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Introduction. Holder conditions, both uniform and local, will be obtained for
a wide class of separable, real-valued Gaussian processes with stationary incre-
ments. Let X(t) be such a process with E{X(t)}=0 and E{(X(t))2} < oo. These
processes will be characterized by their incremental covariance, i.e., the function
a2(h)=E{(X(t+h)-X(t))2}. It is assumed that o2(h)-*0 as A->0; we shall
exclude the trivial case when <j2(h) is identically zero. Since the continuity properties
of the paths of these processes depend only on X(t+h) — X(t) for small h, we are
only concerned with the function o^Qi) for h e [0, 8] for some 8 > 0. The major por-
tion of our results apply to processes for which o2(h) is concave for h e [0, 8].

This study is motivated by the well-known results for Brownian motion, the law
of the iterated logarithm and Paul Levy's uniform Holder condition. Therefore,
representing a real-valued, separable Gaussian process with stationary increments
by the corresponding function cr2(h), we seek functions/(A) and f(h) for which the
following events have probability 1 :

mt\ n  <■ v \X(t + h)-X(t)\   .  -(0.1) ^'y(w-c''

(0-2) dS       limsup       Ml^MjSCi,
ii_(-i = h-.o;osi.t-gi (2a2(h)f(h))112

where C0, C¿>0; Cx, Ci<oo.
In §1, we consider those functions/(A) and f(h), which naturally depend upon

o2(h), for which the ratios in (0.1) and (0.2) can be bounded below by some C0
and Co > 0. This is done for all processes for which o2(h) is concave in [C, S] for
some 8 > 0. It turns out that in these cases, the Chung-Erdös lemma [1], [2] enables
us to extend techniques usually used with independent random variables.

In §2, we consider the upper bound. Basing our work on a lemma by Fernique [3],
we find functions/(A) and f(h) (not necessarily the same as those used in determin-
ing the lower bound) for which the ratios in (0.1) and (0.2) can be bounded above
by constants Cx, C'x < oo. This is done for all processes that are known to be con-
tinuous (i.e., that satisfy Fernique's requirements).

In §3, we are concerned with those processes for which the functions f(h) and
f(h) that enable us to obtain nonzero lower bounds for (0.1) and (0.2) also enable us
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to obtain noninfinite upper bounds. In other words, we are concerned with those
processes for which we can give the appropriate/(«) and/(n) so that (0.1) and
(0.2) are satisfied with probability 1.

In Theorem 5 regularly varying functions are used. A function is said to be
regularly varying if it can be put in the form xpL(x), p a real number, where
L(x)>0 is slowly varying, i.e., limx^m L(tx)/L(x) = I for any i>0. We obtain the
following theorems where g(log 1/n) is defined as -log o(h) and consequently
l/g'(logl/n) = <7(n)/na'(«):

Theorem 5. Let X(t) be a separable, real-valued Gaussian process with stationary
increments for which a2(h) is concave for h e [0, 8] for some 8 > 0. Assume that l/g'(s)
is a regularly varying function of s such that logs= l/g'(s)g/Si, ß< 1. Then the
probability of event (0.1) is 1 if the function f(h) is taken either as l/g'(log 1/n) or
Kn)]-1^ (*(«)/«)<&.

If l/g'(s) is also monotonie as j->oo, then it need only be bounded above, i.e.,
l/g'(s)eßs,ß<l. Equation (0.1) holds withf(h) replaced by

f*(h) = max (log2 l/n,/(n)).

Theorem 6. With X(t) and a2(h) as above, assume that \¡g'(log l/n) = o(log2 1/n),
(log2 l/n = log (log 1/n)) and a2(h)Sh2a for some a>0. The probability of event (0.1)
is 1 when f(h) = log2 1 /n and C0 = Cx = l.

Theorem 7. With X(t) and a2(h) as above assume that l/g'(log l/«)=o(log 1/n).
The probability of the event (0.2) is 1 whenf(h) = log 1/n and C'o = C'x = l.

Corollary 3. If the restriction on l/g'Qog 1/n) is relaxed to l/g'(log 1/n)
<a log 1/n ia<2), the probability of (0.2) is still 1 when /(n) = log 1/n but now
C'o= 1 while C( = Const (2 — a)'1 (i.e., the upper bound contains the factor (2—a)'1).

These theorems and the corollary provide the following examples of Holder
conditions for Gaussian processes with stationary increments.

o2(h) = h2a (« < 1) f(h) = log2 1/n f(h) = log 1/n
^(A) = »-aww       (0 < y < 1)       f(h) = (log 1/n)1"'       f(h) = log 1/n
o\h) = l/(log 1/«)°    (a > 1) f(h) = log 1/n f(h) = log 1/n.

(Keep in mind that we are concerned only with a2(h) for h e [0, 8] for some 8 > 0.
The existence of these processes will be discussed in §1.)

Many other results related to the theorems mentioned are included in the body
of this paper.

I am deeply indebted to Daniel Ray, under whose direction this work was
initiated, for recognizing that the lemmas of Chung-Erdös and Fernique could be
used to study the local behavior of Gaussian processes and for providing consider-
able assistance as the study progressed. I would also like to thank the referee for
his many helpful comments.
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1. Lower bounds. Lower bounds are obtained for the almost sure Holder
conditions at a point and for the almost sure uniform Holder conditions for a wide
class of separable, real-valued Gaussian processes with stationary increments.

The point of departure of this work is a version of the Borel-Cantelli lemma due
to Chung and Erdös [1] and a lemma by Chung, Erdös and Sirao [2] on Gaussian
random variables. Since we require only simplified versions of these lemmas for
this paper, simpler proofs can be given. For this reason and for the sake of the
completeness of this paper, we shall prove restricted versions of the lemmas cited
as Lemmas 1 and 2.

Lemma 1. Let {B,},j= 1, 2,..., be an infinite collection of events on a probability
measure space such that P(Bj, Bk)=P(B,)P(Bk),j^k. If 2f=i P(B,) = co it follows
that P(Bj infinitely often)=\. (AbbreviatedP(B, i.o.)=l).

Proof. The proof begins with an application of the Schwarz inequality. Let Xi
be the characteristic function of B,, then

It follows that

and

2 p(B,y]2 á [ 2 í(¿í) + 2 w. **)] H ü *,)•

iM = 1—+1
2 P(B,)

For any e>0 we can choose a sequence of integers {nk} such that P((J?=n¿ B,)
^1—£. It follows that for any n we can find an nk=n so that
-P(U;ín£;)^F((J,n=1.í5,)=l-í. Since this is true for any e>0 we get
limbec P({Jj>n B,)=l. Applying the monotone convergence theorem, this lemma
is proved.

Lemma 1 will also be used in the form given in the following corollary. The
proof of this corollary is almost identical to the proof of the lemma.

Corollary 1. Let   ^„ = U"=i-s;,n   and  suppose   that  P(Bj_n, BKn)úP(Bj_n)
P(Bk.n)forjïk. Then ijlim,^ 2"=i P(B,J = oo it follows that lim inf P(3Sn) = 1.

