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HOLDER DOMAINS AND POINCARE DOMAINS

WAYNE SMITH AND DAVID A. STEGENGA

ABSTRACT. A domain D C R? of finite volume is said to be a p-Poincaré
domain if there is a constant Mp(D) so that

/ u— upl? dx < M;’(D)/ (Vul’ dx
D D

for all functions u € C! (D). Here up, denotes the mean value of u over D.
Techniques involving the quasi-hyperbolic metric on D are used to establish
that various geometric conditions on D are sufficient for D to bea p-Poincaré
domain. Domains considered include starshaped domains, generalizations of
John domains and Hoélder domains. D is a Holder domain provided that
the quasi-hyperbolic distance from a fixed point Xy € D to x is bounded
by a constant multiple of the logarithm of the euclidean distance of x to the
boundary of D. The terminology is derived from the fact that in the plane, a
simply connected Holder domain has a Holder continuous Riemann mapping
function from the unit disk onto D . We prove that if D is a Holder domain
and p > d,then D isa p-Poincaré domain. This answers a question of Axler
and Shields regarding the image of the unit disk under a Holder continuous
conformal mapping. We also consider geometric conditions which imply that
the imbedding of the Sobolev space wh? (D) — L?(D) is compact, and prove
that this is the case for a Holder domain D.

1. INTRODUCTION

We consider proper open connected subdomains D of euclidean d-space
R? , d > 2. Following [GO] we define the quasi-hyperbolic metric k,, in D by

. ds
(1.1) kD(Xl,x2)=11;f/yax—)

where the infimum is taken over all rectifiable arcs y joining x;, to x, in D.
Here we denote by J,(x) the euclidean distance between x and 4D.
Fix a point x, € D. We say that D is a Holder domain if

Op(x,)
dp(x)
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68 WAYNE SMITH AND D. A. STEGENGA

holds for some finite constants ¢, , ¢,. Our terminology is motivated by a result
of Becker and Pommerenke.

Suppose that D is a bounded simply connected domain in R?. A theorem
in [BP] implies that D is a Holder domain if and only if there is a Riemann
mapping function g satisfying the Holder condition

(1-3) lg(Zl)—g(Zz)ISCIZ]—ZZIQ, |21|S1a |22|S 1,
for some « > 0. In fact, if k, is replaced by the comparable hyperbolic
metric then the exponent a = cl_l. See [SS1] for a localization of this. In

[GM] Gehring and Martio established an R? version of the Becker and Pom-
merenke result by showing that a domain D is the image of a ball under a
Hoélder continuous k-quasiconformal mapping if and only if condition (1.2)
holds. Domains satisfying (1.2) are said to satisfy a quasi-hyperbolic boundary
condition in [GM].

On the otherhand, Holder domains are closely related to the BMO-Sobolev
extension domains studied by Jones in [J1], [J2] and uniform domains. In
[GO], Gehring and Osgood show that Jones’” extension domains are equivalent
to uniform domains. Another closely related type of domain is the John domain.
Fix a point x, € D, we say that D is a John domain provided that for each
x, € D there is an arc y joining x, to x, in D along which

(1.4) Op(x) > aly(x, x)), X €.

Here o is a positive constant, y(x, x,) is the portion of y joining x to x,
and |y(x, x,)| is its arc length.

The definition of uniform domains given in [GO] shows that uniform do-
mains are John domains, but not conversely. An elementary exercise shows that
John domains are Holder domains. But the thickness condition (1.4), which can
be visualized as a twisted cone condition, does not hold in general for Holder
domains. In [SS1], an example of a Holder domain is constructed which con-
tains a sequence of tubes of width ¢, > 0 and length ¢, loge, ' where ¢, tends
to zero. Thus, (1.4) is violated and hence Holder domains are not necessarily
John domains. See also the example in [BP].

Our interest in Holder domains is motivated by a question of Axler and
Shields [AS]. Suppose that g is a Riemann mapping function mapping the unit
disk onto D ¢ R* and satisfying (1.3). They asked whether D necessarily
satisfied the analytic Poincaré inequality

(1.5) //D \F dxdy sM//D \F'P dxdy

whenever F is holomorphic in D and vanishes at g(0) € D. Here M isa
finite constant. Our main result provides an affirmative answer to this question.

This result was known to be true provided the « in (1.3) was greater than
1
v
Let D c RY be a domain with finite volume, m(D) < oo,and 1 <p < .
We denote by wh? (D) the usual Sobolev space of functions on D that together
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HOLDER DOMAINS AND POINCARE DOMAINS 69

with their first order weak partial derivatives are in L”(D). The norm for
w' (D) is given by

l/p
I (/D|u|"dx+/Dwu|”dx) .

