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Summary. Let Y �t� �t 2 RN � be a real-valued, strongly locally nondeter-
ministic Gaussian random ®eld with stationary increments and Y �0� � 0.
Consider the �N ; d� Gaussian random ®eld de®ned by

X �t� � �X1�t�; . . . ;Xd�t�� t 2 RN
ÿ �

;

where X1; . . . ;Xd are independent copies of Y . The local and global HoÈ lder
conditions in the set variable for the local time of X �t� are established and the
exact Hausdor� measure of the level set Xÿ1�x� is evaluated.

Mathematics Subject Classi®cation (1991): Primary 60G15, 60G17

1 Introduction

Let Y �t� �t 2 RN � be a real-valued, centered Gaussian random ®eld with
Y �0� � 0. We assume that Y �t� �t 2 RN � has stationary increments and
continuous covariance function R�t; s� � EY �t�Y �s� given by

R�t; s� �
Z

RN
eiht;ki ÿ 1
� �

eÿihs;ki ÿ 1�D�dk
� �

; �1:1�

where hx; yi is the ordinary scalar product in RN and D�dk� is a nonnegative
symmetric measure on RNnf0g satisfying

Probab. Theory Relat. Fields 109, 129 ± 157 (1997)

Key words: Local times ± Gaussian random ®elds ± Fractional Brownian motion ± Level sets ±

Hausdor� measure



Z
RN

jkj2
1� jkj2 D�dk� <1 : �1:2�

Then there exists a centered complex-valued Gaussian random measure
W �dk� such that

Y �t� �
Z

RN
eiht;ki ÿ 1
� �

W �dk� �1:3�

and for any Borel sets A; B � RN

E W �A�W �B�
� �

� D�A \ B� and W �ÿA� � W �A� :
It follows from (1.3) that

E
�ÿ

Y �t � h� ÿ Y �t��2� � 2

Z
RN

ÿ
1ÿ cos hh; ki� D�dk� : �1:4�

We assume that there exist constants d0 > 0; 0 < c1 � c2 <1 and a non-
decreasing, continuous function r: �0; d0� ! �0;1� which is regularly varying
at the origin with index a �0 < a < 1� such that for any t 2 RN and h 2 RN

with jhj � d0

E
�ÿ

Y �t � h� ÿ Y �t��2� � c1r2�jhj� : �1:5�
and for all t 2 RN and any 0 < r � minfjtj; d0g

Var
ÿ
Y �t�jY �s� : r � jsÿ tj � d0

� � c2r2�r� : �1:6�
If (1.5) and (1.6) hold, we shall say that Y �t� �t 2 RN � is strongly locally r-
nondeterministic. A typical example of strongly locally nondeterministic
Gaussian random ®elds is the so-called fractional Brownian motion in R of
index a �0 < a < 1�, i.e. the centered, real-valued Gaussian random ®eld
Y �t� �t 2 RN � with covariance function

E�Y �t�Y �s�� � 1
2 jtj2a � jsj2a ÿ jt ÿ sj2a
� �

:

See Lemma 7.1 of Pitt (1978) for a proof of the strong local nondeterminism
of Y �t�. General conditions for strong local nondeterminism of Gaussian
processes Y �t� �t 2 R� are given by Marcus (1968) and Berman (1972, 1978).
They proved that if (i) r�h� ! 0 as h! 0 and r2�h� is concave on �0; d�; or
(ii) Y �t� has stationary increments and the absolutely continuous component
of the spectral measure D has a density f �k� which satis®es

f �k� � Kjkjÿaÿ1

for large jkj. Then Y �t� is strongly locally nondeterministic. It is clear that the
Gaussian processes considered by CsoÈ rgoÍ , Lin and Shao (1995) are strongly
locally nondeterministic. We also refer to Monrad and Pitt (1986), Cuzick
and Du Peez (1982) and Xiao (1996) for more information on strong local
nondeterminism and its use in studying sample path properties of Gaussian
random ®elds.
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We associate with Y �t� �t 2 RN � a Gaussian random ®eld X �t� �t 2 RN �
in Rd by

X �t� � �X1�t�; . . . ;Xd�t�� ; �1:7�
where X1; . . . ;Xd are independent copies of Y . If Y �t� is the fractional
Brownian motion in R of index a, then X �t� is called d-dimensional frac-
tional Brownian motion of index a (see Kahane (1985)). When
N � 1; a � 1

2 ; X �t� is the ordinary d-dimensional Brownian motion.
It is known (cf. Pitt (1978), Kahane (1985)) that for any rectangle

I � RN , if Z
I

Z
I

dt ds

r�jt ÿ sj�d <1 ;

then almost surely the local time L�x; I� of X �t� �t 2 I� exists and is square
integrable. For many Gaussian random ®elds including fractional Brownian
motion, this condition is also necessary. The joint continuity as well as
HoÈ lder conditions in both space variable and (time) set variable of the local
times of locally nondeterministic Gaussian processes and ®elds have been
studied by Berman (1969, 1972, 1973), Pitt (1978), Davis (1976), KoÃ no
(1977), Cuzick (1982a), Geman and Horowitz (1980), Geman, Horowitz and
Rosen (1984), and recently by CsoÈ rgoÍ , Lin and Shao (1995).

This paper is partially motivated by the following beautiful results about
the local time of Brownian motion. Let l�x; t� be the local time of a standard
Brownian motion B�t��t � 0� in R. Kesten (1965) proved the law of iterated
logarithm

lim sup
h!0

sup
x

l�x; h�
�2h log log 1=h�1=2

� 1 a:s: �1:8�

Perkins (1981) proved the following global result

lim sup
h!0

sup
0�t�1ÿh

sup
x

l�x; t � h� ÿ l�x; h�
�2h log 1=h�1=2

� 1 a:s: �1:9�

The ®rst objective of this paper is to prove local and global HoÈ lder condi-
tions analogous to (1.8) and (1.9) for the local times of strongly locally
nondeterministic Gaussian random ®eld X �t�. The proofs of Kesten (1965)
and Perkins (1981) depend on the Markov property of Brownian motion,
therefore can not be carried over to the present case. The methods in this
paper are based on the work of Berman (1969, 1972), Pitt (1978), Ehm (1981)
and Geman, Horowitz and Rosen (1984). The new idea needed to prove our
results is the use of strong local nondeterminism.

We will prove the following theorems.

Theorem 1.1 Let X �t��t 2 RN � be the Gaussian random ®eld de®ned by (1.7)
and N > ad. For any B 2 B�RN � de®ne L��B� � supx L�x;B�. Then there ex-
ists a positive ®nite constant K such that for any s 2 RN almost surely
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lim sup
r!0

L��B�s; r��
/1�r�

� K ; �1:10�

where B�s; r� is the (open) ball centered at s with radius r and

/1�r� �
rN

r r�log log 1=r�ÿ1=N
� �d :

Theorem 1.2 Assume the same conditions as above. Then for any rectangle
T � RN , there exists a positive ®nite constant K such that almost surely

lim sup
r!0

sup
t2T

L��B�t; r��
/2�r�

� K ; �1:11�

where

/2�r� �
r N

r�r�log 1=r�ÿ1=N �d
:

If X �t� �t 2 RN � is the d-dimensional fractional Brownian motion of in-
dex a �0 < a < 1�, then by a result of Pitt (1978), conditions (1.5) and (1.6)
are satis®ed with r�t� � ta. The following corollary is an immediate conse-
quence of Theorems 1.1 and 1.2.

