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HSlder Continuity of Solutions 

for Higher Order Degenerate Nonlinear Parabolic Equations (*). 

F. NICOLOSI - I. V. SKRYPNIK 

Summary. - We study a regularity of bounded solutions for some degenerate nonlinear parabol- 
ic equations of higher order. It is established the H61der Continuity of solutions by condition 
that the weighted function belongs to the class A1 + q/,~. 

1. - I n t r o d u c t i o n .  

Let  us suppose that  t2 is an open bounded subset  of R n, T is an arbi trary positive 
number  and consider on Qr = ~Q • (0, T] nonlinear differential equation 

a u  
(1.1) _ _  + ~ (_1)1~1 D , A ~ ( x ,  t, u, ..., D ~ u )  =0 

at laJ-<~ 

where x =  (xl, . . . ,  x ~ ) e t g ,  a = ( a l ,  ..., a~), a i is nonnegative entier number, ]a I = 
= a l +  ... + a , ,  n ~= (O/gXl)al...(O/aXn) an, n k u  = {D~u: lal =k} .  

We shall assume that m ~> 2 and the functions A , ( x ,  t, ~) in (1.1) are Carath~o- 
dory's functions, i.e they are measurable functions with respect  to (x, t ) � 9  QT for all 
~ =  {~a: I a] ~<m}, ~ a e R  1 and continuous functions with respect  to ~ for almost all 
(x, t) �9 Q~. We suppose that  following inequalities 

(1.2) la[ <~mE A ~ ( x , t , ~ ) ~ , > ~ C ' v ( x ) {  I ~  I~"IP+ raf=l ~-" I~a ]q} - 

m - 1  

-C"v(x) E I$a I pa-f(x, t), 
Ial =3  
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2 F. NmOLOSI - I. V. SKRYPNIK: H61der continuity of solutions, etc. 

(1.3) E IV(X)] -1/(pa-1) IA.(x ,  t, ~)I p~/(p~ + IAo(x, t, ~)1 <~ 
l<lal<~m 

<<. C"v(x) E I~  I TM +f(x, t) 
l <<. ]fll <<.m 

are satisfied where v(x), f ( x ,  t) are non-negative functions with properties precised 
later. 

The number p~ in (1.2), (1.3) are defined by equalities 

t 
l l a l - 1  1 + m-lal. 1 

(1.4) ~ = r ~ - i - " p  m -  1 q-~ 

p a = q  for la[ =1 

for 1 < lal <~m, 

and the numbers p, q, ql satisfy the inequalities 

(1.5) p >I 2 ,  mp < ql < q �9 

The conditions (1.2)-(1.5) determine the special structure of the equation (1.1). Main 
characteristic of this class of the equations is more strong condition of parabolicity (1.2) 
then usually. We assume positiveness and prescribed growth of the left-hand side of 
(1.2) not only with respect to { ~ :  la] = m }  (as usually) but also with respect to 
{ ~ a: ]a I = 1 }. As model equation of this class we can consider the next equation 

(1.6) au + ~ ( _ I ) . ~ D . ( v ( x ) I D . ~ u l P _ 2 D . u ) _  
at Ja] =,~ 

- ~ D a ( v ( x ) ] D l u l q - 2 D ~ u ) = F ( x ,  t) 
lal =1 

by condition q > rap. 

We remark that  results of this paper about smoothness of solutions of the equation 
(1.1) it is impossible to prove by the less restrictive condition that the inequality q > 
> mp. This follows from the counterexample from our paper [7]. 

We shall suppose that the weighted function v(x) belongs to class A1 + q/~, has a first 
derivative and a function 

f 
(1.7) ~(x) = v(x)/1 

is such that the imbedding 

+v(x--~ ~ ' e -  q l - p  

o 

W~(Q, v)r  ~5) 

is valid with some ~ > q. 
By conditions (1.1)=(1.5), corresponding condition on f ( x ,  t) we prove main result 

of this paper about HSlder continuity of an arbitrary bounded solution of the equa- 
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tion (1.1). Boundedness of solutions by analogous assumptions was established in our 
preceding paper [7]. 

We introduce in Section 2 a special class of functions Bq, 8(QT, V, W). This class gen- 
eralizes corresponding classes of O. A. LADYZHENSKAYA and N. N. U R A L ' T S E V A [ 5 ]  for 
q = 2, s = 1 and E. Di Benedetto [1] for q > 2, s = 1 which were introduced in non 
weighted cases. Class Bq, s for v(x) = w(x) -- 1 was studied in [11]. 

We prove in weighted case HSlder continuity for an arbitrary function from class 
Bq, s(QT, v, W) and we prove that an arbitrary solution of the equation (1.1) by struc- 
tural assumptions (1.2)-(1.5) belongs to the class Bq, ~(Qr, v, ~) with the function ~(x) 

defined by (1.7). 
In this paper we study for simplicity only interior regularity of an arbitrary solution. 
But it is possible to establish also the regularity near boundary for solutions of initial- 
boundary value problems in case of Dirichlet or Neumann boundary conditions by 
using some constructions from paper [8]. 

This paper is organized as follows. In section 2 we introduce the class 
Bq, s(QT, v, W) and formulate main results. We prove in section 3 that an arbitrary sol- 
ution of the equation (1.1) belongs to the class Bq, ~(QT, v, ~). The imbedding of class 
Bq, s(QT, v, W) in the space of HSlder functions is proved in sections 4-6. In section 7 we 
present example in order to illustrate our general result. 

2. - Formulat ion of  assumptions and main results. 

We shall denote for an arbitrary measurable set E r R n and for a n  arbitrary non- 
negative integrable function ~o(x) on R ~ 

(2.1) w(E) = f w(x) dx, 
E 

by I E] we shall denote Lebesgue measure of set E. 
We assume that the weighted function v(x) satisfies next properties: 

Vl) v(x) is the nonnegative function on R ~ which belongs to class Al+q/~. 

v2) the function v(x) has a derivative of the first order on R~; and the function 
~(x) defined by (1.7) belongs to class A ,  and satisfies the inequality 

(2.2) 
RI [ ~;(B(xo, R1)) ] 1/qK1 _[ v(B(xo, R~)) ] I/q 
R2  (B(Xo, R2) ) <- R2) ) 

for an arbitrary point Xo e ~ and arbitrary positive numbers R1, Rz such that R1 < R2 
with constants ~1, C independent from Xo, R1, R2, K1 > 1. Here B(xo, R) is a ball of 
radius R with a center x0. 
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Definitions of classes Ap, A~ and properties of functions from these classes it is 
possible to find in [6, 3]. In particular, from [6] it is followed that by condition vl) the 
weighted function v(x) belongs to the class A1/,~o + q/~ with some Ko > 1. 

