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Holder Continuity of Solutions
for Higher Order Degenerate Nonlinear Parabolic Equations (*).

F. NicoLosI - 1. V. SKRYPNIK

Summary. - We study o regularity of bounded solutions for some degenerate nonlinear parabol-
ic equations of higher order. It is established the Holder Continuity of solutions by condition
that the weighted function belongs to the class A, . 4.

1. —~ Introduction.

Let us suppose that £ is an open bounded subset of B”, T is an arbitrary positive
number and consider on Qp= 2 X (0, T] nonlinear differential equation

e
. P S (-1 DA, L, ..., D™u) =0
ot fa| sm
where © = (%, ..., €,) € 2, a = (ay, ..., a,), a; is nonnegative entier number, |a| =

=ay+ ... + Ay, D*=(8/0m;)"...(3/3x,)*", D¥u= {Du: |a| =k}.

We shall assume that m =2 and the functions A, (x, t, &) in (1.1) are Carathéo-
dory’s functions, i.e they are measurable functions with respect to (x, t) € @r for all
E={&,: |a| sm}, E,eR' and continuous functions with respect to & for almost all
(x, t) e @r. We suppose that following inequalities

12 5 Ada b8 £, C o) 2, Bl 3 (8l

la} =

m-—1
—C"u(x) ! |z=2 |Eq |Pe—flz, 1),

(*) Entrata in Redazione il 20 novembre 1995, in versione riveduta il 28 febbraio 1996.

Indirizzo degli AA.: F. NicoLosL: Dipartimento di Matematica, Universita di Catania, Viale A.
Doria 6, 95125 Catania e-mail: FNICOLOSI@dipmat.unict.it; I. V. SKRYPNIK: Institute of Applied
Mathematics and Mechanies of National Academy of Seiences of Ukraine, str. Roza Luxemburg
74, 340114 Donetsk.



2 F. Nicorost - 1. V. SkrypNik: Hélder continuity of solutions, etc.

(1.3) 2 (@) eV A (x, B, E) [P/ P D+ |Ag(a, 8, B) | S

i<ialsm

< C,,'I)(ac)1< WEH | &5 |78+ fla, B)

are satisfied where v(x), f(x, t) are non-negative functions with properties precised
later.
The number p, in (1.2), (1.3) are defined by equalities

1 la] -1 1 m-]a| 1
= .___+ P

for 1 < |a| =m,
(1.4) Pe m-1 p m-1 q

po=¢q for |a|=1
and the numbers p, q, ¢, satisfy the inequalities
(1.5) pz2, mp<gq<q.

The conditions (1.2)-(1.5) determine the speecial strueture of the equation (1.1). Main
characteristic of this class of the equations is more strong condition of parabolicity (1.2)
then usually. We assume positiveness and prescribed growth of the left-hand side of
(1.2) not only with respect to {&,: |a| =m} (as usually) but also with respect to
{&€.: |a| =1}. As model equation of this class we can consider the next equation

(1.6) %%H 2 (=)™ D*(u(@) |D™u|?"*Du) -

o] =m
- lZ D*(w(x) | D u|?"2D%u) = F(x, t)
fa] =1

by condition g > mp.

We remark that results of this paper about smoothness of solutions of the equation
(1.1) it is impossible to prove by the less restrictive condition that the inequality ¢ >
> mp. This follows from the counterexample from our paper [7].

We shall suppose that the weighted function v(x) belongs to class A, ; ;/,, has a first
derivative and a function

1

a7 5(x) =v(w){1 P RIS

ox

v(2)

¢ 0= (m—1) pg
=P

is such that the imbedding

WHQ, v) c Ly(Q, 7)

is valid with some § > gq.
By conditions (1.1)=(1.5), corresponding condition on f(x, {) we prove main result
of this paper about Hélder continuity of an arbitrary bounded solution of the equa-
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tion (1.1). Boundedness of solutions by analogous assumptions was established in our
preceding paper[7].

We introduce in Section 2 a special class of functions B, ,(Qr, v, w). This class gen-
eralizes corresponding classes of 0. A. LADYZHENSKAYA and N. N. URAL'TSEVA[5] for
g=2, s=1 and E. Di Benedetto [1] for ¢ >2, s =1 which were introduced in non
weighted cases. Class B, ; for v(z) =w(x) =1 was studied in [11].

We prove in weighted case Holder continuity for an arbitrary function from class

By, :(Qr, v, w) and we prove that an arbitrary solution of the equation (1.1) by struc-
tural assumptions (1.2)-(1.5) belongs to the class B, (Qr, v, ¥) with the function ¥(x)
defined by (1.7).
In this paper we study for simplicity only interior regularity of an arbitrary solution.
But it is possible to establish also the regularity near boundary for solutions of initial-
boundary value problems in case of Dirichlet or Neumann boundary conditions by
using some constructions from paper [8].

This paper is organized as follows. In section 2 we introduce the class
B, s(Qr, v, w) and formulate main results. We prove in section 3 that an arbitrary sol-
ution of the equation (1.1) belongs to the class B, ;(Qr, v, ¥). The imbedding of class
B,, ;(Qr, v, w) in the space of Holder functions is proved in sections 4-6. In section 7 we
present example in order to illustrate our general result.

2. — Formulation of assumptions and main results.

We shall denote for an arbitrary measurable set EcR" and for an arbitrary non-
negative integrable function w(x) on B”

@.1) o(B) = j w(@) ds,
E

by |E| we shall denote Lebesgue measure of set &.
We assume that the weighted function v(x) satisfies next properties:

v;) v(x) is the nonnegative function on R™ which belongs to class A; .

v,) the function v(x) has a derivative of the first order on R"; and the function
7(x) defined by (1.7) belongs to class A, and satisfies the inequality

1/g
(2.2) ]

R,

ﬁ(B(x()’ Rl))
1n)‘(B(xO’ R2))

”%s o] 2B, B)
’U(B(xo, Rz))

for an arbitrary point xye 2 and arbitrary positive numbers R;, R, such that B, <R,
with constants k;, C independent from x;, R;, Ry, x; > 1. Here B(xy, R) is a ball of
radius B with a center x.
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Definitions of classes A,, A. and properties of functions from these classes it is
possible to find in [6,3]. In particular, from [6] it is followed that by condition »,) the
weighted funetion v(x) belongs to the class A 44/, With some x4 > 1.