Corollary 1.1 Let X �t� �t 2 RN � be the d-dimensional fractional Brownian
motion of index a �0 < a < 1� with N > ad. Then for any s 2 RN almost surely

lim sup
r!0

L��B�s; r��
rNÿad�log log 1=r�ad=N

� K ; �1:12�

and for any rectangle T � RN , almost surely

lim sup
r!0

sup
t2T

L��B�t; r��
rNÿad�log 1=r�ad=N

� K : �1:13�

If a � 1=2 and N � d � 1, then X �t� is Brownian motion in R. By (1.8)
and (1.9), we see that (1.12) and (1.13) are the best possible. In the case of
real-valued Gaussian processes (i.e. N = d = 1), results similar to (1.10) for
L�x;B�s; r�� with x 2 R ®xed instead of L��B�t; r�� have been obtained by
KoÃ no (1977), Cuzick (1982a) and recently by CsoÈ rgoÍ , Lin and Shao (1995).
Theorem 1.2 con®rms a conjecture made by CsoÈ rgoÍ , Lin and Shao (1995) for
Gaussian processes.

The most important example of Gaussian random ®elds which are not
locally nondeterministic is the Brownian sheet or N -parameter Wiener pro-
cess W �t� �t 2 RN

��, see Orey and Pruitt (1973). Results similar to (1.10) and
(1.11) for the local time of Brownian sheet were obtained by Ehm (1981). We
will adapt some of his arguments to prove our results.

For Gaussian random ®elds considered in this paper, the problems of
proving lower bounds (with di�erent constants) for the limits considered
above remain open.
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Another problem we consider in this paper is the exact Hausdor� mea-
sure of the level sets of Gaussian random ®eld X �t� �t 2 RN �. The exact
Hausdor� measure functions for the level sets of Brownian motion and LeÂ vy
stable process were obtained by Taylor and Wendel (1966). In the case of
Brownian motion in R, Perkins (1981) proved that almost surely for any
x 2 R; t 2 R�;

�r log log 1=r�1=2ÿm Xÿ1�x� \ �0; t�ÿ � � 1���
2
p L�x; �0; t�� ; �1:14�

where /-m is /-Hausdor� measure. We refer to Falconer (1990) for de®ni-
tion and properties of Hausdor� measure and Hausdor� dimension. The
result (1.14) has been extended to some LeÂ vy processes by Barlow, Perkins
and Taylor (1986).

The Hausdor� dimension of the level sets of Gaussian random ®elds were
considered by many authors (see Adler (1981), Kahane (1985) and the ref-
erences therein). The uniform Hausdor� dimension of the level sets and
inverse image of strongly locally nondeterministic Gaussian random ®elds
were obtained by Monrad and Pitt (1986). The exact Hausdor� measure of
the level sets of certain stationary Gaussian processes was considered by
Davies (1976, 1977), in which she adapted partially the method of Taylor and
Wendel (1966) and it is essential to assume the stationarity and N � 1. In
light of our Theorem 1.1, it is natural to conjecture that /1�r� is the exact
Hausdor� measure function for Xÿ1�x�. The second objective of this paper is
to prove the following theorem.

Theorem 1.3 Let X �t��t 2 RN � be the Gaussian random ®eld de®ned by (1.7)
with Y �t��t 2 RN � further satisfying

E�Y �t � h� ÿ Y �t��2 � r2�jhj�
and N > ad. Let T be a closed cube in RNnf0g: Then there exists a ®nite
constant K1 > 0 such that for every ®xed x 2 Rd , with probability 1

K1L�x; T � � /1-m Xÿ1�x� \ T
ÿ �

<1 : �1:15�
The proof of this theorem is very much di�erent from those of the previous
work on this subject. In fact the proof of the lower bound relies much less on
the speci®c properties of the process than those of Taylor and Wendel (1966)
and Davies (1976, 1977), hence can be applied to other random ®elds such as
the Brownian sheet. The proof of the upper bound is based upon the ap-
proach of Talagrand (1996). We believe that there exist some ®nite constant
K2 > 0 such that K2L�x; T � is an upper bound for /1-m�Xÿ1�x� \ T �. It seems
that this can not be proved by the method of the present paper.

The rest of the paper is organized as follows. In Section 2 we prove some
basic facts about regularly varying functions and estimates about the mo-
ments of the local time of strongly locally nondeterministic Gaussian random
®elds. In Section 3 we prove Theorems 1.1 and 1.2. We also apply Theorems
1.1 and 1.2 to study the degree of oscillation of the sample paths. In Section
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4, we study the Hausdor� measure of the level sets of X �t� and prove The-
orem 1.3.

We will use K;K1; . . . ;K4 to denote unspeci®ed positive ®nite constants
which may not necessarily be the same in each occurrence.

2 Basic estimates

We start with some facts about regularly varying functions. Since r�s� is
regularly varying at the origin with index a, it can be written as

r�s� � saL�s� ;
where L�s�: �0; d0� ! �0;1� is slowing varying at the origin in the sense of
Karamata and hence can be represented by

L�s� � exp

�
g�s� �

Z a

s

��t�
t

dt
�
;

where g�s�: �0; d0� ! R, ��s�: �0; a� ! R are bounded measurable functions
and

lim
s!0

g�s� � c; jcj <1; lim
s!0

��s� � 0 :

We lose nothing by restricting attention to those r�s� with

L�s� � exp

Z a

s

��t�
t

dt
� �

: �2:1�

It follows from Theorem 1.8.2 in Bingham, Goldie and Teugels (1987) that
we may and will further assume L�s� varies smoothly at the origin with index
0. Then

snL�n��s�
L�s� ! 0 as s! 0 for n � 1 ; �2:2�

where L�n��s� is the n-th derivative of L�s�. By (2.2) and elementary calcula-
tions, we have

Lemma 2.1 For any b > 0, let

sb�s� � s

r�s1=N �b :

If ab < N , then there exist d � d�b;N ; r� > 0 such that sb�s� is concave on
�0; d�.

Lemma 2.2 can be deduced from (2.1) by using the dominated conver-
gence theorem (see e.g. Theorem 2.6 in Seneta (1976) or Proposition 1.5.8 in
Bingham, Goldie and Teugels (1987)).

Lemma 2.2Let r be a regularly varying function at the origin with index a > 0. If
N > ab, then there is a constant K > 0 such that for r > 0 small enough, we have
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Z 1

0

sNÿ1

�r�rs��b ds � K�r�r��ÿb :

The following lemma generalizes Lemma 2.2 in Xiao (1997).

Lemma 2.3 Let b > 0 with ab < N , 0 < r < d and s 2 RN . Then for any in-
teger n � 1 and any distinct t1; . . . ; tn 2 B�s; r�, we have

I �
Z

B�s;r�

dt�
r�minfjt ÿ tjj; j � 1; . . . ; ng�

�b � K
rN

�r�rnÿ1=N ��b ; �2:3�

where K > 0 is a ®nite constant depending on N ; d and r only.