We say that D is a p-Poincaré domain provided

Jplu—uplfdx

holds, where the supremum is taken over all nonconstant functions u € whr (D).
Here u,, denotes the average of u over D, u, = ﬁ Judx. Meyers and

Serrin [MS] have shown that C 1(D) is dense in W7 (D), so one only needs
to consider functions in C 1(D) to establish that a domain D is a p-Poincaré
domain. Hamilton [H] has shown that for simply connected planar domains D
of finite area, the analytic Poincaré inequality (1.5) is equivalent to (1.6) for
p=2.

Therefore, the Axler-Shields question is answered by our main results:

Theorem 1. If D C R? is a Holder domain, then D is a p-Poincaré domain for

all p>d.
Theorem 2. If a domain D is a Hélder domain, then
(1.7) / kp(xy, x)dx < oo
D
Jorall p < oo.

The restriction p > d is necessary, as we show by an example at the end of
§10. Nevertheless, it is surprising compared to a recent result of Martio [Mar]
where he proves that John domains are p-Poincaré domains for all p > 1.
On the otherhand, this restriction compares favorably with a result of Staples
[S] that L’-averaging domains are p-Poincaré domains for p > 4. In fact,
condition (1.7) implies that Holder domain are L’-averaging domains for all
p > 1, see [S]. The proofs of Theorem 1 and Theorem 2 appear in §4, while
preliminary work is contained in §§2 and 3.

§§5, 6 and 7 contain additional conditions which are shown to be sufficient
for the Poincaré inequality to hold for a domain D. We show in §5 that a
bounded starshaped domain is a p-Poincaré domain for p > i, while in §7
generalizations of John domains that have cusps are considered. In §6 a Whitney
decomposition of the domain D along with a family of curves in D is used
to obtain an estimate of M, (D). This estimate involves integration over the
“shadow” of an arbitrary Whitney cube with respect to the curve family. In §7
we introduce the kp metric, which is a generalization of the quast-hyperbolic
metric, and we use this in our study of p-Poincaré domains.

The imbedding W' ?(D) — L”(D) is studied in §8. We show that some of
our sufficient conditions for the p-Poincaré inequality to hold actually imply
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70 WAYNE SMITH AND D. A. STEGENGA

the stronger result that this imbedding is compact. In particular this is shown
to be the case when D is a Holder domain. An example showing that this is
not true in general is given in §9.

The final section concerns a class of domains with simple geometry. This class
contains the “rooms and corridors” type domains that have been used by several
authors to study the Poincaré inequality. In §10 we use the kp metric to provide
a complete description of such domains for which the Poincaré inequality holds,
and we partially characterize those for which the imbedding W'*?(D) — L”(D)
is compact.

2. LENGTHS OF GEODESICS IN HOLDER DOMAINS

Let D be a Holder domain. Definition (1.2) does not make it clear that D
is even a bounded domain. Let x, € D, then by Lemma 1 in [GO] there exists
a quasi-hyperbolic geodesic y joining X, to x,. Thus, 7 is a rectifiable arc in
D and

ds
kp(y,,y )=/ =
D2 ¥, vy Op(X)

for each pair of points y,,y, € y. We will show that these geodesics are
bounded in length by a multiple of J,(x,).

Theorem 3. Suppose that D satisfies (1.2). Then there is a finite constant c,
so that whenever y is a quasi-hyperbolic geodesic joining x, to x, in D, the
inequality

d5(x,)

2.1 ky(x,, x) <c, log —=——
&0 p¥o: ) S OB f )

+ 0,

holds for all x € y.

Proof. Fix x, € D and let y be a quasi-hyperbolic geodesic joining x, to x,
in D. Assume that (2.1) is false, so that for every ¢; < oo, there exists an
a, €y with L =|y(a,, x,)| and satisfying

op(x,
(2.2) ¢, log D(L o) | ¢y < kp(xy, ap).

We will show that this is impossible if ¢; is sufficiently large.

Define a, € y(a,_,, x,) by [v(a,_,,a)|l = 27FL, where k =1,2,....
Let A, = sup{d,(x)/L | x € y(a,, x,)}, where k > 0. Combining (1.2) and
(2.2) we get that

op(x,y)
L

dp(xg)
Op(x)

for all x € y(a,, x;) and hence that 1, < exp(flc_—l&). We choose ¢, large
enough so that ¢; > ¢, and 4, < 1/2.

