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Abstract Let VE be the pluricomplex Green function associated with a compact sub-
set E of CN . The well-known Hölder continuity property of E means that there exist
constants B > 0, γ ∈ (0,1] such that VE(z) ≤ B dist(z,E)γ . The main result of this
paper says that this condition is equivalent to a Vladimir Markov-type inequality;
i.e., ‖DαP ‖E ≤ M |α|(degP)m|α|(|α|!)1−m‖P ‖E , where m,M > 0 are independent
of the polynomial P of N variables. We give some applications of this equivalence,
e.g., for convex bodies in R

N , for uniformly polynomially cuspidal sets and for some
disconnect compact sets.

Keywords Pluricomplex Green’s function · Hölder continuity property ·
Markov inequality
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1 Introduction

Let E be a compact set in C
N . The pluricomplex Green’s function (with pole at

infinity) of E can be defined by

VE(z) := sup
{
u(z) : u ∈ LN and u ≤ 0 on E

}
, z ∈C

N,
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where LN is the Lelong class of all plurisubharmonic functions in C
N of logarithmic

growth at the infinity; i.e.,

LN := {
u ∈ PSH

(
C

N
) : u(z) − log‖z‖2 ≤O(1) as ‖z‖2 → ∞}

(for background information, see [15]). Here ‖z‖2 stands for the Euclidean norm in
K

N,K = C or K = R. In the univariate case, VE coincides with Green’s function
gE of the unbounded component of Ĉ \ E with logarithmic pole at infinity (as usual,
Ĉ = C∪ {∞}).

If V ∗
E(z) is the standard upper regularization of VE , then it is well known (Siciak’s

theorem), that either V ∗
E ∈ LN or V ∗

E ≡ +∞. It is also equivalent to the fact that E

is a nonpluripolar or pluripolar set, respectively. If we define the L-capacity of E as
C(E) = lim inf‖z‖2−→∞ ‖z‖2

expV ∗
E(z)

, then E is a pluripolar set if and only if C(E) = 0.

A set E is L-regular if limw−→z V ∗
E(w) = 0 for every z ∈ E. Siciak has proved

that this is equivalent to the continuity of VE in the whole space C
N . Therefore,

L-regularity is one of the global properties of E, and a crucial role is played here by
the continuity of VE near E.

Another global property of the set E that depends only on the behavior of VE

near E is the Hölder continuity property (HCP for short) of the pluricomplex Green’s
function VE (see the result due to Błocki in [29, Proposition 3.5]). By Cauchy’s in-
equality, one can prove that HCP implies the A. Markov inequality; i.e., there exist
constants m ≥ 1,M > 0 such that for every polynomial P of N variables,

‖gradP ‖E ≤ M(degP)m‖P ‖E, (1)

where degP is the total degree of the polynomial P , i.e., the highest degree of its
monomials. If E admits inequality (1), then it is said to be a Markov set, and we write
E ∈ AMI(m,M). To reveal the importance of this property, we refer to a theorem due
to Pleśniak (see [25, Theorem 3.3]).

An exciting question is whether there exists a relationship between the A. Markov
inequality and the behavior of Green’s function near the considered set. It is known
(see [7]) that every Markov set E ⊂ C is not polar and E is L-regular if E ⊂ R ([9]).
It seems that the A. Markov inequality (1) implies the Hölder continuity property, but
a proof is an open problem mentioned, e.g., in [25]. Actually, even the question about
L-regularity of Markov sets in the general case remains open.

We shall make an attempt in the direction of solving this problem by concen-
trating on a generalization of an inequality proved by A. Markov’s younger brother,
V. Markov. He discovered in 1892, after a very detailed investigation, a precise but
intricate estimate for the k-th derivative of polynomials (see, e.g., [27]): for any poly-
nomial P of degree not greater than n,

∥∥P (k)
∥∥[−1,1] ≤ T (k)

n (1)‖P ‖[−1,1] = n2[n2 − 1] · · · [n2 − (k − 1)2]
1 · 3 · · · · · (2k − 1)

‖P ‖[−1,1], (2)

where Tn(x) = cos(n arccosx) is the n-th Chebyshev polynomial (for k = 1, it was
proved by A. Markov in 1889).

Inequality (2) inspired us to consider a new type of Markov inequality (see Defini-
tion 2.5 below). It turns out that this inequality is equivalent to the Hölder continuity
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property of the pluricomplex Green function. This is the main result of the paper
(Theorem 2.9).

Although the definition of HCP is simple, its verification for particular sets can
be very complicated (see, e.g., [1, 16–19, 26]). The Carleson–Totik criterion (see
[13, Theorems 1.2 and 1.7]) merits mentioning here. It gives an equivalent condition
for HCP expressed in terms of capacities in a similar way to Wiener’s criterion for
L-regularity. This criterion can be used for proving HCP for a large family of sets.
However, the Carleson–Totik criterion holds only in the univariate complex case (or
in R

N ), and the equivalence is valid under certain additional assumptions on sets,
e.g., for sets satisfying an exterior cone condition. In this context, Theorem 2.9 of
this paper provides a useful tool for showing HCP, especially when sets do not satisfy
the assumptions of the criterion mentioned above. We give some examples of such an
application of Theorem 2.9. Moreover, we prove a rather surprising fact that it is suf-
ficient to verify the Hölder continuity property of VE only in N canonical directions
(Corollary 2.10). This allows us to show HCP for a large class of sets.

The paper is organized as follows. A statement of the main results is presented in
Sect. 2. The next section contains proofs of these results. In Sect. 4, we give some ap-
plications of Theorem 2.9 for compact subsets of RN ⊂ R

N + iRN = C
N , especially

with convex bodies and also with UPC sets, i.e., uniformly polynomially cuspidal
sets. In the last section, we show some applications of Theorem 2.9 for disconnected
compact sets.

2 Notation and Statement of the Main Results

The pluricomplex Green’s function is closely related to polynomials (see [28] or
[15, Theorem 5.1.7]) in view of the formulas

VE(z) = logΦE(z), z ∈ C
N, (3)

where ΦE is the Siciak extremal function; i.e.,

ΦE(z) = sup
{∣∣P(z)

∣∣1/n
/‖P ‖1/n

E : P ∈ P
(
C

N
)
,degP = n ≥ 1,P |E �≡ 0

}
,

P(KN) denotes the vector space of polynomials of N variables with coefficients in
K ∈ {C,R}, and ‖ · ‖E is the maximum norm on E.