In Lemma 2 we show that certain events associated with negatively correlated
Gaussian random variables have the property that the probability of a joint event
is bounded above by the product of the probabilities of each event.

Lemma 2. Let X and Y be two Gaussian random variables with mean zero such
that E{XY}=0. Then P(XZa, Y^b)^P(XZa)P(Y^b) where a, b^O.
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Proof. The author is grateful to the referee for this simple proof: We can write
Y=Z-cX where Z is independent of A" and c= -E{XY}¡E{X2} = 0. We have

P(X Za,Y^b)â P(X ^a,Z= b + ca) è P(X = a)P(Z ^ b)
¿P(X^ a)P(Y= b)

where the last inequality makes use of the fact that E(Z2)^ E(Y2).
We will now display negatively correlated Gaussian random variables obtained

from certain Gaussian processes with stationary increments. These are the processes
with which we will be concerned in Theorems 1 and 2.

Let X(t) be a real-valued Gaussian process with stationary increments for which
E{X(t)}=0 and E{(X(t))2}«x>. We require that

(1.1) E{(X(t+h)-X(t))2} = o2(h)^0   asn-*0.

Just as in the case when X(t) is stationary, this condition implies that a2(h) is
continuous for all n. (We utilize the additional fact, which is also implied by (1.1),
that £{(A"(i))2} is continuous.) The covariance of X(t) is given by

(1.1a)        T(t, s) = E{X(t)X(s)} = \[E{X(t)2} + E{X(s)2}-o*(\t-s\)}.

Note that (1.1) implies that T(t, s) is continuous in each variable.
Consider a real-valued Gaussian process X(t) for which the function a2(h) is

concave for n e [0, 8] for some S > 0. Nonoverlapping increments of this process are
negatively correlated. To see this, simply compute the following using (1.1a) (the
sequence {tk} -+ 0, also without loss of generality, assume j < k):

2E{(X(tf+1) - X(tf))(X(tk + x) - X(tk))}

-  - [°\tf - tk) - o\tf + x - tk)] + [a\tf -tk + x)- o*(tf + 1-tk + 1)]¿0.

Note that the differences in the arguments of the pairs of terms in the brackets are
both tf+1—tj. Since tf — tk<tj — tk + 1 and because of the concavity of a2(h) the
inequality is obtained.

The question arises of whether there are Gaussian processes with stationary
increments that satisfy (1.1) for a2(h) concave for h e [0, 8]. It is well known (see
[4, Chapter IV, Exercise 13]) that a real, even, continuous function g(u), with
g(0)=l and g(u)->0 as u-+co, which is convex on [0, oo], is a characteristic
function and hence defines a stationary Gaussian process. Let us consider any
continuous, concave function o2(h) defined for h e [0, 8]. As long as o-2(n) is not
identically zero we can choose a 8X small enough so that v2(8x) > 0 and a'(8x) > 0.
Consider the function ^(1 — cr2(n)) for n e [0, 8X]; this is a continuous convex
function on [0, 8X], and it can be extended to an even continuous function T(h)
defined on (-00,00) and convex on [0, 00] such that r(n)->-0 as h -> co. The
function T(h) is the covariance of a stationary Gaussian process. This process
satisfies (1.1) for <x2(n), h e [0, 8X], Furthermore, this process can be used to obtain
nonstationary processes with stationary increments for which (1.1) is also satisfied.
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In other words, to any continuous concave function a2(h) on [0, 8] such that
a(0) = 0, there corresponds a Gaussian process X(t) with stationary increments
such that E{(X(t + h)-X(t))2} = a2(h), h e [0, 8X], 0< 8X ¿ 8.

Let o(h)=e~gilosllh\ The derivative of the function g plays an important role in
the results of this paper. Note that

1/g'Oog 1/A) = a(h)lhc'(h) ̂ 1
because a2(h) concave implies that a(h) is concave.

The following properties also follow from the concavity of a(h) :
Remark 1. At those points where d¡ds[ilg'(s)] exists, djds[\lg'(s)}< l/g'(s).
Remark 2. At the points of discontinuity of i/g'(s), (llg'(s*)- l/g'(s))<0. This

follows because o(e~s)¡e~s is a continuous increasing function in s whereas l/a'(e"s)
is decreasing. Since i¡o-'(e~s) is not necessarily continuous o(e~s)¡e~sa'(e~s) can
have jumps, but they are all negative.

Remark 3. A necessary and sufficient condition that a2(h) log 1/A decreases as
A -*• 0 is that \¡g'(\og 1/A) ¿2 log 1/A.

In Theorem 1 we obtain lower bounds for the Holder condition for Gaussian
processes with stationary increments. Several lower bounds are given ; the first two
are valid for all the processes under consideration. The third is sharper but it holds
only when an additional condition is imposed on the processes.

Theorem 1. Let X(t) be a separable, real-valued Gaussian process with stationary
increments for which E{(X(t + h) — X(t))2} = o2(h) where o2(h) is concave for he [0, S]
for some 8>0. Define g(iog 1/A)= -log a(h). Then

„f.. \X(t + h)-X(t)\      _\      .
P|hmJoUP   (2a2(h)fi(h))x>2   > Cj = l-

i= 1,..., 3, where thefi can be any one of the following functions. (The processes are
subjected to whatever additional conditions are listed. The constants C¡ will be given
in the proof.)

Case l./1(A) = loglogl/A.
Case2. f2(h) = \ßg'(iog\lh).
Case 3.

m - max {log log 1/A' 27(io?T7Â)} if7<kx)
increases monotonocially as x -V oo.

Proof. Consider the event

(X(t + hk)-X(t + hk + x) \
*k   \  (2tr2(hk)Mhk))1'2   >Ci-i;

where hK<8,k-K and hk -*■ 0. By Lemma 2 and the remarks immediately following
it, P(B„ Bk)=P(B,)P(Bk) (j^k^K), and so by Lemma 1, P(Bk i.o.) = 1 if 2P{Bk)
= oo. The proof consists essentially of choosing the sequence {hk} so that 2P(Bk)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



34 M. B. MARCUS [October

diverges. Once this is shown, the remainder of the proof is simple. Each case will be
treated separately.

The proof is trivial and the results uninteresting unless lim infft^0/(n)=co
(/= 1,..., 3). Thus we shall assume that this is the case. Having made this assump-
tion the probability of the event Bk can be bounded below by

(1.2) P(Bk) = (Const -^-)Mhk)y112 exp {- C2, -^-)Mhk)\-

In the first case, whenfxih) = log2 1/n it is easy to show that 2°° P(Bk) = oo. Choose
hk = ek,6<l. Thenfx(h) = logk + log2 I/o and

(1.3) o\ff*)l<r\ff'(l - 6)) í 1/(1 - 6)
because of the concavity of o2(h). For any e>0 we can set Cx¡x = l — e, and by
taking 0 sufficiently close to zero we obtain 2°° P(Pk)=cx>-

In Case 2,/2(n) = l/2g'(log 1/n). It is only necessary to consider those processes
for which lim infuso f2(h) = co. Choose hk as follows:

(1.4) hk = min (h = 8 : l/2g'(log 1/n) = log A:).