¢, log

+ ¢y < ¢, log

+c,
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HOLDER DOMAINS AND POINCARE DOMAINS 71

We prove by induction that 4, _, < Ak This is trivially true for k =1 so
assume that it is true for some & > 1. If x € y(aq;, x,), then by (2.2)

0,(x,) 27k ds ds
clogD°+c+—§/ —+/ —
! L 3 j'k_l Y(Xg» ay) 5D(J7) via,_,a) 6D(y)

ds
< Bk (x, x
B /y<x0,x) 5,00 ol ¥)

6p5(xy)
<
I log 2 3,00) + ¢,
and hence
—1 —14—k
c c, 2 1
(2.3) L < <log .
24)¢ T A Ay

Now, ¢, can be chosen (depending only on ¢, ) so that 4, is so small that

(2.4) log —

Combining (2.3) and (2.4) we see that 4, < /lf;“ and hence the induction

hypothesis is satisfied. Since 0 < J,(x,) < L4, < L/llg+1 holds for all k > 1
and A, <1 we have a contradiction which proves the theorem.

Corollary 1. Suppose that D is Holder domain and that y is a quasi-hyperbolic
geodesic joining x, to x, in D. Then

(a) There is a constant c, = c,(c, , ¢;) So that |y| < ¢,0,(x,). In particular,
D is bounded.

(b) There is a constant ¢y = cs(c, , ¢,) So that whenever 7y, is a subarc of y
and L =y,|/26,(x,), then

)
(2.5) L1§c5max{ o) xeyl}.
log 7 Ip(Xp)

Proof. The proof of (a) follows immediately from (2.1). To prove (b), as-
sume that y, = y(a,c) and that b € y, satisfies |y(a, b)| = |y,[/2. Let
A =max{d,(x)/dy(x,) | x € y,}. It follows from (2.1) that

L 17, 205(xp)
= ——a <L <
7 2MD(XO)_k(a,b)_cllog 7] (o
and hence that
<le,+ —=|A< [c, + G A=cA
logL ~ ! L~ ! log% 3

which is (2.5). This completes the proof.
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72 WAYNE SMITH AND D. A. STEGENGA

We observe that (2.5) places a restriction on the length of a tube in D. Ifa
tube has a diameter of ¢, then its length is O(elog s”) .

3. THE EXPONENTIAL INTEGRABILITY OF kD IN JOHN DOMAINS

Let W = {Q} be a Whitney decomposition of D into closed dyadic cubes
with disjoint interiors. This means that the coordinates of the vertices of each
cube are dyadic rational numbers and that the diameter of each cube Q€ W,
which we denote by d(Q), is comparable to its distance to 9D . See Chapter
6 of Stein’s book [St] for the existence of such a decomposition. Let x, be the
center of some fixed cube Q, € W . Suppose that Q € W, Q # (Q, and that
X, 1s the center of 0. If xe€ Q,then kj(x,, x)/kp(x,, Xp) is bounded from
above and from below by positive constants (depending on W, which in turn
only depends on d ). We use the notation a ~ b and a < b to denote that a,
b are either comparable or satisfy an inequality with a constant depending only
on the dimension d .

Lemma 1. Suppose that a, > 0 and that
o0

(3.1) Zak§can, n=1,2,...,
k=n

then a, < 2ca, exp(—n/2c).
Proof. We compute for £k > 1,

(o 0] oo n O (o 0}
anan <kd a, > m = kY m*! > a,
n=1 n=1 m=1 m=1 n=m
oo
<ck Z mk_lam
m=1

and the result follows.

In order to provide a clearer picture of our proof of Theorem 2 we first
consider the simpler case of John domains. The following theorem can also be
derived using results in [MV].

Theorem 4. If D is a John domain, then
[ dx < o
D

Jor some 7> 0.

Proof. Assume that (1.4) holds and put § = d,(x;)/a. Then |y| < g for all
arcs y satisfying (1.4). Since W is a Whitney decomposition we can choose
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HOLDER DOMAINS AND POINCARE DOMAINS 73

a > 0 so that

(3.3) a-max(d(Q,), d(Q,)) < min(d(Q,), d(Q,))
whenever Q,, Q, € W and Q,NQ, is nonempty. Let D, = {Qe W |a" <
d(Q)/28<a" '} for n=1,2,....

Since D C B(x,, B) we see that D is the disjoint union of the D, ’s and
by making the a in (3.3) smaller we may assume that x, € D,. Suppose that
X, € Uy D, and that y is an arc in D joining X, to x, along which (1.4)
holds. Because of (3.3), there must be a point x € y and a cube Q € W
with x € Q € D, . Since J,(x) ~ JD(xQ), there is a dilation Q of Q with
m(Q) ~ m(Q)/a" and so that x, € 0.