In order to investigate the behavior of VE near E, we define

V •
E(z) := sup

{
VE(x − w) : x ∈ E,‖w‖2 ≤ ‖z‖2

}
, z ∈C

N,

that is, a radial modification of VE . The definition and main properties of V •
E were

presented by M. Baran, L. Bialas-Ciez, Comparison principles for compact sets
in C

N with HCP and Markov properties during the Conference on Several Com-
plex Variables on the occasion of Professor’s Józef Siciak’s 80th birthday, Kraków,
4–8 July 2011. We set out (without proofs) the following examples:

• if E is a unit ball in C
N (with respect to a fixed complex norm), then VE(z) =

max{0, log‖z‖} and V •
E(z) = log(1 + ‖z‖2/C(E)),
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• if E is the real unit Euclidean ball in R
N , then VE(z) = 1

2 logh(‖z‖2 + |z2 − 1|),
where z2 = z2

1 + · · · + z2
N for z = (z1, . . . , zN) and h(t) = t + √

t2 − 1 for t ≥ 1,
• if E is a convex symmetric body in R

N , then V •
E(z) = logh(1 + ‖z‖2/(2C(E))),

• if E is a pluripolar set, then V •
E(0) = 0,V •

E |CN\{0} ≡ +∞.

For the nonpluripolar sets we can obtain a very important fact which is derived
from Proposition 1.4 in [20] (cf. [5, Theorem 2.1c)]):

Theorem 2.1 If E is a nonpluripolar compact subset of CN and

ρE(r) := V •
E(z) for ‖z‖2 = r,

then t �−→ ρE(et ) is an increasing convex function.

Remark 2.2 The function ρE has the following basic properties:

(a) ρλE(r) = ρE(λ−1r), λ > 0,
(b) ρE×F (r) = max(ρE(r), ρF (r)),
(c) limr→∞(ρE(r) − log r) = − logC(E),
(d) if E is L-regular, then ‖VE‖Er = ρE(r), where Er = {z ∈ CN : dist (z,E) ≤ r},
(e) ρE is increasing, continuous on (0,+∞), and consequently, 0 =

ρE(0) ≤ limr→0+ ρE(r). Therefore, L-regularity is equivalent to the equality
limr→0+ ρE(r) = 0.

Indeed, equality (a) can be checked by a standard verification. Formula (b) is a
consequence of the well-known product property of the pluripotential Green function.
A behavior of ρE for r near infinity is related to the L-capacity of E: as in the proof
of Theorem 2.3 in [5], we can show equality (c). Statements (d) and (e) are deduced
directly from Theorem 2.1.

We are interested in seeing how the Hölder continuity of the pluricomplex Green’s
function VE is connected with Markov-type inequalities for polynomials on E. The
question will be made more precise by the next definition:

Definition 2.3 Let γ ∈ (0,1],B > 0. A compact set E ⊂ C
N admits the Hölder

continuity property of the pluricomplex Green’s function VE (E ∈ HCP(γ,B) for
short) if for every z ∈ C

N ,

VE(z) ≤ B dist(z,E)γ . (4)

By Błocki’s argument (see [29, Proposition 3.5]), property (4) implies the Hölder
continuity with the same exponent γ of the pluricomplex Green’s function VE in the
whole space.

If E ∈ HCP(γ,B), then E is L-regular, and therefore C(E) > 0. However, a
lower bound for C(E) in terms of the constants γ,B was not known. In this paper,
we simply solve this problem (see Theorem 2.9).

Stirling’s formula and Theorem 3.5 in [21] applied to the polynomial P(x) = x

lead us to:
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Proposition 2.4 If E ⊂ C, n is an integer positive number, k ∈ {1, . . . , n}, and there
exists Mk = Mk(E), m > 0 such that for every polynomial P of degree at most n,

∥
∥P (k)

∥
∥

E
≤ Mkn

mk‖P ‖E, (5)

then Mk ≥ Bk/[(k!)m−1] for a certain constant B > 0 depending only on the set E.

This fact was the motivation for concentrating on the following generalization of
the V. Markov inequality.

Let N = {1,2, . . .} and N0 = N∪ {0}.

Definition 2.5 Fix m ≥ 1,M > 0. A compact set E ⊂ C
N admits the V. Markov

inequality (E ∈ VMI(m,M) for short) if for every α ∈N
N
0 , P ∈P(CN),

∥∥DαP
∥∥

E
≤ M |α| (degP)m|α|

(|α|!)m−1
‖P ‖E, (6)

where |α| = α1 + · · · + αN , Dα = ∂ |α|
∂z

α1
1 ···∂z

αN
N

for α = (α1, . . . , αN).

In other words, (6) is a version of inequality (5) (and also its analog in higher di-
mensional space) with the strongest possible constants Mk (compare with [6], where
best Markov exponents were studied).

Example 2.6 The simplest example of a set admitting V. Markov inequality is the unit
disk D in the complex plane. By the Bernstein inequality, for every polynomial P of
degree at most n, we have ‖P (k)‖

D
≤ n!

(n−k)! ‖P ‖
D

, and thus D ∈ VMI(1,1). In the

multidimensional space for a polydisk D(a, r) = {z ∈C
N : |z1 − a1| ≤ r1, . . . , |zN −

aN | ≤ rN } of polyradius r = (r1, . . . , rN ) ∈ (0,+∞)N , we get (see [8, Example 2.2])

∥∥DαP
∥∥

D(a,r)
≤ ν!

(ν − α)!rα
‖P ‖D(a,r)

whenever P is a polynomial of N variables z1, . . . , zN of degree at most ν1 in
z1, . . . , νN in zN . As usual, ν! = ν1! · · ·νN ! and rα = r

α1
1 · · · rαN

N . Hence,

∥
∥DαP

∥
∥

D(a,r)
≤ r−αν

α1
1 · · ·ναN

N ‖P ‖D(a,r) ≤ r−α(degP)|α|‖P ‖D(a,r) (7)

for any polynomial P ∈ P(CN). Therefore, D(a, r) ∈ VMI(1,maxj 1/rj ).