Proof. Let

Ci �
n

t 2 B�s; r� : jt ÿ tij � minfjt ÿ tjj; j � 1; . . . ; ng
o
:

Then

B�s; r� � [n
i�1

Ci and kN �B�s; r�� �
Xn

i�1
kN �Ci� ; �2:4�

where kN is the Lebesgue measure in RN . For any t 2 Ci, we write t � ti � qh,
where h 2 SNÿ1 the unit sphere in RN and 0 � q � qi�h�. Then

kN �Ci� � CN

Z
SNÿ1

m�dh�
Z qi�h�

0

qNÿ1 dq

� CN

N

Z
SNÿ1

qi�h�Nm�dh� ; �2:5�

where m is the normalized surface area in SNÿ1 and CN is a positive ®nite
constant depending on N only. Hence by Lemmas 2.1, 2.2, (2.4), Jensen's
inequality and (2.5), we have

I �
Xn

i�1

Z
Ci

dt

r�jt ÿ tij�b

�
Xn

i�1
CN

Z
SNÿ1

m�dh�
Z qi�h�

0

qNÿ1

r�q�b dq

�
Xn

i�1
K
Z

SNÿ1

qi�h�N
r�qi�h��b

m�dh�

� K
Xn

i�1
sb

�Z
SNÿ1

qi�h�Nm�dh�
�

� K
Xn

i�1
sb�kN �Ci��
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� Kn sb

�
1

n

Xn

i�1
kN �Ci�

�
� K

rN

r�rnÿ1=N �b :

This proves (2.3).

Lemma 2.4 is due to Cuzick and Du Peez (1982).

Lemma 2.4 Let Z1; . . . ; Zn be the mean zero Gaussian variables which are lin-
early independent and assume thatZ 1

ÿ1
g�v�eÿ�v2dv <1

for all � > 0. ThenZ
Rn

g�v1� exp ÿ 1
2
Var

Xn

j�1
vjZj

 ! !
dv1 . . . dvn

� �2p�nÿ1
�detCov�Z1; . . . ; Zn��1=2

Z 1
ÿ1

g
�

v
r1

�
eÿv2 dv ;

where r21 � Var�Z1jZ2; . . . ; Zn� is the conditional variance of Z1 given Z2; . . . ; Zn

and det Cov�Z1; . . . ; Zn� is the determinant of the covariance matrix of
�Z1; . . . ; Zn�.

Now we recall brie¯y the de®nition of local time. For an excellent survey
on local times of both random and nonrandom vector ®elds, we refer to
Geman and Horowitz (1980) (see also Geman, Horowitz and Rosen (1984)).
Let X �t� be any Borel vector ®eld on RN with values in Rd . For any Borel set
B � RN , the occupation measure of X is de®ned by

lB�A� � kNft 2 B : X �t� 2 Ag ;
for all Borel set A � Rd . If lB is absolutely continuous with respect to the
Lebesgue measure kd on Rd , we say that X �t� has a local time on B and de®ne
its local time L�x;B� to be the Radon-Nikodym derivative of lB.

For a ®xed rectangle T � QN
i�1�ai; ai � hi�, if we can choose

L x;
QN

i�1�ai; ai � ti�
� �

to be a continuous function of �x; t1; . . . ; tN �; x 2 Rd ;
0 � ti � hi �i � 1; . . . ;N�, then X is said to have a jointly continuous local
time on T . Throughout this paper, we will always consider the jointly con-
tinuous version of the local time. Under this condition, L�x; �� can be ex-
tended to be a ®nite measure supported on the level set

Xÿ1T �x� � ft 2 T : X �t� � xg ;
see Adler (1981, Theorem 8.6.1). This fact has been used by Berman (1972),
Adler (1978), Ehm (1981), Monrad and Pitt (1986), Rosen (1984) and the
author (1995) to study the Hausdor� dimension of the level sets, inverse
image and multiple points of stochastic processes.
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We use h�; �i and j � j to denote the ordinary scalar product and the Eu-
clidean norm in Rd respectively. It follows from (25.5) and (25.7) in Geman
and Horowitz (1980) (see also Geman, Horowitz and Rosen (1984), Pitt
(1978)) that for any x; y 2 Rd , B 2 B RN

ÿ �
and any integer n � 1, we have

E L�x;B�� �n � �2p�ÿnd
Z

Bn

Z
Rnd

exp

�
ÿi
Xn

j�1
huj; xi

�

� Eexp

�
i
Xn

j�1
huj;X �tj�i

�
d u d t �2:6�

and for any even integer n � 2

E L�x� y;B� ÿ L�x;B�� �n

� �2p�ÿnd
Z

Bn

Z
Rnd

Yn

j�1
exp�ÿihuj; x� yi� ÿ exp�ÿihuj; xi�
ÿ �

� E exp
�

i
Xn

j�1
huj;X �tj�i

�
du dt ; �2:7�

where u � �u1; . . . ; un�; t � �t1; . . . ; tn�; and each uj 2 Rd ; tj 2 RN : In the
coordinate notation we then write uj �

ÿ
u1j ; . . . ; ud

j

�
:

Let Y �t� t 2 RN
ÿ �

be a real-valued, centered Gaussian random ®eld with
stationary increments. We assume Y �0� � 0 and (1.5), (1.6) hold. Let
X �t� t 2 RN

ÿ �
be the �N ; d� Gaussian random ®eld de®ned by (1.7).

Lemma 2.5 There exist d > 0 such that for any r 2 �0; d�, B � B�0; r�;
x; y 2 Rd , any even integer n � 2 and any 0 < c < minf1; �N=aÿ d�=2g, we
have

E L�x;B�� �n� Kn r NnQn
j�1 r rjÿ1=N� �� �d

; �2:8�

E L�x� y;B� ÿ L�x;B�� �n� Knjyjnc rNnQn
j�1 r rjÿ1=N� �� �d�c �n!�2c

Yn

j�1

�
L�r�

L rjÿ1=N� �
�c

;

�2:9�
where K > 0 is a ®nite constant depending on N ; d and r only.

Proof. The proof of (2.8) is rather easy. Since X1; . . . ;Xd are independent
copies of Y , it follows (2.6) that

E L�x;B�� �n� �2p�ÿnd
Z

Bn

Yd

k�1

"Z
Rn
exp ÿ 1

2
Var

 Xn

j�1
uk

j Y �tj�
 !!

dUk

#
dt ;

�2:10�
where Uk � uk

1; . . . ; uk
n

ÿ � 2 Rn. Denote the covariance matrix of Y �t1�; . . . ;
Y �tn� by R�t1; . . . ; tn�. For distinct t1; . . . ; tn 2 Bnf0g, let �Z1; . . . ; Zn� be the
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Gaussian vector with mean zero and the covariance matrix Rÿ1�t1; . . . ; tn�:
Then the density function of �Z1; . . . ; Zn� is

�2p�ÿn=2�det�R�t1; . . . ; tn���1=2 exp
ÿÿ 1

2 UR�t1; . . . ; tn�U 0
�
;

where U � �u1; . . . ; un� 2 Rn, U 0 is the transpose of U and det�R� denotes the
determinant of R. Hence for each 1 � k � d,Z

Rn
exp

 
ÿ 1
2
Var

Xn

j�1
uk

j Y �tj�
 !!

dUk � �2p�n=2
�det�R�t1; . . . ; tn���1=2

: �2:11�

Put (2.11) into (2.10) and notice that the set of t 2 RNn having ti � tj for
some i 6� j is a set of Nn-dimensional Lebesgue measure 0, we have

E L�x;B�� �n� �2p�ÿnd=2
Z

Bn

1

�det�R�t1; . . . ; tn���d=2
dt : �2:12�

It is well known that

det�R�t1; . . . ; tn�� � Var�Y �t1��
Yn

j�2
Var�Y �tj�jY �t1�; . . . ; Y �tjÿ1�� ; �2:13�

where VarY and Var�Y jZ� denote the variance of Y and the conditional
variance of Y given Z respectively. It follows from (1.6) and (2.13) that (2.12)
is at most

Kn
Z

Bn

Yn

j�1

1

�r�minfjtj ÿ tij; 0 � i � jÿ 1g��d d t ; �2:14�

where t0 �̂ 0. Since N > ad, we see that (2.8) follows from (2.14) and Lemma
2.3.