We will assume that the function f(x, t) from (1.2), (1.3) satisfies the condition

2.3) f(x, ©) e Ly, +(Qr)
with 09> 1, 7> 1 and such that the equality

1
2.4) Bl B Y

"o (ko—1) gy

is valid with x’ € (0, 1).

Under conditions (1.2)-(1.5), (2.3), (2.4), v,), v3) we shall study the behaviour of gen-
eralized solution of the equation (1.1). We shall tell that w(x, t) e E9(Qr, v) if for an
arbitrary infinitely differentiable function ¢(x, t) with compact support in Qr

9@, O u@, ) eE(Qy, ) =C(0, T; Ly(2))NL, (0, T; W) NL, 0, T, WW(2)).

By a generalized solution of (1.1) we mean a function u(z, t) € E{Y(Q;, v) which satis-
fies the identity

(2.5) f w(x, t) Y(x, t) de|2 +

Q

“{—u( aw(x 2 HE A, b, u@, B, ..., D™ulw, ) Dy, £) } dedt=0

for all wy(x,t) with compact support in @y such that v(x,t)eE©(Qr, v),
(By(x, t)) /0t e L»(Qr) and for arbitrary numbers t,, t, such that 0 < ¢, <t, < T.
We suppose that considered solution u(x, t) satisfies the inequality

(2.6) ess sup { |u(x,$) |:(x, ) eQr} <M

with some constant M. Local boundedness of solution follows from [7].

As known parameters by study of properties of solutions of the equation (1.1) we
understand n, m, p, q, 1, C’, C”, @9, 79, k', T, M, the norm of f(x, t) in L,  ,(Qr)
and parameters connected with weighted functions »(t), v(x).

We shall prove the next main result.

THEOREM 2.1, — Assume that conditions (1.2)-(1.5), (2.3), (2.4), vy), Vo) are satisfied
and let u(x,t) be a generalized solution of the equation (1.1), which satisfies the
inequalily (2.6). Then there exist positive constants A and o such that the in-
equality

2.7 ess osc {u(x, t): (2, 1) € Qrwo, ty)} SAR®
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holds for an arbitrary cylinder Qg(wx,, ty) = By, R) X (tg — R"™*9, ty) if Qzr (@, ty) C
CQy. The constant a belongs to the interval (0,1) and depends only on known parame-
ters, the constant A depends only on known parameters and on the distance from

QR (@, tO) to

Tp=[092x (0, T)]U[Rx {0}].

The assertion of the Theorem 2.1 follows from the fact that the solution belongs to a
special class of functions denoted by B, (@7, v, w).

Let v(x), w(x) be arbitrary nonnegative functions such that v(x) satisfies to the con-
dition v,), w(x) e A, and the inequality

1/9

2.8 —_——— —_—
@8) R, | wB, By) wB(zo, Ra)

w(B(ay, R)) ]‘/m _ [ v(B(#, R:))

holds with the same x,, R;, Ry, q, k;, C as in (2.2). We shall tell that a measurable
function u(x, t) belongs to the class B, ;(Qr, v, w) if the inequality (2.6) is valid and for
an arbitrary cylinder .

QR, 0) = Q(xy, ty; B, 0) =B(x,y, R) X (t, — 0, t,)

such that Q(R, #)c@Qr and for an arbitrary infinitely differentiable nondecreasing
function 7(t) on R! the following inequalities hold

2.9) sup I [u(z, t) — EXF n9() do +
. m_gstS%meR—dﬂ

to

[ [u(x,t)—k]“;'ll

to -0 B(:vo, R- (IR)

9%& |q n1(8) v() dardlt <

< j [, to — 6) — K% 79t — 6) dis +

Blzo, B)
(R)'II I [u(x, t) — kBT pi(t) v(z) dedt +
QR, 0
+I I [u(z, t) — kP n?7 (1) ()d dt +
QR, 6)

fo b g1+ /r
+ | w(Ak?R(t))dw[ | |A,:R<t>|*/9dt] ]
to

th— 6 -0
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n
fo—6St<t, H*F(ux, t)—k)+v

B(xg, B — +

+ s+1
(2.10) sup [l il ] dx <
aR)

H: s+1
< J’ In dx +
H*F (u(x,ty— 0)—k)+v

Blg, R) +

1 H* s v(x) d dt
IRy (S - ST
(oR) AR H*x(uwx,t)~k)+v N [H=* F (ul(zx, t) ~ k) +v]
g1+ 5
|AZR () |72 dt “

Here ¢ =2 and s, y, 7, 0, 9, b, Kk are given positive numbers which independent on
%o, to, R, 6 and satisfy restrictions 6 <M, ke (0.1), b<s, r,0>1 and

to

J

fo— 6

to
1 = s
to

v v 2

Ko—=1 1 1
+ —=_
Ko¥ 0 ¢

(2.11)

with the same k, as in (2.4) and possible values of » are limited by the condition re
e(q, o). In (2.9)., (2.10). o is an arbitrary number from the interval (0,1).
The following notation is also used in (2.9)., (2.10).:

(2.12) [u(x, t) ~ k]. = max { =[u(x, t) ~ k], 0},
2.13) A r() = {xeB(xy, R): +[u(x,t)—k]>0}

and [InH*{H* ¥ (u(x,t)—k)+v} '], is understood by analogy with (2.12). In
(2.9)., (2.10). k is an arbitrary real number satisfying the condition

2.14) ess sup {[u(x, t) - kl.:(x, £) e QR, 0)} <0
and H =, v are positive numbers such that
2.15) esssup{[w(w,t)—kl.:(x, ) eQR,N}<H*<d, v<min{H=, 1}.

By study of properties of functions from the class B, ;(Qr, v, w) we understand =,
q,s, v, 1 0,0 b, x, 0, M, T, parameters connected with weighted functions v(x), u(x) as
known' parameters.