Example 2.7 Due to the classical inequality proved by V. Markov (see (2)), we have
[−1,1] ∈ VMI(2,1). If E = [a1, b1] × · · · × [aN,bN ] ⊂ R

N ⊂ R
N + iRN = C

N ,
then for every polynomial P of degree at most ν1 in z1, . . . , νN in zN , we have (see
[8, Example 2.2])

∥∥DαP
∥∥

E
≤ 2|α|

(b − a)α
T (α1)

ν1
(1) · · · · · T (αN )

νN
(1)‖P ‖E ≤ 2|α|

(b − a)α
· ν2α

α! ‖P ‖E,
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with a = (a1, . . . , aN), b = (b1, . . . , bN), ν = (ν1, . . . , νN). Since N |α|α! ≥ |α|!, we
obtain E ∈ VMI(2,2N maxj 1/(bj − aj )).

It is evident that VMI(m,M) ⇒ AMI(m,M
√

N). On the other hand, property (1)
easily implies that

∥∥DαP
∥∥

E
≤ M |α|

(
n!

(n − |α|)!
)m

‖P ‖E ≤ M |α|nm|α|‖P ‖E

for any α ∈ N
N
0 , P ∈ P(CN) of degree at most n.

Remark 2.8 If E ∈ AMI(m1,M1), and if we fix an arbitrary δ ∈ (0,1), then for every
polynomial P of degree at most n and for all |α| ≤ nδ , inequality (6) holds with
m = m1−δ

1−δ
and M = M1. Indeed,

∥∥DαP
∥∥

E
≤ (

M1n
m1

)|α|‖P ‖E,

and

nm1|α| =
(

nm1 |α|m−1

|α|m−1

)|α|
≤ (nm1+(m−1)δ)|α|

|α|(m−1)|α| ≤ nm|α|

|α|!m−1
.

By the above, in the particular case of m1 = 1, we get AMI(1,M1) ⇔ VMI(1,M).

In the general case, we do not know whether or not the V. Markov inequality is
equivalent to that of A. Markov. However, we can show that the Hölder continuity
property is equivalent to (6).

Theorem 2.9 (Main theorem) If E is a compact subset of C
N , 0 < γ ≤ 1 ≤ m,

B,M > 0, then

E ∈ HCP(γ,B) =⇒ E ∈ VMI(m,M), with m = 1/γ,M = √
N(Bγ e)1/γ , (8)

E ∈ VMI(m,M) =⇒ E ∈ HCP(γ,B), with γ = 1/m,B = Mγ Nγ m. (9)

Moreover, if E ∈ VMI(m,M), then C(E) ≥ e−m 1
NM

. Hence, if E ∈ HCP(γ,B), then
C(E) ≥ (N3/2(Bγ e2)1/γ )−1.

As a consequence of the above theorem, the well-known open problem concerning
the conjectured implication AMI ⇒ HCP is equivalent to a new question of whether
AMI implies VMI. The first problem concerns the properties related to the notions in
two different fields, the pluricomplex Green’s function and polynomials, whereas the
new question is formulated only in terms of derivatives of polynomials.

Due to the above theorem, we can give new, somewhat unexpected equivalents to
the Hölder continuity property of the pluricomplex Green’s function:

Corollary 2.10 If E is a compact subset of CN and γ ∈ (0,1], then the following
conditions are equivalent:
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(i) E ∈ HCP(γ,B1), with some B1 ≥ 1,
(ii) ∃B2 > 0 ∀z0 ∈ E ∀j ∈ {1, . . . ,N} ∀ζ ∈C such that |ζ | ≤ 1 we have

VE(z0 + ζej ) ≤ B2|ζ |γ ,

(iii) ∃M3 > 0 ∀j ∈ {1, . . . ,N} ∀P ∈P(CN) ∀k ∈ N we have

∥∥Dkej P
∥∥

E
≤ Mk

3
(degP)k/γ

k! 1
γ

−1
‖P ‖E,

where e1, . . . , eN are the canonical vectors in C
N : ej = (0, . . . ,0,1,0, . . . ,0) with

the value 1 in the j -th entry.

It seems to be rather surprising that condition (ii) in Corollary 2.10, which holds
only in N canonical directions, is sufficient to guarantee the Hölder continuity prop-
erty of VE in all directions.

For the compact subsets of RN ⊂ R
N + iRN = C

N , we prove that if inequality (4)
holds for x ∈R

N , then it also holds for all z ∈C
N (Corollary 4.4). As a consequence,

we obtain that E ∈ HCP(1/2,B/
√

C(E)) for any convex body in R
N , where C(E)

is the L-capacity of E and B is an absolute constant independent of E and even of N

(Example 4.7). Moreover, we prove that every set E ⊂ RN uniformly polynomially
cuspidal in direction v with exponent s has the following property: VE(x + ζv) ≤
B|ζ |1/(2s) for x ∈ E, |ζ | ≤ r0 (Theorem 4.10). Hence we deduce from Corollary 2.10
that every UPC compact subset of RN admits HCP, and thus V. Markov inequality
(Corollary 4.11). In this way, we obtain a wide class of sets that have such a property.
This is the first essential generalization of V. Markov’s result from the end of the 19th
century.

As another application of the main theorem, we can prove HCP for disconnected
sets. Proposition 5.1 regards some onion type sets in the complex plane that may
not satisfy the assumptions of the Carleson-Totik criterion. These sets are particu-
larly interesting in view of certain properties of compacts admitting so-called local
Markov’s inequality (see [10]). The second example of such an application of Theo-
rem 2.9 concerns some compact sets consisting of infinitely many pairwise disjoint
subsets of CN (Proposition 5.2).

3 Proofs of the Main Results

Proof of Theorem 2.9. To show the first implication, consider an arbitrary polynomial
P ∈ P(CN) of degree at most n and α ∈ N

N
0 . From (3) and the Cauchy integral

formula, for fixed z = (z1, . . . , zN) ∈ E, r > 0, we can obtain

∣∣DαP(z)
∣∣ ≤ α!