We will assume that  the function f (x ,  t) from (1.2), (1.3) satisfies the condition 

(2.3) f (x ,  t) eLQo,~o(QT) 

with Q 0 > 1, ro > 1 and such that the equality 

1 /(0 
(2.4) - -  + - 1 - K' 

r0 (~Co - 1) ~)0 

is valid with K' e (0, 1 ). 
Under conditions (1.2)-(1.5), (2.3), (2.4), Vl) , V2) we shall s~udy the behaviour of gen- 

eralized solution of the equation (1.1). We shall tell that u(x, t) EEI(o~ V) if for an 
arbitrary infinitely differentiable function q~(x, t) with compact support in QT 

q~(x, t)u(x, t)~E(~ , v)=C(O, T; L2(~) )ALp(O, T; I~p (tg)) NLq(0, T, TVVWq~(~)). 

By a generalized solution of (1.1) we mean a function u(x, t) E El(o~ ) (QT, v) which satis- 
fies the identity 

(2.5) [ u(x, t) ~p(x, t) dx]~ + 
Q 

; ~ [  $ ~ f ( x , t ) +  ~ A , ( x , t , u ( x , t ) , . . . , D m u ( x , t ) ) D " ~ f ( x , t ) }  
+ -u(x ,  t) 3 ~  I~1<~,~ 

t 1 

dx d t = 0 

for all ~p(x,t) with compact support in QT such that ~(x, t)eE(~ V), 
(a~p(x, t))/gt eL~(QT) and for arbitrary numbers tl, t2 such that 0 ~< tl < t2 ~< T. 

We suppose that considered solution u(x, t) satisfies the inequality 

(2.6) ess sup{ lu(x ,  t) l : (x,  t) eQT} <~M 

with some constant M. Local boundedness of solution follows from [7]. 
As known parameters by study of properties of solutions of the equation (1.1) we 

understand n, m, p, q, ql, C', C", ~)o, r0, K', T, M, the norm of f (x ,  t) in Leo, ro(QT) 
and parameters connected with weighted functions v(t), ~(x). 

We shall prove the next main result. 

THEOREM 2.1. - A s s u m e  that conditions (1.2)-(1.5), (2.3), (2.4), vl), v2) are satisfied 
and let u(x, t) be a generalized solution of the equation (1.1), which satisfies the 
inequality (2.6). Then there exist positive constants A and a such that the in- 
equality 

(2.7) ess osc {u(x, t): (x, t )e  QR(xo, to)} <~AR ~ 
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holds for an arbitrary cylinder QR (Xo, to) = B(xo, R) x (to- R n + q, to ) i f  Q2R (X0, to)c 
r QT. The constant a belongs to the interval (0,1) and depends only on known parame- 
ters, the constant A depends only on known parameters and on the distance from 
QR(xo, to) to 

FT = [8t9 x (0, T)] U [~9 x {0}].  

The assertion of the Theorem 2.1 follows from the fact that the solution belongs to a 
special class of functions denoted by Bq, ~(QT, v, w). 

Let v(x), w(x) be arbitrary nonnegative functions such that v(x) satisfies to the con- 
dition Vl), w(x)eA~ and the inequality 

(2.8) 
R__ A [ w(B(xo, RI)) 

R2 [ w(B(xo, RD ) 

]l/qK1 [v(B(xo,  R1))] l /q  

< C v(B(xo, R2)) 

holds with the same Xo, R 1 ,  R2, q, K1, C as in (2.2). We shall tell that a measurable 
function u(x, t) belongs to the class Bq, s(QT, v, w) if the inequality (2.6) is valid and for 
an arbitrary cylinder 

Q(R, 0) - Q(xo, to; R,  0) = B(xo, R) • (to - 0, to) 

such that Q(R, O)CQT and for an arbitrary inf'mitely differentiable nondecreasing 
function ~](t) on R 1 the following inequalities hold 

(2.9) sup f 
to-t~<~t<~to B(xo, R - oR) 

[u(x, t ) -  k]S_+ +1 r]q(t) dx + 

to 

+ f f  
to - 0 B(Xo, R - oR) 

[u(x~ t)-k]S+-l [ au(x' t) Iq ax ~q(t) v(x) dxdt <~ 

<~ f [u(x'to-O)-k]~+l ~ q(to-O) dx+ 
B(Xo, R) 

+7 ~ [u(x, t)-k]8+ +q-x ~]q(t) v(x)dxdt+ 
Q(R, e) 

d~(t) 
§ dt 

Q(R, O) 

dx dt + 

to 

+f 
to-t~ 

w(AC, R(t))dt+[to_ ( 

q(1 + K)/r } 

Id~,R(t) ]r/~dt 
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(2.1o) up_< + _ dx <~ 
to -  0 ~ t ~ t. .I H - + (u(x,  t) - k) + v 

B(xo, R - aR) 

~< In dx + 
H • ~ (u(x,  to - O) - k )  + v 

B(xo, R) 

{1 ]i +?, ~ In 
H • ~ (u(x,  t) - k) + v [H • ~- (u(x,  t) - k) + v] 2- q + 

Q(R, O) 

+ ~-  In - -  + 1 w(Ak~R(t))dt  + lAiR(t)  [~/Q dt . 

V t o - o 

Here q I> 2 and s, y, r, Q, 6, b, x are given positive numbers which independent on 
Xo, to, R, 0 and satisfy restrictions 6 < M ,  x e  (0.1), b<.s,  r, Q > I  and 

X o - 1  1 1 
(2.11) - -  + - 

x0r  0 q 

with the same Xo as in (2.4) and possible values of r are limited by the condition r e 
(q, ~).  In (2.9)• (2.10)+ a is an arbitrary number from the interval (0,1). 

The following notation is also used in (2.9)+, (2.10)• : 

(2.12) [u(x, t ) - k ] •  = m a x { _ [ u ( x ,  t ) - k ] ,  0}, 

(2.13) A~,R(t) -- { x e B ( x o ,  R): +--[u(x, t) - k] > 0} 

and [ lnH • {H • -~ (u(x,  t) - k) + v}-l]+ is understood by analogy with (2.12). In 
(2.9)• (2.10)• k is an arbitrary real number satisfying the condition 

(2.14) ess sup {[u(x, t) - k]• :(x, t) e Q(R, 0)} ~ 5 

and H • v are positive numbers such that 

(2.15) ess sup{[u(x, t ) - k ] , : ( x ,  t ) e Q ( R ,  0)} ~<H • ~<d, v~<min{H • 1}. 

By study of properties of functions from the class Bq. ~(QT, v, w) we understand n, 
q, s, y, r, •, d b, x, a, M, T, parameters connected with weighted functions v(x), w(x) as 
known parameters. 