Let D, =U{Q| Qe W,QcD,}. Then we have shown that

im(Dk) - <6Dk) <m(D,) 2 m(g")-
k=n n

a

Applying Lemma 1 we see that
m(D,) < ce", n=1,2,...,

for some constant ¢ and 0 < ¢ < 1. Since D must also be a Holder domain
we have that for xe QC D, ,
on(x 2
kp(x,, x) < ¢ logM +¢, < log—ﬁ— +e,<¢yn

dp(X) (Q)

where the ¢, ’s are appropriate constants.
Finally, combining the above estimates we obtain that

0o oo
/ erkD(xo,x) dx = Z/ 6,tkD(xo,)c) dx < Zcerc4n8n < 0o
D n=0"Dn n=0

provided t is sufficiently small. This completes the proof.

In [J1] it is essentially shown that m(8D) = 0 whenever D is a John do-
main. Later Martio and Vourinen showed the stronger result that the Hausdorff
dimension of 8D isless than d . Carl Sundberg observed that this resuit follows
from Theorem 4 and we thank him for allowing us to include this corollary.

Corollary 2 [MV, Corollary 6.4]. If D is a John domain, then the Hausdorff
dimension of 0D is less than d.
Proof. Assume that D is a John domain with fixed point x, € D and a satis-
fying (1.4). We cover 0D with a collection of balls B(y,, r,), ..., B(y,,r,),
where each y, € D . Assume that r; is small enough so that x, ¢ B(y,, 3r;).
Now it follows from (1.4) that there is a ball B(x;, ar,) C B(y;, 3r,)nD. Hence
d
m(B(y;, 3r)ND)~r;.
From Lemma 2.1 in [GP] we have
0,(x,)
log -2-—0
| ®5p(x)

(3.4)

SkD(x()sx)a XED,
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74 WAYNE SMITH AND D. A. STEGENGA

and it follows that

- 30\ tky(x,.x)
. - T < T D XO,X ) ) D,
(3.5) r, < <5D(xo)> e , x € B(y;, 3r)N
By a standard covering lemma, we can find disjoint balls {B(y, , 3r, )} whose
triples cover 8D . Integrating (3.5) over B(y, , 3r, ) N D yields that

S ) =Y / et gy
i

; B(,,,3r,)ND

S/erkl)(xo,x) dx.
D

By the theorem, 7 > 0 can be chosen small enough so that this last integral
is convergent. Hence the dimension of 4D is no greater than 4 — 7 and the
proof is complete.

4. THE L’-INTEGRABILITY OF K,, IN HOLDER DOMAINS

We continue to assume that W is a Whitney decomposition of D with X,
the center of some cube Q. In order to prove Theorem 2 and consequently
Theorem 1, we modify the argument given in §3 for John domains. The idea
is that while D is not a John domain, it still will have 6,(x) comparable to
|7(x, x,)| at many points along a quasi-hyperbolic geodesic y joining x; to x,
in D.

We start with a modification of Lemma 1 where the right-hand side is replaced
with an average.

Lemma 2. Suppose that a, > 0 and that

(4.1) iakg-cn—lZak, n=1,2,...,

for a finite constant c,. Then there is a finite constant ¢, < ¢, so that for all

pz1:
o 2
(4.2) Y kPa, <527 (a) +a, + ay).
k=1
Proof. Let b, =5 {a, |4" <k < 4" for n=0, 1, ... . By hypothesis,
> ¢
bnSZak§4nl_lbn_l, n>0.
k=4"

For integers p > 0, we therefore have that

oo o0 oo

pk pk+1—k p+1 (p—1)k
S @b <by+o, S @ R p < 34y,
k=0 k=1 k=0
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HOLDER DOMAINS AND POINCARE DOMAINS 75
assuming that ¢, > 1. Hence

o0 o0 2

kaak < 24(n+1)pbn < 4p6117+12(p+1)(p+2)b0 < 9P cé’bo

k=0 n=0
and the proof is complete.
Lemma 3. Suppose that D is a Hélder domain, that x;, € D and that y is
a quasi-hyperbolic geodesic joining x, to x, in D. If d,(x)) < 6D(x0)2_3"

for some integer n > 1, then there are n distinct integers m, ..., m,, With
n<m,<3n,andpoints y,,...,y, in D sothat
(4.3) P xR 276p(x), 18]~ 27 6,(x,).
Proof. Assume that J,(x,) = 1. Choose consecutive points a, ..., a,, satis-
fying
(4.4) va,, x)|=2""",  m=0,..,2n
This is always possible because if |y| <27",then 1 =dp(x) <27 +27" <1,
Let I, be the interval y(a,_,,a,) for m=1, , 21

Suppose that d,(x) < B|y(x, x,)| forall x € I where m =m, ..., m,

and the {m,} are drstrnct integers in the interval [1 2n]. Using Theorem 3
it follows that

2nm+

10g2 Z/‘" .