Now we turn to the proof of (2.9). By (2.7) and the elementary inequality

jeiu ÿ 1j � 21ÿcjujc for any u 2 R; 0 < c < 1 ;

we see that for any even integer n � 2 and any 0 < c < 1,

E L�x� y;B� ÿ L�x;B�� �n� �2p�ÿnd2�1ÿc�njyjnc

�
Z

Bn

Z
Rnd

Yn

j�1
jujjc exp

�
ÿ 1
2
Var

�Xn

j�1
huj; X �tj�i

��
d u d t : �2:15�

By making the change of variables tj � rsj; j � 1; . . . ; n and uj � r�r�ÿ1vj;
j � 1; . . . ; n and changing the letters s; v back to t; u, we see that (2.15)
equals

�2p�ÿnd2�1ÿc�n jyjnc r Nn r�r�ÿn�d�c�

�
Z

B�0;1�n

Z
Rnd

Yn

j�1
jujjc exp

 
ÿ 1
2
Var

Xn

j�1
huj; X �rtj�=r�r�i

 !!
du dt ; �2:16�
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To simplify the notations, let

Z�t� � Y �rt�
r�r� and n�s� � r�rs�

r�r� �̂ sal�s� :

Then Z�t� t 2 RN
ÿ �

satis®es (1.5) and (1.6) with r�s� replaced by n�s�. It is
also easy to verify that l�s� satis®es (2.2), and Lemma 2.3 holds with r�s� and
B�s; r� replaced by n�s� and B�s; 1� respectively. Let ~Z�t� � �Z1�t�; . . . ; Zd�t��,
where Z1; . . . ; Zd are independent copies of Z. Since for any 0 < c < 1,
ja� bjc � jajc � jbjc, we haveYn

j�1
uj
�� ��c�X0Yn

j�1
ukj

j

��� ���c ; �2:17�

where the summation
P0 is taken over all �k1; . . . ; kn� 2 f1; . . . ; dgn. Fix such

a sequence �k1; . . . ; kn�, we consider the integral

J �
Z

Rnd

Yn

j�1
ukj

j

��� ���c exp ÿ 1
2
Var

Xn

j�1
huj; ~Z�tj�i

 !!
du :

For any ®xed distinct t1; . . . ; tn 2 B�0; 1�nf0g, Zl�tj� �l � 1; . . . ; d;
j � 1; . . . ; n� are linearly independent. Then by a generalized HoÈ lder's in-
equality and Lemma 2.4, we have

J �
Yn

j�1

�Z
Rnd

ukj
j

��� ���nc
exp

 
ÿ 1
2
Var

Xn

j�1

Xd

l�1
ul

jZl�tj�
 !!

du
�1=n

� �2p�ndÿ1

�detCov�Zl�tj�; 1 � l � d; 1 � j � n��1=2

�
Z

R
jvjnc exp

�
ÿ v2

2

�
dv
Yn

j�1

1

rc
j

� Kn �n!�c
�detCov�Z�t1�; . . . ; Z�tn���d=2

Yn

j�1

1

rc
j
; �2:18�

where r2j is the conditional variance of Zkj�tj� given Zl�ti� �l 6� kj or
l � kj; i 6� j� and the last inequality follows from Stirling's formula. By (1.6)
and the independence of Z1; . . . ; Zn, we deduce that

r2j � c2 min n2�jtj ÿ tij� : i � 0 or i 6� j
� 	

; �2:19�
where t0 �̂ 0: Now we de®ne a permutation p of f1; . . . ; ng such that

jtp�1�j � minfjtij; i � 1; . . . ; ng

jtp� j� ÿ tp� jÿ1�j � min

�
jti ÿ tp� jÿ1�j; i 2 f1; . . . ; ngnfp�1�; . . . ; p� jÿ 1�g

�
Then by (2.19) and (2.13) we have
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Yn

j�1

1

rc
j
� Kn

Yn

j�1

1

minf�n�jtp� j� ÿ tij��c : i � 0 or i 6� p� j�g

� Kn
Yn

j�1

1

minf�n�jtp� j� ÿ tp� jÿ1�j��c; �n�jtp� j�1� ÿ tp� j�j��cg

� Kn
Yn

j�1

1

�n�jtp� j� ÿ tp� jÿ1�j��2c

� Kn
Yn

j�1

1

�Var�Z�tp� j��jZ�tp�i��; i � 1; . . . ; jÿ 1��c

� Kn

�detCov�Z�t1�; . . . ; Z�tn���c : �2:20�

Combining (2.18) and (2.20), we obtain

J � Kn�n!�c
�det Cov�Z�t1�; . . . ; Z�tn���d=2�c

� Kn�n!�cQn
j�1
�n�minfjtj ÿ tij; 0 � i � jÿ 1g��d�2c

: �2:21�

Take

0 < c < min 1;
1

2

N
a
ÿ d

� �� �
:

Then it follows from (2.15), (2.16), (2.17), (2.21) and Lemma 2.3 with
b � d � 2c that

E L�x� y;B� ÿ L�x;B�� �n � Knjyjnc�n!�cr Nnr�r�ÿn�d�c�

�
Z

B�0;1�n
Yn

j�1

1

�n�minfjtj ÿ tij; 0 � i � jÿ 1g��d�2c

� Knjyjnc�n!�cr Nnr�r�ÿn�d�c� 1Qn
j�1
�n jÿ1=N� ��d�2c

� Knjyjnc r NnQn
j�1

r rjÿ1=N� �� �d�c
�n!�2c

Yn

j�1

�
L�r�

L rjÿ1=N� �
�c

:

This proves (2.9).

Remark. Under the extra condition r�ar� � aar�r� for 0 � a � 1 and r > 0
small enough (see CsoÈ rgoÍ , Lin and Shao (1995)), (2.9) becomes

E L�x� y;B� ÿ L�x;B�� �n� Knjyjncr Nnr�r�ÿn�d�c��n!�ad
N�2c

and the above proof can be simpli®ed.
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Since X �t� has stationary increments, the above arguments also prove the
following lemma.

Lemma 2.6 For any s 2 RN , let B � B�s; r� with r 2 �0; d�. Then for any
x; y 2 Rd ; even integer n � 2 and any 0 < c < minf1; �N=aÿ d�=2g

E L�x� X �s�;B�� �n� Kn rNnQn
j�1

r rjÿ1=N� �� �d
; �2:22�

E L�x� y � X �s�;B� ÿ L�x� X �s�;B�� �n � Kn jyjnc rNnQn
j�1

r rjÿ1=N� �� �d�c
�n!�2c

�
Yn

j�1

�
L�r�

L rjÿ1=N� �
�c

: �2:23�

Lemma 2.7With the notations of Lemma 2.6, for any c > 0 there exists a ®nite
constant A > 0, depending on N ; d and r only, such that for any u > 0 small
enough,

P L�x� X �s�;B� � Ar N

�r�ru��d
( )

� exp ÿc=uNÿ �
; �2:24�

P jL�x� y � X �s�;B� ÿ L�x� X �s�;B�j � Ar N jyjc
�r�ru��d�cu2Nc

( )
� exp ÿc=uNÿ �

: �2:25�

Proof. We only prove (2.24). The proof is similar to that of Theorem 1 in
KoÃ no (1977a). Let

K � L�x� X �s�;B�
rN and un � 1

n1=N
:

Then by Chebyshev's inequality and Lemma 2.5, we have

P K � A=�r�run��d
n o

� E Kn� ��r�run��nd

An

�
�

K
A

�n

�r�run��nd
Yn

j�1

1

r rjÿ1=N� �� �d

�
�

K
A

�n� r
n1=N

�nad

L
r

n1=N

� �nd

�
Yn

j�1

�
j1=N

r

�ad

L
r

j1=N

� �ÿd

: �2:26�
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It follows from Stirling's formula that (2.26) is at most�
K
A

�n

exp ÿ ad
N

n
� �

�2pn�ad=�2N� L
r

n1=N

� �nd Yn

j�1
L

r
j1=N

� �ÿd

: �2:27�

By using the representation (2.1), we obtain

L
r

n1=N

� �ndYn

j�1
L

r
j1=N

� �ÿd

� L
r

n1=N

� �nd

exp

�
ÿnd

Z a

r
n1=N

��t�
t

dt � d
Xnÿ1
j�1

Z r
j1=N

r
n1=N

��t�
t

dt
�

� exp

�
d
Xnÿ1
j�1

j
Z r

j1=N

r
�j�1�1=N

��t�
t

dt
�

� exp

�
�d
N

Xnÿ1
j�1

j log 1� 1

j

� ��
0 < � <

a
2

� �
� exp

�d
N

�
nÿ 1

2
log nÿ 1

2
log�2p�

���
�2:28�

It follows from (2.26), (2.27) and (2.28) that for any c > 0 we can choose a
constant A > K and an integer n0 large enough such that for any n � n0

P K � A=�r�run��d
n o
� exp n

�
log

K
A

� �
ÿ �aÿ ��d

2N

�
� �aÿ ��d

2N
�log n� log�2p��

� �
� exp�ÿ2cn� � exp ÿ2c=uN

n

ÿ �
: �2:29�

Finally for any u > 0 small enough, there is n > n0 such that

un�1 � u < un :

Hence by (2.29) and the fact that for every n � 1

n
n� 1

� �1=N

� 1

2
;

we have

P K � A=�r�ru��d
n o

� P K � A=�r�run��d
n o

� exp ÿ2c=uN
n

ÿ �
� exp ÿc=uNÿ �

:

This completes the proof of (2.24).
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3 HoÈ lder conditions of the local time

Let Y �t� t 2 RN
ÿ �

be a real-valued, centered Gaussian random ®eld with
stationary increments. We assume that Y �0� � 0 and (1.5), (1.6) hold. Let
X �t� t 2 RN

ÿ �
be the �N ; d� Gaussian random ®eld de®ned by (1.7). In this

section, we adapt the arguments of Ehm (1981) and Geman, Horowitz and
Rosen (1984) to prove Theorems 1.1 and 1.2.

We start with the following lemma, which is a consequence of Lemma 2.1
in Talagrand (1995).

Lemma 3.1 Let Y �t� t 2 RN
ÿ �

be a Gaussian random ®eld satisfying (1.5) and
Y �0� � 0. Then for any r > 0 small enough and u � Kr�r�, we have

P
�
sup
jtj�r
jY �t�j � u

�
� exp

�
ÿ u2

K r2�r�
�
: �3:1�

Proof of Theorem 1.1. For any ®xed s 2 RN , let Bn � B s; 2ÿn� � �n � 1; 2; . . .�.
It follows from Lemma 3.1 that

P
�
sup
t2Bn

jX �t� ÿ X �s�j � r 2ÿn� �
�����������������
2K log n

p �
� nÿ2 :

Then by the Borel-Cantelli lemma, almost surely there exist n1 � n1�x� such
that

sup
t2Bn

jX �t� ÿ X �s�j � r 2ÿn� �
�����������������
2K log n

p
for n � n1 : �3:2�

Let hn � r 2ÿn=�log log 2n�1=N
� �

�log log 2n�ÿ2 and

Gn � x 2 Rd : jxj � r 2ÿn� �
�����������������
2K log n

p
; x � hnp for some p 2 Zd

n o
;

where Zd is the integer lattice in Rd . The cardinality of Gn satis®es

#Gn � K�log n�3d�1 �3:3�
at least when n is large enough. Recall that

/1�r� �
rN

r r�log log 1=r�ÿ1=N
� �d :

It follows from Lemma 2.7 that

P L�x� X �s�;Bn� � A/1 2
ÿn� � for some x 2 Gnf g

� K�log n�3d�1 exp�ÿ2 log n�
� K�log n�3d�1nÿ2 :

Hence by the Borel-Cantelli lemma there is n2 � n2�x� such that almost
surely
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sup
x2Gn

L�x� X �s�;Bn� � A/1 2
ÿn� � for n � n2 : �3:4�

For any ®xed integers n with n2 > 2d ; h � 1 and any x 2 Gn, de®ne

F �n; h; x� �
�

y 2 Rd : y � x� hn

Xh

j�1
�j2
ÿj for �j 2 f0; 1gd

�
: �3:5�

A pair of points y1; y2 2 F �n; h; x� is said to be linked if y2 ÿ y1 � hn�2
ÿh for

some � 2 f0; 1gd . Then by (2.25) we have

P

(
jL�y1 � X �s�;Bn� ÿ L�y2 � X �s�;Bn�j � A2ÿnN jy1 ÿ y2jc h log log 2n� �2c

r 2ÿn= h log log 2n� �1=N
� �� �d�c

for some x 2 Gn; h � 1 and some linked pair y1; y2 2 F �n; h; x�
)

� #Gn

X1
h�1

2hd exp�ÿ2h log n�

� K�log n�3d�1 2d=n2

1ÿ 2d=n2
:

Since X1
n��2d=2��1

�log n�3d�1 2d=n2

1ÿ 2d=n2
<1 ;

there exist n3 � n3�x� such that for almost surely for n � n3

jL�y1 � X �s�;Bn� ÿ L�y2 � X �s�;Bn�j � A2ÿNnjy1 ÿ y2jc h log log 2n� �2c

r 2ÿn= h log log 2n� �1=N
� �� �d�c �3:6�

for all x 2 Gn; h � 1 and any linked pair y1; y2 2 F �n; h; x�. Let X0 be the
event that (3.2), (3.4) and (3.6) hold eventually. Then P �X0� � 1. Fix an
n � n4 � maxfn1; n2; n3g and any y 2 Rd with jyj � r 2ÿn� � �����������������2K log n

p
. We

represent y in the form y � limh!1 yh, where

yh � x� hn

Xh

j�1
�j2
ÿj y0 � x; �j 2 f0; 1gd

� �
for some x 2 Gn. Then each pair yhÿ1; yh is linked, so by (3.6) and the con-
tinuity of L��;Bn� we have

jL�y � X �s�;Bn� ÿ L�x� X �s�;Bn�j

� A2ÿNn
X1
h�1

hn2
ÿh

�� ��c h log log 2n� �2c

r 2ÿn= h log log 2n� �1=N
� �� �d�c
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� K2ÿNnhc
n

X1
h�1

2ÿhc h2c�a�d�c�=N log log 2n� �2c

r 2ÿn= log log 2n� �1=N
� �� �d�c

� K2ÿNn hc
n log log 2n� �2c

r 2ÿn= log log 2n� �1=N
� �� �d�c

� K/1 2
ÿn� � :

It follows from (3.4) and (3.7) that almost surely for n � n4

L�y � X �s�;Bn� � K/1 2
ÿn� � �3:8�

for any y 2 Rd with jyj � r 2ÿn� � �����������������2K log n
p

. Therefore

sup
x2Rd

L�x;Bn� � sup
x2X �Bn�

L�x;Bn�

� K/1 2
ÿn� � : �3:9�

Finally for any r > 0 small enough, there exists an n � n4 such that
2ÿn � r < 2ÿn�1. Hence by (3.9) we have

sup
x2Rd

L�x;B�s; r�� � K/1�r� :

This completes the proof of Theorem 1.1.