This is possible because by Remark 2 the only discontinuities in l/2g'(log 1/n) as
n-*0 are negative jumps. Consider cr2(hk)la2(hk—hk+x). If hk + x<hk/2, this
quantity is less than 2, as can be seen from (1.3). Assuming hk + x^hk/2, we have

¿ exp 2 {log      \ max g'(s)\

^ exp < log K 1
hk-hk+xlogkj

because of (1.4). Also, because of the way that the hk were chosen

logÂ:+l-logA:= At^)
Jioii/h* \2g(s);

(1.5)
S log j-— e log k.

This bound is determined by assuming that Ijg'is) rises as quickly as possible over
the interval of length log hk\hk + 1< 1, since hk=2hk + x and l/2g'(log ljhk) = logk
and d/dsil¡g'is)) < IIg'is) as was shown in Remark 1.

Since lognk/nk + 1g(nJnfc+1- 1) we have

taking logarithms

i 1.6) log r—I— S logk+Const log2 k.
nk — nk + x
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Thus, for any e we can choose a k0 so that

^ - ^ exp(l+CT1(,g2Â:l g *+%      k = K0
o2(hk-hk+x) =     ^ i. log/:

where the value of tx is such that Ci.2 = (l -e)ly/e^(e1+^)~112. F°r this value
ofC1.2,2"P(5fc) = co.

In Case 3 we choose hk as follows :

(1.7) hk = min (A S 8 : /3(A) = log fc).

If log2 l/Ak = logA and log2 I/Afc + 1 = logfc+l, then Afc = (l/e)* and Afc + 1 = (l/e)fc + 1
and ^(A^/o^Afc-A^Oáe/íe-l). If l/2g'(log l/A,) = logA: and l/2g'(log 1/Ak + 1)
= log k + 1, then the analysis used in Case 2 shows that for any ex > 0 we can choose
a kx so that o2(hk)¡a2(hk-hk + x)^e1*cí for &£j^. It should be noted, however, that
because of the nature of/3(A), we need g'(s) to be monotonically decreasing as
s —y oo.

Suppose that 1 /2g'(log 1 ¡hk) = log k and log2 1 \hk + x = log k +1. This implies that
logl/hk^k and hence that hk + x-¿hkle. Thus a2(hk)¡a2(hk-hk + x)¿e¡(e-l) as in
(1.3).

Finally, suppose that log2 l/Afc=logfc and l/2g'(log l/Afc+1) = logÂ:-i-1. As
before, we have no difficulty if hk + x< hk\2. If not, define ak as follows :

ak = min (A ̂  8 : l/2g'(log 1/A) = log*).

Clearly, hk+x¿akShk. Using the concavity of cr2(A), for any ex>0 we can choose a
k2 so that for k^K2

(18) *2(Afc) 2a2(Ate + 1)    ^      2a2fa)      ^2cl+ti
a2(hk-hk + x)      c2iak-hk + x)      <J2(ak-hk + x)

The last inequality follows because a*, and hk + x are the smallest values of A for
which 1 /2g'(log 1 /A) is equal to log k and log k+\ respectively. Thus, we can
use the analysis of Case 2. Since v2(hk)¡o2(hk — hk + x) = 2e1 + ci, for k sufficiently
large, regardless of how hk is chosen, we obtain 2°° P(Bk) = oo for C1>3
=(1 — e)l(2e)112 for any e>0. (The number e depends on ex as in Case 2.)

In each of the cases considered we have shown that the series 2" P(Bk) diverges
for an appropriate choice of CXyi, /= 1,..., 3. We now complete the proof of this
theorem. Since P(Bk i.o.)= 1, there exists a subsequence of the hk for which

X(t + hk)-X(t+hk + x)^
(2o2(hk)f(hk)r2   = Cii-

Therefore, either
(1 9) \X(t + hk)-X(t)\
K   ' (2a2(hk)Mk)y'2 = Cl-i/z

or
n im \X(t+hk + x)-X(t)\
(L10) (2a2(Afc)/(Ate))1'2    = Q-i/2-
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Inequality (1.10) implies

fl m \x(t+hk+x)-x(t)\ ^      it_2_\
(lAl) (2o2(hk + 1)fi(hk + x))1'2 = Cl-V T   kiogk)

Since either (1.9) or (1.11) holds infinitely often, the theorem is proved. The
constants C¡ are effectively CXJ2 since the e's can be altered to accommodate the
last term in (1.11).

We now turn to the lower bound for the uniform Holder condition. This is much
easier to obtain than the Holder condition at a point and presents no surprises
since the results are the same as for the Brownian motion.

Theorem 2. Let X(t) be a separable, real-valued Gaussian process with stationary
increments for which E{(X(t + h)— X(t))2} = a2(h) where o2(h) is concave for he [0,8]
for some 8 > 0, o2(h) -*> 0 as A -*■ 0. Then

pi y \X(t)-X(t')\ \ _
r\t-r\2St$3hrsi (^(h)(2iog l/A + clog2 1/A))1'2 >lfm'1

where c < — 1 (see [5]).

Proof. It will suffice if we show that

PÍ Hmsup       mUm-X[((j-l)ln)8]\ A
\.™«iS. (o2(8ln)(2 log n¡8 + c log2 n¡8))112      lj      *"

Notice that we restrict ourselves to the region where the covariance is convex.
Define

Bun =      X xUs\-X(^— S\ > (o2(8ln)(2 logn¡8 + c log2 n/8))11'-

Since the process has stationary increments, the sets B,n have the same probability
measure for y'= 1,2,...,«. P(Bjn, Bkn)ikP(Bj,n)P(Bkn) because of the concavity
of tj2(h). Thus we can use Corollary 1 which says that the event Bn = \Jn=x B,n is
realized infinitely often with probability 1 if limn-0O nP(Bjn) = co. This limit is
infinite since for n sufficiently large

nP^ * (2 log nl8C+°Xg2 nß)1'2 ̂  <to* n'^ n'8 + ̂  lo^ n^

and c< — \ while 8 remains fixed. The fact that P(Bn i.o.)= 1 provides a proof of
this theorem. Actually we know more because Corollary 1 asserts that
liminfn^0OF(5n) = l.

An immediate corollary of this theorem is Belyaev's [6] result on a sufficient
condition for a Gaussian process with stationary increments to have discontinuous
sample paths. (Belyaev obtained the result for stationary processes; however, the
extension is trivial.)

Corollary 2. Let  X(t) be a separable, real-valued Gaussian process with
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stationary increments for which E{(X(t+h) — X(t))2} = o2(h), where a2(h) is concave
for A 6 [0, 8] for some 8>0, o-2(0)=0. Then a sufficient condition that almost all
sample paths of X(t) are discontinuous in all intervals is that a2(A)äC/|log |A| |
for some C>0.

We end this section by mentioning that the work of the author in [7] can be used
to extend the results of Theorem 2 to a larger class of processes than those for
which o-2(A) is concave.