THEOREM 2.2. — Assume that the function v(x) satisfies the condition v,), nonnega-
tive function w(x) belongs to the class A. and satisfies the inequality (2.8). Then for
an arbitrary function w(x, t) € By (Qr, v, w) the inequality

(2.16) ess osc{u(z, t):(x, t) € Qr(y, to)} < BR*
holds for an arbitrary cylinder Qp(xy, ty) such as in Theorem 2.1. In (2.16) constant
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belongs to the interval (0,1) and depends only on known parameters, positive
constant B depends only on known parameters and on the distance from Qgr(xy, &)
to’ 7.

Theorem 2.1 follows from Theorem 2.2 and next result.

THEOREM 2.3. — Let the conditions of the Theorem 2.1 be satisfied. Then u(x, t) be-
longs to the class B, ;(Qr, v, V) with constants s, y, 1, o, 6, b, k dependent only on
known parameters of the equation (1.1) and with the function v(x) defined by
@n.

Remark that for the equation of second order in weighted case Holder continuity of
the solutions was proved in [9].

3. — Proof of the Theorem 2f3.

Let us introduce the average over ¢ for an arbitrary function g(x, ) locally inte-
grable on Qr:

t+h

gh(ﬂc,t)=[g(x,t)]h=% Ig(x,s)ds for 0<t<T-h.
¢

It is simple to verify that for the generalized solution u(x, {) of the equation (1.1) the
following integral identity

tZ .
ey || [ %;Q]—" o, 1)+
t1 2

+ X [A,@, 7, ..., D™ux, 7)1, D¢, 7) | dedr=0

lal <m

holds for an arbitrary function ¢(x, t) € E‘V(Q7) with compact support in Qp if
h<t;<ta<T—h.
Let us substitute ¢(x, ¢) in (3.1) by the test function

3.2) @ (x, t) = =[[ulx, tl, — k% -E"(x) ni(t)

where s, r; are sufficiently large positive numbers to be chosen later, £(x) is an infinite-
ly differentiable function such that £(x) =1 for |[x — 2| < (1 -0) R, §(x) =0 for |x —
— 29| =R and |D*&(x) | < C/(oR)!*! for |a| < m, n(t)is an arbitrary infinitely differen-
tiable nondecreasing function on R'. Here x,e 2 and R is so small that B(x,, R)c .
In (8.1) let us choose sufficiently small numbers t, =t <t e (0, ), {, =t —60>0and h
such that A <7 -—1¢;. The number % obeys the restriction (2.14) with 8=
=min {M,(1/4)(C' /C")}.
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We can prove that ¢, (x, t) e E©(Q) for s = m, this permits us to use the substitu-
tion (8.2). Transforming the term which results by substituting the function ¢ ((zx, t)
and includes (9/9t)[u(zx, t)], we can pass to the limit as #—0 in identity (3.1) with
o(x, t) = ¢ (x, £). The resultant equality reads

1
33 — [u(z, v) — k1 E7(w) n9(v) dr[i2h - —
S+13(w0:(13)
: @)
- ql j j [z, ©) — K1 E7() 79 1()—”——dd_
s+ to — 6 B(xg, R)

if J > Ay, T, u, ..., D™u) D*{[ux, v) — kL. £7(®)} n9(z) dedr =0
la] €m
to— 0 Blxy, R)

Using conditions (1.2), (1.3), the estimate (2.6), Young inequality and the choice of 6 we
can evaluate the last integral. We obtain the inequality

(3.4) sup j [u(x, t) — k1! E7(x) n?(t) da + g(i;—l—)—i U, +1))=

< f [, ty — 0) — k"1 E7(x) n%(ty — 6) dat +
B(xy, R)

to

+qj f [, 7) — kI E7(@) 797 (e )——”Qd dr +

to — 6 Blwy, R)

to

m—1
cltZIﬁj j ([u(e, 7) — K11 fe, £) E7(x) +
j=2

tg— 6 B(xy, R)

q
+[u(z, 7) —k]s;q‘l(i) ENT(x) v(x) +
oR

+lwlx, ) — k5 D gnmam () () n9(t) dedr .
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Here
(5= 2 I,
laj =i
fo
@5 I,= [ j [u(z, 7) — k1S~ | D*u(z, 7) [P v(x) £ (x) n9(7) dadr,
) ) to— 6 Bay, B)
-1
0; = max 1 lal 12<ja|lsm, 1s|B|<|a|-1}.
e |Blps

In (3.4) and in the subsequent formulas we denote by C;, =1, 2, ... constants which
depend only on known parameters.
The following Lemma is used to tranform the right-hand side of (3.4).

LEMMA 3.1. - For 2 <j <m — 1 and an arbitrary number ¢ from the interval (0,1)
the inequality

to
B6) Liseljy+I)+Cpeh f J [w(z, 1) — k1% & (x) +
to— 0 Blg, R)
+ Ry lu(e, ©) — KBS EM () +
e
+[ulz, r)—k]sgl[——l—— Su(@) }&”(m)]-v(x)nq(r)dxdr
v(x) dx

holds with some constants b; dependent only on known parameters and with
o ={((m-1)pg,)/pq:.

PROOF. - Let |a| =7 and let a =6+ y where |8| =j —1, |y| = 1. Integrating by
parts we obtain
to
@n I,=- J j [, ) k1] + (s Dlutw, 7)—k1Z D?uDu| D u|P2+
to— 0 B(ay, R)

+(py— 1) |D*u|P 2 D Yy + 7| D%y |P«~2 Dy ~X(x) DY E(x) +

+|Deu|P~2 Dy ——(1—) , D7 v(x) | DPu(ze, ©) E™(x) () v(x) dedr .
wx

First we prove the inequality (3.6) for j = 2. For this it suffices to estimate the terms
in brackets in the last integral by using the Young inequality with e. In particular,
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we have
(B.8) |D%u|P«"2|D?*uy|-|DPu| < e{|D*u|P=+ | DtV u|Perr + | DPu|Pr) + ¢
for |a| =2, where a, is determined by the condition

1 1 m-2 1

= — 4+

+ — .
m-1p m-1 ¢

2 | Do

1
az
Similarly we can evaluate all terms in the right-hand side of (3.7) and we obtain the in-
equality (3.6) for j =2,

