 (4)
Zn4+1
for every I = 1,...,n, we obviously get W;p =0 for every l =1,...,n.

In the sequel we will denote by

Wr = Wl’ (5)
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for every I =1,...,n.
If p is of class C? then the vector fields in (4) and (5) introduce a CR structure on M, because they
are linear independent and [W;, W] = 0 (see for example [14, p.93]). Moreover, let us define

1 1
T=—-"0., — 0., (6)
8Zn+1p " afn+1 "
Then,
(Wi, W] = A (p)T. (7)

This defines the n x n Hermitian matrix A;z(p), which is called the Levi matrix and we assume it is
different from zero at every point.

Since we have assumed 0., ,,p # 0 at zg € M, it is not restrictive to take its imaginary part different
from zero. With this convention, there is a neighborhood U, of 2y such that M N U, is the graph of
a C? function u : @ — R, with © an open bounded subset in R?"*!. Then we can choose the defining
function of M as p = Im(zn41) — u(21,- .., 2n, Re(zn4+1)). By the coordinate change

GG=2 1<j<n, t=Re(znt1), r=Im(znt1)—u(z1,...,2n, Re(2nt1))

the vector fields W; become (see for example [29, p.547]) the following tangential Cauchy Riemann
operators on M

Ou
W= g+ oG Gt gy )
Introduce real coordinates (; = x; + iy, for every [ =1,...,n and put
0 35 i)
ZQZ_QIm(a—QJr (Cl,...,(n,t)ﬁ}
Zoi1 = 2Re( = 0 32 r{SHRS t)ﬁ) v
8@ — v G t) g )

Then, the vector fields Z have the same structure as those in (3) with coefficients

Uy + Uy, Uyt
W = — P} )
1+ u; (10)
Uy, = Ug Uy
RS T
t

where subscripts denote partial derivatives.

A regularity theory for sum of squares of C1< vector fields of the type (9) has been recently
established by Citti in [4], [5], [6] and by Citti and the author in [12], [13].

In particular, by using the techniques developed in [12, Theorem 4.1.], one can prove the following.

Proposition 1.1. Let h;j, A € CZ;;’O‘(Q), w e Cyin.(Q), m>2andletv € 02’7700(9) be a solution

of equation Hv = f with H as in (1) and f € C’Ztl_oia(Q) Then the solution v belongs to C"an;iﬁ(ﬁ)
for every B € (0, ).
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Here C7"® denotes the class of functions whose tangent derivatives of order m are a-Holder contin-
uous with respect to a distance dz naturally associated to the vector fields Z; (see (12) and (13) for
precise definitions).

This result has been used in [12] to study regularity properties of quasilinear equations of Levi’s type,
but it is not useful for studying fully nonlinear equations such as the Levi Monge-Ampere equation,
whose second order part is the determinant of the Levi matrix in (7)(see [21]). In that case the
coefficients h;; depend on the second tangential derivatives of a solution and w depends on the first

tangential derivatives of a solution. In particular, if u € Cé’?OC(Q) is a solution of the Levi Monge-

Ampere equation, then h;; € C%Joc(Q) andw € C;ﬁ‘oc(ﬂ) and it is not possible to apply to it Proposition
1.1.

In Section 2, by means of a method relying on the lifting argument first introduced by Rothshild
and Stein in [25], and of a non standard freezing method already used in [12], [13], [4], [5], [6], we
reduce the study of the operator H to the analysis of a family ]EISO of left invariant operators on a free
nilpotent Lie group of dimension N = 2n? 4+ n + 1. The fundamental solution fgo of the operator ﬁgo
is used as a parametrix of the operator H in (1) and provides an explicit representation formula for
solutions of the linear equation Hv = f in spaces of Holder continuous functions C’%’a. Then, we twice
differentiate this formula with respect to the intrinsic derivatives Z;,j =1,...,2n and in Section 3 we
estimate it at two different points.

Our main result is the following interior Schauder-type estimate for classical solutions of Hv = f,
with hi;, A, f € C%, and the coefficients w of Z of class C.

Theorem 1.1. Let hij, A € C2(Q), w € C;*(Q) and v € C3*(Q) be a solution of equation Hv = f €
C%(Q). Then if & CC Q with dz(§Y,0Q) > § > 0, there is a positive constant ¢ such that for every
pe(0,a)

5|Zu|§g, + 52‘2271\({9/ + 52+ﬁ[z2u]§;9, < c(sgp |v| + |f|§a;9) (11)

where ¢ depends only on the constant M in (2), on |hi;|Z o.0n IME aecr W7 0.0 as well as on n,a, 8, 8.

Our method also requires interpolation inequalities between some weighted norms naturally associ-
ated to the geometry of the problem. The proof of these inequalities is inspired to a standard method
for the elliptic case (see [17]), however in Appendix 1 we carry on it in details for reader convenience.

In a forthcoming paper [22] we will apply our Theorem 1.1 to prove smoothness of strictly Levi
convex solutions of the fully nonlinear Levi Monge-Ampere equation.

2 Preliminaries

m,o

In this section we first introduce some classes C,"" of Holder continuous functions naturally arising
from the geometry of the problem. We then write a representation formula for Cé’a—solutions of Hv = f
with H the linear operator defined in (1).

For every | = 1,...,n let us define the first order vector fields Z; as in (3) with coefficients w €
C12(Q). Moreover, let us assume that the vector fields Zi, ..., Zay, [Z1, Zo] are linearly independent
at every point and span R?"*1,

If the coefficients of the vector fields were smooth, then the linear operator H would satisfy Hérmander’s
condition of hypoellipticity. In our context the coefficients are only C1*(Q)). However, for every
€, & € Q there exists an absolutely continuous mapping = : [0, 1] — R?**+1 which is a piecewise integral
curve of the vector fields Z introduced in (3), which connects & and £. Then there exists a Carnot-
Carathéodory distance dz (€, &y) naturally associated to the geometry of the problem (see for example
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the distance g4 defined in [23, page 113] ). Precisely, if C'(§) denotes the class of absolutely continuous
mappings ¢ : [0,1] — Q which almost everywhere satisfy ¢'(t) = 2521 a;(t)Z;(p(t)) with |a;(t)] < 4,
define

dz(&,&) =inf{éo > 0 : Jp € C(J) such that p(0) = &y, (1) =&} . (12)

The fact that dz is finite follows because the commutators of the vector fields Z span R?"*1 at every
point. This was first proved by Carathéodory for smooth vector fields; for vector fields with O
coefficients the proof is contained in [4].