(r/
√

N)|α| ‖P ‖D(z,r/
√

N) ≤
√

N
|α|

α!
r |α| ‖P ‖E exp

(
n‖VE‖D(z,r/

√
N)

)
,
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where D(z, r/
√

N) = {w ∈ C
N : |w1 −z1| ≤ r/

√
N, . . . , |wN −zN | ≤ r/

√
N}. From

(4) we have

∣∣DαP(z)
∣∣ ≤

√
N

|α|
α!

r |α| ‖P ‖E exp
(
nBrγ

)
,

and for r = (|α|/(Bγ n))m, m = 1/γ , we get

∣∣DαP(z)
∣∣ ≤

√
N

|α|
α!

|α||α|m nm|α|‖P ‖E (Bγ e)|α|/γ

≤ (√
N(Bγ e)1/γ

)|α| |α|!
(|α|!)m nm|α|‖P ‖E,

and (8) is proved.
We now proceed to show implication (9). For this purpose, observe that from (3),

it is sufficient to prove

∣∣P(z)
∣∣ ≤ ‖P ‖E exp

(
Mγ Nγ mnrγ

)
(10)

for any polynomial P ∈ P(CN) of degree at most n and z ∈ C
N \ E such that

dist(z,E) = r . By Taylor’s formula, we have

∣∣P(z)
∣∣ ≤

∑

|α|≤n

1

α!
∣∣DαP(w)

∣∣r |α| ≤
n∑

k=0

∑

|α|=k

1

α! r
|α|∥∥DαP

∥∥
E

whenever w ∈ E and dist(z,E) = ‖z − w‖2. From (6), the above inequality gives

∣∣P(z)
∣∣ ≤ ‖P ‖E

n∑

k=0

Mk nmk

(k!)m−1
rk

∑

|α|=k

1

α! .

Since
∑

|α|=k 1/α! = Nk/k!, for γ = 1/m, we have

∣∣P(z)
∣∣ ≤ ‖P ‖E

n∑

k=0

MkNk nmk

(k!)m rk ≤ ‖P ‖E

∞∑

k=0

[
(Mγ Nγ rγ n)k

k!
]m

= ‖P ‖EGm

(
Mγ Nγ rγ n

)
,

where

Gm(x) :=
∞∑

k=0

(
xk

k!
)m

=
∥∥∥∥

(
xk

k!
)

k∈N0

∥∥∥∥

m

m

and ‖ · ‖m is the usual norm in the space lm. As ‖ · ‖m ≤ ‖ · ‖1, we have

Gm(x) =
∥∥∥∥

(
xk

k!
)

k∈N0

∥∥∥∥

m

m

≤
∥∥∥∥

(
xk

k!
)

k∈N0

∥∥∥∥

m

1
= exm
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and
∣
∣P(z)

∣
∣ ≤ ‖P ‖E exp

(
Mγ Nγ rγ mn

)
,

which gives (10).
If w ∈ E and ζ ∈ C

N,‖ζ‖2 = r , then in a similar way as above, we get

∣∣P(w + ζ )
∣∣ ≤ ‖P ‖E

n∑

k=0

NkMk nmk

(k!)m rk.

In the case of NMr ≥ 1, we obtain

∣∣P(w + ζ )
∣∣ ≤ ‖P ‖E(NMr)n

(
n∑

k=0

nk

k!

)m

≤ ‖P ‖E(NMr)nenm.

Thus ρE(r) ≤ log(NMem) + log r for r ≥ e−m 1
NM

, and consequently (see Re-
mark 2.2),

− logC(E) = lim
r→∞

(
ρE(r) − log r

) ≤ log
(
NMem

)
,

and the proof is completed. �

Proof of Corollary 2.10 First, we prove (ii) ⇒ (iii). Set pj (ζ ) = P(z0 + ζej ) for
ζ ∈ C, z0 ∈ E and for a fixed polynomial P ∈P(CN) of degree at most n. Obviously,
|Dkej P (z0)| = |p(k)

j (0)|, and by Cauchy’s integral formula,

∣
∣Dkej P (z0)

∣
∣ ≤ k!

rk
max

{∣∣pj (ζ )
∣
∣ : |ζ | = r

}

≤ k!
rk

‖P ‖E max
{
exp

(
nVE(z0 + ζej )

) : |ζ | = r
}
,

the last inequality being a consequence of (3). If r = (k/n)1/γ , then from (ii), we get

∥∥Dkej P
∥∥

E
≤ k!

(
n

k

) k
γ

eB2k‖P ‖E ≤ Mk
3

nk/γ

k! 1
γ

−1
‖P ‖E,

with some positive constant M3, and (iii) is proved.
In view of Theorem 2.9, to show (iii) ⇒ (i), it is sufficient to prove that (iii)

implies inequality (6). Fix α = α1e1 + · · · + αNeN ∈ N
N
0 . If P is a polynomial of

degree nj in zj where z = (z1, . . . , zN), we have

∥∥DαP
∥∥

E
≤ M

α1
3

n
α1/γ

1

α1!
1
γ

−1

∥∥Dα−α1e1P
∥∥

E

≤ M
|α|
3

n
α1/γ

1 · · ·nαN/γ

N

α! 1
γ

−1
‖P ‖E ≤ M

|α|
3 N

|α|( 1
γ

−1) (degP)|α|/γ

|α|! 1
γ

−1
‖P ‖E,
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since N |α|α! ≥ |α|!, and (i) follows.
The implication (i) ⇒ (ii) is obvious, and the proof is completed. �

Remark 3.1 It follows from the proof of Corollary 2.10 that we can replace condition
VE(x + ζej ) ≤ C2|ζ |γ for |ζ | ≤ 1 by the same but only for |ζ | ≤ r0 ≤ 1. Indeed,
for a fixed r0 ∈ (0,1] in the proof of implication (ii) ⇒ (iii), it is sufficient to write
r = r0 · (k/n)1/γ . We shall use this remark later.