The proof of Theorem 1.2 is quite similar to that of Theorem 1.1.

Proof of Theorem 1.2. For simplicity, we only consider the case T � �0; 1�N .
Let Dn be the family of 2nN dyadic cubes of order n in T . Let
hn � r 2ÿn= log 2n� �1=N

� �
log 2n� �ÿ2 and let

Gn � x 2 Rd : jxj � n; x � hnp for some p 2 Zd� 	
:

Then

#Gn � K
n3d�1

r 2ÿn� �� �d : �3:10�

It follows from (3.10) and the proof of Lemma 2.7 that there is a ®nite
constant A > 0 such that

P L�x;B� � A/2 2
ÿn� � for some x 2 Gn and B 2 Dnf g

� K2Nn#Gn exp ÿ2N log 2n� �

� Kn3d�12ÿNn

r 2ÿn� �� �d : �3:11�

Since N > ad, we have X1
n�1

Kn3d�12ÿNn

r 2ÿn� �� �d <1 :
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Hence by the Borel-Cantelli lemma, there exist n5 � n5�x� such that almost
surely

sup
x2Gn

L�x;B� � A/2 2
ÿn� � for all n � n5 and all B 2 Dn : �3:12�

For any ®xed integers n; h � 1 and x 2 Gn, we still de®ne F �n; h; x� as in
(3.5). Similar to (3.11), we have for n > d=�2N�

P

(
jL�y1;B� ÿ L�y2;B�j � A2ÿnN jy1 ÿ y2jc �h log 2n�2c

r 2ÿn= h log 2n� �1=N
� �� �d�c for some

B 2 Dn; x 2 Gn; h � 1 and some linked pair y1; y2 2 F �n; h; x�
)

� K2Nn #Gn

X1
h�1

2hd exp ÿ2Nh log 2n� �

� K2Nn n3d�1

r 2ÿn� �� �d 2ÿ2Nn

� K
n3d�12ÿNn

r 2ÿn� �� �d ; �3:13�

and these terms are summable over n. Hence there is an integer n6 � n6�x�
such that almost surely the event in (3.13) does not occur for n � n6.

Finally, since X �t� is almost surely continuous on T , there exist
n7 � n7�x� such that almost surely

sup
t2T
jX �t�j � n7 : �3:14�

Let n � n8�̂maxfn5; n6; n7g. For any y 2 Rd , if jyj > n, then L�y; T � � 0;
whereas if jyj � n; then we can write

y � lim
h!1

yh

with

yh � x� hn

Xh

j�1
�j2
ÿj

for some x 2 Gn. Similar to (3.7), we have

jL�y;B� ÿ L�x;B�j �
X1
h�1

A2ÿnN hn2
ÿh

ÿ �c
h log 2n� �2c

r 2ÿn= h log 2n� �1=N
� �� �d�c

� K2ÿNn hc
n

X1
h�1

2ÿch h2c log 2n� �2c

r 2ÿn= h log 2n� �1=N
� �� �d�c

� K/2�2ÿn� : �3:15�
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Then (1.11) follows easily from (3.12), (3.15) and a monotonicity argument.

Remark. The methods in this paper can be applied to prove sharp HoÈ lder
conditions in set variable for the self-intersection local times of Gaussian
random ®elds considered by Geman, Horowitz and Rosen (1984), Rosen
(1984).

The HoÈ lder conditions for the local times of Gaussian random ®eld X �t�
are closely related to the irregularity of the sample paths of X �t� (cf. Berman
(1972)). To end this section, we apply Theorem 1.1 and Theorem 1.2 to
derive results about the degree of oscillation of the sample paths of X �t�.
Theorem 3.1 Let X �t� t 2 RN

ÿ �
be the Gaussian random ®eld de®ned by (1.7).

For any s 2 RN , there is a ®nite constant K > 0 such that

lim inf
r!0

sup
s2B�s;r�

jX �s� ÿ X �s�j
r r=�log log 1=r�1=N
� � � K a:s: �3:16�

For any rectangle T � RN

lim inf
r!0

inf
t2T

sup
s2B�t;r�

jX �s� ÿ X �t�j
r r= log 1=r� �1=N
� � � K a:s: �3:17�

In particular, X �t� is almost surely nowhere di�erentiable in RN .

Proof. Clearly it is su�cient to consider the case of d � 1. For any rectangle
Q � RN ,

kN �Q� �
Z

X �Q�
L�x;Q� dx

� L��Q� � sup
s;t2Q
jX �s� ÿ X �t�j : �3:18�

Let Q � B�s; r�. Then (3.16) follows immediately from (3.18) and (1.10).
Similarly, (3.17) follows from (3.18) and (1.11).

Remark. With a little more e�ort, we can prove that under the conditions of
Theorem 3.1, for any s 2 RN

lim inf
r!0

sup
s2B�s;r�

jX �s� ÿ X �s�j
r r= log log 1=r� �1=N
� � � K a:s:

The proof is a modi®cation of that of Theorem 3.2 of Monrad and RootzeÂ n
(1995), using some technical lemmas in Xiao (1996). In particular, if
X �t� t 2 RN

ÿ �
is a d-dimensional fractional Brownian motion of index a,

then for any s 2 RN

lim inf
r!0

sup
s2B�s;r�

jX �s� ÿ X �s�j
ra=�log log 1=r�a=N

� K a:s:
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where the constant K depends on N ; d and a only. This generalizes Chung's
law of iterated logarithm (Chung (1948)) and Theorem 3.3 of Monrad and
RootzeÂ n (1995) to multiparameter cases.

If X(t) is Brownian motion in R and we take T � �0; 1�, then (3.17)
becomes

lim inf
r!0

inf
0�t�1

sup
0�s�r

jX �t � s� ÿ X �t�j
r= log 1=r� �1=2

� K a:s:

CsoÈ rgoÍ and ReÂ veÂ sz (1979) proved the following more precise result:

lim
r!0

inf
0�t�1

sup
0�s�r

jX �t � s� ÿ X �t�j
�r= log 1=r�1=2

�
���
p
8

r
a:s:

It seems natural to believe that with the conditions of Theorem 3.1, the
following inequality holds for any rectangle T � RN ,

lim sup
r!0

inf
t2T

sup
s2B�t;r�

jX �s� ÿ X �t�j
r r=�log 1=r�1=N
� � � K a:s:

4 The Hausdor� measure of the level sets

Let X �t� t 2 RN
ÿ �

be a Gaussian random ®eld with values in Rd . For every
x 2 Rd , let

Xÿ1�x� � t 2 RN : X �t� � x
� 	

be the x-level set of X �t�. The Hausdor� dimension of the level sets of
fractional Brownian motion and more general Gaussian random ®elds have
been studied by several authors, see Kahane (1985) and Adler (1981). In this
section, we investigate the exact Hausdor� measure of the level sets of
strongly locally r-nondeterministic Gaussian random ®elds.

We start with the following lemma. Let T � RN be a closed cube.