We now define the class of Holder continuous functions in terms of dz: for 0 < a < 1

C5(©) = {v: Q= R s.t. there exists a constant ¢ > 0
[0(€) = v(0)| < ed3 (€, &) for all €& € 0
and
Cyt) ={veCy(Q):3ZuveCyQ) Vj=1,...,2n}.
If the coefficients w € Cp ™ "*(Q), m > 2, we define
P ={veCy Q) : ZueCy Q) Vji=1,...,2n}. (13)

Obviously (see [12])
C™(Q) € C(Q) € C™2e2(Q).

For every m > 0 we also define spaces of locally Holder continuous functions :
Cgl(jc(Q) ={v:Q=R:0velCP*Q) VQ ccq}.

If v € C%(Q) we define
o= sup 1O =001
Pl ecea  d%(&,C)
Denote by
ZI - Z’ilzig Tt Z’im)

where

is a multi-index of length |I| = m. If v € C"%(Q2), with m = 0,1,2,..., and 0 < o < 1 we define the
seminorm

[U]TZ,L;Q = sup sup|ZIv|

[I|=m &
[U]fz a;Q = Sup [va]g,m
’7 [I|l=m '

and the norms

m
|U|T)Z’L;Q = Z Sup sup |ZLU| )
j=o0 \[I=j @

‘U|YZn,O¢;Q = |/U|ﬁ;ﬂ + [v]ﬁ,a;ﬂ'
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We must remark that the Lie algebra generated by the vector fields Z; is of step 2, because we need one
commutator to generate the whole space. But our fields do not satisfy the minimal number of relations
at every point, so that the Lie algebra is not free up to step 2. So we need to apply the technique
introduced in [25] to add new variables and lift the vector until the algebra becomes free.

Denote by € = (z1,y1, T2, Y2, - - -, Tn, Yn, t) in such a way that 5,41 = t. We now proceed to lift the
vector fields Z; as follows.
We have 2n fields and need one relation to generate the whole space, so we must add (22”) =n(2n—1)
variables to obtain a free algebra. The total number of variables becomes

N=2n+1+n2n—1)=2n%+n+1.

Ifg: (&1, &ont1,Eonta, - .-, En) € RY | we denote by 9; = 0%1. for every j =1,..., N and define

71 =7
Ty = Zo
Zs = Z3 + €109n 40 + E200m13

k—1
Zy = Z), + ij82n+(k—2)2(k—1)+j for3 < k < 2n, and
j=1

T = A0api1 + O
Then we introduce the lifted linear operator

2n
i,j=1
For every f € C’éa(ﬂ) we define the first order Taylor polynomial of f at & € £ in the directions of
the vector fields Z;:

P, f(€) = (&) + > Zif(&0)(€ — &)

j=1
We need the following lemma whose proof can be found in [4, Remark 2.3].

Lemma 2.1. If f € Cé’a(Q) and dz(&,&0) < 1, the following inequality holds:
IPﬁof(g) - f(§)| S [f]lZ,a;Qd1Z+a(£a§0)7 \Vlf S Q.

It is easy to check that for every f € CE’Q(Q) and £, &, €

2n

Peo f(C) = Pef () = Peo f(€) = F(&) + D _(Z; (&) = Zi F(E)(C — &),

j=1
and from this equality, together with Lemma 2.1 we also get

Lemma 2.2. If f € Cé’a(Q) and £,& € Q, dz(£,&) < 1, the following inequality holds:

1P, Q) = Pef(Q)] < [ i (4576, 60) + 43 (€. 60)dn(€,Q)), V(e
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For k =1,...,2n we define the frozen vector fields
Zrgy = O+ Pey (i) Oans1 + (Zi = Zi), Tey = M&0)D2ns1 + O (15)

We recall that, from the definition of the fields Zk’s, we have

k—1
Iy — Ly, = E £j62n+(k—2)2(k—1)+j

j=1

We remark that the following identity holds:
[Z1,60 Z2,60) = 9(60)D2n 11

where the map &y — ¢g(&p) is of class C* and g(&y) # 0, so that the Zk,go’s are nilpotent vector fields of

step 2. Moreover, the Lie algebra generated by the vector fields Zj ¢,’s and T, is free, by construction.
Then we can define the frozen operator

2n
He, = > hij(€0)Zigo Zigo — Teo-
ij=1
The matrix (hi;)7%_, is positive definite and the functions & +— h;;(§o) are a-Holder continuous; then

we can find an orthogonal 2n x 2n matrix U such that
(hij(€0)Pm_y = U(€)UT (&) TP (&) = (uyy) ;.

The maps & — u;;(&o) are of class C* as composition of analytic functions with a-Hélder continuous
functions, mainly due to the fact that the matrix (h;;); ; is positive definite.
Put

We, = U (€0) Ze,. (16)

with Wéo = (I/IN/L&,, cee W27L7£0)’ then for every i = 1,...,2n,
Wieo = > 1ij(€0) Zigo -
j=1

We stress that the fields Wi,fg) fio are still linearly independent and generate a free algebra of step 2
in RY. Moreover, the operator can be written in terms of the new fields as a sum of squares plus a
potential:

2n
~ -, ~
He = g Wie, — Tt
j=1

and we call fgo (€,) its fundamental solution with pole at &.
We can introduce a pseudo-distance dg, associated to the frozen fields W; ¢, and Tg, in the following
way: for every &, € RN let v be the integral curve such that

2n 2n
Y=Y eiWiev+ D ei;[Wieo, Wil + enTeyy
j=1 1,j=1
1<j
7(0) =¢
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Define o
d§0(£7C) = ||(€1,~~~,€2m (eij)i<jaeN)||

where, for every n = (n1,...,nn5) € RV,

2n N 1
1
ll = (Xt + > )" (17)
j=1 j=2n+1
Then the homogeneous dimension of RY with respect to || - || is

Q=2n+2n(2n—1)+2=4n>+2.
For every &,¢ € R27+1 et £ = (&,0), = (¢,0) and define
e, (€, €) 1= dgy (€, Q).
Precisely, it is dg, (€,() = (Z2n (ej)4+(612)2> i and the homogeneous dimension of R?"*! with respect

j=1
to it is @ = 2n + 2. By the results in [4] the following equivalence locally holds:

de, (§0,C) & dz (&0, ¢) (18)

where the distance dz was defined in (12).
Now, let J = (j1,...,Js), jn = 1,...,2n for every h = 1,..., s, be a multi-index of length |J| = s;

we denote by WSJO , Zé]o the derivative operators of order s

~,  —~ — —
Wﬁo = thﬁo Wj2a€0 T Wjafo

~; ~
Zfo = Zjlaﬁozjmfo T st,ﬁo

Then by [26], for every compact set K C RY and for every multi-index J there is a positive constant
¢y such that:

Wl Ty (6,0)] < eadg, 7€)
SIT T FQ42-|J] T (19)
|28 Ve, (€, Q) < cydg, (€0

for every 556 K.