4 HCP of Compact Subsets of RN

Remark 4.1 For any set E ⊂ R
N , it is sufficient to consider only polynomials

with real coefficients. Indeed, if P ∈ P(Cn), then P = Q + iR, where P,Q ∈
P(RN),degP = max(degQ,degR), and

‖P ‖E = sup
|θ |≤π

‖ cos θQ+sin θR‖E,
∥∥DαP

∥∥
E

= sup
|θ |≤π

∥∥Dα(cos θQ+sin θR)
∥∥

E
.

Hence, if we have the bound ‖DαP ‖E ≤ C(n, k)‖P ‖E for all P ∈ P(RN),degP ≤
n, |α| ≤ n, then the same is true for polynomials with complex coefficients.

For compact subsets of RN , we can take only real polynomials in the definition of
Siciak’s extremal function (cf. [2]):

ΦE(z) = sup
{∣∣P(z)

∣∣1/degP : P ∈P
(
R

N
)
,degP ≥ 1,‖P ‖E ≤ 1

}
, z ∈C

N.

The following result is a consequence of [4, Theorem 2.4].

Proposition 4.2 If E is a compact subset of RN , then

VE(x + iy) ≤ 1

π

+∞∫

−∞
VE(x + ty)

dt

1 + t2
(11)

for every z = x + iy ∈CN . Equality holds in (11) if N = 1 (for any z ∈ C).

As a corollary of Proposition 4.2, we obtain:

Theorem 4.3 Let E be a compact set in R
N . Assume that for every x ∈ R

N , the
following inequality holds:

VE(x) ≤ B
(
dist(x,E)

)γ
, (12)

where B > 0, γ ∈ (0,1) are constants independent of x. Then for all z ∈C
N ,

VE(z) ≤ B̃
(
dist(z,E)

)γ
, with B̃ = B

π

+∞∫

−∞

(
1 + t2)γ /2−1

dt = B√
π

Γ (1/2 − γ /2)

Γ (1 − γ /2)
.
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Proof Evidently, for z = x + iy ∈C
N , we have

dist(z,E) = (
dist(x,E)2 + ‖y‖2

2

)1/2
.

Inequality (12) is equivalent to

VE(x) ≤ B‖x − x0‖γ

2 for all x0 ∈ E.

By Proposition 4.2, we get

VE(z) = VE(x + iy) ≤ 1

π

+∞∫

−∞
VE(x + ty)

dt

1 + t2
≤ B

π

+∞∫

−∞
‖x − x0 + ty‖γ

2
dt

1 + t2

≤ B

π

+∞∫

−∞

(‖x − x0‖2 + |t |‖y‖2
)γ dt

1 + t2

≤ B

π

+∞∫

−∞

(‖x − x0‖2
2 + ‖y‖2

2

)γ /2(1 + t2)γ /2 dt

1 + t2

= B̃
(‖x − x0‖2

2 + ‖y‖2
2

)γ /2
.

As x0 is an arbitrary point of E, we obtain VE(z) ≤ B̃(dist(z,E))γ , which completes
the proof. �

It may be worth reminding the reader that if a compact set E ⊂ R
N admits the

A. Markov inequality, then the exponent m in (1) is at least equal to 2 (see, e.g., [14]).
Therefore, the exponent γ in (12) may be at most equal to 1

2 .

Corollary 4.4 If for every x ∈R
N the following inequality holds:

VE(x) ≤ B
(
dist(x,E)

)γ
, (13)

with B > 0, γ ∈ (0, 1
2 ] independent of x, then for all z ∈ C

N ,

VE(z) ≤ B̃
(
dist(z,E)

)γ
, B̃ = B√

π

Γ (1/4)

Γ (3/4)
.

Corollary 4.5 If E is a compact subset of RN and γ ∈ (0,1], then the following
conditions are equivalent:

(i) E ∈ HCP(γ,B1), with some B1 ≥ 1,
(ii) inequality (12) holds for all x ∈ R

N , with some B2 ≥ 1 independent of x,
(iii) E ∈ VMI( 1

γ
,B3), with some B3 ≥ 1,

(iv) inequality (6) holds, with some B ≥ 1 for all polynomials P of real coefficients.
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Example 4.6 For E = [−1,1], we have VE(x) = logh(max(1, |x|)), where h(t) =
t + √

t2 − 1 if t ≥ 1. If x0 ∈ E, then

VE(x) ≤ logh(1 + |x − x0|) = log
(
1 + |x − x0|1/2(|x − x0|1/2 + (|x − x0| + 2)1/2)).

Since log(1 + t) ≤ 1
α
tα for t ≥ 0, 0 < α ≤ 1, we obtain

VE(x) ≤
{

(1 + √
3)|x − x0|1/2; |x − x0| ≤ 1,

2(1 + √
3)1/2|x − x0|1/2; |x − x0| > 1,

hence VE(x) ≤ 2(1 + √
3)1/2|x − x0|1/2 for all x, x0, and thus,

VE(x) ≤ 2(1 + √
3)1/2(dist(x,E)

)1/2
.

Example 4.7 Let E be a convex body in R
N that is not symmetric with respect to the

origin. Fix ξ ∈ SN−1, where SN−1 is the real unit Euclidean sphere in RN . As usual,
〈·, ·〉 is the Euclidean inner product. Set

aξ (E) = min
x∈E

〈x, ξ 〉, bξ (E) = max
x∈E

〈x, ξ 〉, ρξ (E) = bξ (E) − aξ (E).

The last value is called the width of E in the direction ξ . The minimal width of E is
given by ω(E) = infξ∈SN−1 ρξ (E). For x ∈R

N , it follows that (see [12])

VE(x) = sup
ξ∈SN−1

V[aξ (E),bξ (E)]
(〈x, ξ 〉)

= sup
ξ∈SN−1

V[−1,1]
(
2〈x, ξ 〉/ρξ (E) − (

bξ (E) + aξ (E)
)
/ρξ (E)

)
.