THEOREM 2.2. - Assume that the funct ion v(x) satisfies the condition vl ), nonnega- 

live funct ion w(x)  belongs to the class A~  and satisfies the inequality (2.8). Then for 

an arbitrary funct ion u( x , t )~Bq,  8 ( QT , v, w) the inequality 

(2.16) e s s  o s c  { u ( x ,  t ) :  ( x ,  t )  e Q R ( x o ,  t o ) }  ~ BR fl 

holds for  an arbitrary cylinder QR (Xo, to) such as in Theorem 2.1. In  (2.16) constant fi 
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belongs to the interval (0,1) and depends only on known parameters, positive 
constant B depends only on known parameters and on the distance from QR(xo, to) 
to FT. 

Theorem 2.1 follows from Theorem 2.2 and next result. 

THEOREM 2.3. - Let the conditions of the Theorem 2.1 be satisfied. Then u(x, t) be- 
longs to the class Bq, 8(QT, v, 9) with constants s, ~, r, ~, 5, b, K dependent only on 
knoum parameters of the equation (1.1) and with the function ~(x) defined by 
(1.7). 

Remark  that for the equation of second order  in weighted case HSlder continuity of 
the solutions was proved in [9]. 

3. - P r o o f  o f  t h e  T h e o r e m  2.3. 

Let  us introduce the average over t for an arbi trary function g(x, t) locally inte- 

grable on QT: 

t + h  

gh(x, t) = [g(x, t)]h = -~ g(x, s) ds 

t 

for O<t < T - h .  

I t  is simple to verify that  for the generalized solution u(x, t) of the equation (1.1) the 
following integral identity 

t2 

~ ~(x,  3) + 

tl Y2 

1 
+ ~ [A~(x, v, ..., Dmu(x, T))]hDaq)(2C, T) L dxd~=O 

I~l<-m 
J 

holds for an arbi t rary function cp(x, t)eE(~ with compact support  in QT if 
h < t i  < t e <  T - h .  

Let  us substi tute ~(x,  t) in (3.1) by the test  function 

(3.2) ~ l ( x ,  t) = -+ [[u(x,  t ] h -  k]~'~rl(x)~]q(t) 

where s, rl are sufficiently large positive numbers  to be chosen later, ~(x) is an infmite- 
ly differentiable function such that  ~(x) ~ 1 for Ix - x0 ] ~< (1 - a) R, ~(x) - 0 for Ix - 
- Xo I ~> R and ID a ~(x) I < C/(aR) fal for l al  ~< m, ~](t) is an arbi trary infinitely differen- 
tiable nondecreasing function on R 1 . Here  Xo e t~ and R is so small that  B(x0, R ) r  t ) .  
In (3.1) let us choose sufficiently small numbers  t2 = t ~< to ~ (0, T), tl = to - 0 > 0 and h 
such that h < T - t o .  The number  k obeys the restriction (2.14) with 5 =  
= min {M, ( 1 / 4 ) ( C ' / C " ) } .  
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We can prove that rp~(x, t) eE(~ for s f> m, this permits us to use the substitu- 
tion (3.2). Transforming the term which results by substituting the function rp~(x, t) 
and includes (3/at )[u(x ,  t)]a we can pass to the limit as h - o 0  in identity (3.1) with 
of(x, t) =rf  l(x, t). The resultant equality reads 

(3.3) 
s + l  

B(xo, R) 

[u(x, ~) - k]~ +1 ~ ( x )  tlq(v) dr [~:to-oZ:t _ _  

s + l  

t 

I f  
to - 0 B(xo, R) 

[u(x,  ~ ) -  k]~ § ~ ( x ) ~ q - ~ ( v )  
d~(v) 

dv 
dx dv +- 

t 

to - 0 B(xo, R) 

A , ( x ,  v, u,  . . . ,  D'~u) Da{[u(x ,  r) - k]% ~ ( x ) }  tlq(r) dxdT = O . 
1el <-'~ 

Using conditions (1.2), (1.3), the estimate (2.6), Young inequality and the choice of 5 we 
can evaluate the last integral. We obtain the inequality 

C'(s  + 1)s 
(3.4) sup [u(x ,  t) - k]s+ +1 ~r (x )  t l q ( t )  d x  + (Ira + 11) <~ 

t o - O < t < t o  - 2 
B(xo, R) 

~< ] [u(x, t o -  O) - k]~ +1 ~ ( x )  rlq(to - O) dx + 

B(xo, R) 

to 

"~-q [U(X, T) --k]s_+ +1 ~ r ( x )  ~q- l (T )  dv 

t o - 0 B ( x o ,  R )  

dxdv  + 

to 

+C~ 15 + 
. =  

to - 0 B(x o, R) 

([u(x, v ) -  k]~- l f ( x ,  t ) ~ r l ( x ) +  

-~" [ U ( X ,  T )  ],.IS + q - 1 r 1 - -,vj~ ~ q(x) v(x)+ 

+ [U(X, V) --  k]S+_ - a ' ( m + q )  ~ n - a l m ( x )  V ( X ) )  t l q ( v )  dxdv}. 
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Here 

(3.5) 

Ij = i~]~oj I~, 

I I  I~ = [u(x, v) - k]~ -1) IDau(x ,  ~) I p~ v(x)  ~ (x) t]q(v) dxdv  , 

to - o B(xo, R)  

In (3.4) and in the subsequent formulas we denote by Cj, j = 1, 2, ... constants which 
depend only on known parameters.  

The following Lemma is used to tranform the right-hand side of (3.4). 

LEMMA 3.1. - For  2 <.j <<. m - 1 and an arbitrary number  s f r o m  the interval (0,1) 
the inequali ty 

to 

+ - -  
1 

( ( ~ R )  q 

[ u ( x ,  ~) - k ]~  § q -  ~ U ~- q (x )  + 

} i ~rl(x) "V(X) ~]q(v) dxdv  

holds wi th  some constants b; dependent only on knoum parameters  and with 

Q = ( (m - 1) Pql )/Pql.  

PROOF. - Let lal = j  and let a =f l  + y where Ifll =J - 1, IYI = 1. Integrating by 
parts we obtain 

to 

f fm +-(s-1)[u(x' v)-k]:-I DyuDau[D uIp -2+ 

+(pa - 1) ID~ul  p~-~ Da+ru + r l D a u l  p~-2 D~u~  - l ( x )  D r ~(x)  + 

+ ID"u lP  - e Da u _ l  , DYv(x ) '  
v(x) 

D~ u(x ,  v) ~rl(x)  ~]q(v) v(x) d x d v .  

First  we prove the inequality (3.6) fo r j  = 2. For this it suffices to estimate the terms 
in brackets in the last integral by using the Young inequality with s. In particular, 
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we have 

(3.8) IDaUIP~-~ID~+~UI'ID~u I ~e{ID~ulP~§ ID~+rulP~+~§ IDeulP,~)+e -~ 

for [a[ = 2, where ae is determined by the condition 

2 1 1 1 m - 2  1 
_ +  - - _ _  + _ _  

q ae m - 1  p m - 1  q~ 

Similarly we can evaluate all terms in the right-hand side of (3.7) and we obtain the in- 
equality (3.6) for j = 2. 