<kp(xy, a,,) < ¢ 10g|y(a2n , x1)| g ¢, Seyn

and hence that g8 > (:4—1 log2. In otherwords, if we choose § = c;l log2, then
we cannot find n of these intervals.

Thus, there must be #n distinct intervals 1, , ..., Im which contain a point
y, satisfying 6,(y;) > Bly(y;, x,)| . We therefore have a lower bound for op(y,)
which is comparable to 27"~ . On the other hand, we have that J,(y,) can
not exceed |y(y;, x,)| +dp(x,) =X 27"7™  This proves (4.3) and the proof is
complete.

Proof of Theorem 2. We continue to assume that J,(x,) = 1. Define

(4.5) D = U{QeW[b;<d(Q)<—b—} m=1,2,...,

where b is chosen large enough so that D = {J D, , which is possible since D is
bounded and so that the points y, satisfying (4.3) in Lemma 3 must belong to
. This can be done since W is a Whitney decomposition. We also choose
b large enough so that m(D,) > 0 forall m.
Let Q € W, then one easily sees that there is only a fixed number of sets
D, that Q can belong to and hence the function }_  x, 1sboundedon D.
Here yx D, denotes the characteristic function of the set Dmm
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76 WAYNE SMITH AND D. A. STEGENGA

Let x, € Q € W and suppose that Q C U;‘;Mo D, . Since 6, (x,) ~d(Q) <

b27>""" we can choose 7, so that d,(x,) < 273" . Hence by Lemma 3 we can

find n distinct integers m,, ..., m, with n < m; < 3n and points y, € Q; €
W satisfying (4.3), where Q, C D, . Using the constants in (4.3) we see that
there is a dilation Q, of Q,, so that x, € 0, for all i, and m(Q,) < m(Q,).
This means that

3n
1
(4.6) 1< D Xy %€ U Dy,
m=n

3n+n,

where D =J{Q|QeWandQcCD,}.
Let a, = m(D,,) for m > 0. Using (4.6) and the fact that > x, is
bounded we get

iam=/ ixl)mdxjm([j Dm)

3n+ny 3n+n, 3n+n,
1 3n 1 3n
<[ 23 xp,dx sy Y md,)
D m=n m=n
1 3n 1 3n
= n Z m(Dm) = n a,
m=n m=n
Therefore, if we take N =n > n,, then 3n + ny < 4N and so
0o oo e o Nl
ZamS Z am-<—; amS"‘Z“m
m=4N m=3n+n0 m=n m=N

Thus, the hypothesis to Lemma 2 is satisfied for large N. Since a, > 0 for
all m we can increase the constant in (4.1) so that it is true for all N. As in
the proof of Theorem 4, k,(x,, x) <m on D, and hence (1.7) follows from
(4.2). This completes the proof of Theorem 2.

In a recent paper by S. Staples, L’-averaging domains are characterized by
the L’-integrability of kp(x,, x). Hence Holder domains are L?-averaging
domains, see Theorem 2.6 in [S]. Furthermore, Theorem 3.4 in that paper proves
that D is a p-Poincaré domain provided that k,, is in L?(D) and p > d . (See
Theorem 9 below for a sharpening of this result.) Thus, the proof of Theorem
1 is completed and we also have the following corollary:

Corollary 3. If D is a Hélder domain and 1 < p < oo, then

1
4.7 u—u,l’dx<c,su ———/ u—uyl’dx, ue L(D),
@7 [l dx <y sup s | u-uy) (D)

where c, is a constant and the supremum is taken over all balls B contained in
D.

As a consequence of Lemma 3 we also have the following result.
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HOLDER DOMAINS AND POINCARE DOMAINS 77

Corollary 4. If D is a Hélder domain, then m(6D) = 0.

Proof. Suppose that m(9D) > 0. Let y, € 9D be a point of density for dD.
This means that for any ¢ > 0,

m(B(y,, r)NdD) >1—¢

m(B(y,, r))
provided r is sufficiently small.