For j > 2 we prove (3.6) by induction assuming that (3.6) holds for j < j, and proving

it for j = j,. Let us estimate the right-hand side of (3.7) for § = j, > 2. In this case we ob-
tain the inequality

(3.9 |D*u|P«"%|D**7u|-|DPu| <e(|D%u|Pe+ |D* TV u|Perr) + &7 | DFu|P

instead of (3.8). We evaluate by Young inequality another terms on right hand side of
(8.7 and obtain the estimate

IjosC3{€Ij0+1+811+8”q1j0—1+
0 1
veme [ — e, ©) = kI 71 E0@) + [, T AP B0 @)+
to-@B(Eo,R) (a )

|1
s—1
+{ulx, 1) — kY% (—-_v(w)

ov(x)
ox

Q
) EM(x) } n(z) v(w) dedr

with some a3 determined by m, p, q, q;. We evaluate [;, _; by using (3.6) on the basis of
the induction assumption (with £¢*! instead of ¢) and we have from the last inequality
the estimate (3.6) for j =j,. This completes the proof of Lemma 3.1.

By summing the inequality (3.6) over j we obtain the estimate

to

m—1
(3.10) _2321]-<8<1m+1+11>+c4s-b’f j[[u(x,w—k]rb’f;ﬁ(x)Jr

to — 6 B(xg, R)

[u(e, T) — k1971 EM9(x) + [ule, 7) — k11 -

13
w(x)

1
+
(oR)

ov(x)
ox

4]
} S“(x)] v(x) n%(r) de dr

where b’ =max {by, ..., b, }.
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Choosing a sufficiently small ¢ we have from inequalites (3.4), (8.10) the esti-
mate

8.11) sup J' [u(z, t) — k15T n9(t) En(x) doc +
t0—9$t$t0B(x0, ®

C'(s+1)s
+ —

" [u(z, r)—k]i“{‘z | D*u(z, r)l”+HE | D" u(z, r)l"}-
a|l=1

aj=m
to— 6 B(xg, R)

LEN(x) 79(7) v(x) dedr < f [u(, ty— 6) — KB 159ty — 0) E™(x) dac +

B(wxy, R)
g dn(x)
+C J f [z, 7) — kT E™ () 99~ L(2) —’;T_ +
to—eB(Zo,R) ’ T

~kprel gn-e q
* (oR)" [u(e, ©) - kI ") n(7) v(w) } dedr +
to
+C5 j f [u(x, T) _k]‘i_,_M{l +f(ac, ) +,5(x)} Eﬁ_alm(x) ﬂq(‘c) dee dr
tp — 8 B(xy, R)

where a,=max {b’, a;(m + ¢)}, v(x) is defined by (1.8).
We will assume that the inequalities

3.12) s=zm, s> as, C's(s+1)=4, mrn>am

are fulfilled. Let us estimate the last integral in (3.11) by Holder and Young inequali-
ties. We have

to

@18 [ [ [u@, ) -k {1+ f, ) + @)} E7 00 dedr <
to— 6 B(xy, R)

fo to 1/ed
< Cg J VAL g(T) dv + Gy I |47 R (D) |rd/pd dr
-0 to— 6
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where 1§ =7, /(1o - 1), 0o0=00/(0o—1) and 7, o, are the same as in (2.3). Set-
ting

KO_]-

r=7yq(1+k), 0=00q9(1+K), K= K’

Ky

we obtain from (3.13) that u(x, t) satisfies the inequality (2.9)..
The proof of the inequality (2.10). for the solution u(x, t) of the equation (1.1) follows
in analogous way after substitution in identity (3.1) a test function

In— - E™(x)
= F (lux, D — k) +v

1
H* % (ux, ), — k) + 7

(;02('7;1 t) ==

+

where s, 1, are sufficiently large numbers, £(x) is the same function as in (3.2). H*,%
are positive numbers satisfying inequalities

ess sup{[[u(x, )], ~ kl.: (2, ) e QR, )} sH* <9,

v<min{H*,1}, OJ=min —C—,M .
4Cﬂ

This completes the proof of Theorem 2.3.

4. - Proof of the Theorem 2.2.

First we note some estimates for weighted functions. From the definition of class
Ao+ qm and Holder inequality the estimate

@) W(Blao, Ba)) < c“)(—zi

1

Mg
)"“ v(B(xy, Ry))

follows for arbitrary positive numbers R;, R, such that B, < R, with some constant CV
independent on R, R,.

LEMMA 4.1. — There exist positive numbers C'?, ay such that the inequality
4.2) w(B(xy, R)) < CPR% 29(B(x,, R))
is valid for arbitrary Re (0.1), xye Q.

PROOF. — From definition of class A, the inequality

|B(@,, B) |

€3] .
43  wB@o, R))<CPwBa, 1) ( Bz, D]

) , O0<R<«1

follows with some positive numbers C®, a’. We obtain the inequality (4.2) from (2.2)
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and (4.3):
wB@y, R)) _ [ wBo, B)) [/ [ wl(@o, R)) J71/m
w(B(xy, 1)) | w(B(xo, 1)) w(B(xq, 1)) -

< ( C )q 'U(B(xoy R)) [C(g)Ra']l—l/lq

R | v(B, 1))
and this completes the proof of Lemma 4.1.

Let u(x, t) be an arbitrary function from the class B, ,(Qr, v, w). In all further
considerations we fixe point (#y, ) € Q@7 and define

'B(“’o, R)I

44 AAR)=f(xy, R) = e B))

For 0 < R’ < 2R, positive number 4, £ we introduce cylinders

45) QV(R', B) = B(xg, R') X (ty — ALR'Vf(R), 1,), D(R) =Q{V(R, R),
QP(R', R, )=B(w, R)x (- ER'Tf(R), D), QF(R,H=QF(R,R,1).

Further we will assume that
K \1°2 q-2 _ _
4.6) /1=(—l) , 5:(-2-11’1—) . ty—ARYf(R)<I-ER‘f(R) <i<t,,
w dw
K, is a sufficiently large number chosen below and such that

4.7 K>—, K>2M+1.

In (4.6) o is an arbitrary positive number satisfying the inequality

(4.8) . w<2M.
We assume that R is so small that Q{V(R) c Qr.
Denote

= . (1)
4.9) {# + =ess sup {ulx, t):(x, t) e Q;V(R)},

- =essinf{u(z, 1):(x, t) eQV(R)}.