F o r j  > 2 we prove (3.6) by induction assuming that (3.6) holds for j  <Jo and proving 
it fo r j  =J0. Let us estimate the right-hand side of (3.7) for j  =J0 > 2. In this case we ob- 
tain the inequality 

(3.9) IDaul p~-2 IDa+~ul �9 IDZul < e(ID~ul p- + ID~+YulP--) + e-q IDZulPa 

instead of (3.8). We evaluate by Young inequality another terms on right hand side of 
(3.7) and obtain the estimate 

Ijo <~ C~ {eljo + 1 + sI1 + s -'t Ij ~ _ 1 + 

to 

to - O B(xo, R) 

1 _ k]s+_- 1 + r 1 [ u ( x ,  3)  q ~ - q ( x )  + [u ( • ,  T ) -  k ]  s - a ~ - - 1  ~rl(X)"4-  

+[u(x, v ) - k ] ~ -  ~ --~x ~rl(x) ~lq(V) v (x )dxdv  

with some a~ determined by m, p, q, ql- We evaluate Ijo_ 1 by using (3.6) on the basis of 
the induction assumption (with e q+ ~ instead of e) and we have from the last inequality 
the estimate (3.6) for j =Jo. This completes the proof of Lemma 3.1. 

By summing the inequality (3.6) over j we obtain the estimate 

m - 1 to f 

(3.10) ~ 13<<'t(I'~§ f f l [ u ( x ' O - k ] ~  -b' ~r 
j = 2  

to - 0 B(xo, R) 

+ R 
1 

( aR ) q 
[u(x, 3 ) -  k ]7  q-1 ~ri-q(x)+ [u(x, r ) -  k]% -~. 

where b' = max { b2, ..., bin- 1 }. 
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Choosing a sufficiently small e we have from inequalites (3.4), (3.10) the esti- 
mate  

(3.11) sup I [U(X, t) - k]S_+ +1 ~]q(t) ~ ( x )  dx + 
t o - O ~ t < ~ t o  . 

B(xo, R)  

+ 

t o  

f f 4 I = ~  l~l =1  
to - 0 B(xo, R )  

[D~u(x, r)lq} �9 

"~(X)  rlq(r)v(x)dxdr<" f [u(x'to-O)-k]S+-+lrlq(to -O)~r~(x)dx+ 

B(xo, R )  

to 

+c ff 
to - 0 B(xo, R) 

�9 

[ U ( X ,  r )  - -  k]s_+ +1 ~ r l ( X )  ~ ] q - l ( . ~ )  d~I(r) 
dr 

+ 

+ 1 

(oR) q 
[U(X, V) tqs+q-1 -,~+_ ~r~-q(x) ~q(r) v(x) dx dr + 

to 

to - 0 B(xo, R )  

[u(x, r) - k]~-~4{ 1 + f(x,  t) + ~)(x)} ~rl-~lm(X) ~]q(r) dxdr 

where  a4= m a x { b ' ,  al(m + q)}, 6(x) is defined by (1.8). 
We will assume that  the inequalities 

(3.12) s >>- m ,  s > a~, C' s(s + 1) >>- 4, r~ > aim 

are fulfilled. Let  us estimate the last integral in (3.11) by HSlder and Young inequali- 
ties. We have 

(3.13) 

to 

f f 
to - 0 B(Xo, R) 

[u(x, r) - k]~-a4{ 1 + f(x,  t) + ~(x)} ~r l -a1~yq(r)  dxdr < 

to [ i  
<<-C6 f OA~,R(r) d~ + C6 

to-o to- 
IAC, R(T) I ~/p~ dr] 1/~ 



12 F. NICOLOSI - I. V. SKRYPNIK: HSlder continuity of solutions, etc. 

where r~=ro/(ro-1) ,  Q ~ = Q 0 / ( Q o - 1 )  and to, ~o are the same as in (2.3). Set- 
ting 

Ko-  1 
r=r~q( l+K) ,  ~ = ~ q ( 1  + ~ ) ,  K -  - - K '  

~o 

we obtain from (3.13) that u(x, t) satisfies the inequality (2.9)• 
The proof of the inequality (2.10)_. for the solution u(x, t) of the equation (1.1) follows 
in analogous way after substitution in identity (3.1) a test function 

~2(x, t) = +- ~r~(x) 
/7 • T- ([u(x, t)]h - k) + ~ ~- ([u(x, t)]h - k) + 

where s, r2 are sufficiently large numbers, ~(x) is the same function as in (3.2)./4 • 
are positive numbers satisfying inequalities 

ess sup{[[u(x, t)]h - k]• :(x, t) ~ Q(R, 0)} <~/~ • ~ 5 ,  

{c§ } ~< min {/~ • 1 }, 5 = min , M . 

This completes the proof of Theorem 2.3. 

4. - P r o o f  o f  the  Theorem 2.2. 

First we note some estimates for weighted functions. From the definition of class 
A1/ro+q/n and HSlder inequality the estimate 

\R1] 

follows for arbitrary positive numbers R1, R2 such that R1 ~< R2 with some constant C (~) 
independent on R1, R2. 

LEMMA 4.1. - There exist positive numbers C (2), ao such that the inequality 

(4.2) w(B(xo, R) ) <. C (2) R ~o - q v (B(xo, R) ) 

is valid for arbitrary R e (0.1), Xo e ~2. 

PROOF. - From definition of class A= the inequality 

(4.3) w(B(xo, R))<~C(8)w(B(xo, 1) ) . (  IB(x~ 1) I )a', 0 < R < I  

follows with some positive numbers C r a ' .  We obtain the inequality (4.2) from (2.2) 
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and (4.3): 

w(B(xo, 1 )) w(B(xo, 1 )) w(B(xo, 1 ) ) 

1-1/~ 1 

( C ) q v(B(xo, R)) [C(8)Ra,]I_I/~ I 
<~ v(B(xo, 1 )) 

and this completes the proof of Lemma 4.1. 
Let  u(x, t) be an arbitrary function from the class Bq, ~(Qr, v, w). In all further 

considerations we fixe point (x0, to) E QT and define 

(4.4) f (R)  - f ( xo ,  R) - 
IB(xo, R) I 

v(xo, R) ) 

For 0 < R '  ~< 2R,  positive number 2, ~ we introduce cylinders 

{ Q~(1)(R ', R) = B(xo, R ') • (to - 2 [ R  ']qf(R), to), Q(~)(R) = Q(~)(R, R) ,  

(4.5) Q~2)(R ', R,  t)=B(xo, R ')•  ( t - ~ [ R  ']qf(R), t) ,  Q~)(R, t)= Q~2)(R, R, t) .  

Fur ther  we will assume that 

(4.6) 
(9 

to - 2Rqf(R) < t - ~Rqf(R) <~ t <<- to, 

K1 is a sufficiently large number chosen below and such that 

2M 
(4.7) Ks > , K1 > 2M + 1. /t 

In (4.6) (9 is an arbitrary positive number satisfying the inequality 

(4.8) co < 2 M .  