2. Upper bounds. Upper bounds, first for the almost sure Holder conditions
at a point and then for the almost sure uniform Holder conditions for continuous,
separable, real-valued Gaussian processes with stationary increments, will be
determined.

The major tool used in this section is the following lemma due to X. Fernique [3].

Lemma 4. Let Y(t) be a continuous, separable, real-valued Gaussian process on
[0, 1] with zero mean and continuous covariance T(t, s). Suppose that

E{(Y(t)-Y(s))2}<a2(\t-s\)

and that a(h) is positive and increasing in h for h = 0. Then for all positive integers n
and all xä(l +4 log n)112, we have

p{\\ y||. Z x((\\r\\„)ll2 + 4 f o-(n-"2)du)X ¿ 4n2 r e"*2'2 du.

|| „o is the sup norm.
We proceed to Theorem 3.

Theorem 3. Let X(t) be a separable, real-valued Gaussian process with stationary
increments. Let E{(X(t) — X(s))2} = o2(\ t — s |) where tx(h) is positive and increasing in
A, A = 0. Assume further that |°° o(e~x2) dx converges. Then

_/.. \X(t+h)-X(t)\      _\      ,

/=1,...,3, C=(l+£)(12)1'2 and /(A) can be any of the following functions. (The
processes are subjected to whatever additional conditions are listed.)

Case 1.

/(A) = max (log2 1/A, max -^ f ^ du)
\ tsisi o(t) Jo    U        ]

as long as

-^ du < oo.Jo   u
Case 2.

/2(A) = max(log2l/A,¿£^
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ifo(h) is concave for h e [0, 8] for some 8 > 0 and

f * CT(") A-^-du < co.
Jo    "

Case 3.

/3(A) = max (log 1/A, max {^ f" a(e"*2) dx}\
\ Kits:   lo(t) Jaiogim112 J   /

Proof. Note that the convergence of J" °(e~x2) dx is a sufficient condition that
the associated Gaussian process has continuous sample paths [3]. In Cases 1 and 2,
it is required that |0 (a(u)¡u) du=2 J"ogl/()i'2 xa(e~x2) dx converges. Thus, the
Gaussian processes for which these integrals converge also have continuous
sample paths. Cases 1 and 2 provide the more interesting results since for many
processes log2 l//á(2/o-(r)) j"0 (a(u)¡u) du¿log l¡t. Furthermore, for many values
of o(t), (l¡o(t))yo(o(u)lu)du is asymptotic to l/g'(log 1/i), the function that
appeared in the results for the lower bound.

We begin the proof by rewriting Fernique's lemma so that the supremum is taken
over [0, tk] rather than [0, 1]. Define

y(0 = X(ttk + t0)-X(t0),       0=t=l

Then Y(t) is a continuous Gaussian process on [0, 1]

E{\Y(t)-Y(s)\2}=a2(\t-s\tk)

and
E{Y(t)Y(s)} = T(t,s) S [E{Y(t)2}E{Y(s)2}]112

= {*2(»*MO}1/2 = °\tk),       0 á s, t á 1.

Define the set of paths Bk as follows :

(2.1) Bk = fX\  sup  \X(t+t0)-X(t0)\ i Cx(2^(tk)fi(tk))ll2\.
I      I 0£tgtk J

By Lemma 4

P(Bk) ^ An2 f e~v2l2du
Jy

where

(2.2) y = C1(2/(/fc))i'2{l +-£-) J" *(n-"%) duj''

providing that y is greater than (1 + 4 log n)112. As we shall see, y -*■ oo as tk ->■ 0.
Thus

(2.3) W S 4exp{21,8n-(1+4MJ|^,„)d[|y}.
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Our object is to show that 2P(Bk)<00 (ana< then to use the Borel-Cantelli
lemma). To do this we choose a sequence tk -*■ 0, and then for each tk we choose n
so that either log n and f(tk) are approximately equal, or f(tk) is greater than log n.
We show that for this choice of log n the denominator on the right in (2.3) can be
bounded above by a constant, uniformly for all tk. Then by choosing Cx large
enough the term on the right in (2.3) will dominate the 2 log n term. Finally, we
show that 2W P(Bk) converges.

We will now prove Case 1. The sequence tk is chosen as follows: starting with
some value t0, which may be as small as we wish, define tk by the equation a(tk)
= 6o(tk-x), 6<i. This is possible since a(h) -h>- 0 as A -> 0. For a given value of tk
define « as follows :

"Mar;**}]*'
where [   ] indicates integral part. Note that logx^log([x] + l)glogx+l, x=\.
Thus

(2.5) -F7\\    -^-du^iogn^-T-r]    -±-±du+\.°(tk)Jo     u °       c(tk)Jo    u
Since

4    f"       _u2 2 |V» g(i>) <fo
oía)Ji  *"     ''"'"'""aíaiog/z)1'2^    «flog 1/r-log I/O1'2

(2-6) <  2 r°Mdv,a(tk) log n Jo       V

we see that the last term in (2.6) is bounded above by 1. If we choose
C^(l +e)(12)1;2 for some e>0, we obtain

(2.7) P(Bk) g Const exp (-(1 +e)fx(tk)) S exp (-(1 +.) log2 l/ifc).

Note that y as defined in (2.2) is greater than (1 +4 log n)1'2.
Recall that the function <r2(A) is such that E{(X(t + h)- X(t))2} = o2(h), where

X(t) is a real-valued Gaussian process with stationary increments for which (1.1)
holds. Since a(h) > 0 for A > 0, there exists a 8 > 0 such that for A e [0, 8], a(h) >h1+n
for any i\ > 0. The proof of this fact is the same as in the stationary case. Therefore
tk*v <o(tk) = 8Ko(to). Using this inequality in (2.7) we see that 2°° P(Bk) converges.

It is significant to note that this is the only place in which it is required that <r2(A)
be the incremental covariance of a Gaussian process with stationary increments.
Fernique's lemma requires only that £{(A'(i-i-A)-A'(/))2}^tT2(A) where a(h) is
increasing in A^0. Therefore, we can replace the equality in the statement of this
theorem with the inequality for o(h) increasing as AS 0 increases if we add the con-
dition that o(t)> t1*" for t in some [0, 8] interval. This would be the case if o-(A) is
concave, or if it is the incremental covariance of some other Gaussian process with
stationary increments.
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By the Borel-Cantelli lemma, we know that except for a set of paths of measure
zero, to each path X we can associate an integer AT. A") such that for all k=K(X),

(2M sun   \nt + h)-X(t)\
osh£tk (2o\tk)jx(tk)y"

Thus

tJ1ïï£tk(2o-2(tk + x)fx(tk))1i2 K 0^

Since /x(h) increases monotonically as h -> 0,

(2 9) sud     W + *)-*(OI   . lc(2'9) h+SS«*   (2a2(A)A(A))   <eCl-

Since (2.9) holds for all k^K(X), the theorem is proved for Case 1. Taking 0 close
to 1 and choosing some new value of c>0, we obtain d(l +e)(12)1/2 for this case.