Remark 2.1. If in (2) we choose €= (€0, 0) then we get the canonical coordinates of ¢ around (&0,0),
see for example [25]. Moreover, the change of variable

1/)50 Q% RN7(2n+1) ~ RN

= (20)
Vo (C) = (€15 -+, €20, (eij)i<j;eN)
is such that for every function f € C*(Q x RN—-(2n+1) R)
Wief =Wilfove,), Vi=1,...,2n,
Tfof ZT(f°¢£O)7
where the first order vector fields W, for all i =1,...,2n and T are left invariant on a nilpotent Lie

group and do not depend on the frozen point (&, 0).
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In the sequel we will denote by I the fundamental solution of the second order operator 2321 Wj -T,
and by d the distance defined by the norm in (17)

d(0,m) = [nl].

This remark has been used in [13] to prove estimates of the dependence of the fundamental solution on
the frozen point in a similar situation to that considered here. Precisely we have:

Proposition 2.1. Let £,&,¢ € ' and let €, &, C € OV x RN=27=1 defined as € = (&,0), & = (&0,0).
Then, for every multi-index J, there exists a constant c; > 0 which depends only on J and on the
compact set £, such that

dg (&,¢) . de, (€0, )

I
el TR T 6 s T B 6D -
22T @0 0) - ZITeE ) < oy | =208 dalEd) )

&S;ZHJ\(&’Z-) ggqﬂﬂ(a)’g)

for every  such that glvgo (Eo, E) > 2[{50 (5),5)

Proof. Inequality (21) was proved in [12, Proposition 3.5]. In order to show that inequality (22) holds,
we first recall that Z = VW, with V = (UT)™! := (v;5):,; (see (16)). By inequalities (19), (21) and the
fact that the coefficients of the matrix V' are a-Hoélder continuous, we get
| ZeoTeo (€0, Q) = ZeTe(€, O = |(Vey = Ve)Wey Ty (€0, Q) + Ve(Weo Ty (€0, ) = WeTe(6,€))
< (Ve = Ve)Wey Teg (§05 O + [Ve(Wey Tey (€05 €) = WeT'e (€, O))
e s~ ~ de, (€0, €

< const - | @, (B, &) @2, 9(6,0) + —salb0E).

dgo (507 <)

For multi-indexes I, J as in (14), we define:

V=0, Uiy (23)
so that _ o
ZJ — Z V[le7
[T|=|J|

and inequality (22) follows by applying the same proceeding as in the case |J| = 1 treated above. [J

In the following proposition we write a representation formula in term of fgo for the solution v of
the linear equation Hv = f. This representation formula will be the main tool in the proof of Theorem
1.1.

Proposition 2.2. Let v € C%’Q(Q). For every Ki CC Ky CC Q we choose l~(1 cC 1?2 cC ) x
RN=@n+1) gych that N
Kin{(¢0)eRY : (e R™M} = K,

K>n{(¢,0) eRY : (e R} = K,
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and fiz a real valued function ¢ € COZ(I?Q) such that ¢|I~{1 = 1. For every & €  and E: (&,¢) e K,
we have

0(€) =u(©)6(8) = - / Fe, (6. O H(Q)6(O)dl
- / Fey (6, 8)0(0) Hey 6()dC

£ 3 e [ Fa€Pas = 0)0an 1100 216,001
zg 1

- Z iy (6o) / Teo (6.0 Z0(0)Z; 0 (Ol

i,j=1

/ Fey (6, 0)(AE0) — A(Q)Ban10(QH(O)AC

- Z /FEO (3 C ij (o) — (C))ZiZjU(C)(b(Z)dZ

+2 Zl s 60) [ ZiayFeo €O (Pegs = )0ania0(Q)0(0) G
i
" Zlhw 60) [ Teo(€.0)(Zi(60) = Z3n(O)Dans10(O)0(0)
i
- Zlhw 60) [ Teo (6.0 (Pws = 0)(Pes = w3)0an 100020190
i
- Zlhu 6PV [ O iTes € O (P — ) (P — )01 10(Q9OE ).

In the last integral PVg, [ denotes a principal value integral depending on & as in [12, Definition 3.1].

Proof. Let v € C’2( ). By taking into account that v is a function of the first 2n 4 1 variables, for
every 5 (&,¢) e K, we have:

0(€) =0(€)$(E) = — / Fe, (€ O He, (v(0)6(0))dC
=— / Te, (€, C)He,v(¢)$(C)dC
- / Fe, (&, 0)0(0) Hey 6(0)dC

- Z hij(€o) /Féo €,0)Zi,egv(C) Zj e, 0(C)dC

i,j=1
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- / Fe, (6. O H(Q)6(O)dl
- / Fe, (€, 0)(He, — H)o(Q)d(0)dC
- / By (€, 0)o(() ey p(O) il

=35 hf6) [ Tel& D200 2,000

211

- Z hij(&o) /Fgo &0 (Ziey — Zi)0(C) Zj 0 6(C)dL.

1,7=1

Let us compute He, — H.

-H= Z ( i(0) Zigo Zje0 — hij(OZiZj) - (A(éo) — )\(C)>32n+1

1] 1
= Z hi;j (&) ( i602j.60 — ZiZj) + i”: (hz‘j(ﬁo) - hij(C))ZiZj - (A(ﬁo) - )‘(C)>a2n+1
ij=1 ij=1

where

ZigoZigo — 2125 =(Zigo — Zi) Zjgo + Zi(Zjgo — Zj)
:(Pgow, w1)82n+1Z‘750 + Zi((Pgowj — wj)82n+1)
=(Peowi — wi)O2nt1Z5¢, + (Ziwj (o) — Ziw;(C))Pant1 + (Peyw; — w;j) ZiO2nt1
:(Psowz wi)O2n+1Zj, + (Ziwj(§0) — Ziw; () O2n+1
+ (Peowj — wil(Zi = Zigy)O2n+1 + (Peowj — wj) Zi gy O2nt1
=(Peowi — wi)O2n+1Z5¢, + (Ziw;j(§0) — Ziw;(C))an+1
— (Peyw;j — wj) (Peywi — wi)03,, 11 + (Peow; — wj) Zigy Oan1-

By replacing the expression of Z; ¢, Z; ¢, — Z;Z; in He, — H and this last in the representation formula
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for v we get

(&) - - [Fa@Omi0@a

- Zl hij ( 50)/F (&, C) (Peywi — wi)O2n11Z;,6,0(C)$(C)dC
i

- Zlhu &) [ Teo €O (&0) ~ Zes (€)oo

- Zlh” 60) [ Feo(€.0) (Peys — ) (Pes — )05 0(0)0(0) G
i

- Zlhm &) [ T (€.0(Pey — ) s O 100D
i

- Zl / Feo (60 (hus(€0) = his(€)) ZiZi0(Q)9(Q)dC

+ [ To €M)~ AO)ansrv(QoO
- / T (€ Oo(0) He, 6O

=3 ) [ Tel& 0200 2,00

1]1

- Z hij (o) / ey (€, Q) (Peywi — w;)B2n410(¢) Zj.,6(C)dC.