Lemma 4.1 Let lx be a random measure on T and let fk�t� � fk�t;x� be a
sequence of positive random functions. If there exist a positive constant K such
that for any positive integers n; k,

E
Z

T
�fk�t��nlx�dt� � Kn 2ÿnNkQn

j�1
r 2ÿkjÿ1=N� �d

: �4:1�

Then with probability 1 for lx almost all t 2 T

lim sup
k!1

fk�t�
/1 2

ÿk� � � K : �4:2�
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Proof. Let A > 0 be a constant which will be determined later and let

Ak�x� �
n

t 2 T : fk�t� � A/1 2ÿkÿ �o
:

Then by (4.1) we have

Elx�Ak� �
E
R

T �fk�t��nlx�dt�
A/1 2

ÿk� �� �n

� K
A

� �n

r 2ÿk log log 2kÿ �ÿ1=N
� �nd Yn

j�1

1

r 2ÿkjÿ1=N� �d

� K
A

� �n

�log k�ÿnad=N nnadL 2ÿk�log k�1=N
� �ndYn

j�1

1

L 2ÿkjÿ1=N� �d
:

By taking n � log k and similar to (2.28), we can choose A large such that

Elx�Ak� � kÿ2 :

This implies that

E
X1
k�1

lx�Ak�
 !

<1 :

Therefore with probability 1 for lx almost all t 2 T , (4.2) holds.

Proposition 4.1 Assume that the conditions of Theorem 1.1 are satis®ed. Let
x 2 Rd be ®xed and let L�x; �� be the local time of X �t� at x which is a random
measure supported on Xÿ1�x�. Then with probability 1 for L�x; �� almost all
t 2 T

lim sup
r!0

L�x;B�t; r��
/1�r�

� K ; �4:3�

where K > 0 is a ®nite constant which does not depend on x.

Proof. Let fk�t� � L x;B t; 2ÿk
ÿ �ÿ �

and lx be the restriction of L�x; �� on T , that
is, for any Borel set B � RN

lx�B� � L�x;B \ T � :
Then, by an argument similar to the proof of Proposition 3.1 of Pitt (1977),
we have that for any positive integer n � 1

E

Z
T
�fk�t��nL�x; dt�

� 1

2p

� ��n�1�dZ
T

Z
B�t;2ÿk�n

Z
R�n�1�d

exp ÿi
Xn�1
j�1
hx; uji

 !

� Eexp i
Xn�1
j�1
huj;X �sj�i

 !
du ds ; �4:4�
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where u � �u1; . . . ; un�1� 2 Rn�1 and s � �t; s1; . . . sn� 2 T � B t; 2ÿk
ÿ �n

. Simi-
lar to the proof of (2.8) we have that (4.4) is at most

Kn
Z

T

Z
B�t;2ÿk�n

ds���������������������������������������������������������������
detCov�X �t�;X �s1�; . . . ;X �sn��

p
� Kn 2nNkQn

j�1
r�2ÿkjÿ1=N �d

;
�4:5�

where K > 0 is a ®nite constant depending on N ; d; r and T only. It is clear
that (4.3) follows immediately from (4.5) and Lemma 4.1.

Theorem 4.1 Assume that the conditions of Theorem 1.1 are satis®ed. Let
T � RN be a closed cube and let L�x; T � be the local time of X �t� on T . Then
there exists a positive constant K such that for every x 2 Rd with probability 1

/1-m Xÿ1�x� \ T
ÿ � � KL�x; T � ; �4:6�

Proof. As we mentioned, L�x; �� is a locally ®nite Borel measure in Rd sup-
ported on Xÿ1�x�. Let

D � t 2 T : lim sup
r!0

L�x;B�t; r��
/1�r�

> K
� �

;

where K is the constant in (4.3). Then D is a Borel set and by Proposition 4.1,
L�x;D� � 0 almost surely. Using the upper density theorem of Rogers and
Taylor (1969), we have almost surely

/1-m Xÿ1�x� \ T
ÿ �
� /1-m Xÿ1�x� \ �TnD�ÿ �
� KL�x; TnD�
� KL�x; T � :

This completes the proof of (4.6).

Now we will use an approach similar to that of Talagrand (1996) to study
the upper bound of /1-m Xÿ1�x� \ T

ÿ �
. In addition to the conditions in

Theorem 1.1, we further assume that

E�Y �t � h� ÿ Y �t��2 � r2�jhj� : �4:7�
Let T be a closed cube in RNnf0g and denote

� � min
t2T

r�jtj� :

Then � > 0 and there exists a positive constant g such that for every
0 < h � g, r�h� < �=2.

It is clear that there is a positive integer M , depending on T and g, such
that T can be covered by M closed balls, say fB�tj; g�; j � 1; . . . ;Mg, of
radius g. In order to prove that almost surely
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/1-m Xÿ1�x� \ T
ÿ �

<1
it su�ces to show for each j � 1; . . . ;M

/1-m Xÿ1�x� \ B�tj; g�
ÿ �

<1 a:s:

To simplify the notations, we will assume T � B�t0; g�, where t0 2 RNnf0g is
®xed. For any t 2 T , let

X 1�t� � X �t� ÿ X 2�t�; X 2�t� � E X �t�jX �t0�� � :
The two random ®elds X 1 and X 2 are independent.

Lemma 4.2 For any s; t 2 T

X 2�s� ÿ X 2�t��� �� � K sÿ tj jcjX �t0�j �4:8�
where c � 2a if a � 1=2, c � 1 if a > 1=2, and K > 0 is a ®nite constant de-
pending on N ;r; d; t0 and g only.

Proof. It is su�cient to consider the case of d � 1. Then

Y 2�s� ÿ Y 2�t��� �� � jE �Y �s� ÿ Y �t��Y �t0�� �j
E Y t0� �2
� � jY �t0�j

� r2�jsj� ÿ r2�jtj� � r2�jt ÿ t0j� ÿ r2�jsÿ t0j�
�� ��

2r2�jt0j� jY �t0�j : �4:9�

Since L�s� is smooth, we have that for any s; t 2 T

r2�jsj� ÿ r2�jtj��� �� � jsj2a ÿ jtj2a��� ���L2�jsj� � jtj2a L2�jsj� ÿ L2�jtj��� ��
� Kjsÿ tjc �4:10�

where c � 2a if a � 1=2, c � 1 if a > 1=2, and K > 0 is a ®nite constant
depending on N ; r; d; t0 and g only. Combining (4.9) and (4.10) gives (4.8).

The following lemma is a generalization of Proposition 4.1 in Talagrand
(1995), see Xiao (1996) for a proof.

Lemma 4.3 There exists a constant d1 > 0 such that for any 0 < r0 � d1, we
have

P 9 r 2 �r20; r0� such that sup
jtj�2 ���Np r

jX �t�j � Kr r log log
1

r

� �ÿ1
N

 !( )

� 1ÿ exp ÿ log
1

r0

� �1
2

 !
:

Theorem 4.2 Let X �t��t 2 RN � be the Gaussian random ®eld de®ned by (1.7)
with Y �t� satisfying (4.7) and N > ad. Then for every ®xed x 2 Rd , with
probability 1
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/1-m Xÿ1�x� \ T
ÿ �

<1 : �4:11�
Proof. It is su�cient to prove that

E /1-m Xÿ1�x� \ T
ÿ �ÿ � � K �4:12�

for some ®nite constant K � K�N ; d; r; t0; g� > 0. For k � 1, let

Rk �
�

t 2 T : 9 r 2 �2ÿ2k; 2ÿk� such that

sup
jsÿtj�2 ���Np r

jX �s� ÿ X �t�j � Kr r log log
1

r

� �ÿ1=N
 !�

:

By Lemma 4.3 we have

Pft 2 Rkg � 1ÿ exp ÿ
��������
k=2

p� �
:

It follows from Fubini's theorem thatX1
k�1

P �Xc
k;1� <1 ;

where

Xk;1 � x : kN �Rk� � kN �T � 1ÿ exp�ÿ
���
k
p

=4�
� �n o

:

Let

Xk;2 �
�

x : for every dyadic cube C of order k with C \ T 6� ;

sup
s;t2C
jX �s� ÿ X �t�j � Kr�2ÿk�

���
k
p �

:

It is known (e.g. it follows directly from Lemma 2.1 in Talagrand (1995)) that
we can choose K large enough such thatX1

k�1
P �Xc

k;2� <1 :

Now we choose b > 0 such that a� b < c and let

Xk;3 � x : jX �t0�j � 2kb
� 	

:

Then X1
k�1

P �Xc
k;3� <1 :

We also introduce the following event. Let
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R0k �
(

t 2 T : 9 r 2 �2ÿ2k; 2ÿk� such that

sup
jsÿtj�2 ���Np r

jX 1�s� ÿ X 1�t�j � Kr r log log
1

r

� �ÿ1=N
 !)