Let x, € DN B(y,, r). Assume that x, ¢ B(y,,r) and that |x, —y,| is
very small. By following a quasi-hyperbolic geodesic from x, to x,, we can
find a point x € DN B(y,, r) with J,,(x) comparable to |x —y,|. Shrinking r
to |x — y,| results in a contradiction to (4.8) provided ¢ is sufficiently small.
The proof is complete.

(4.8)

Remark. Domains are constructed in [S] where k, is in Ld_l(D) and yet
m(éD) > 0.

Question. Does there exist a Holder domain in R? whose boundary has Haus-
dorff dimension 4 ?

d
5. STARSHAPED DOMAINS IN R

It is well known that balls are p-Poincaré domains and that Mp(B(a ,P))=r,
for 1 < p < co. Recall that a ~ b means that a/b is bounded from above
and from below by positive dimensional constants. See Chapter 7 in [GT] for
generalization to convex domains and Chapter 2 of [M] for domains which are
starshaped with respect to an open set. In this section, we give new and simpler
proofs of these theorems in addition to extending the generality to the class of
bounded starshaped domains.

Lemmad. If Q=[0,q]x---x[0,a,], then M, (Q) <d-max(a,...,a,).

Proof. Assume that max(a,, ..., a;) =1 and that u € CI(Q). For x,ye Q
and 1 < p < oo we have that

d a.
-1 i
lu(x) — u()’ < d” Z/O VUD, 2o ¥y o 2 X e ) d
i=1

and hence that

1 P 1 ' B »
/Q ue) - s /Q updy| dx < s /Q dx /Q|u<x> u(y)l dy

d
_ 1 a;
<d’ IE ————/// Vuly,, ..., t,...,x,)  dedxd

d
=dp_12ai/ \Vul’ dx < d”/ IVul’ dx.
i=1 Q Q

The proof is now completed with a change of variables argument.
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78 WAYNE SMITH AND D. A. STEGENGA

Remark 1. In view of the Poincaré inequality given on page 164 (page 157 in
the first edition) in [GT] it is surprising that the Poincaré constant, M,(Q), is
independent of the small a;’s. Even for the unit cube Q, the constant in [GT]
grows exponentially with d .

Remark 2. In general, one can modify the above argument to show that
M,(D; x D)) < 3max(M,(D,), M,(D,)).
Denote by Q(x, r) the cube with center x and side length 2r.
Lemma 5. Suppose Q(0,2a)C D and 1 <p <oo. Let

Ul
N (D) = sup m ue Cl(D) is nonconstant and u =0 on B(0, a) ;.
» &\ Vel )
Then
—d—6 m(D) l/p
(5.1) 2 M, (D)< N,(D)<2 <1 + m) M, (D).

Proof. Assume that N,(D) is finite. Let u =0 on B(0, a), u = a off B(0, 2a)
and u(x) = |x| — a at all other points. Then

_ 1/
lelizrp) (ff“(r—a)”rd 1d’> ’ > (_“d+”/(p+1))l/p

IVull iy ~ JF e dr 2% 1d
and hence a limit argument yields the lower bound
(5.2) a(d/2"(p + 1)) < N,(D).

Put ¢ = | —u/a and suppose that v isin CI(D) and satisfies V0(0.2a) = 0.
Write v = v, + v, where v, = pv. Since Vo(0,2a) = 0 we have by Lemma 4,
that

(5.3) llv ”L”(Q(O ,2a)) < 4ad||Vv ”L”(Q(O,za))'

Now v, = 0 on the set B(0, a) and |Vg¢| = 0 off the set B(0, 2a), thus it
follows from (5.3) that

V30l 2y < Ny (DYIV O3l
< Np(D)(“(l - (/’)VU”LP(D) + “vvmly’(p))
< Np(D)(HV’U]in(D) + %“'U”LP(Q(O,Z(;)))
< 5dN,(D)|VV]l 1 -

Finally, since v, = O off the set Q(0, 2a) we use (5.3) again and (5.2) to
obtain that

||1) - UD”LP(D) S 2”’” - (UI)D”LP(D)
< 2(lv, ~ (@) pll oy + 102l ) < 10d(@+ N, D)V

104((2%(p + 1)/d)'"? + 1)N, (D[ V]| 5
10(2% + d)N,(D)[[V0 ]| 15 ) < 27N (D) V]| 5 .

IA

IA
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This completes the proof of the first inequality in (5.1).
To prove the other inequaility in (5.1) notice first that if u € C 1(D) and
Upo,a) = 0, then

i/p
1 1
U p< -—————-—————/ Uu—u dx <—/ u—u pdx.
'”‘(Mmmm>mm' ol = B0, @) Jp " !