7,j=1

By remarking that [02n41, Z;¢,] = 0 for every j = 1,...,2n, and that the formal adjoint operator of
Zje, is —Zj¢,, integrate by part the second integral of the previous equality with respect to Zj ¢, the
fourth with respect to 02,41, and the fifth with respect to Z; ¢,. Then remark that

Zjeo(Peowi — wi) + Zi g, (Peyw; — wj) — Oanpa ((Pgowz‘ — w;) (Peow; — wj))
=(Zje0 — Zj)(Peowi — wi) + (Zjwi(80) — Zjwi(Q)) + (Zigy — Zi) (Peow; — wj)
+ (Ziw;j (o) — Ziw;(C)) — Oant1 ((Pgowi — w;) (Peyw; — wj))
=(Peowj — wj)Oon+1(Peowi — wi) + (Zjwi(§o) — Zjwi(Q)) + (Peowi — wi)O2ny1(Peow; — wj)
+ (Ziw;(&0) — Ziw;(C)) — O2nt1 ((Pfowi — w;)(Pgowj — wj))
=+ (Zwi(&o) — Zjwi(Q)) + (Ziw;(§0) — Ziw;(C))-

By taking into account that h;; = hj; the thesis follows. [

We now differentiate the representation formula of Proposition 2.2 with respect to the vector fields
at fo.
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Proposition 2.3. Letv € C%O‘(Q). For every multi-index I = (iy,i3) of length 2 and & = (£,0) € K1

2'v(60) =~ [ ZL,Fe, G, OHQ)9O) — Hul€0)oE))dC — Ho(es) Y Vigo)o”

|J]=2
- [ 24T 00O B
2n
+ 2 hii(ﬁo)/Zgofgo(a)f)(Pgowi — wi)D20+10(C) Zj £, 6(C)dC
i,j=1

2n
= 3 hisl6) [ 2 Fe, 6,01 Z00(0) 2y (O

i,j=1

+ [ 27 (60 DN = N0 00(O

=3 [ 2T 60 Dlhien) ~ i (€) ZiZw(O0(0)dC

ij=1

2n
42 Y hiy(60) [ 24, Zie, T 6. ) (Pegs — ) Bans o) 0Ol

N
D / 71 Tey (€0, O)(Zjwi(€0) — Z1(Q))Dansrv(Q)(O)dC

i,j=1

2n
-3 hij(£o>/Zéofso(é)f)(l%owi — w;)(Peow; — w;)02n410(C)Dzn416(C)dC

4,j=1

2n
- > hij(&) / Z{ 05n11T¢, (€0, C) (Pegwi — wi) (Peywj — w;)d2n+10()(C)dC,

i,j=1
with ‘71'7 as in (23) and by using the notations of Remark 2.1

— = W, d0
7,50, W 01) vt

[Dd(0,n)]

ol =

/{WGRN:d(Om)—l}

fO?” J= (jlan)'

Proof. Let us call v(§) = 2}21 v1(&, &) with v;(€, &) the I-th line of the representation formula proved
in Proposition 2.2. It is a standard fact that, for any multi-index I of length 2

2 01(60.60) =~ [ ZL,Fey G OH(HUO0() ~ Hol€)o(&))dC ~ Ho(&o) 3 T (60)o”

|J]|=2
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and
Zhvn (€0, 60) = / 71 T, (6. Ou(Q) ey (0)dC

Zv3(€0,0) =+ Z hi; (o) /Zéofgo@)f)(&owi — w;)2n410(C) Zj.6,(C)dC

z]l

P ) == Y5 b6 [ ZLTeE. 020000 2,6 OT

i,5=1

210560, 60) = + / 71 T, (B0, D (M€n) — MO)Dansr0(Q)b(E)dC

Zlug(€0, €0) = Z/%ﬁ&m (his (€0) — hig () Z: Z0(Q) (Ol

1]1

Z g (€, &) = + Z hij (&) / Z{ Ve, (€0, €)(Zwi(60) — Zjwi($))Dan110(¢)b(Q)dC

zgl

Z1vg(&0,0) = Z hi;j (&) /Zgjofﬁo(go,@(}jfowi — w;)(Peywj — w;)P2n110(C)B2nr16(C)dC.

7,7=1
Note that v1( is a principal value integral. However, we can define
2n _ _ - ~ o~
= > hus(&0) [ 2 Ban Ty G, O (Pess — ) Py = 3)Ban10(0QE,
i,j=1

and the integrals are well defined, because by (19) and by Lemma 2.1

‘251082n+1f§o (gov g)(Pfowi - wi)(Pﬁowj - wj)| < CdV;)Q+2a (507 g)

Let us fix a function § € C*°(R) such that 0 < 0 <1, (7) =0 for all 7 < 1 and 6(7) = 1 for all 7 > 2.
For every € > 0 let us define

0 == 35 huf60) [ BuraTe 6D (P — 0 Pass —)0mnsr0(0000( 2 ED) i
3,j=1

Arguing as in [12], we get

sup Mf)) (€) —v10(&,&)| < c16229,
d§0 (5750)<5/2

and for any multi-index I of length 2

sup 27055 (€) — w(&)| < eag®,
de, (€,60)<e/2

with ¢y, o positive constants independent of &y. Thus, we conclude that Zv19(&o, &) = w(&).
Analogously, define

=2 Z h’z] 50 / J&JF&J (5 C)(Pﬁowl )82n+1v(C)¢(5)9(@>d5

1,7=1
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and

2n
WO =2 3 his(6o) [ 24, FesGonC)(Pegs — 09002108,

ij=1
We have

sup [0l () — vr (€, &0)| < e,
dey (€,80)<e/2

and for any multi-index I of length 2

sup 270y (€) = W(&o)| < eae®,
deg (€,60)<e/2

with ¢y, ¢y positive constants independent of &. Thus, we conclude that Z7v7 (&g, &) = W (&).