:

and let

Xk;4 � x : kN �R0k� � kN �T � 1ÿ exp ÿ
���
k
p

=4
� �� �n o

:

By Lemma 4.2, we see that for k large enough, Xk;1 \ Xk;3 � Xk;4, this impliesX1
k�1

P �Xc
k;4� <1 :

Now for any ®xed x 2 Rd , we start to construct a random covering of
Xÿ1�x� \ T in the following way. For any integer n � 1 and t 2 T , denote by
Cn�t� the unique dyadic cube of order n containing t. We call Cn�t� a good
dyadic cube of order n if it has the following property

sup
u;v2Cn�t�\T

jX 1�u� ÿ X 1�v�j � Kr 2ÿn�log log 2n�ÿ1=N
� �

:

We see that each t 2 R0k is contained in a good dyadic cube of order n with
k � n � 2k. Thus we have

R0k � V � [2k

n�k
Vn

and each Vn is a union of good dyadic cubes Cn of order n. LetH1�k� be the
family of the dyadic cubes in V . Now TnV is contained in a union of dyadic
cubes of order q � 2k; none of which meets R0k: When the event Xk;4 occurs,
there can be at most

2NqkN �TnV � � KkN �T �2Nq exp ÿ
���
k
p

=4
� �

such cubes. We denote the family of such dyadic cubes of order q byH2�k�.
Let H�k� �H1�k� [H2�k�. Then H�k� depends only upon the random
®eld X 1�t� �t 2 T �. For every A 2H�k�, we pick a distinguished point
vA 2 A \ T , let

XA � fjX �vA� ÿ xj � 2rAg
where if A is a dyadic cube of order n,

rA � Kr 2ÿn�log log 2n�ÿ1=N
� �

if A 2H1�k�
Kr�2ÿn� ���np if A 2H2�k�

(
Denote by F�k� the subfamily of H�k� de®ned by

F�k� � fA 2H�k� : XA occursg :
Let Xk �̂Xk;2 \ Xk;3 \ Xk;4. Then
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X1
k�1

P�Xc
k� <1 :

Hence, with probability 1, for k large enough, the event Xk occurs. We denote
D � lim infk!1 Xk.

Claim 1. For k large enough, on Xk, F�k� covers Xÿ1�x� \ T .

For each t 2 Xÿ1�x� \ T , we have X �t� � x. Assume that t belongs to some
dyadic cube A of order n inH1�k� (the case of A inH2�k� is simpler). Recall
that k � n � 2k. Hence for x 2 Xk, by Lemma 4.2 we have

jX �vA� ÿ xj � X 1�vA� ÿ X 1�t��� ��� X 2�vA� ÿ X 2�t��� ��
� rA � K2ÿnc2bk

� 2rA :

Therefore A 2F�k�.
Denote

H � [1
k�1
H�k� :

Let R1 be the r-algebra generated by X 1�t� �t 2 T �. Then H depends on R1

only.

Claim 2. For any A 2H,

P XAjR1� � � Krd
A ; �4:13�

where K > 0 is a ®nite constant depending on N ; d; r; g and t0 only.

To prove (4.13), it is su�cient to show that for every v 2 T and every
y 2 Rd ,

P jX 2�v� ÿ yj � r
ÿ � � Krd :

This follows from the fact that Y 2�v� is a Gaussian random variable with
mean 0 and variance

E�Y 2�v�� � r2�jvj� � r2�jt0j
ÿ �ÿ r2�jvÿ t0j��2

4r2�t0�
� K > 0 :

Let jAj denote the diameter of A. It follows from (4.13) that for k large
enough, we have

E 1Xk;4

X
A2F�k�

/1�jAj�
24 35
� E E

�
1Xk;4

X
A2F�k�

/1�jAj�jR1

�24 35
� E 1Xk;4

X
A2H�k�

E 1fA2F�k�gjR1

ÿ �
/1�jAj�

24 35
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� KE 1Xk;4

X
A2H�k�

jAjN
24 35

� KkN �T � :
�4:14�

Hence by Fatou's lemma and (4.14) we have

E /1-m Xÿ1�x� \ T
ÿ �� � � E 1D � /1-m Xÿ1�x� \ T

ÿ �� �
� lim inf

k!1
E 1Xk;4

X
A2F�k�

/1�jAj�
0@ 1A

� KkN �T � :

This proves (4.12) and hence (4.11).

Proof of Theorem 1.3. Combining Theorems 4.1 and 4.2 completes the proof
of Theorem 1.3.

We end this section with the following result on the Hausdor� measure of
the graph of Gaussian random ®elds. The exact Hausdor� measure function
for the graph of fractional Brownian motion has been obtained by Xiao
(1997). With the help of Theorem 1.1, we can give a di�erent proof for the
lower bound and extend the result to more general Gaussian random ®elds.

Theorem 4.3 Let X �t��t 2 RN � be the Gaussian random ®eld de®ned by (1.7)
and N > ad. Then almost surely

K3 � /3-m GrX �0; 1�N
� �� �

� K4 ; �4:15�

where K3; K4 are positive ®nite constants depending on N ; d and r�s� only and
where

/3�r� �
r N�d

r r= log log 1=r� �1=N
� �� �d :

Proof. We de®ne a random Borel measure l on GrX �0; 1�N � RN�d by

l�B� � kNft 2 �0; 1�N : �t;X �t�� 2 Bg for any B � RN�d :

Then l�RN�d� � l�GrX �0; 1�N � � 1. It follows from Theorem 1.1 that for
any ®xed t0 2 �0; 1�N almost surely

l�B��t0;X �t0��; r��
�
Z

B�X �t0�; r�
L�x; B�t0; r�� dx

� K/3�r� : �4:16�
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By Fubini's theorem, we see that (4.16) holds almost surely for kN a:e:
t0 2 �0; 1�N . Then the lower bound in (4.15) follows from (4.16) and an upper
density theorem for Hausdor� measure due to Rogers and Taylor (1961).
The proof of the upper bound in (4.15), using Lemma 4.3, is similar to that of
Theorem 3.1 in Xiao (1997).

Remark. Let Yi�t� �t 2 RN � be a centered Gaussian random ®eld satisfying
conditions (1.5) and (1.6) with ri�s� � sai Li�s� �i � 1; 2; . . . ; d�. De®ne
Z�t� � �Y1�t�; . . . ; Yd�t�� �t 2 RN �: If each Yi is a fractional Brownian motion
of index ai in R, then Z�t� is called a Gaussian random ®eld with fractional
Brownian motion components. Such Gaussian random ®elds have been
studied by Cuzick (1978, 1982b), Adler (1981) and Xiao (1995, 1997). With a
careful modi®cation of the arguments in this paper, results analogous to
Theorems 1.1, 1.2 and 1.3 can also be proved for Z�t�. We omit the details.
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