2“"/D|u|pdx§/D]u—uD|pdx+|uD|”m(D)

m{D)
S(l+m(B >/|u—uD| dx
m(D) p
(" +m> M) [,
and the result follows.

Theorem 5. If Q(0,2a) c D C B(0,b), 1 <p < oo and D is starshaped with

respect to the origin, then
d—1

(5.4) M (D)< 2% ( )T .

Proof. Let u € CI(D) and assume that ¥ = 0 on B(0, a). For [x'| =1 we
assume that rx’' € D for 0 < r < b(x") and that b(x')x’ € D . By hypothesis,
2a < b(x') < b. For such x’ we have the inequality

b(x") b(x") 4
/ |u(rx/)|prd_ldr§bp/ ( / IVu(tx) Idl) P dr
0

b d-2 b(x") '
< b”/ r dr/ |Vu(tx)f dt
0 a

d—1 ,b(x))
< <b> / (Vu(ex )~ dt
0

a
and hence integration over the sphere yields that

d—1
(3-5) N, (D)< b(})7
By Lemma 5 the result follows and the proof is complete.

For 1 < p < oo, this last theorem can be improved by using Muckenhoupt’s
weighted norm inequality for the Hardy-Littlewood maximal function as we
did earlier for the analytic Poincaré inequality in the plane, see Theorem 2.1 in
[SS2].

Theorem 6. If Q(0,2a) C D C B(0, b) and 1 < p < 0o and D is starshaped
with respect to the origin, then there are constants ¢, =c,(p, d) such that

(5?7, 1<p<d,
(5.6) MJ(D) < c,b°{ (log(t + 1)), p=d,
1, p>d.
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Proof. The case p = 1 is contained in Theorem 3. Fix 1 < p < co and define
w(t) = min((a + |t|)d—1 ) bd‘l) for —oo < t < oo. Then a straightforward
calculation shows that

1 1 ! p=1
5.7 A =su —/wdt(—/w—ﬁdt>
(53.7) » =S 1 J;

is comparable to the quantities on the right hand side of (5.6).
We modify the proof of Theorem 5 slightly to obtain that whenever |x'| = 1
and ¥ =0 on B{(0, a), we have that

bix") 3 b(x") 1 r r
/ lu(rx')|prd la’rsbp/ < / |Vu(txl)|dt> Tl dr
0 a r—aj,

» b(x") by de
<cb' 4 / IVu(rx)|"'r " dr
P Jo

where this last inequality is due to Muckenhoupt, see [Mu]. The proof is then
completed as previously.

The constants on the right-hand side of (5.6) can be improved if the domain
D is such that integration with respect to polar coordinates in the proof can be
replaced by integration with respect to rectangular coordinates. For p > 1, this
is because the weight w(¢) in (5.7) reduces to w(f) = 1,sothat 4, =1. A
similar modification of the proof of Theorem 5 works for p = 1. Using these
ideas we obtain the following theorem; we omit further details. It generalizes
Theorem 2.2 of [SS2], and will be required in section 10. We use Qd_] to
denote a cube in R?7!.

Theorem 7. Suppose that h(x) is a lower semicontinuous function defined on
Qd—l(O, a) and satisfies 0 <a < h(x) < b forall x. If
D=B(0,2a)u{(x,):xe 00, a), —a<t<h(x)},

then M;(D)Scpbp, 1<p<oo.

6. A SUFFICIENT CONDITION FOR THE POINCARE INEQUALITY

We assume throughout that D is a domain in R? with finite volume and
Whitney decomposition W . Fix a cube Q, € W and let x, be its center. We
assume that, for each Q € W, there is a set P(Q) C D containing a chain
Q,,--.,Q, of cubes in W, starting with @, and ending with @, = Q. This
means that Q, is adjacent to @, , in W, so that a face of the smaller cube
is contained in a face of the larger cube, and Q, C P(Q) for 0 <i < n. Now
define

(6.1) SQ) =\ J{Q, e W |QcPQ)}

As an example of how one might construct the the sets P(Q), we could
simply take the cubes in W which intersect a quasi-hyperbolic geodesic joining
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X, to the center of Q. A geometric interpretation of S(Q), in this case, is that
it is the points in the shadow of Q, assuming that light travels from x; along
the quasi-hyperbolic geodesics in D. For x € D, let O denote a cube in W
containing x .