3 Schauder-type Interior Estimates

In this section we prove Theorem 1.1 for the operator H defined in (1).
Proof of Theorem 1.1. We divide the proof in four steps. o
I Step. Let K1, Ky, Ko, K5 as in Proposition 2.2. For every (£,0) = £ € K and |I| < 4 we set

w'(©) = [ ZITe(E Oge(O

with EH gg(z) a C'* function with compact support in K5 and such that gg(g) =0.
In this section, in order to simplify notations, we shall denote by d¢ the distance d¢ introduced in

Section 2, and for every (£,0), (&,0) € K we set d = dz (&, ).
We will prove the following statement: L
If |I| <4 and for every (£,0) =&, (&,0) = & € K, the functions

i L%(CH 7L |9¢,(C) *~gg(~C)|
dgt| = (&, Q) d! 7% (€, C)
are bounded over f(g, then

lw! (&) — w! (€)] < cd® sup —|g£°(<)~| — +c¢(In M —1n2d) sup 196 (©) = 9¢(C)| —~g§(~C)\’ (24)
SUD T e SUup -2
CEK, g, (6074_) (EK> dgo (507()
withM:sup{dg(g,g) L (6,0 =€ e Ky, (€ Ky} B
Denote by d the Carnot-Carathéodory distance associated to the vector fields Z as in (12). Let us
set

My ={C € Ky 1 dy(&,¢) < 2d}
My ={( € Ky :d3;(&¢) > 2d}.
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Hence, for every |I]| < 4 we get
0 (&) ~ (O] < [ 24T, 6. Ollges (D)1
My
+ [ 2 Ollge(Olac
My
+ [ 12T (00 - 2T Ollgen D1
Ma
+ [ V2T Dlge (€ — 96Ol
Mo
=A{ + A} + A} + Al
We shall first show that if |I| < 4 and for every (¢,0) = € € K, the function
F L le@
d!;\—2+a(§7 0

s bounded over I~(2, then

1 1 1 o |9£o(~)|
CE 2 (607 C)

By the triangle inequality, for every E € M; we get
d (€0, C) < d3 (&, €) +d;(€,€) < 3d. (26)

Hence M C M = {¢: dé(é}, ¢) < 3d}. Then we use (26) and the estimate (19) to obtain

Al 4 A <o /m de(&, 0@+ 1| ge(B)]dE

My N
. =X _0ta_ 19¢(Q)]
< /]\7[1 d§(£7 C) d?+m_2(g, E)

3d P
SC/ p~dp sup WFH%LQ)'
0 e, d (€,¢)

o 19¢ Q)|
<Cd NSUB m

By estimate (22)

Al <cde /M de(8,0)~9 W ge(O)dC + cd / de(€,) 1M |ge ()]l

2

19¢(0)]

—eld(
deT17%(€,0)

<cd” /M2 dg(g, E)_@Jramdc—'—d/m ds(g7 E)—@+1—\I|+a

M M 19¢ Q)|
<c (da/ p 1 T%dp + d/ p 2Jro‘dp) sup
2d 2

T fon 42T T2(ED)
. 19 ()|
< d T 7 e ~ ~ -
= R TED
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We shall now prove that if |I| <4 and for every (£,0) = £, (&0,0) = & € K the function

7 1960 ~ 96, (<)
d'" 2 (€,¢)

s bounded over I~(2, then

1 <c(n n )285£2—d21‘72(§o,C) (27)

Again by estimate (19)

B R R I B

SC/ dg@@@lg@(o—%«)ld&
M-

. d"7*(€,¢)

= &0
< ~1y |9¢,(C) *;qi(C)l
‘C/zd P e dTED

|96, (€) — 9¢(Q)]
<c(InM —1n2d) s o=
‘ cerr, A (60

By interchanging £ with &y in (25) and (27) we get (24).

II Step. For every & € Q2 let 0 = dz(£o,9Q) and r = ud with p €]0,1/4] a positive constant to be
specified later.

Let K1 ={C € Q:dz(&,¢) <r}and Ky = {¢ € Q:dz(&,() < 2r}. For every & € K1,& # &o,
we will apply estimates (24) to ZTv(&) — ZTv(€) and, by also choosing the cut-off function ¢ in the
representation formula of Proposition 2.3, we will prove that

2481 2"0(6) — Z270(©)|
dy (€, &)

< o Holasks + 7 sup | Hol 420l sy + 7 0l e, + 71, + sup o] ).
1 2
(28)

By Proposition 2.3 for every £ € Ky and |I| =2

6 2n
~7M0(€) =Y wl (@ + 3w (€ + wi" (€ + Hu() Y V(&)
i=1 j=1 |J]=2
where |(I,7)| =3 and |(I,1,2)| = 4.

Choose the cut-off function ¢ in Proposition 2.3 as follows: (;5(5) = ¢(p) with p = dgo(z ,§~0), and
v € C5°(]0,2r[), such that 0 < ¢(p) <1 and

1
s e ()] < = Vpelo]

S =

1, p<r ,
— <
ﬂ@—{m p>%7|w@Nf
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For every ( € Ky = {{ = ((,¢') € Ky x RN-(2n+D) dZ(E,EO) < 2r} set gé )(C) Hu(C)¢(() —
Hv(§)¢(€). Then,

196" () =1 Hv(Q)é(C) — Ho(§)é(&)] < [Hv(¢ ¢) = Ho(@)[|6(Q)] + [Hu(©)I|$(0) — #(&)]
<[Hv]7.x,d% (€, C) + 17 [Hv(€)ld5 (€, C)
)-

zZ
A
Scd”(??)([Hv]aK2+r Sulevl

Remark that, as in (18), the equivalence dz(g, E) ~ dg(g, 6) locally holds. Hence,

1987 ()] W(H
e (I (RO

< ¢([Hv]Z i, + " sup [H|).
K1

Moreover, since d (5, Eo) =dz(& &) <r

19¢7(Q) = 9, Q)] =| Hu(§)$(€) — Ho(€0)(Eo)| -
<|(Hv(€) = Ho(60))$(E)| + | Hu()(#(€) — ¢(&0))|
SIHVI e, d% (€, €0) 477" sup | Huldz (&, &)

<d% (&, &) ([HV]Z g, +r7° Sup |Hvl).
For every multi-index I of length 2,
wl(©) = [ ZTe€ 0ol O
Hence, by (24)

rﬁ|w{(f)—w{(€o)| . dz (€, &)\ B
Tee )

r*[Hv)Z ., + sup |[Hv|)
o (29)

+ C(M)a_ﬁln (dz(z fo)(ra[Hv]g’Kl +s}1{1p [H]).