Therefore, in the same way as in Example 4.6, we have

VE(x) ≤ sup
ξ∈SN−1

logh
(
1 + 2

∣∣〈x − x0, ξ 〉∣∣/ρξ (E)
) ≤ logh

(
1 + 2‖x − x0‖2/ω(E)

)

≤ 2(1 + √
3)1/2(2‖x − x0‖2/ω(E)

)1/2

for any fixed x0 ∈ E, and in consequence we get

VE(x) ≤ (2+2
√

3)1/2(4 dist(x,E)/ω(E)
)1/2 ≤ (2+2

√
3)1/2(dist(x,E)/C(E)

)1/2
,

where C(E) is the L-capacity of E and we have used the inequality C(E) ≤ 1
4ω(E)

from [5, Example 3.4]. In particular, there exists an absolute constant B such that for
all dimensions N and for all convex bodies E ⊂ R

N , the following inequality holds:

VE(z) ≤ B
(
dist(z,E)/C(E)

)1/2
, z ∈C

N.

By Theorem 2.9, we can deduce that these sets belong to VMI(2,
√

NB2e2/[4C(E)]).
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Now we recall a definition of a class of UPC sets introduced by Pawłucki and Pleś-
niak [22], who have shown its importance in approximation theory. In particular, they
have proved a deep result (cf. [22, Corollary 6.5]) that every fat compact subanalytic
subset of RN belongs to this class (see also [23]).

Let s ≥ 1, S > 0, and d ∈ {1,2, . . .}.

Definition 4.8 A compact set E ⊂ R
N is called uniformly polynomially cuspidal

(E ∈ UPC(s, S, d) for short) if for every x0 ∈ E, we can find a polynomial mapping
ϕ : R →R

N of degree at most d such that ϕ(1) = x0 and

dist
(
ϕ(t),RN \ E

) ≥ S(1 − t)s for t ∈ [0,1].

It is rather difficult to find the optimal constant s in the last inequality. However,
calculations are much simpler for the following modification of the above definition.

Definition 4.9 (cf. [3]) Let v be a fixed unit vector in R
N . A compact set E ⊂ R

N is
called uniformly polynomially cuspidal in direction v (E ∈ UPCv(s, S, d) for short)
if for every x0 ∈ E, we can find a polynomial mapping ϕ :R → R

N of degree at most
d such that ϕ(1) = x0 and

distv
(
ϕ(t),RN \ E

) ≥ S(1 − t)s for t ∈ [0,1].

Here distv(x,RN \ E) := sup{r ≥ 0 : [x − rv, x + rv] ⊂ E}.

If E ∈ UPC(s, S, d), then E ∈ UPCv(s, S, d) for every unit vector v. An open
problem is whether conditions E ∈ UPCvj

(sj , Sj , dj ), j = 1, . . . ,N , v1, . . . , vN that
are linearly independent imply E ∈ UPC(s, S, d) with some S, s, d . It seems that
this may not be true for N ≥ 3. However, as an application of the theorem given
below, we prove that if E ∈ UPCej

(sj , Sj , d), j = 1, . . . ,N , where (ej )j is the

canonical basis, then we get E ∈ HCP( 1
2s

), where s = max1≤s≤N sj . In particular,
if E ∈ UPC(s, S, d), then E ∈ HCP( 1

2s
), which essentially improves the earlier result

by Pawłucki and Pleśniak [22, Theorem 4.1] (see also [24]). As a corollary, we get a
wide class of nonconvex sets that satisfy VMI.

Theorem 4.10 If E ∈ UPCv(s, S, d) and ε0 ∈ (0,1), then there exists C0 = C0(ε0) >

0 such that for every |ζ | ≤ r0 = S√
2
(1 − ε0)

s , the following inequality holds:

VE(x0 + ζv) ≤ C0|ζ |1/(2s) for every x0 ∈ E.

Proof Let L0 = √
2/S. Set g(ζ ) = 1

2 (ζ + ζ−1), ĝ(ζ ) = 1
2 (ζ − ζ−1). For ρ > 1, write

a = a(ρ) = ((1+g(ρ))/2)−1, b = b(ρ) = ((g(ρ)−1)/2)−1, c = c(ρ) = 1/ĝ(ρ). We
have b = a(1 − a)−1, c = 1

2a(1 − a)−1/2. Fix ζ0 = α0 + iβ0 ∈ C
N , and x0 in E, and

write u0 = α0v, v0 = β0v. Define

ψ(ζ ) = ϕ

(
a(ρ)

1

2

(
g(ζ )+1

))+ 1

2

(
g(ζ )−1

)
b(ρ)u0 +iĝ(ζ )c(ρ)v0, ζ ∈ C, |ζ | ≥ 1,
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where ϕ is a polynomial mapping chosen to x0 by the definition of the UPC property.
Since

ψ
(
eiθ

) = ϕ
(
a(ρ)rτ

) + (τ − 1)b(ρ)u0 ± 2
√

τ(1 − τ)c(ρ)v0

for τ = cos θ + 1

2
, θ ∈ [0,2π],

we have ψ(eiθ ) ∈ E whenever

(1 − τ)b(ρ)|α0| + 2
√

τ(1 − τ)c(ρ)|β0| ≤ S(1 − ar)s, τ ∈ [0,1].
The last condition is satisfied if

a

(
1 − τ

1 − a
|α0| +

√

τ
1 − τ

1 − a
|β0|

)
≤ S(1 − aτ)s,

and consequently, if

a

(
1 − τ

1 − aτ
(1 − aτ)−(s−1) |α0|

1 − a
+

√
τ(1 − τ)

1 − aτ
(1 − aτ)−(s−1/2) |β0|√

1 − a

)
≤ S.

Since a, τ ∈ [0,1], 1 − τ ≤ 1 − aτ and |α0| + |β0| ≤ √
2|ζ0|, the last condition will

hold if
√

2|ζ0| ≤ S(1 − a)s .

Assuming L0|ζ0| ≤ (1 − ε0)
s and taking ρ = h(

1+(L0δ)1/s

1−(L0δ)
1/s ), h(t) = t + √

t2 − 1,
we have L0|ζ0| = (1 − a(ρ))s ; that is, ψ({|z| = 1}) ⊂ E. By the maximum principle
for subharmonic functions (applied to the domain {z ∈C : |z| > 1}), we get

logVE

(
ψ(ζ )

) ≤ d log |ζ |, |ζ | ≥ 1.