The proof of the Theorem 2.2 is based on the assertions formulated below in Proposi-
tions 4.1 and 4.2 which will be proved under the following assumptions

(4.10) ess osc {u(x, t):(z, 1) e QV(R)} <o,
4.11) w=z=KR
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where K is a sufficiently large positive number, o, is a number defined by the
equality

(4.12) gg=

— g n(ky—1) nK
s+qg—-1" xo(g—-1)’ s+g—1+(g-2)max{(¢g(1+x))/r—1,0}

where ay is a number introduced in Lemma 4.1, all another parameters were introduced
by definition of class B, ,(Qr, v, w).

PROPOSITION 4.1. — There exist number oy (0, 1) depending only on known pa-

rameters and positive number K, depending on K, and known parameters such that
from the inequalities (4.10), (4.11), with K = K; and from the inequality

4.13) meas{(.')c, 1) QP R, B ulx, t) <u_ + 'zéz%} Sao|QP(R, D

for some te[t,— (A — &) RIf(R), t,] the estimate
R 1
4.14) ess 0se [u(w, t):(x, t) e Qé”(g , R)] < w[l - —]

Sollows.

PROPOSITION 4.2. — There exists a positive number K, depending only on knoun pa-
rameters such that from the inequalities (4.10), (4.11), with K=2K; and from the
inequality

4.15) meas [(x, t) e QP(R, 1): ulx, t) <u+ —;—S;‘;—] >a, QPR D |

for every te(ty— (A — &) RIf(R), ty] the estimate

R 1
4.16 S osc , U (x, M= Rl<wll - —
(4.16) es {u(oc ):(z, ) ey (2 )} w( 2K1)
follows with A’ = (a,/2) A and with a, defined in Proposition 4.1.

We will prove Propositions 4.1, 4.2 in two next section. Now we prove the Theorem
2.2 using these Propositions.

Proor oF THE THEOREM 2.2. — First we define a number @ which satisfies all as-
sumptions in Propositions 4.1, 4.2 for given small number E. Let

4.17) K = max {2K;, K, }



F. Nicorost - I. V. SKrYPNIK: Hdlder continuity of solutions, etc. 15

where K, K, are defined in Propositions 4.2, 4.1. Introduce a cylinder
K |2
(4.18) Q(R) = B(wy, R) X [ty — [? "RITPBAR), 1

and we choose
(4.18) w = ess osc {u(z, t):(x, ) e QV(R)}.

By this we can assume that R is such that Q‘“(R)c Q.

In order to prove the Theorem 2.2 it is sufficient to establish that for an arbitrary
number R such that @ U @iV (R) ¢ Qr there exists a number R’ e (R?, R) for which
the inequality

(4.20) ess osc {ulw, t): (x, t) € Qp (g, L)} S B'(R'Y

holds where B’, § are positive constants dependent only on known parameters.
Let us considered two possibilities:

@) QUR)cQP(R);
b QVR) >R (R).

In the case a), from the definitions of the eylinders Q¥ (R), QV(R) it is followed
the inequality

We obtain w <KR° and from (4.19) and last inequality the estimate (4.20) fol-
lows.
In the case b) we have the inequalities

(4.21) w>KR,
4.22) ess osc {u(x, t):(x, 1) e @V(R)} < w
and consequently w satisfies all assumptions in Propositions 4.1, 4.2,
We define a number N independent on R such that N =8 and for Re (0, 1) the

inequalities

R\ [R
423) N-<@, Ki2=|fl=]<

L\ feM\? {1\ a
< 09 2.-mi il Y il Z ) Z0 ga-2{ Ra
< mm{(S)( 5 ) ,(2) 5 K; } AR)
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hold where

1
4.24) 6 =max{l- — 1~ i
2K, ’ K,
The possibility of indicated choice of N follows from the extimate

(R/N)f(R/N) v(B(w,, R)) <C<1>(}_)m“l/"°’

4.25 =(1/N)+! — — — ———— <
(425) Rf(R) (/) v(B(w, B/N)) N

which is obtained by use of the inequality (4.1).
Now we introduce the sequences

1y .
(426) Rj:R(ﬁ) y a)j=a)93"1, Ejz(""—

Let us consider two possibilities:

i) for all values of j=1, 2, ... the inequality

(4.27) CD] > KRJ'GU
holds;
i) there exists a number J =2 such that the inequality (4.27) holds for j <J
and
(4.28) w;<KRJ®

For j =1 the inequality (4.27) is coincided with the inequality (4.21). We will prove
that is case i) the inequality

(4.29) . ess osc{u(w, t): (x, ) e QIV(R)} S w;

holds for all values of j =1, 2, .... Last inequality for j =1 follows from (4.22).

We prove (4.29) by induction. Assume that (4.29) is valid for j < j, and check it for
j=7jo + 1. From the inequalities (4.27), (4.29) for j = j, and Propositions 4.1, 4.2 for the
cylinder Q{(R;,) we obtain

R;,
2 Rjo

where A} =a,/2) A;. Now it is sufficient to remark that from (4.23) the inclusion

S W41

¢8) i (1
(4.30) ess osc{u(x, t) ngj0 3 R; 10 le

R, R,
(4.31) leﬂ(RjoH)cQéjg(—f,Rj) Qé}J( R,-o)

holds. So the inequality (4.29) for j =j, + 1 follows from (4.30), (4.31) and we prove
(4.29) for all =1, 2, ... in case 1).
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In considered case i) the inequality (4.20) follows from (4.29) and the choice of R;,
;. We can assume that R <1 /N and choose the number j; such that R* < R; < NR*.
Then for 8, = —1In@/InN we have the estimate

w B
= __._ RSB — RB1/2
; 7 Rj11$2MN 2 lel/

from which and (4.29) the inequality (4.20) follows.
In case ii) from (4.28), (4.26) and the choice of N we have

- | B
wSKR""[GNUO] <KR"

what it impossible by virtue of (4.21).
So we establish the inequality (4.20) and the proof of the Theorem 22 is
completed.