For every € K, set géQ)(g) = v(g)ﬁ5¢(f). Then,

197 ()] =l0(¢) Heg Q)|
<r—?sup |v].
Ks



Hoélder a priori estimates 19

Moreover,

192(C) — 9 (O =10(C) (Hed(C) — Hey6(C))| = [v(Q)|(He — He,)d(C)]
(X hs©(ZicZie = ZueZico) + 3 (hisl€) = hisl60) Zio Zrey

— (MO = M) Dn1 ) 9(0)| N

2n
S\U(CN‘( Z hz‘j(f)((Pgwi — Peywi)Oan 17256, + (Ziw;(§) — Ziw;(§0))O2n 11

ij=1
+ (Pew; — Pegw;) (Pew;s — Peywi) 03,41 + (Pewj — Psowj)Zi,5032n+1)¢>(f)‘
+|v<c>|](2n( — h33(60)) Zica Zica — (ME) = M&0) ) Dans1 ) $(0)

by Lemma 2.2

gsup|v\7' da (5 50 ozKl + Z i ozKl

K 7,7=1

+sup ol Z sup g (e 1., 05 6 €0)

s (4576, 60) + 5 (6,026, €0)
1 il ot [ (57 (6, €0) + A5 (€, €0)d2 (€, €0))?) )
< cdg (€, &) 2sup o],

Ko

For every (&,0) = 5 € K, and for every multi-index I of length 2,
wh(6) = [ ZiTe(E 0o Ok,

19 ()]
% (£,0)

géZ)(g) = 0in K1, soif 2dz (&, &) < r then Al + AL = 0, while if 2d (£, &) > r we can estimate Al + Af
as follows

Remark that we can not directly apply (24) to it because 5 — is not bounded in K. However

A{+A£Sc/ A sup 162D
MiN(K2\K1) CeKy

2dZ(E7EO) 1
Sc/ p~tdp sup gt (Q)]

CEK>
<ol (288D Gy 14 )

CEKz
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Moreover,
Af <e(d3(&,€) /Mmz\kl) de(€,0) 7l + dz (£, &) /Mm&\f{l) de(€,0)97 Q) s 19670l
Sc(d% (&:&) /:Z;{T,de(&ﬁo)} prdp+ dz(6, ) /:;{r,zdz(g,so)} p_2dp) Eseuzi |g§2)@|
<e(dz(6. 0 (G e et (max{ciféflf(of), &) ) ey 96" (O
<e(aeam () + “a ) e b O

To estimate AL we use (27)

AP < c(In M —In2d)dz (&, &)r 2 sup|v).
K

2
Hence, by the previous estimates

wl(€) —wl r , ; - _
7,,8| (jé(&go)(foﬂ Sc(max {O, <2dz(§7€0>)ﬁln(2d2(f 50))} n (dz(i 50))1 ﬁ)(r 2S;f‘v|)

4 c(@)w n (dzé 50))“““_2 P vl v

<c(r* % sup |v]).
2

For every { € K set gég)(g) = hij (&) (Pew; — wi)O2n+10(C) Zje (). Then,
196 ()] =I1ig () (Pewi — w)Dan410(6) Z3. ()|
<r b (6| [wilf ik, 4z (€, €) Sup |O2n410(C)]
<cd% (&, Q) [0l ke, -
Moreover, by Lemma 2.1 and Lemma 2.2
1967(Q) = 96 (O] < 1(his (&) = hij (§0)) (Pews — wi)Pzn+10(0) Z3.(C)]
+ |hij (€o) (Pewi — Peywi)O2n11v(¢) Zj,¢0(C)]

+ 1hij (£0) (Peowi — wi)Dan110(C) (Z.e0(C) — Z;.6,6(0))]
<r 7 Hhijlasr, d% (€, €0) (Wil e, dz (€, €) sup |02n 41|

+ Til |h’ij (EO)|(d%+1(£v gO) + d% (67 gO)dZ (67 C))[wi]lz,a;Kl Sll(lp |827L+1U|
+ ,r—2 |h1J (fO)| [wi]IZ,a;Kz d1Z+a (5’ C) S}(lp |827l+1v| (d%Jrl (5, 50) + d% (57 fO)dZ (5? C)) [wi]IZ,a;KI

<cdy (€, &) V) x,

For every (£,0) = 5 € K, and for every multi-index I of length 2,

wh(€) = / 1T (€, 09 (0)dC.
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Hence, by (24)

I

5|w3() w3 (o) ‘ dz(£,&)\> " FO 12
dj(€ &) S( r ) i) (31)

+ c(idz(i, 50))%6 In (dz(; 50))(TQ[U]QZ;K2)-

For every ¢ € Ky set g¢” (C) = hi; (€)(Z:v(¢) Zj.¢6(C) — Ziv(€) Zj ¢6(€)). Then,

99 (C >\<|hm< )N(Ziv(C) — Ziv(€)) Zj e d(Q)] + |hij (€) Zi <s><25¢<f>f2j,§¢<§>|
<r~'hi; ()| [U]lakzda(f Q) + 172 |hi; (€)|[v K K, (f C)

<cda C)(T 10¢K2 rot “lv hZ;KZ)

Moreover,

19¢7(©) = g6 (O <I(his (€) = hiy(€0))(Ziv(Q) Z1.£(C) — Ziv(€)Z;6(E)|
+ [hij (€0) Ziv(0)(Z60(C) = Z 00 .
+ iy (€)1 Ziv(&) = Ziv(60)) Z1.c0(E)] + [hij (€)1 Ziv(€0) 1 Z3.60(€) — Zie0 ()]

by Lemma 2.2

Sr_l[ ’LJ}OZ Fdz (&, 50)[ ]1 (Ko
+ 77 2[R (€0)|(d5TH (€, &) + d% (€, €0)dz (€, ) [wilf ik, [0 ]ZKz
+ 77 hij (€))7 sk, % (€ fo)+T_2|hzg(§o)||2v(50)|d (& &o)

Z Z

<cd%(§, '50)( [v]Z K, T T v VT ity T 77 a[Uh;Kl)

For every (&,0) = € € K, and for every multi-index I of length 2,
wi(e) = [ ZiTe(E 0o Ok,
Hence, by (24)

s 1wi(©) —wi@)l _ dz(§80)\ P ( ivag, i
Tea <5 (T ) (32)