We assume that R is so small that  Q(~I)(R)cQT. 
Denote 

(4.9) I t t +  = e s s  sup(u(x ,  t):(x, t)eQ(~I)(R)}, 

[ z _ = ess inf {u(x, t): (x, t) e Q(~I)(R)}. 

The proof of the Theorem 2.2 is based on the assertions formulated below in Proposi- 
tions 4.1 and 4.2 which will be proved under the following assumptions 

(4.10) ess osc {u(x, t): (x, t) e Qx(1)(R)} ~< w,  

( 4 . 1 1 )  (9 1> KR oo 
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where K is a sufficiently large positive number, ~o is a number  defined by  the 
equality 

(4.12) go = 

= min a0 n(K o - 1 ) nK / 

s + q - l '  i % ( q - 1 ) '  s + q - l + ( q - 2 ) m a x { ( q ( l + K ) ) / r - l , 0 }  J 
where ao is a number  introduced in Lemma 4.1, all another parameters  were  introduced 
by definition of class Bq, s(QT, V, W). 

PROPOSITION 4.1. - There exist number aoe (0, 1) depending only on known pa- 
rameters and positive number K2 depending on K1 and known parameters such that 
from the inequalities (4.10), (4.11), with K = K2 and from the inequality 

{ 5co} ~a~ 
(4.13) meas (x, t) ~ Q~2)(R, t): u(x, t) </~ _ + 2--M 

for some te  [ t o -  ( ~ -  ~ ) R q f ( R ) ,  to] the estimate 

(4.14) e s s o s c  u(x, t): (x, t) ~ [ 8  ' 

follows. 

PROPOSITION 4.2. - There exists a positive number K1 depending only on known pa- 
rameters such that from the inequalities (4.10), (4.11), with K = 2K1 and from the 
inequality 

(4.15) measf(x't)eQ~)(R't): u (x ' t )<#+ 2MSco } >a~ ~)' 

for every te  [ t o -  ()~- ~ ) R q f ( R ) ,  to] the estimate 

(4.16) ess osc u(x, t): (x, t) e Q},I) , R ~< co 1 - 2K1 

follows with 2 '  = ( a o / 2 )  ;t and with a o defined in Proposition 4.1. 

We will prove Propositions 4.1, 4.2 in two next section. Now we prove the Theorem 
2.2 using these Propositions. 

P R O O F  OF THE T H E O R E M  2.2. - Fi rs t  we define a number  w which satisfies all as- 
sumptions in Propositions 4.1, 4.2 for given small number  R. Le t  

(4.17) h :=  max {2K1, / (2} 
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where K1, K~ are defined in Propositions 4.2, 4.1. Introduce a cylinder 

(4.18) Q(~ = B(xo, R) x to-  "Rq-~~ to 

and we choose 

(4.18) to = ess osc {u(x, t):(x, t) �9 Q(~ 

By this we can assume that R is such that Q(~ 
In order to prove the Theorem 2.2 it is sufficient to establish that for an arbitrary 

number R such that Q(R ~ U Q~I)(R) r QT there exists a number R '  �9 (R 2, R) for which 
the inequality 

(4.20) ess osc {u(x, t): (x, t) �9 QR,(Xo, to)} ~< B ' (R  ')~ 

holds where B ' ,  fi are positive constants dependent only on known parameters. 
Let  us considered two possibilities: 

a) Q(~ 

b) Q(~ 

In the case a), from the definitions of the cylinders Q(~ Q ~ ( 1 ) ( R )  it is followed 
the inequality 

-~- .R -a~ ~ 

We obtain (o ~<KR ~176 and from (4.19) and last inequality the estimate (4.20) fol- 
lows. 

In the case b) we have the inequalities 

(4.21) to > KR o0, 

(4.22) ess osc {u(x, t): (x, t) �9 Q~(1)(R)} ~< ~o 

and consequently co satisfies all assumptions in Propositions 4.1, 4.2. 
We define a number N independent on R such that N ~> 8 and for R �9 (0, 1) the 

inequalities 

(4.23) N-oo < 0 ,  

y K: Rqf(R) 
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hold where 

/ 1 1} 
(4.24) 0 = m a x  - 2 - - ~ ' 1 - ~  . 

The possibility of indicated choice of N follows from the extimate 

(4.25) (R/N)qf(R/N) = (1/g)~+q v(B(xo, R)) 

R qf(R) v(B(xo, R/N))  

which is obtained by  use of the inequality (4.1). 
Now we introduce the sequences 

(4.26) Rj=R , wj=woj_ 1 ~j= 2M q-2 
' do) ] ' 

Let  us consider two possibilities: 

i) for all values of j = 1, 2, ... the inequality 

~- C(1) (-~ 
1 )n(1-1/K o) 

2 j =  , j = l , 2 ,  . . . .  

(4.27) (Dj :> KR; ~ 

holds; 

ii) there  exists a number  J i> 2 such that the inequality (4.27) holds for j < J 
and 

(4.28) w j ~< K R ]  ~ . 

For  j -- 1 the inequality (4.27) is coincided with the inequality (4.21). We will prove 
that  is case i) the inequality 

(4.29) , ess osc{u(x,  t): (x, t) e Q(~))(Rj)} <~ oj  

holds for all values of j = 1, 2, .... Las t  inequality for j = 1 follows from (4.22). 
We prove (4.29) by induction. Assume that (4.29) is valid for j ~<J0 and check it for 

J =J0 + 1. F rom the inequalities (4.27), (4.29) for j =J0 and Propositions 4.1, 4.2 for the 
cylinder (1) Q~Jo (RJo) we obtain 

8 ,R;o n ,R~0 -< - -  ~)')0 / ~ ('0 J0 + 1 

where ;t~o = a o / 2 ) 2 j o .  Now it is sufficient to remark that from (4.23) the inclusion 

(4.31) ~jo+l 1o~0+ 1, ~ ~J0 [ - 2 ,  R~o n ~ o  [ V '  R;0 

holds. So the inequality (4.29) for j =Jo + 1 follows from (4.30), (4.31) and we prove 
(4.29) for all j = 1, 2 . . . .  in ease i). 
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In considered case i) the inequality (4.20) follows from (4.29) and the choice of R~, 
oJj. We can assume that R < 1 I N  and choose the number j i  such that R 2 <~ Rjl < N R  ~. 
Then for fl 1 = - I n  0/ln N we have the estimate 

w R.~I<~2MN_~R~I/2 
(A)Jl- R ~  1 31 

from which and (4.29) the inequality (4.20) follows. 
In case ii) from (4.28), (4.26) and the choice of N we have 

co ~<KR ~176 ~ < ~ o 0  

what it impossible by virtue of (4.21). 
So we establish the inequality 

completed. 
(4.20) and the proof of the Theorem 2.2 is 

5. - P r o o f  o f  the  Propos i t ion  4.1. 