In particular,

VE(x0 + ζ0v) = VE

(
ψ(ρ)

) ≤ d logρ = d logh

(
1 + (L0|ζ0|)1/s

1 − (L0|ζ0|)1/s

)
.

The inequality 1 − (L0|ζ0|)1/s ≥ ε0 implies that

h

(
1 + (L0δ)

1/s

1 − (L0δ)1/s

)
≤ h

(
1 + (2/ε0)(L0δ)

1/s
) ≤ 1 + Aδ1/(2s),

where

A = (2/ε0)
1/2L

1/(2s)

0

(√
2/ε0 + √

2(1 − ε0)/ε0
) ≤ (4/ε0)L

1/(2s)

0 = B.

Since for every d ≥ 1, the function ((1+x)d −1)/x is increasing for x > 0, we obtain

(
1 + B|ζ0|1/(2s)

)d ≤ 1 + C0|ζ0|1/(2s),

where C0 = maxr≤r0((1 + Br1/(2s))d − 1)/r1/(2s) = ((1 + Br
1/(2s)

0 )d − 1)/r
1/(2s)

0 .
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Finally, VE(x0 + ζ0v) ≤ log(1 + C0|ζ0|1/(2s)) ≤ C0|ζ0|1/(2s). �

Applying Corollary 2.10 and Remark 3.1, we get the following result that specifies
an earlier result by Pawłucki and Pleśniak (cf. [22, Theorem 2.1]).

Corollary 4.11 If E ∈ UPCej
(sj , Sj , dj ), j = 1, . . . ,N , then there exists a con-

stant B such that E ∈ HCP(γ,B), with γ = 1/(2 minj sj ). In particular, if E ∈
UPC(s, S, d), then E ∈ HCP(1/(2s),B).

5 Applications of Theorem 2.9 for Disconnected Sets

The first proposition regards certain onion type sets in the complex plane that are
very useful in a problem concerning local and global Markov’s properties (see [10]).
The Hölder continuity property of these sets does not appear to follow from the main
result in [13].

Proposition 5.1 Let (aj )j be a strictly decreasing sequence of positive numbers such
that a1 = 1, aj → 0 as j → ∞, and let ϕj ∈ (0, π

2 ) for j = 1,2, . . . . Write

Cj := {
aj e

it : t ∈ [ϕj ,2π]} for j = 1,2, . . . ,

E := {0} ∪
∞⋃

j=1

Cj .

If |1 − eiϕj | ≤ aj+1 for j = 1,2, . . . , then E ∈ HCP( 1
6 ,B) for some B > 0.

Proof First, we note that

F := {
eit : t ∈ [π/2,2π]}

is a connected compact set, and so F ∈ HCP( 1
2 ,BF ), with some constant BF ≥ 1

(see, e.g., [11, Corollary 2.2]). From implication (8), we see that F ∈ VMI(2,MF ),
with MF = (eBF /2)2. We can assume that MF ≥ max{2e,1/C(E)}.

For any polynomial P of degree at most n, for k ∈ {1, . . . , n} and z0 ∈ E, we will
prove the inequality

∣∣P (k)(z0)
∣∣ ≤ Mk n6k

k5k
‖P ‖E, where M = 3MF exp

(
3MF

(
1 + e3MF

))
. (14)

By Theorem 2.9, and since kk ≥ k!, condition (14) implies that E ∈ HCP( 1
6 ,B), with

B = 6M1/6. Therefore, the proof is completed by showing (14).
Observe first that for any monic polynomial P of degree n and for k = n, we have

∥∥P (k)
∥∥

E
=

(
1

C(E)

)k

n!(C(E)
)n ≤

(
1

C(E)

)k

n!‖P ‖E,
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because in C, C(E) is equal to the Chebyshev constant of E. Consequently,

∥∥P (k)
∥∥

E
≤ (MF )k

n6k

k5k
‖P ‖E

for all polynomials of degree at most n not necessarily monic. Thus condition (14) is
fulfilled for k = n.

Now consider k < n. We first examine z0 = 0, and we will show that

∣
∣P (k)(0)

∣
∣ ≤

(
3MF e3MF n4

k3

)k

‖P ‖E. (15)

For this purpose, find j ∈ N such that 1
aj

≤ n2

k2 < 1
aj+1

. By Cauchy’s integral formula,

∣∣P (k)(0)
∣∣ ≤ 1

aj

∥∥P (k−1)
∥∥

C(0,aj )
,

where C(0, aj ) is the circle with the radius aj about the origin. The norm of P (k−1)

on C(0, aj ) is attained at some point w0 ∈ C(0, aj ). Define Fj := ajF . Obviously,
Fj ∈ VMI(2,MF /aj ). If w0 ∈ Fj , we have

∣
∣P (k)(0)

∣
∣ ≤ 1

aj

∥
∥P (k−1)

∥
∥

Fj
≤

(
1

aj

)k
(MF n2)k−1

(k − 1)! ‖P ‖Fj

≤
(

1

aj

)k(3MF n2

k − 1

)k−1

‖P ‖Fj

≤
(

n2

k2

)k(3MF n2

k

)k

‖P ‖Fj
≤

(
3MF n4

k3

)k

‖P ‖E for k ≥ 2,

because t �→ (MF n2

t
)t is an increasing function whenever t ∈ (0, n + 1] ⊂ (0, MF n2

e
]

and Fj ⊂ Cj ⊂ E. The case of k = 1 is easy to verify, and thus inequality (15) is
fulfilled for all k ∈ {1, . . . , n}, w0 ∈ Fj .