In proving Case 2, we utilize the concavity of <?2(A). The sequence tk is defined by
tk = 8"t0 where 0 < 1 and t0 may be taken as small as we wish. Notice that the proof
in this case is identical to the proof of Case 1 up to (2.8). The choice of n, which is
the key step, depends on tk but it does not matter how tk is chosen. In order to
proceed from (2.8) to (2.9) for/2(A) it suffices to show that

(2.10) min    a2(A)/2(A) > 0a2(tk)f2(tk)

and to show this all we need to do is to obtain (2.10) when/2(A) = log2 1/A and when
f2(h) = (l¡o(h)) fo (a(u)¡u) du. Those cases when both log2 1/A and

(lKh))Ço(a(u)lu)du

contribute to/2(A) for tk+x^h¿tk are encompassed by these two cases. We see
that

min    a2(A) log2 1/A £ <r\tk + 1) log2 l//fc ^ MW log2 l/rfc

since a2(0tk)>0a2(tk). Also

min    ct(A)      -^-du = o(tk + x) \       -^ du
. Í**1ÍW* Jo     ti Jo tt

K'*)Jo    «        ^fo)Jík+1  «     J

The last term in the brackets in (2.11) can be bounded above by (1 — 8)10. Since the
first term -* oo as tk -> 0 we obtain (2.10). Thus, the theorem is proved in Case 2.
The constant C remains the same.
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For Case 3, starting with some small value of t0 define tk = 0o(tk_x), 6<i. For a
fixed value of tk set n=[i¡tk] + i. Then log l/í^lognálog 1/^+1. Notice that

-4-, n °(n~u2tk) du S n-lí^/a /  ^ f" <e~x2) dx-°(tk)Ji     V (log l/r^'M'*) Ja tor i/«l/a

Therefore, analogous to (2.3)

_CtfiiQ log 1/4_P(Bk) g Const exp 2 log l/ffc-
{(logl/ík)1,2 + ̂  f o(e-**)dx

Thus, we can obtain P(Bk)¿Const exp {-(1+e) log 1/iJ for any e>0, and
2" P(Bk) <oo. Since/3(A) increases monotonically, the remainder of the proof of
this case is identical to the proof of Case 1. This finishes the proof of the theorem.

We now turn our attention to uniform Holder conditions. The proof of the next
theorem follows the proof of P. Levy's Holder condition for the Brownian motion
which appears in his book L'addition des variables aléatoires, [8, p. 164]. However,
at two points the increased generality of the class of functions cr2(A) requires
additional work. In the first case, Fernique's lemma is used and in the second, we
impose an asymptotic bound on l/g'(log i I h).

Theorem 4. Let X(t) be a real-valued, continuous, separable Gaussian process.
Assume that E{(X(t+h) —X(t))2}^a2(h); o2(h) is assumed to be concave in [0, 8]
for some S>0. Assume also that l/g'(log l/A) = o(log 1/A). Then

.. \X(t)-X(t')\    ^ ,
%-j5mt,Si(2*2(h)iogiihr2=l

for any e > 0.

Proof. As a first step we use the Borel-Cantelli lemma to show that, except for a
set of paths of measure zero, for each path X there exists an integer P so that for all
PZP,
(2.12) \X(ql2* + t)-X(ql2>)\ < Cx(2o2(t) log 1/i)1'2

for \t-ql2p\¿2-p and all q=0, 1, 2,..., 2p-\ with d = l + e/2, e>0. Define the
following set of paths :

Bp = < X | For at least one q e Q(p), keJ;
(2.13) l I    / \        /   M

0supfc | x\£ + t)-X\±) I = C2(2o*(tk) log 1/4)1'2

where Q(p) = 1, 2,..., 2" -1, / is the positive integers including 0, C2 = 1 + e/4 and
tk=2-pek,e<i.

Let us choose a t' sufficiently small so that \lg'(iog 1/?)<<* log 1/r for t<t',
where a is a small positive number.
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We shall see that 5P is dependent on a(i) only for values of t=2~v. Thus let us
choose an integer P0 so that for p^P0, 2~v< t'. We shall restrict ourselves to sets
Bp for p^P0, that is, to sets which depend on <r2(i) for values of t for
which l/g'(log 1/i) <« log 1/i.

P{BP} = 2>% PIX I  sup |AXO- A"(0)| â C2i2o*itk) log \¡ttf"\.
k=o   X    I "S'stit J

From (2.1) we see that

(2.14) PfX I  sup |jr(r)-*(0)| ä C2(2cr2(ífc) log lltk)ll2X = 4n2 f" e"«2'2^

where

(2.15) y = C2(2 log l//fc)1/2/(l+^ J" <*«-"%) <b)

and n is an integer greater than zero such that logn<2_1 log \jtk. Inequality
(2.14) is strengthened if we replace y by (see Eq. 2.6)

Note that tk¿t0=2~". Thus by our previous remarks we can assume that
l/g'(log 1/0 <a log 1/i. We have

1     f <* o(u) , 1    Ç*t a(u)   , , .
<K'k) Jo     « <K'k) Jo  uo (u)

= TTï        alog-rfa(u) = a log - +-r-r        -^ du.
<K'fc) Jo « 'k    <*('*) Jo      W

Therefore,

«    , ^ 1 f*   CT(")    J        ̂  « 1 1(2.16) -7-T       -^-dui -.-log —
°itk)Jo     « l-a    °tk

Let n = [(l/ífc)va]+l, then y/a log l/?fc^logn^V« log l/ífc+l. We then obtain
as an upper bound for (2.14)

(2.17) 4 exp {2V«(log ̂ +1)-[l+%^\tW}

Since C2= 1 + e/4, we see that for a small enough, (2.17) can be bounded above by
exp{—c2logl/tk} where c=l + £' for some sufficiently small e'>0. Therefore,
since tk=2-"0'c,

P{BP} = 2" 2 exp {-c2 log l/ifc} = -¿^ 2 (F*)" = Const 5¿TF
fc=0 z fc = 0 -¿

Since 2" P(-ßP)<°o, by the Borel-Cantelli lemma P{5„ infinitely often}=0.
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We have shown that with the exception of a set of paths of probability zero,
for each path X there exists an integer P, so that for p S P the following inequality
is satisfied for all q e Q(p) and keJ:

(2.18) sup   \X(ql2p + t)-X(ql2")\<Cxd(2o2(tk)iog\ltk)X!2

where we choose 8 large enough so that CX8>C2. Notice that since a(t) is concave,
a(at)>aa(t) for 0<ß<l. Thus a(tk + x) = a(2-p8k + 1)> 8a(2-p8k)=8a(tk), and

sup X(Í + t)~X(v)\ < c»C2^('*+i)lot■!//»).
Therefore

x(± + t)-x(±)\<Cx(2o2(t)iog\)112, ffc+i ¿ t = **

Since this holds for all k we have the desired result (Eq. (2.12)) if the supremum is
taken over t-ql2">0. However, we can repeat the proof for t-q¡2p negative, thus
establishing (2.12).