We formulate at first auxiliarly statements which are connected with weighted 
functions. 

LEMMA 5.1. - Let weighted functions v(x), w(x) satisfy conditions of the Theorem 
2.2 and denote w l ( x )=  1, w2(x)= v(x), ws(x)= w(x). Then there exists ~ i )  > 1, i = 
= 1, 2, 3 and a positive constant C (4) such that the inequality 

(5.1) 1 f [g(x) [ q~(i) wi (x) dx <. 
wi (B(xo, R ) )  ,(xo ' R) 

{ t ~< C(4) 1 I q dx 
IB(Xo, R) I B(~o ' ) Ig(x) 

{, 
�9 , ~ v ( x )  dx + IB(xo, R)  I B(~o R) v(B(xo, R))B(~o ) 

holds for  i = 1, 2, 3 for  every ball B(xo, R)r  2 R ) r  • and every function g(x) e 
e Lq ( ~ ) ;~ W~ ( ~2, v ). By  this K(1) = (2K0 - 1)/Ko where K o is the number f rom the in- 
equality (4.1). 

For i = 1 the estimate (5.1) follows from the Poincar~ inequality (Theorem 1.3 in [2]) 
and HSlder inequality. For i = 2, 3 the estimate (5.1) follows from Theorem 1.3 in [2], 
Corollary and remarks in end of Section 1 in [4]. 
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For  the same weigthed function wi(x) as in Lemma 5.1 the inequality 

[ ]a wi(E) <~ C (5) IEI , i = 2, 3 
(5.2) wi (B(xo, R)  ) [B(xo, R)  ] 

holds for an arbi t rary set E c B ( x o ,  R)  c B(x0, 2R) c t) with positive constants C (~), a in- 
dependent on E ,  x0, R.  This inequality follows from L e m m a  3 in [3]. 

LEMMA 5.2. - There exists a positive number  a o e (0, 1 ) depending only on known 
parameters  such that f r o m  the inequalities (4.11), (4.13) with K = K1 the estimate 

(5.3) u(x ,  t) >1 tt _ + - -  for (x, t) R R 
4 M  e ~  1 2  , , ] 

holds. 

PROOF. - We introduce for j = 1, 2, ... the following sequences 

(5.4) 

f R ( j )  R R 1 R -- 
= - -  + --: (~(j) R ( j )  - R ( j )  = R ( j )  - o ( j )  R( j )  

2 2 J ' 4 2 j ' ' 

O(j) = ~[R(j)]q f (R) ,  -O(j) = ~[R(j)]q f ( R ) ,  

B ( j )  = B(x0, R ( j )  ), -B(j) = B(xo, -R(j) ), Q( j )  = B ( j )  • ~ - O(j), t) , 

q ( j )  --- B ( j )  • ~ - -O(j), t ) .  

For  R = R( j ) ,  o = a ( j ) ,  0 = O(j) we write the inequality (2.9)_. The admissibility of 
this choice of values of parameters  is guaranteed by next inequality 

ess sup{[u(x ,  t ) -  k ( j ) ]_ : (x ,  t) e Q ( j ) }  ~< - -  
2M 

which ensures that  the condition (2.14)_ is satisfied. The function ~](t) is assumed to be 
equal to one for t>~ t -  O(j) and to zero for t<~t - 0(j);  also we assume that  

0 4  
d~](t) 22 +j  + q 

dt q~R qf(R) 

From (2.9)_ and (5.5) we obtain the estimate 

(5.5) 
i" 

~" sup | [u(x, t) - k(j)] '~ q-I dx + 
~-~r  ~(j) J 
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where  

(5.6) i [i ] DJ-= R----- ~ - ~  ] Vj- + 1 f (R)  Mj- + IV).- + [mj- (t)] r/~ dt 
- e(j) 

+ K))/r 

and 

(5.7) 

Vj-= f v(A[~),R(~)(t))dt, 
- e(j) 

-t 

Mj- = f ]A~),R~)(t) ] dt , 

- off) 

wj-= f 
- o(j) 

w(A~.), R(j)(t)) dt , 

mj- (t) = IA[~), R(~)(t) [ . 

In (5.5) and further  by Ci we denote constanst depending only on known parame- 
ters. 

Define a function 

(5.8) g(x, t) = [u(x, t ) -  k(j)](s_ -1)/q+1 

and apply to this function the inequality (5.1) with i = 1. After the integration on t we 
obtain from (5.5): 

(5.9) J I [u(x't)-k(J)](s-+q-1)~l)dxdt<'CsI-B(J)ll-~l) " Rqf (R)Dj-"  

Using the HSlder inequality we get  

(5.10) [ k ( j ) - k ( j + l ) ] S + q - l . M j - + l < ~ f  f [ u ( x , t ) - k ( j ) ] ~ _ + q - l d x d t  < . 

~(7+ 1) 

From the inequalities (5.9), (5.10), (4.11), (4.1) the choice of ao we obtain the 
estimate 

(5.11) yj(1) 1 ~ C 9 2 J ( s + 2 q ) { y ( 1 ) } 1 - 1 / K ( 1 ) { y j ( 1 ) j  . _~ yj(2).~_ yj(3)_{_. [yj(4)]l + K} 
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where 

(5.12) 

M j -  Vj- 

y j (1)_  ~ R n + q f ( R )  , yj(2) = ~ R q f ( R )  v ( B ( x o ,  R)) ' 

yj(3) = wj- 

~Rq f(R) w(B(xo, R) ) ' 
yS4)_ 1 1 f 

t - o(j) 

[mj- (t)] r/Q dt] q/r . 

Now we apply to the function g(x, t) defined by (5.8) the Lemma 5.1 for i = 2, 3. 
After the integration on t and the use of (5.5) we get the inequality 

(5.13) I I [u(x, t) - k(j)](s_ +q-1)~(1) w i ( x )  dx dt <<. 

~( J) 

1 

<<- C9 ~ ] - ~ 7  ) Rqf(R) Dj- . 

Evaluating analogously to (5.10) only with weighted function wi(x) and using (5.13), 
(4.1), (4.11) and the choice of ~0 we obtain the estimate 

(5.14) yj(i> ~ CloSJ(S+2q> {y j ( i ) } l -1 /~ i )  {yj(1) + yj(2) + yj(3).+. [yj(4)]l +~-}, i = 2,  3 .  