If w0 ∈ C(0, aj ) \ Fj , by Taylor’s formula and VMI for F , we get

∣∣P (k)(0)
∣∣ ≤ 1

aj

∣∣P (k−1)(w0)
∣∣ ≤ 1

aj

n−k+1∑

l=0

1

l!
∣∣P (k−1+l)(aj )

∣∣|aj − w0|l

≤ 1

aj

n−k+1∑

l=0

1

l!
(

1

aj

)k−1+l( 3MF n2

k − 1 + l

)k−1+l

‖P ‖Fj
al
j

∣∣1 − eiϕj
∣∣l

≤
(

1

aj

)k n−k+1∑

l=0

1

l!
(

3MF n2

k + l

)k+l

al
j+1‖P ‖Fj

,
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the last inequality being a consequence of the assumption of Proposition 5.1. Since

Fj ⊂ E and 1
aj

≤ n2

k2 < 1
aj+1

, we can write

∣∣P (k)(0)
∣∣ ≤

(
n2

k2

)k(3MF n2

k

)k n−k+1∑

l=0

1

l!
(

3MF n2

k

)l(
k2

n2

)l

‖P ‖E

≤
(

3MF e3MF n4

k3

)k

‖P ‖E,

and this yields inequality (15).
We now turn to the case z0 �= 0. Clearly, z0 ∈ Cj for some j ∈ {1,2, . . . , }. If

aj ≤ k4

n4 , then by (15), we have

∣∣P (k)(z0)
∣∣ ≤

n−k∑

l=0

1

l!
∣∣P (k+l)(0)

∣∣|z0|l ≤
n∑

l=1

1

l!
(

3MF e3MF n4

(k + l)3

)k+l

‖P ‖Eal
j

≤
(

3MF e3MF n4

k3

)k n∑

l=1

1

l!
(

3MF e3MF n4

k3

)l(
k4

n4

)l

‖P ‖E

≤
(

3MF e3MF exp(3MF e3MF )n4

k3

)k

‖P ‖E,

and (14) is proved in this case.

It remains to show estimate (14) if aj > k4

n4 . Let F ′
j be a set obtained by a rotation

of Fj about the origin such that z0 ∈ F ′
j ⊂ Cj . Since F ′

j ∈ VMI(2,MF /aj ), we have

∣
∣P (k)(z0)

∣
∣ ≤ ∥

∥P (k)
∥
∥

F ′
j
≤ 1

ak
j

(
3MF n2

k

)k

‖P ‖F ′
j
≤

(
n4

k4

)k(3MF n2

k

)k

‖P ‖E,

and (14) is proved at every point z0 ∈ E. �

The second example presents the application of Theorem 2.9 for certain compact
sets consisting of infinitely many pairwise disjoint subsets of CN .

Proposition 5.2 Let μ ≥ 2, b ∈ (0,
√

2 − 1), and let (aj )j , (rj )j be sequences of
positive numbers such that

a1 = 2, r1 = 1, aj = rj + r2
j , rj = br

μ
j−1 for j ≥ 2.

Then the set E defined by

E := {0} ∪
∞⋃

j=1

Ej ,

Ej := {
z = (z1, . . . , zN) ∈ C

N : |z1 − aj | ≤ rj , |z2| ≤ rj , . . . , |zN | ≤ rj
}

satisfies E ∈ HCP( 1
2+μ

,B), with some B > 0.
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Proof Fix n ∈ {1,2, . . .} and a polynomial P of degree at most n. As a first step, we
shall show that for each α ∈N

N
0 , |α| ≤ n,

∣∣D(α)P (0)
∣∣ ≤

(
eN

b

)|α|(
n1+μ

|α|μ
)|α|

‖P ‖E. (16)

For this purpose, find j ≥ 2 such that rj <
|α|
n

≤ rj−1, where |α| ≤ n is fixed. From
(7), we have

∥∥DαP
∥∥

Ej
≤ n|α|

r
|α|
j

‖P ‖Ej
,

and thus, by Theorem 2.9 and Example 2.6, Ej ∈ HCP(1, N
rj

). In particular, we get

VEj
(0) ≤ N

rj
dist(0,Ej ) = N

rj
(aj − rj ) = Nrj <

|α|N
n

.

Formula (3) leads us to

∣∣D(α)P (0)
∣∣ ≤ (

e
VEj

(0))n−|α|∥∥DαP
∥∥

Ej
.

By the above, it follows that

∣∣D(α)P (0)
∣∣ ≤ e|α|N n|α|

r
|α|
j

‖P ‖Ej
≤ e|α|N n|α|+μ|α|

(b|α|μ)|α| ‖P ‖E,

and inequality (16) is proved.
Now consider z0 ∈ E \ {0} and |α| ≤ n. If z0 ∈ Ej and rj ≥ (

|α|
n

)1+μ, then

∣∣D(α)P (z0)
∣∣ ≤ n|α|

r
|α|
j

‖P ‖Ej
≤ n2|α|+μ|α|

|α|(1+μ)|α| ‖P ‖E. (17)

In the case of rj < (
|α|
n

)1+μ, Taylor’s formula and inequality (16) yield

∣∣D(α)P (z0)
∣∣ ≤

∑

|β|≤n−|α|

1

β!
∣∣Dα+βP (0)

∣∣‖z0‖|β|
2

≤
∑

|β|≤n−|α|

1

β!
(

eN

b

)|α|+|β|(
n1+μ

(|α| + |β|)μ
)|α|+|β|

‖P ‖E(rj
√

N + 8)|β|

≤
(

eN

b

)|α|(
n1+μ

|α|μ
)|α|

‖P ‖E

×
n−|α|∑

l=0

Nl

l!
(

eN
√

N + 8

b

)l(
n1+μ

|α|μ
)l( |α|

n

)(1+μ)l
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≤
(

1

b
eN+N

√
N+8eN/b

)|α|(
n1+μ

|α|μ
)|α|

‖P ‖E

≤
(

1

b
eN+N

√
N+8eN/b

)|α|
(n1+μ)|α|

(|α|!)μ ‖P ‖E.

Hence, and from inequalities (16, 17), we conclude that E ∈ VMI(2 + μ,
1
b
eN+N

√
N+8eN/b), and Theorem 2.9 leads to E ∈ HCP( 1

2+μ
,B), with B =

(N
b
eN+N

√
N+8eN/b)

1
2+μ (2 + μ), which proves the assertion. �

Remark 5.3 We close this paper by offering two questions for further research:

1. Does the continuity of the pluricomplex Green’s function VE with respect to each
variable separately imply the L-regularity of E?

2. Consider a Markov set E ⊂ C
N and its pluricomplex Green function VE . Is the

function VE continuous with respect to each variable separately?

For the real univariate case, the answer to the second question is positive, because if
E ⊂ R is a Markov set, then it is L-regular (see [9]).

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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