The second step of this proof consists of another application of the Borel-
Cantelli lemma. Given a small number b > 0, we show that, with the exception of a
set of paths of measure zero, for each path X there exists an integer Px such that
for all p^Px and for all q e Q(p) and v= 1, 2,..., [2">]:

<-»      H^M*)|<«Ms)*r
where C3=l+e/2.

The probability of the reverse of the inequality in (2.19) for at least one q e Q(p),
and one value of v= 1, 2,..., [2""] is bounded above by (for ease of notation set
Cs = c),

[2*»J    „C2

2p2¿< (2p6) 1 1
¿- 2pc2 2p(c2_1)     2P(C*(1~W-(1+M)

For b = e/2 this is a term of a convergent series in p and thus the second step is
completed.

We are now ready to complete the theorem by extending (2.12) from the rational
numbers to all pairs of real numbers t and t ' providing that they are sufficiently
close. Again we make use of the bound on the asymptotic behavior of l/g'(log 1/i)
by choosing a t" so that for f¿t", l/g'(l°g 1/0<ß l°g l/f f°r a small value of ß
which we shall determine below. Once this value of ß is determined we choose a F2
so that forp=P2, 2-p<1-t"</\

Notice that for a given path X (again excepting a set of measure zero) there are
many conditions on the lower bound of the integers p, imposed both by the bounds
on l/g'(log 1/0 and by the applications of the Borel-Cantelli lemmas. Nevertheless,
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for each X we can find a sufficiently large integer P' so that forp^P' all the con-
ditions are satisfied. Suppose that we have selected such a path X and the corre-
sponding P'. We then choose a /' and / (where without loss of generality we may
assume that t'>t) such that the following inequality is satisfied, p=P':

(2.20) [2p6]/2p + 1 < t'-t £  [2pi,]/2p.

Determine q, q', tx, t'x by the conditions

(2.21) £<,*,,.*+!<*-£*,'<!£!.

We write

(2.22)    \X(t')-X(t)\ = \X(t')-X(t'x)\ + \X(t'x)-X(tx)\ + \X(tx)-X(t)\.
Since q'-(q + l)è [2pí,]/2p we obtain from (2.19) that the second term on the right
in (2.22) is bounded by

(2,3) „^(^i^ll)),^) 1/2

with probability 1. From (2.12) we see that the first and third terms are bounded
above by

(2.24) (1 + el2)(2a2(2-p) log 2")112.

Here we make use of the fact that l/g'(log 1/A) = 2 log 1/A implies that <x2(A) log 1/A
increases monotonically as A increases. Finally we show that

(2.25) (1 +£/2)(2a2(l/2p) log 2")1'2 < e/s(2a2(g'~^+1)) logg,_^ + J"'-

From (2.20) and (2.21) we see that

(2.26) 2vbl4<iq'-(q+l) = 2*b.

Thus

<r2(l/2p)log2p = a2(l/2p)[l0g^_(2gP+1) + l0g(g'-(g+l))]

= 2°2«I2^7^TT)'

because by (2.26) 2pl2>q'-(q+ 1). (Keep in mind that b is taken to be very small
and p large.) Next we assert that ct2(1/2p) < e¡20cr2((q'-(q + 1))/2P). Since

(q'-(q+l))l2" = l/4-2p(1-6),

it suffices to show that

(197) <Kl/2")        <    4a(l/2p)
*•   ¿l) aa(l/2p(1-w))       a(l/2p(1-b))        '
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We have

q(l/2") fi'»"-V(K)        r1'2"1"6'_a«_        T/0,f    „    „,

because l/f'(l°g 1 /«) = ct(m)/mct'(m) ^ y8 log \ju. Thus

This can be made to satisfy (2.27) for ß sufficiently small.
By the monotonicity of a2(h) log 1/A we see that (2.22) is bounded by

(l + e)(MA)logl/A)1,a<       h = t'-t

with probability 1. Since this bound holds for all e>0 the theorem is proved.
The requirement that l/g'(l°g 1/O = °(log 1/0 was used so that the constant in

the theorem could be taken to be 1. We could relax the condition on l/g'(k>g 1//) to
make it less than ß log \¡t, for some ß< 1, and still obtain the results of the theorem
except that the constant could be quite large. (It is a function of (i-ß)'1.) The
requirement that ß must be less than 1 is imposed in (2.16).

3. Relations between upper and lower Holder conditions. In the previous sec-
tions, upper and lower bounds were obtained for the Holder conditions of Gaussian
processes with stationary increments. In this section we shall single out those
processes for which the bounds differ by a constant. That is, if we set

E{(X(t+h)-X(t))2} = o\h),

we seek those processes for which the Holder conditions can be expressed in the
following form:
n n r   <- y \X(t + h)-X(t)\    .  -(3.1) C0 g hm_sup '¿^/(A))1'2■'* Cl

and

(3-2) Co Ú       lim sup        Jffi?l~'yi(/2L = Cxit-n = *-.o¡o5t.t'si (2o2(h) log 1/A)1'2

where/(A) is some function dependent upon a2(A) and C0, C0, Cx, C'x are constants
greater than zero. For some processes C0, C0 and Cx, C'x can be taken to be equal
to 1.

We begin with the Holder conditions at a point. The results on the lower bound
restrict us to those processes for which ct2(A) is concave for A e [0, 8] for some
8 > 0. Referring to Theorem 1, the bound /2(A) will be of most interest to us,
whereas /2(A) of Theorem 3 will be used, in most cases, to obtain the upper bound
(we shall denote this as/2(A) to avoid confusion). Therefore, the problem is to seek
those values of ct2(A) for which

(3.3) \lg'(iog 1/A) è Const JL £ °M du.
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Recall that the conditions of Theorems 1 and 3 limit our attention to those cases
where j"£ (°(u)¡u) du<œ and where 1 /g'('og 1 /A) is at least as large as log2 1 /A.

The functions in (3.3) are related as follows

(3.4) ¿r^.r   i   ^
o-(A)Jo    u Jo g (log 1 lu)   o-(A)

Thus/2(A) is an averaging of/2(A). Clearly,

(3.5) min -L f^ éu i inf l/g'(log 1/A).

Also, if/2(A) is bounded above by certain smooth functions, so is/2(A), as the follow-
ing lemma demonstrates :

Lemma 5. Suppose l/g'(log l/A)^a(log 1/A)r, 0<r^l. Then

cjh) r ? du * l-(ar/(logl/A)^0 "^ W
where a< 1 if r=l.

Proof. The proof follows from the inequality l/g'(h>g 1/m) = o-(m)/h</(")
= a(logl¡u)7.

We next show that/2(A) and/2(A) have the same average value in the following
sense: Make a scale change by setting j=log 1/A so tnat f2(h)= I ¡g'(s) and/2(A)
=F(í) = é?9<s) js°° e-giu) du. We have now Lemma 6.