In order to evaluate YS 4) we use the inequality 

(5.15) f I g(x) I qK~ dx <. C(6) lB(xo, R) I l-K~ 
B(xo, R) 

�9 [Rqf(R) -~x q v(x) + Ig(x)I q] dx 
B(xo ) 

which follows from the Poincar6 inequality (Theorem 1.3 in [2]). We apply the inequali- 
ty (5.15) to the function g(x, t) defined by the equality (5.8) and use the HSlder inequal- 
ity. After the integration on t and using of (4.1) we obtain the estimate 

f 
- 9(j) 

J" [U(X, t)  -- ]c(j)j(s_ +q-1)O/q dx} r/e 
~( j) 

from which the inequality 

dt <. Cn [~]1 - r/q [Dj-  ] rlq 

(5.16) + 2q).r v(1) ySa) + [yj(4)]l + K} YJ(a+)l ~< C12 2j(s t*a  + yj(2) + 

follows. 
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Inequalities (5.11), (5.14), (5.15) imply that Yj(~)-~0 as j - ~  ~ ,  i = 1, 2, 3, 4 if the 
condition 

(5.17) Yj(~ ~< a(1), i = 1 ,  . . . , 4  

is valid with some a (~) which depends only on known parameters. This is possible to 
verify analogously to the proof of Lemma 5.7, Chapter 2 in [4]. Using the estimate (5.2) 
we obtain that the condition (5.17) is satisfied by the choice of sufficiently small number 
a0 in the inequality (4.13). 

From Yj(1)-o0 the equality 

meas (x , t )  eQ~2) - - , R , t  : t t  + - - - u ( x , t ) > 0  
4M 

= 0  

follows. This I)roves the estimate (5.3) and we conclude the proof of Lemma 5.2. 
Define ~, 0 and H -  by the equalities 

to- 
(5.1s) {[ H - = e s s s u p  u(x, t) - ~ _ 4M 

Evidently that H -  <~ d(o/4M. 

] :(X,t) eQ I)(R,R)} 

LEMMA 5.3. - A s s u m e  that the inequality 

(5.19) H -  I> - -  
4M 

is valid and let a i be an arbitrary number from the interval (0, 1). Then there exists a 

positive number K '  depending only on a 1, K1 and known parameters such that from 
the inequalities (4.11), (4.13) with K >I K '  the estimate 

- -  < a l m e s B  x 0 ,  (5.20) meas x e B x0, : u(x, t) < tt_ + K 

follows for all t ~ [to - ~(R/2)q f (R) ,  to]. 

PROOF. - Let rio be a number from the interval (0, 1/4) which will be chosen later. 
We choose 

(5.21) K '  = max , 

and apply the inequality (2.10)_ for k =/ t  _ + 5~/4M,  a = 1/2, v =flo(Sw/4M) and 
the cylinder Q~I)(R/2, R). By this choice the integral corresponding to the first sum- 
mand on the right-hand side of (2.10)_ is equal to zero by the inequality (5.3). We eval- 
uate another integrals corresponding to summands on the right-hand side of (2.10)_ 



22 F. NICOLOSI - I. V. SKRYPNIK: HSlder continuity of solutions, etc. 

and obtain the inequality 

t ~t~<t - H -  +u(x ,  t ) - I t  doo/4M+fio(dOo/4M) o- ~ ~ O B(xo, R/4) 

~< C18 In ~oo R-q / 4M ] + 

-~- ~__~)b[ ( B xo, -~R))+oq/r(l+~)Rnq/e(l+K)l} 

From the defmition of ~, the choice of K(a 1) in (5.21) and the inequality (4.11) with 
K ~> K '  the following estimate 

(5.23) ~ ~ ~ Rao(q_2) 

holds. Evaluate the right hand side of (5.22) by the use of inequalities (5.23), (4.11) and 
the choice of a0 and we obtain that the right-hand side of (5.22) is not greater 
than 

C14(1 + Klq- 2) R ~ �9 

Let us find the lower bound for the integral on the left-hand side of (5.22) by replac- 
ing the integration over B(xo, R/4)  by the integration over set {xe  
eB(xo, R/4): u(x, t) < # _ + f loSw/4M}. We obtain that the left-hand side of (5.22) is 
not less than 

C15 In meas x c B  xo, --~ : u ( x , t ) < # _  + 4M " 

By comparing of the estimates for the left-hand and right-hand sides of the inequal- 
ity (5.22) we have the inequality 

1 ~o5CO } <~ 
(5.24) IB(xo, R/4)  I 4M 

J 

C16(1 + K~-2)(lnl  /flo) ~ 

[ln 1/flo - ln4] ~+1 

whence it follows that the right-hand side of (5.24) can by made less than a I for suffi- 
ciently small fi o dependent only on a 1, K1 and known parameters. This and (5.21) com- 
pletes the proof of Lemma 5.3. 

{(R) meas x e B  xo, -~ : u ( x , t ) < i t -  + 

LEMMA 5.4. - Assume that the inequality (5.19) is valid. Then there exists a possi- 
tire number K" dependent only on K1 and known parameters such that the inequali- 
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ties (4.11), (4.13) with K = K" imply the estimate 

) (5.25) u ( x ,  t )  >I ~ _ + g'---; f o r  ( x ,  t )  ~ Q}I)  , R . . 

Proof of the Lemma 5.4 it is possible to carry out analogously to the proof of Lemma 
5.2 with the use of Lemma 5.3. 

PROOF OF THE PROPOSITION 1. - We determine the required number a 0 in the accor- 
dance with Lemma 5.2. For  the number H -  determined by (5.18) we consider two 
possibilities: 

5co &o 
i) H - ~ > - - ;  ii) H - < - -  

8 M  8 M  

In case i) from (4.10) and (5.25) we obtain the inequality 

(5.26) ess osc u(x, t): (x, t) e ~ 
8 

In case ii) from (4.10) and (5.18) we have 

)}(1) 
, R  ~<w 1 -  ~W �9 

' 8 M  " 

We can choose now K2 = max {K", 8/14/5} and the inequality (4.14) follows from (5.26), 
(5.27). The proof of the Proposition 4.1 is completed. 

6. - P r o o f  o f  t h e  P r o p o s i t i o n  2. 

We assume in this section that  for every t e  [to - (2 - ~) Rqf(R), to] the inequality 
(4.15) is valid. Since we assumed that  5 < M then from (4.15) the inequality 

(6.1) meas ( x , t ) e Q ~ 2 ) ( R , t ) : u ( x , t ) > t t + - - 2 -  ~ < ( 1 - a o )  lQ~2)(R,t)l 

follows for all cylinders Q~2)(R, t)r Q(~I)(R). From last inequality it is followed the ex- 
istence t * e  [ t -  ~Rqf(R), t -  ( a o / 2 ) ~ R q f ( R ) ]  such that  the inequality 

(6.2) meas xeB(xo, R): u(x, t*)  > i t  + - ~ < (1 - a2o)IB(xo, R) I 

holds. 
We choose further  in this section 

(6.3) H + = ess sup u(x, t) - tt + + : (x, t) e Q(~I)(R) . 
+ 
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LEMMA 6.1. - A s s u m e  that the inequality 

6(0 
(6.4) H + > - -  

4M 

is valid. Then there exists a possitive number K"' depending only on known parame- 
ters such that from the inequalities (4.11), (6.1) with K =  K"' and every t e [ to -  
- ( 4 -  ~) Rqf(R),  to] the estimate 

(6.5) meas x~B(xo,  R ) : u ( x , t ) > i t + - ~  ' < l - - - ~ -  

follows for t e (to - 4Rq f (R) ,  to), 4' = ao/24.  