+ C(dz(f,go))a—ﬂ In (m) (T_1+a[v]1Z;K2 +r ] Ky T o ]1ZK1)

r

For overy ¢ € Ky and [J] = 2 set g7 (C) = (9(6) —9(¢)) Z270(()8(C), with g(€) = A(€) +hij (€) + Zjwi(€).
Then,

19 ()

~— T
FN
3

Moreover,

19(0) = 92O =lg(€) — 9(€)1Z7v(O)N16()] < 912k, A% (€, €0) W)E ke,
<cd%(€,&0)[vZk,-
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For every (£,0) = S €K 1 and for every multi-index I of length 2,
wl(©) = [ ZITeE€ 0o

Hence, by (24)

[wk (&) — wi (&)l dz(£,&o) af,
e <) (") -

+ C<dz(i, 60))0(7#8 In (m) (TQ[U]2Z;K2)'

For every ¢ € Ko set 926)(6) = hj(&)(Pew; — w;)(Pew; — wj)82n+lv(<)a2n+l¢(g)' Then
195 (O] =[hii ()11 (Pew: — wi)ll(Pew; — w;)|102410(0)]| 02041 6(C)]
<2 ONwil? asrcs [0517 aircn 42722 (€, ) S [O2n10(0)
SCd (5 C) “lv ]2 Ko-

Moreover, by Lemma 2.1 and Lemma 2.2

196(Q) = 960’ (O] <l (his(€) = hij(§0)) (Pews — wi) (Petw; = w7) P20 +10(¢) P20 416(C)]
+ [hij (§0) (Pewi — Peywi) (Pew; — w;)92n410(C)O2n116(C)|
+ [hij (§0) (Peowi — wi) (Pew;j — Peyw;)02n4+10(C)d2n+16(C)|
<r 2 Rijl s, d% (€, €0) [wil{ e, [WilT e, 4524 (€, €) sup |Oon 41|

+ 172 hi (€0)|(d T (€, &o) + d% (€, €0)dz (€, 0))(dy (€, ¢)

+ d12+04 (607 C))[wi]lz,a;l(g [w’i]lz,oz;Kg S}(lp ‘82n+1’l}|
2

<ed(€,&0)r[v)5 e, -
For every (&,0) = E € I~(1 and for every multi-index I of length 2,
w(©) = [ ZLTe€ 09 O

Hence, by (24)

Ble( ) w§ (&) < (dz £,0) ) ( 2K2)
o

(&, &)
o BN () ()

For every { € Ky let g¢" (C) = hij (€) (Pewi — wi)(¢)P2n+10(¢)é(C)- Then,

1987 (O =1his (€)]|(Pewi — wi)(O)|2nr10(C)][6(0)]
<s;(1p|h”|[wl]1aK2d1+o‘(§ C)[ ]2 (Ko

<ed (& Ol k-
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Moreover,

1967 (©) = g3 (O <[ (€) = g (€0l (Pews = wi) (O)]|2n+10(O)][$(C)]
+ | (€o) | (Pewi — Peowi) (C)]|02n+10(C)[¢(C)]
<[h17]a Kldz(f fO)[Wz]laKQdHa('f Qo ]2 (Ko
o iy (€)@ (6, €0) + d3 (€ 60)dz (6,0 Ve,

<e(d5(6,€0)d7(6.0) + 45 (6.€0) ) bl

For every (£,0) = S €K 1 and for every multi-index I of length 3,
wh(e) = [ ZiTe(E 0o Ok,
By (25) for every multi-index I of length 3 we get

Al + A) + Af < cdz (€, &) 0]k,

\gé”( D=9 @I

) is not bounded over KQ However, in this case
Z

Let us remark that the function E

e [ €060 - o Ol

<o a0 (36 @)z 6D + 6 0ol i
MoK 2r 2r

<e(tzee) [ paprdiees) [ o)l
2dz(£,60) 2dz(€»€0)

a n r 1+a 1 _i vlZ
<e(d3(6 &) (grey) + 45680 (e — 57)) Wi

<oty (i () + 50 - H0 )l

Hence, by the previous estimates
g lwh(€) — wl (&) dz(§:80)\* P ( a1z
S G B G

+ C(@fhﬁ(ln <dz(; 50)) i 1>T&[U]§K2.

23

(35)

For every ¢ € Ka let g (C) = hij (€)(Pew; — wi)()(Pew; — w;)(¢)D2n+10(C)(C). Then, by arguing as

for g(ﬁ)

1967 (O <y (Ol e o favres 57 (€. O) s1p 1o (C)
<cdZ (€, Or°[vlf -
Moreover,
197(Q) = 08 (O <lhislosses (6 €0) il w31 a5 (€, ©) sup [0

sy (€)@ (6. 0) + d5 (€, o)z (€. )5 (6,0)

+ d1Z+a (507 C))[wlhzal(z [wi]lzoz'KQ S}(lp |82n+1v|

<e((d3(6,€0)dZ (€, €) + a5 (& €)d5(6,0) + d3 (€ €0)a5 (6,0 ) ke,
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For every (£,0) = S €K 1 and for every multi-index I of length 4,
wh(©) = [ ZITe€ 09l O
By (25) we get

Al 4 Al 4 AL < Cdz(§7fo)7’a[v]2Z;K2

for every multi-index I of length 4.

> 19 (0-9 ()

The function ¢ — G0 is not bounded over K. However, in this case

Aize [ a@07 O - o Ol
<c /Msz@ de(€,0) 02 (36, €0)dZ (€ 0) + 5 (€. £0) a5 (€ ) ) [}, dC

2r 2r
<e(tz66) [ pdprdies) [ )b,
2dz(€,€0) 2dz(€,€0)

<e(d3 (& €0) ((2r)* = (2dz(&,€0))%) + A5 (& €0) (242 (¢, &) 7% — (21)7%°) ol
<edg (&, &0)r° )3,
Hence, by the previous estimates
|w w1(50)| dZ(gv&)) a=p a
IOl (D)) )

Obviously

rr'a [Hv]g;Kl S Ta [Hv]g;Kl ?

Lo HO©V](©) = Hu&)V] (o)l _ (dz(a&o) )a*ﬁ
(£, &) -\

and estimate (28) follows by estimates (29)—(36).
IIT Step. For every &, &y € Q, £ # &, assume § = dz(&,00) < dz(£,00) and r = ud. For every
multi-index I, |I]| = 2, if dz(&, &) > r then

248 |Z (&) — ZTu (&)
dg (ga 50)

<12 ZT0(§)| +1Z"v(&)] < 2r°[v]5q.