5. - Proof of the Proposition 4.1.

We formulate at first auxiliarly statements which are connected with weighted
functions.

LEMMA 5.1. - Let weighted functions v(x), w(x) satisfy conditions of the Theorem
2.2 and denote wi(x) =1, wy(x) = v(x), ws(x) = w(x). Then there exists k(i) >1, i=
=1, 2, 3 and a positive constant C® such that the inequality

1 |
6 @ — f |9() | P wy(x) dir <
w0, B, B,
1 k(i) -1
SO Banmy ) @l
| B(o, )IWO’R)
q b2 q
‘ —B—R—ﬂ J _%@_) vt o [ @) e
W(B(2y, ) g i | B2y, )IB(%R)

holds for i =1, 2, 3 for every ball B(x,, R)c B{xy, 2R) c 2 and every function g(x)
eL,(2)N W,}(Q, v). By this k(1) = (2k, — 1) /kx, where K is the number from the in-
equality (4.1). '

For i =1 the estimate (5.1) follows from the Poincaré inequality (Theorem 1.3 in [2])
and Holder inequality. For i =2, 3 the estimate (5.1) follows from Theorem 1.8 in [2],
Corollary and remarks in end of Section 1 in [4].
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For the same weigthed function w;(x) as in Lemma 5.1 the inequality

aQ

, 1=2,3

- ) o] LB

w;(B(xy, R)) | B(zg, R) |

holds for an arbitrary set E ¢ B(x,, R) ¢ B(xy, 2R) ¢  with positive constants C®, g in-
dependent on £, x,, R. This inequality follows from Lemma 3 in [3].

LEMMA 5.2. -~ There exists a positive number a e (0, 1) depending only on known
porameters such that from the inequalities (4.11), (4.18) with K = K, the estimate

Sw R -
5.3 D= u_+ — , b 2 R,
(5.3) wx, t) Zu 7 for  (x,1)eQ;: (2 )

holds.

Proor. — We introduce for j =1, 2, ... the following sequences
(.. R R . . 1R : . ,
R(j) = 5t 5 o(f) R(j) = 15 R(j) =R(j) —o(j) B(),
(5.4) 6(5) = ELR(NY fR), 6(j) = EIR(NY f(R),

B(j) = Blxy, R(5)), B(j) =Blxg, B(5)), Q())=B(j)x {E~6(;),1,
| Q) =BG x G- 80, D).

For R = R(j), 0 = 0(J), 6 = 6(j) we write the inequality (2.9)_. The admissibility of
this choice of values of parameters is guaranteed by next inequality

ess sup {[w(x, t) —k(j)]-:(x, 1) e Q(H)} < ;%

which ensures that th_e condition (2.14)_ is satisﬁqd. The function #(t) is assumed to be
equal to one for ¢t ={— 6(j) and to zero for t <{— 6(j); also we assume that

2+ +
0= dn(®) = 27" .
dt qSRf(R)

From (2.9)_ and (5.5) we obtain the estimate

(6.5) & sup f [ux, t) — k()91 dw +
)]

-Gy <tsi _
O] B

q
v(x) dedt < Cr Dy~

Sulx, t)
ox

+f f[u(x,t)—k(j)]i‘l I
[416))
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where
. _ i (g1 +x))/r
29 [ o 197! 1
.- T —— ——e .— —— ~~ -_ -_ r/
6 D, Rq(ZM) [V, + M ]+W] +| f [m;~ ()T dt
- 6(j)
and
i . i
Vi= | v@gre@dt, W= | wlli,mp®)dt,
6n {7 T

t
LMF [ 14 20®1dt,  m®) = |Ag, rp®] -
-6

In (5.5) and further by C; we denote constanst depending only on known parame-
ters.

Define a function
68 g, t) = [u(z, t) — k()] D/

and apply to this function the inequality (5.1) with 7 = 1. After the integration on ¢ we
obtain from (5.5):

_ D, V!
.9) jj[u(ac,t)~k(j)](_s+q"1”“”dxdt$08|B(j)|1"“1>[—é—] RIf(R)D; .
(&) .

Using the Hoélder inequality we get
(.10)  [k(j) ~k(G+ DF* 7 M < [ [ [, 1) - k() dodi <

QG+

< {ympoien. [ [ [ e, )~ k(ippera-n=w dxdt]”"‘” :
e

From the inequalities (5.9), (5.10), (4.11), (4.1) the choice of o, we obtain the
estimate ,

(5.11) Yj(41r)1 < ngj(s+2q){11j(})}l’1/K(1){Yj(1) + Y]-(2) + Yj(B) + [Yj(4)]l+K}
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where
(y.m:__ﬂ__ @ - Vi
P ER"IAR) T ERIf(R)v(B(xg, R))
5.12) B q/r
W.
3) = J Y = T2 dt
O Ry e B R i) Lom™ ()]
i

Now we apply to the function g(x, t) defined by (5.8) the Lemma 5.1 for i =2, 3.
After the integration on ¢ and the use of (5.5) we get the inequality

(5.13) JI[u(x,t)—k(j)](f“’““"“)wi(x)dxdts
[4[§)]

Ki)—1

w; (B())
IB(]) |k(1)

RIf(R) Dy .

Evaluating analogously to (5.10) only with weighted function w;(x) and using (5.13),
(4.1), (4.11) and the choice of o, we obtain the estimate

(5.14) Yj(i) < sz]’(8+2q){yj(i)}1 ~1/x(%) {Yj(l) + Yj(z) + Yj(3) + [Yj(4)]1 +K} , i=2,3.
In order to evaluate Y4 we use the inequality

(5.15) J’ [g(@) |#*° dx < c® | B(zy, R) |1—K0_

Blay, R)

og(x)

L] w22 @ + g1 as|
B(xg, R)

which follows from the Poincaré inequality (Theorem 1.3 in [2]). We apply the inequali-
ty (5.15) to the function g(x, t) defined by the equality (5.8) and use the Hélder inequal-
ity. After the integration on { and using of (4.1) we obtain the estimate

-85 | B(j)

3
[ { [ tute, = k(jy1ere-ven dw],«/@ dt < Cy[£) 71 [D;" 4

from which the inequality
(6.16) Y9 < Cp2iG 20y + Y& + y® 4 [y}

follows.
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Inequalities (5.11), (5.14), (5.15) imply that ¥¥—0 as j—~, i=1,2, 8, 4 if the
condition

(5.17) YP<a®, i=1,..,4

is valid with some a‘¥’ which depends only on known parameters. This is possible to
verify analogously to the proof of Lemma 5.7, Chapter 2 in [4]. Using the estimate (5.2)
we obtain that the condition (5.17) is satisfied by the choice of sufficiently small number
ay in the inequality (4.13).