For the proof the of Lemma 6.1 we employ the inequality (2.10)+ over cylinder 
B(x0, R) • (t*, t) and use discussions anologous to the proof of Lemma 5.3. In such 
way we prove the inequality (6.5) for t e (t *, t). Since t is an arbitrary number from the 
interval [to - (4 - ~) Rqf(R),  to] we obtain the assertion of Lemma 6.1. 

LEMMA 6.2. - A s s u m e  that the inequality (6.5) holds. Then for every f i l e  (0, 1) 
there exists a possitive number K(fll) depending only on known parameters and fi l 
such that the condition K1 >~ K(fll) and the estimate (4.11) with K =  K(fll) yield the 
inequality 

(6.6) meas (x, t ) e  Q~(1)(R): u(x, t) >i t  + K(fll) ~ 1  IQ(~')(R)I �9 

PROOF. - We write the inequality (2.9)+ for cylinder Q~(1)(2R, R), a= 1/2. We 
choose a cutoff function rl(t) such that ~](t) - 1 on Q(,1)(R), ~](to - 4'(2R)qf(R))  = 0, 0 
<~ drl(t) /dt <<. 2 /a  o (4R qf(R) )- 1. As for the levels k we take k = k( j )  = it + - w/2 j IC',j  = 
=0,  1, 2, ... where K" is the number claimed by Lemma 6.1. 

Evaluating the terms corresponding to the summands on the right-hand side of 
(2.9)+ we obtain the inequality 

-k(3)]+  " I 3x q 
(6.7) f f [u(x , t )  - �9 8-1 au(x , t )  v(x) dxdt  <~ 

Q~I,)(R) 

+Rq v(B(xo, R))  + [Rq+~r/ef(R)]q/r(l+K) R ----~ " 

We will assume that 0 ~< j ~< Y where J is sufficient great and chosen further num- 
ber. And 6ur choise of K(fl 1) will be by equality K(fl 1) = K' -2  7. Using inequalities 
(4.1), (4.2), the condition (2.11) and the choice of ao we evaluate the right hand side of 
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(6.7) and obtain the estimate 

(6.8) [u(x, t) - k(j)]~- 1 ax 

Q(I,)(R) 

v(x) dxdt <~ 

(.I) I s+q-1 
<<- Cls~'f(R) v(S(xo, R)) 2-- 7 ] . 

Ej = {(x, t ) e  Q~(1)(R): u(x, t) > k ( j )}  

v(E) = f f v(x) dxdt for ECQT. 
E 

Using the HSlder inequality and (6.8) we obtain from (6.9) 

(6.10) f f Ig(x,t)l q/~v(x)dxdt<- 
Q(~)(R) 

(,)) 

We evaluate the left hand side of (6.10) below by  

[k ( j  + 1) - ~(j)]1/2(~ + q- 1) v(Ej+ 1)  = 

09 ]l /2(s + q -1) 

2J+IE. v(Ej +1)" 

So we obtain from (6.10) the inequality 

-1}1/2. {v(Ej) - v(E~ +1)}1/2 . 

[v(Ej + l) ] 2 <~ C2ov(Q(~I)(R) ) �9 {v(Ej) - v(Ej + l ) } . 

We add last inequalities for j = 0, 1, .. . ,  J - 1 and we obtain 

J[v(Ey)]  2 ~< C21[v(Q(~l')(R))] 2 

(6.9) I IFI(x,t) lq/2v(x)dx<.C(S)Rq/2 f I ig"g(x't) Iq/2 ax v(x) dx.  
B(xo, R) B(xo, R) 

Last  inequality follows immediately from Theorem 1.6 in [2], the estimate (6.5) and 
HSlder inequality. 

Denote 

Now we introduce a function ~(x, t) by the equality 

~(x, t) = min {[u(x,  t) - k(j)]+,  k ( j  + 1) - ~(j)}s+q-1/q 

for (x, t )~ Q(~I,)(R) and apply to this function the inequality 
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from which it is followed the estimate 

(6.11) v (x, t ) e  Q~(,1)(R): u(x, t) > t t  + U(t~l---- ~ ~< v(Q(~I)(R)). 

From the definition of class A1 + q/~ it is simple to obtain the inequality 

( 6 . 1 2 )  {E, ~ C(7).[ v(E) ]n/(n+q) 
v(B(xo, R)) "IB(x~ R) I 

for an arbitrary set EcB(xo, R) with a constant C (7) independent on Xo, R,  E. The as- 
sertion of the Lemma 6.2 follows from (6.11), (6.12) if we take J so large that  it is valid 
the estimate 

<81  

LEMMA 6.3. - A s s u m e  that the inequality (6.5) holds. Then there exists a constant 
K1 depending only on known parameters such that the estimate (4.11) with K = 2K1 
yields the inequality 

~o for (x, t)eQ(~,)( R R) 
(6.13) u(x, t) <~ tt § - 2Kll -2 ' " 

The proof of Lemma 6.3 is analogous to the proof of Lemma 5.2. 
Using Lemmas 6.1-6.3 we prove the Proposition 4.2 analogously to the proof of the 
Proposition 4.1. 

7.  - E x a m p l e .  

In this section we give the example of weighted function v(x) of such that precend- 
ing assumptions are satisfied. We take 

(7.1) v(x) =vAx0) = I x - x o l  d 

where Xo is some point of domain ~2, q - n < d < m i n { q ,  n (p -  1)}. In this case the 
function vd(x) belongs to the class A1 +q/~ and the function ~ (x )  defined by vd(x) in ac- 
cordance with (1.8) is integrable. 

Now we verify that  the condition v2 is satisfied. It  is simple to verify that ~)d(x) 
e A ~ .  In order to satisfy the inequality (2.2) it is sufficient to choose K1 such that the 
estimate 

n + d ( 1  1 )  
(7.2) - -  - - -  + ~< 1 

q K1 qKi 
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holds. This  is poss ib le  because  the  inequal i ty  Q < q follows f rom the  condit ion 

ql > mp. 
C o n s e q u e n t l y  f r o m  T h e o r e m  3.1 in [7] and  T h e o r e m  2.1 we  obtain  nex t  resul t .  

THEOREM 7.1. - Assume that conditions (1.2)-(1.5), (2.3), (2.4) and satisfied with the 

function v(x) = Vd(X) defined by (7.1) and with K o = n { m a x ( n  - q, n + d - ~)}. As- 
sume that the inequality q - n < d < min  {q, n(p - 1)} is valid. Then an arbitrary 
generalized solution of the equation (1.1) is locally H61der continuous. 
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