Since r = ué then

I I
52+ﬁ|Z v(§) — Z v(&o)| <2 P82 w2 .
Bee) ol

If dz (&, &) < r by (28) we get

a1 Z10(E) — Z10(0)
Z(é-va)

<c( B H] o e, + P02 sup |Ho| + p= P82 )4
K,

+

2

S R et U P Tl L% ?sup o],

2
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so that, by combing these two inequalities, we obtain

52158 |ZIU(50) _ Zlv(f)\
dy (€. &)

<c(u°‘_6(52+°‘[Hv]a;Q + 1782 sup | Ho|
Q

_ _g_ 1 _o_ 37
I O A e () O T () P S T Sup \U|) (37)
+ 258 [v]F o
IV Step. We now need the following interpolation inequality, whose proof is contained in Appendix 1.

Proposition 3.1. Let v € C%’U‘(Q), where Q is an open subset of R2"+1. Define

; wlZ7v Z7v
(ioa= s HIZWOL  Wea=  se Tl
e £, 6 €92 'S0
7= =

where §¢ = dz(£,09), 0¢¢, = min{de, d¢, }. Then for any € > 0 there is a positive constant C = C(e)
such that P
[”] PR CSUP|”| + elv]* 2,a;0

forevery 7=0,1,2,0<a,8<1,j+08<2+ .
By Proposition 3.1 and estimate (37) we get
(17 o (P9 (HulZq + 5% sup | H|
e T P o [ P T () A P T sup Ivl) + 27 o] g
SC(IHinQ sup o] ) ez (i 40 T 2 ) o] g

1+

Choosing € = we obtain

xZ — xZ
12 g0 < Cl) (|| +sup o] ) + e~ [0]F 0

We now choose g €]0,1/4[ such that cu®~# < 1/2 and use again Proposition 3.1 to arrive at the
estimate

0] 50 < C(1HolZ + sup o],
for every j =0,1,2, 0 < o, 8 < 1, j+ 8 < 2+ «. In particular, for every Q' CC Q, if 6 = dz (', 090),
then
7
5[y ]775 o <0 < C(|HU\§;Q +31§11p|v|),

forevery j=0,1,2,0<a,6<1,j+08<24a. O

Appendix 1

In this appendix we give a proof of the interpolation inequality stated in Proposition 3.1. For smooth
vector fields an analogous result was proved in [31] (see also [17] for the elliptic case).
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Proof of Proposition 3.1.

I Case. Assume j = 1;a0 = 3 = 0. For every & € Q let d¢, = dz(§,&0). We set r = pude, with p < 1/2
a positive constant to be specified later and D = Dyz(&,r) = {€ € R?*" L 1 dz(€,&) < r}. For every
i =1,...,2n let v : [0,2r] — Q be the integral curve of the vector field Z; such that ,;(r) = &.
Precisely +; is the solution of the Cauchy problem:

{vm— Zivi(1),
%i(r) = .

Let us set & = ~;(0),&" = ~;(2r). For some 7 €]0, 2r[ we get

2r
o€ =0(€) = [ Glwonn

2r
- [ zotunar
=2rZ;v(i(T)).

Let & = 7;(7). Then

"y / 1
WA < L, (38)

Ziv(€)| =
Moreover,
_ "d
Ziv(6o) =Ziv(u(r) = Zwo(r) + [ 5 (Zw o0
20 + [ (ZiZ) (o)
and by (38)
|Ziv(&o)| <|Zw(€)] + |r — 7 sup | Zi Z;v|
D
1
<=sup|v| + rsup|Z; Z;v|.
"D D
For every £ € D 6¢ > d¢, — 17 = (1 — p)de, > ¢, /2. By (39) we get
Seo| Ziv(€0)| < p ' sup o] + 4ufv]* 5 5.
D

Now, for every ¢ > 0, choose j < /4 and C = ! to obtain

[o]* T < ngp|v| +e[o] 5 (40)

II Case. We assume j = 2; 6 = 0, « > 0. With notations of the first case we have

1Z:20(@)) = ZUE) ZAVEN Ly 70
' T D

and

|ZiZyv(&0)| < | ZiZiw(€)| + | ZiZiv(&0) — ZiZyo(€)].
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For every & € D we have 8¢, ¢ ¢, > 0¢,/2 and

021 Z: Zyv(€o)| < 20~ " sup(6e| Zw(€)]) + 22T u[o]*] -
cEeD

Hence, by also using estimate (40), for every € > 0 there is a positive constant C' = C'(g) such that

7 A
1150 < Csup o] + €[] 00 (41)
for every j =0,1,2.
IIT Case. Assume j < 2;53 > 0, > 0. Let £,&, € Q with d¢, < d¢ so that d¢ ¢, = dg,. Choose 7 = pde,

with < 1/2 and D = Dz(&,r).

If £ € D then there exists an absolutely continuous mapping ~ : [0,1] — D such that v(0) =

0,7(1) = £ and almost everywhere ~/'(t) = 22 wi () Z;y(t) with |u;(t)| < dz(€,&) for every i =
Y i=1

1,...,2n. Hence,
() = ol&0) =(3(1)) = 0(20)) = [ Gwor et
- / (S uzw)am)a.

and
2n
(&) — v(&o)| < dz(&, &) Zs%p |Ziv].
i=1

In particular

2n
5[’ M -85 Z; 42
© 43 e go) <p gogsgpl vl (42)
for every & € D.
If € € D then
3 |v(&) —v(&o)] _B.
e o w )

Combining inequalities (42), (43) and using (40), (41), we obtain for 0 < 8 < 1 and for every ¢ > 0
there is C' > 0 such that

A A
[v]*0.5.0 < CS?}P v +e[v]"3 pa- (44)

The proof for j = 1 proceeds in the same way after replacing v with Z;v. In place of (42) we now have
for every £ € D

2n
Zi’l} — Zﬂ) _
5&1_:,6\ (5; (6o0)] <! ﬂ5EOZSUP\ZJ‘Z¢v|
dz(fafo) j=1 D

and for £ ¢ D in place of (43) we now have

1+81Ziv(€) — Ziv(&o)|
& dy (€. &)

< 2u P46, s1£12p | Z;v].
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IV Case. Assume j = 2; 3 < . With the same notations as above, if £ € D

526 |Z:i Z0(8) — Z;i Zjv(&o)| < o-Bgrta | Z: Z0(8) — Z; Zju(&o)|
o A2 (€, &) - S0 dg (¢, &) ’

while if £ € D

520 |Z:i Zv(&) — Z; Z30(&o)]
s dy (€. &)

Combining these inequalities and taking the supremum over £, &y € €2 we get the desired estimate. [J

xZ

S 2:u“7ﬁ [v] 2;02°
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