From Y{V—0 the equality

R - o
meaS[(m, t)EQéz’(E,R, t):ﬂ_ + Eal:i —u(zx, t) >0} =0

follows. This proves the estimate (5.3) and we conclude the proof of Lemma 5.2.
Define {, 6 and H ™~ by the equalities

RY - RY ~ R Y
to—C(E)f(R)—t—E(—z—)f(R), 0—C(E)f(R)

(5.18) _
H™ =ess Sup“u(ac, B —p-— @—] Hzx, 1) eQé”(g, R)

4M

Evidently that H ™~ < dw/4M.

LEmMMA 53. — Assume that the inequality

(5.19) H =52

iM
s valid and let a, be an arbitrary number from the interval (0, 1). Then there exists a
positive number K’ depending only on o, K; and known paramelers such that from
the inequalities (4.11), (4.13) with K= K’ the estimate

(5.20) meas

R R
xeB(xo, —4—) w(x, t) <u_ + %} <a; mesB(wo, Z)
Jollows for all te [ty — L(R/2)? f(R), t,].

PRrOOF. — Let ¢ be a number from the interval (0, 1 /4) which will be chosen later.
We choose

Bod _
and apply the inequality (2.10)_ for k=u _ + ow/4M, 0=1/2, v=(éw/4M) and
the cylinder Q{’(R/2, R). By this choice the integral corresponding to the first sum-

mand on the right-hand side of (2.10)_ is equal to zero by the inequality (5.3). We eval-
uate another integrals corresponding to summands on the right-hand side of (2.10)_

(6.21) K' =max {KI,




22 F. Nicorost - 1. V. SKrYPNIK: Hélder continuity of solutions, etc.

and obtain the inequality

H- s+1
(5.22) sup J [ln - FYNTEY; 5072 ] de <
R +u(x, t) ~p _dw/4M + B (0w /4 M) .
SCB[ln i]

q-2
_L —6"’60_ 'é?) B Lo, E +
Bo| | RT\4M 9
b
+ aM 6wl B %, E + U+ prgfel+ ) ||
Bodw 9

From the definition of ¢, the choice of K(a ) in (5.21) and the inequality (4.11) with
K= K’ the following estimate

to—éststoB(wo

K |2 1
(5.23) Cs(-;) SW

holds. Evaluate the right hand side of (5.22) by the use of inequalities (5.23), (4.11) and
the choice of o, and we obtain that the right-hand side of (5.22) is not greater
than

Cu(l+K{ 2)R™.

Let us find the lower bound for the integral on the left-hand side of (5.22) by replac-
ing the integration over B(w,, B/4) by the integration over set {xe
eB(xy, R/4): w(x, t) <u - + Bo0w/4M}. We obtain that the left-hand side of (5.22) is
not less than

4M

0

1 s+1 R
Cis|In— meas{xeB|xy, — }ulx, ) <pu_+
48 4

ﬂoaw}

By comparing of the estimates for the left-hand and right-hand sides of the inequal-
ity (5.22) we have the inequality

N

1
(6.24) ———— meas

R
xeBlwy, — | ulx, ) <pu_+
| B(xo, R/4) | 4

Boow
4M

< G+ K{7*)(n1/B,)
~ [nl1/B, - IndF+!

whence it follows that the right-hand side of (5.24) can by made less than o, for suffi-
ciently small 5, dependent only on a;, K; and known parameters. This and (5.21) com-
pletes the proof of Lemma 5.3.

LEMMA 5.4. — Assume that the inequality (5.19) is valid. Then there exists a possi-
tive number K" dependent only on K; and known parameters such that the inequali-
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ties (4.11), (4.13) with K= K" imply the estimate

(5.25) wx, t)=u_ + % for (ac,t)ng(”(%%—,R). ‘
Proof of the Lemma 5.4 it is possible to carry out analogously to the proof of Lemma
5.2 with the use of Lemma 5.3.

PRrOOF OF THE PROPOSITION 1. — We determine the required number a , in the accor-
dance with Lemma 5.2. For the number H ~ determined by (5.18) we consider two
possibilities:

D H- =22, § mH-<22
8M 8M

In case i) from (4.10) and (5.25) we obtain the inequality

(5.26) ess osc¢ [u(x, £:(x, t) eQE‘”(E— , R) < a)(l - —1—)
8 K"
In case ii) from (4.10) and (5.18) we have
(5627 ess osc{u(x, t): (x, t) e QLY E Rli<w|l1- 9 .
P 18 8M

We can choose now K, = max {K", 8M/0} and the inequality (4.14) follows from (5.26),
(5.27). The proof of the Proposition 4.1 is completed.

6. — Proof of the Proposition 2.

We assume in this section that for every te [t, — (A — &) RIf(R), t,] the inequality
(4.15) is valid. Since we assumed that 6 < M then from (4.15) the inequality
dw

2M

follows for all cylinders Q{¥(R, t) c @ (R). From last inequality it is followed the ex-
istence t* e[t — ERIf(R), t — (a( /2) ERIf(R)] such that the inequality

(6.1) meas [(m, DeQP R, D: wx, t)>p, — ] <(1-0ay)|QPR,1)]

6.2) meas [weB(xo, Ry w(x, t*)>u, ~ :—;;] <(1-a})|B(x, R)|

holds.
We choose further in this section

6.3 H* =ess sup[[u(x, D—p,+ 26_;”4] (x, £) e QV(R)
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LEMMA 6.1. — Assume that the inequality

dw
AM
is valid. Then there exists a possitive number K~ depending only on known parame-

ters such that from the inequalities (4.11), (6.1) with K=K  and every te[t,—
—(A - &) RIf(R), ty] the estimate

(6.4) H*>

a}

(6.5) meas {x e B(xy, B): u(x, ) >u, — EJ—K’"] < (1 - 2

) | By, R) |

follows for te(ty— AR f(R), t), ' = a,y /2A.