Lemma 6. Let i=log 1/w and llg'(s)¿as7, 0<r=l with a<\ if r~l. Then for
sufficiently large N

lé^fg'(s)F(s)ds=l+J^-r-

Proof. Note that F'(s)=g'(s)F(s)- 1 ; Lemma 5 is also used.
It is difficult to say any more on the relationship between (l/o-(A)) jo (o(u)lu) du

and l/g'(log 1/A) without restricting the behavior of l/g'(log 1/A). Examples of
concave ct2(A) functions can be found for which l/g'(log 1/A) oscillates very strongly.
Even requiring that l/g'(log 1/A) is monotonically increasing does not insure that a
constant C can be found such that (1/ct(A)) jo <j(u)¡u du= Cl/g'(log 1/A). However,
we can obtain such a relationship if we require that l/g'0og 1/A) is sufficiently
smooth. Writing l/g'(s) where i=log 1/A, our criterion of smoothness is that
l/g'is) is a regularly varying function.

A function/(x) is said to be regularly varying [9], [10] if it can be put in the
form xpL(x) where (L(x)>0) is slowly varying, i.e., limx^x L(tx)/L(x) = l for any
i>0. Requiring that l/g'(s) is regularly varying means that it has the form s7L(s),
O^r^ 1. As in Lemma 5, care must be taken when r = 1. In this case lim sups_ „ 7(i)
<1.
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Lemma 7. Let i¡g'(s) be a regularly varying function with exponent O^r^ 1.
Case 1. Ifr< 1, g'(s)F(s)~i (i.e., lim,.. g'(s)F(s) = i).
Case 2. Define x$(a) = exp {-(g(as)-g(s))}, a>i. When r<\, lims^œ Xs(a)=0.

If lim^*, Xs(a)=x(a) then

Care 3. Ifilg'(s)<ßs, ß< 1, íA<?«/or any e>0, a> 1

(3.5a) 0-«) S ?'(í)f (*) = a(l +0/(1 -o1-1")
/or s sufficiently ¡arge.

Proof. If \¡g'(s)=sTL(s), then ^(j)=j1_rZ(j), where L is some other slowly
varying function. Thus, for a > 1

(3.6) g(as)-g(s) = s'-'KasW-'-UsyUas)].

For any a > 1 and s sufficiently large, the term in the brackets is positive. Thus, as
long as r< 1, Xs(a) -* 0. When r= 1, g(s) itself is slowly varying and x¡(a) need not
have a limit. However, in many cases it does, e.g., if g(s)=a log s. Note that when
Xs(a) does not have a limit we can still make use of the bound on \lg'(s) in Case 3
to bound Xs(a) above by a~lie.

We write

g'(s)F(s) = g'(i>"(s' F e-"<u)i/H

= -<?'<s> r^-¡¿<r9(u, + ag'(í)<?9(s) f" Xu(a)e-J(u) du.
Js    S \U) Js

Consider g'(s)lg'(u) for s^u^as. This is equal to (uls)'L(u)IL(s)^ar(l +e) since
if we write u = bs, L(bs)/L(s) -*■ 1 uniformly. (This is a fact about slowly varying
functions.) When xs(a) -*■ xi.a)

g'(s)F(s) ~ a'(l-x(a)) + aX(a)^'(í)ní)-

This gives Case 2, and Case 1 when r < 1 since x(d)=0. Case 3 is easily obtained by
substituting the upper bound for Xs(a)- For a given value of ß, (3.5a) can be mini-
mized with respect to a.

The conditions imposed in Lemma 6 can be used to describe the function g (s).
If l¡g'(s)=sTL(s), then g'(s)=L(s)lsT (L(s)= 1/L(s) is a slowly varying function).
Therefore, g(s) can be written in the following form [10, p. 274],

(3.7) g(s) = Const sx ~r exp { f ^ *}»       *(0 -*■ 0.

Furthermore, the fact that o-(A) = exp {-g(log 1/A)} is concave for A sufficiently
small necessitates that e'(t)<\—r in those cases when r<l. When r=l other
conditions are added; they can be easily obtained from (3.7). In Case 2 the
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requirement that lims^œ Xs(ß) = x(a)>0 implies that e~gis) = (llsa)L(s) and the re-
quirement that 1 ¡g'(s ) < s implies that a > 1. Note that this requirement is consistent
with Corollary 2.

The following lemma displays another class of processes for which a statement
like (3.1) can be obtained.

Lemma 8. Suppose llg'Qog l/A)galog 1/A(a<l) and that l/g'00 is concave in
s (j=log 1/A), for s sufficiently large, then

ct(A)J0    u -ag'

iasfo
large í d¡ds(l¡g'(s)) = a. Thus

1
(log 1/A)

Proof. Since ljg'(s)Sas for a< 1 and l¡g'(s) is concave in 5, then for sufficiently

_Lrzw^ = j_r e-„dv =_i_
ct(A)J0    u <K»)Jio»i/ft g'Qogl/h)

from which the proof of the lemma follows.
The following theorem summarizes the above results.

Theorem 5. Let X(t) be a separable, real-valued Gaussian process with stationary
increments for which E{(X(t + h) — X(t))2} = a2(h), where o2(h) is concave for
A e [0, 8] for some 8 > 0. Define g(log 1 /A) = - log o-(A) and assume that 1 lg'(s) is a
regularly varying function of s such that logia l/g'(s)^ßs, ß< 1. TAen with
probability 1

\X(t + h)-X(t)\
Ï-.Y*'   (2a\h)f(h)y(3.8) c0 s um sup  (n¡ 2     f(kv.xl2   S Ci.

Co > 0, Cx < oo, but not necessarily the same for each process. The function j"(h) can be
either l/g'(log 1/A) or (l/a(A)) ft (o(u)¡u) du.

If l ¡g'(s) is also monotone as s-+oo, then it need only be bounded above, i.e.,
l/g'(s)Sßs, ß< 1. Equation (3.8) holds withf(h) replaced by

f*(h) = max (log2 11h,f(h)).

Proof. The proof is obtained from Lemma 7 and the preceding remarks, except
for the last part which follows from Case 3, in Theorem 1.

Finally, all the results above required that jo (o(u)¡u) du < co. However, as we
have stated, there are processes with continuous paths for which this integral
diverges. The following lemma applies to some of these processes.

Lemma 9. Suppose l/g'(k>g l/A)</3 log 1/A, ß<2. Then

[1    r , _X2,, l2     Const log 1/A
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Proof. The proof is similar to that in Lemma 5.
Theorem 5 and Lemma 9 give rise to the following examples:

°(h) = exp ( - a log2 1 /A) = 1 /(log 1 /A)»       (a > \),
o(h) = exp(-a(log l/A)Mlog2 1/A)"»- ■ -(log, 1/A)'«).

(0<yi<l),  y2, y3, ...,yn   are   arbitrary   real   numbers.   The   corresponding
1 ¡g'(\og 1 /A) functions are,

l/g'(log 1/A) = dog l/A)/a
and

(log 1/A)1 -
(3.10)   g'(\og 1/A)     ayi(log2 l/A)"Klog3 l/h)»■ • -(log, I/A)'»

+ terms asymptotically small compared to the first term.