For the proof the of Lemma 6.1 we employ the inequality (2.10), over cylinder
B(xy, R) x (t*, t) and use discussions anologous to the proof of Lemma 5.3. In such
way we prove the inequality (6.5) for ¢ e (£*, ). Since % is an arbitrary number from the
interval [ty — (A — &) RYf(R), t,] we obtain the assertion of Lemma 6.1.

LEMMA 6.2. — Assume that the inequality (6.5) holds. Then for every f,(0,1)
there exists a possitive number K(B 1) depending only on known parameters and 8,
such that the condition K, = K(8,) and the estimate (4.11) with K= K(8,) yield the
inequality

w

(6.6) meas { (%, t) € QfV(R): ul(w, t) > p 4 — TR
1

<B.|QPR)| .

PRrOOF. — We write the inequality (2.9), for cylinder Q{"’(2R, R), 0=1/2. We
choose a cutoff function #(¢) such that #(t) =1 on QV(R), n(t, — A’ (2R)?f(R))=0,0 <
< dn(t) /dt <2 /a,(ARIf(R)) ™. Asfor thelevelskwe takek = %(j) =4 , — w /2 K" ,j =
=0, 1, 2, ... where K” is the number claimed by Lemma 6.1.

Evaluating the terms corresponding to the summands on the right-hand side of
(2.9), we obtain the inequality

ulxz, t) |9

drdt <
™ v(x) dx

©n [ [ e t-FHE

QP @®)

w

s+g-—1
s Cpd'f(R) ?J(B(xo,R))[(%) + (EJ—

s+1 w q-2
— +

[Rq+m'/gf(R)]q/'r(l+k) i ] .

w(B(xy, R)) [K ]w—mww/r-m
7 +
Rn

v(Ba, ) | o
We will assume that 0 <j <J where J is sufficient great and chosen further num-

ber. And dur choise of K(B;) will be by equality K(3,) = K"-2’. Using inequalities
4.1), (4.2), the condition (2.11) and the choice of o, we evaluate the right hand side of

w
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(6.7) and obtain the estimate

oulxz, t) |9
ox

6» [ [ tue, t)—E(j)]i‘ll

)

() dedt <

s+g-1
< Cyed' f(R) v(B(y, R))(%) .

Now we introduce a function g(x, t) by the equality
9z, t) = min {[u(x, t) — kD], BG+ 1) —k(H}+1-1/
for (x, t) e Q{P(R) and apply to this function the inequality

9/2

%@, ) v(x) dx

ox

6.9) f 5z, ) |2 v(x) de < C® R” f
B(xg, R) B(xy, B)

Last inequality follows immediately from Theorem 1.6 in [2], the estimate (6.5) and
Holder inequality.
Denote

B = {(, 1) e QP (R): w(w, t) > F()}
wE) = [ [v(@) dedt  for EcQr.
E
Using the Holder inequality and (6.8) we obtain from (6.9)

6.10) j f 15z, )% v(@) dudt <
QPR

(7]

S Clg{U(QA('l)(R))' (E

s+qg-1]1/2
) ] : {U(Ej)—v(Ej+1)}1/2-

We evaluate the left hand side of (6.10) below by

w ]1/2(s+q—1)

2.7 +1 K" /U(EJ + 1) *

[k(j+ 1) — k()1 (B ) = [

So we obtain from (6.10) the inequality
[V(E; 1) < Copv(QV(R))- {v(E)) — v(Ej. 1)}
We add last inequalities for j=0, 1, ..., J— 1 and we obtain
Jlv(E7)F < Cu[v(@QP(R))P
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from which it is followed the estimate

1) Py w Cor |12 N
61 i@, 0 QPR uw, 9>, = Lt <) = v(QP(R)).
1

From the definition of elass A;,, it is simple to obtain the inequality

'U(E) n/(n+q)
*|B(wo, R) |

(6.12) E|<C| ————
1l v(B(xo, R))

for an arbitrary set E c B(xy, R) with a constant C'” independent on &y, R, E. The as-
sertion of the Lemma 6.2 follows from (6.11), (6.12) if we take J so large that it is valid

the estimate
C n/(2(n + q))
C ‘7)| % } <Bi.

LEMMA 6.3. — Assume that the inequality (6.5) holds. Then there exists a constant
K, depending only on known parameters such that the estimate (4.11) with K = 2K,
yields the inequality

w R
6.13 w@x, ) <p, — or  (x, t DI R
(6.13) (Z,t)sp .y oK, S (z,t) eQy (2

The proof of Lemma 6.3 is analogous to the proof of Lemma 5.2.
Using Lemmas 6.1-6.3 we prove the Proposition 4.2 analogously to the proof of the
Proposition 4.1.

7. - Example.

In this section we give the example of weighted function v(x) of such that precend-
ing assumptions are satisfied. We take
(1.1) v(®) =vy(%) = |@— @ |
where x, is some point of domain 2, ¢ —n <d <min{q, n(p — 1)}. In this case the
funetion v,(x) belongs to the class 4; , ,, and the function 1g(x) defined by v;(x) in ac-
cordance with (1.8) is integrable.

Now we verify that the condition v, is satisfied. It is simple to verify that v;(x) €
e€A.. In order to satisfy the inequality (2.2) it is sufficient to choose k such that the
estimate

(72) ’”d(1——1—)+is1
q
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holds. This is possible because the inequality ¢ <gq follows from the condition

g, > mp.
Consequently from Theorem 3.1 in [7] and Theorem 2.1 we obtain next result.

THEOREM 7.1. — Assume that conditions (1.2)-(1.5), (2.3), (2.4) and satisfied with the
Sfunction v(x) =vy(x) defined by (7.1) and with xy=n{max(n—q,n+d—9)}. As-
sume that the inequality q —n <d <min{q, n(p — 1)} is valid. Then an arbitrary
generalized solution of the equation (1.1) is locally Holder continuous.
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