Additional examples can be obtained from using the remarks following Lemma 7
and from Theorem 6.

We have not been overly concerned with the values of the constants C0 and Cx
in (3.1) because, although they can be sharpened in many cases, it seemed un-
important to do so unless they could be made to be equal. There are instances
however, when this is possible. If l/g'(k>g l/A) = o(log2 1/A), it follows that
(1/ct(í)) J¿ tj(ú)¡u du does also. This implies that the function /2(A) that appears in
Theorem 3 is log2 1 /A. Tracing through the steps of the proof of Theorem 3 we can
improve upon the constant to obtain

For the lower bound, Case 1 of Theorem 1 applies

(3.12) P^tlt*^^ * I-Vila} = I-I   (2o-2(Ak) log2 1/Afc)1'2 v        J

Simply by applying the triangle inequality in (3.12), we can obtain C0 = 1/2 in (3.1).
However, in order to obtain C0= 1 we must add the restriction that o2(h)=h2a for
some a>0. (By "must" we do not mean mathematical necessity. It is simply that
the author needs this restriction in order to complete the proof. It seems that one
ought to be able to argue probabilistically that (3.12) implies the same result with
hk + x replaced by 0, at least for an infinite number of &'s.)

If we choose o2(hk) = 8k we see that

(\X(t + hk)-X(t + hk + x)\
r\   (2a2(A,)log2l/A,)1'2    e'-V*

(3.13)
.     const r (i-yg)2,    ... \
^(iog2i/Ao-exp{—i^rl0g2l//4
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because the concavity of o-2 implies that o2(hk — hk + x)~=a2(hk) — o2(hk + x). Since
a2(h)^h2tt, then for some a>0, hk^.0kl2a. Thus, (3.13) is a term of a divergent
series. By the Chung-Erdös lemma and the triangle inequality, we have for each
path X (with the possible exception of a set of paths of measure zero) the following
inequality for an infinite number of Afc's :

\X(t+hk)-X(t)\ è (l-V^Wlogl/A^-lAXi + A^-AXOI-
Also, again excepting a set of paths of measure zero, for each path A" above and for
any e>0 we can find a sufficiently small k' such that the following holds by (3.11)
for each of the above Ak's, as long as k=k':

\X(t + hk)-X(t)\ Z (1 - VWMWloga l/Afc)1/2-(l +002(Aic + 1)log2 l/Afc + 1)1/2.

Note that hk^ 0kt2a and also since ct2(A) is the incremental covariance of a stationary
Gaussian process hl¿a2(hk) = 8k. These observations show that log2 1/Ak + 1
^ Const log2 1 ¡hk. Thus, since o2(hk) = 0k we can find a 0O, sufficiently small, so that
for all 0< 0^00,

\X(t+hk)-X(t)\ ^ (l-2V8)(2o*(hk)log2 1/A,)1'2.

We have proved the following theorem:

Theorem 6. Let X(t) be a separable, real-valued Gaussian process, with stationary
increments for which E{(X(t+h) — X(t))2} = o2(h), where a2(h) is concave for
A e [0, 8] for some 8>0. Let l Ig'(log l/A) = o(log2 1/A) and a2(h)^h2a for some
cs>0. TAen

_/,. \X(t+h)-X(t)\       ,\     ,

We shall now consider uniform Holder conditions. From Theorems 2 and 4, we
have the following:

Theorem 7. Let X(t) be a separable, real-valued Gaussian process with stationary
increments. Let E{(X(t+h) — X(t))2} = a2(h), where o-2(A) is concave for A e [0, 8] for
some S>0. Assume also that l/g'(log l/A) = o(log 1/A). FAen

Dr    r |a-(o-a-(oi      \
%-r.isau, (¿m iogi/Ap " 7 ■L

for any e > 0.

If we compare Theorem 7 to Theorem 5, taking account of (3.9) and (3.10), we
see that the uniform Holder condition of the processes that we are considering has
the same form as Levy's uniform Holder condition for Brownian motion. However,
in our results on the local Holder condition, other functions besides the iterated
logarithm are introduced.

We now extend (3.2) to those processes for which C0 = CX= 1 are replaced by
constants dependent on ^(h). By Theorem 2, 1 is always a lower bound. Examining
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the proof of Theorem 4 and using Lemma 9, we can obtain the following corollary
to Theorem 7:

Corollary 3. Let X(t) be a separable, stationary, Gaussian process for which
a2(h) is concave in [0, 8] for some S>0. Assume also that l/g'(log l/A)<alog 1/A
(a<2); then the following event has probability 1.

(3.14) 1 g        lim sup        Jf//?,~^(/lu;2 = Const i^—\ií-ri=ft-.o;ogí.!'gi (2tr2(A)log 1/A)1'2 \2-a)

In some cases the constant on the left can also be increased. In proving this we
use the more general form of the Chung-Erdös lemma (i.e., 2,*kP(Bj, Bk)-¿
2j*kP(Bj)P(Bk)j,k=i,...,n) instead of P(B„ Bk) = P(B,)P(Bk) and take the
increments X(t+tk) — X(t + tk+x) so that they overlap in time (i.e., tk>tk+2
>tk + x>tk+3). This remains to be studied further.

The bound l/g'(l°I l/A)<alog 1/A(a<2) was used to bound the integrals in
Fernique's lemma. However, an essential part of the proof of Theorem 7 and
Corollary 3 is that <r2(A) log 1/A is monotonically increasing in A. This condition is
equivalent to l/g'(l°g 1/A)¿2 log 1/A. Thus, even if Fernique's lemma could be
sharpened, or if a better bound for the integrals could be found, it could not be
incorporated into our proof so as to extend Corollary 3 (except perhaps to replace
a<2 by ag2).

If ct2(A) is concave, then l/g'(l°g 1/A)=2 log 1/A is a sufficient condition that the
corresponding Gaussian process has discontinuous sample paths (see Corollary 2).
Thus, for continuous processes, if l/g'(l°g 1/A) exceeds 2 log 1/A it must be less than
this value also. As we remarked above, l/g'(l°g 1/A) can oscillate very strongly. In
fact, we can find a concave <x2(A) corresponding to a continuous Gaussian process,
for which l/g'(l°g 1/AO has discontinuities at a sequence hk -> 0 for which

l/g'(log 1/A,) = 1/3^
and l/£'(l°g l/Afc-) = 4/3. In this case a2(h) log 1/A is probably not the proper de-
nominator for \X(t + h) — X(t)\ if we seek a result like (3.14).

Therefore, although we have described the local behavior of a wide class of
Gaussian processes, we have had to restrict ourselves to those processes for which
E{(X(t+h) — X(t))2} satisfies smoothness conditions even stronger than concavity
in [0,8] for some 8>0. It is not clear precisely what the denominator of
\X(t+h)-X(t)\ should be for results of the form of (3.1) and (3.2), but with the
restrictions on l/g'(l°g 1/A) removed. It might be that in these cases it is no longer
helpful to try to consider the denominator as having the form o2(h)f(h).
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