Theorem 8. If D satisfies the above conditions and 4 is a real number, then

d p—1 d 1/p
62) M,(D)< su / / ud ad
(6.2) M,(D) Qeg’{ S(0) ( PQ,) (SD(y)”“‘”(d‘”) (@)@

for l<p<o<>,p'=1;1_’~1 and

(S(Q))
(6.3) M, (D) < 51615/ d(Q)

when p=1.
Remark. Although we have stated Theorem 8 for an arbitrary real number A,
the result is only of interest for A satisfying d—le’)l <A< ( d - The right

side of (6.2) will be infinite for any other choice of A. We omit the details of
this computation.

Lemma6. Let Q,, Q, beadjacent cubesin W . Then M (Q,) and M,(Q,V0,)
are both comparable to d(Q,), for 1 <p < oco.

Proof. The first assertion is Lemma 4 and the second follows from Theorem 5.

Remark. Lemma 6 is well known and follows from the uniform cone condition
(see §1.1.11 of [M]). We give a new proof of this classical result in Theorem 10.

Lemma 7. For 1 <p < o0,

(L gew lug = ug 'm(@)'"”
IV ull o p,

(6.4) M, (D) < sup d(Q) + sup
Qew u

Proof. For ue C'(D), we have that

/lu—uD[ dx<2p/|u—u ¥ dx—2pZ/|u—u I” dx

Qew

5’4” (/lu—uQ| dx +lu, —uQ|m( ))

Qew

< 4f (SQ%M;’(Q / \Vul’ dx + Z lug —qu m(Q))

Qew
The result now follows from Lemma 6.

Lemma 8, If u e C‘(D) and Q€ W, then

(Vi
6.5 Uy—U ﬁ/ —_dXx
(-3 o ~ e P@) 3p(x)!
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Proof. Let @, ..., Q, be a minimal chain of cubes in P(Q) which joins Q,
to Q. The Q,’s must then be distinct, for if this were not the case, we could
remove a subsequence of adjacent cubes and still have a chain from @, to Q.
Using Lemma 6 we then have that

n
lug —ug | <D lug —uy |
i=1

“ 1
DN rnTomn) /Q-UQ,»_I Uy g |dx

M (Q;UQ,_))
- Z m(Q ug, ) Q,uQ,_, [Vuldx

<Zd(Q . l/Q " 1|Vu]a’x

[t [ T
Uea d,(x) P(D) Op(x)

and the proof is complete.

Proof of Theorem 8. Let M denote the right-hand side of (6.2) and assume that
it is finite. If Q € W, then Q C S(Q) N P(Q) and hence for some A we have

that bt
m(Q) dy
d(Q)”“ " </Qa (y)r A-ANd= ”) <M

and it follows that
(6.6) d(Q) =M, Qew.
Suppose that « € C,(D) and put

d &
_ y
(6.7) E(x, 4) = (/P(QX) 5D(y)p'(1—i><d—1>>

for x€ D, —oo<Ai<ooand 1 <p<oo. For p=1,let F, =1 and set
A =1. Using Lemma 8 and Hélder’s inequality we see that

p
S lup —up (@) < Y ( /P ﬂ‘%) m(Q)

Qew Qew (&) 6D(X
|Vu|pdx
Xpo)(X)F,(xg, 4)
= A}Vulp {Q;/V P<§;(x)l;(d—Q]) m(Q)} dx.

Since m(U{60Q | Q € W}) =0 , we need only consider x € D with x in the
interior of some Q, € W. Forsuch x, )(P(Q)(x) # 0 ifand only if Q C §(Q,).
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In addition, d(Q,) < cd,(x), for x € Q,, where ¢ ~ 1. Thus, we simplify the
above to get that

d—1) dy
1y — g Pm(Q) < ¢ /|Vu (/ F(y,l)———_—) dx
QGZW Qy s©,) p d(QX)Ap(d 1)
Scip(d—l)Mp/ \Vul’ dx
D

and hence that

(L oew g — g I'm(@)'"” y

(6.7) TVl <

Finally, Lemma 7 combined with (6.6) and (6.8) give the required bound on

M (D) and the proof is complete.

7. JOHN DOMAINS WITH CUSPS AND INTEGRABILITY CONDITIONS FOR K D

We give some applications of Theorem 8 in this section by constructing sets
P(Q) from families of arcs in D generated by a new distance function on D.
For 1 < p < co the metric kp in D is defined by

. ds
by, ) =inf [ 2

where the infimum is taken over all rectifiable arcs y joining x; to x, in D.
Notice that k,; = k;, . Martin has shown that geodesics exist for k,if l<p<d
[Ma, 2.11], but we will not need this fact.

Theorem 9. For 1 <p < o0,

1 i/p
SerW(d(Q)”fS k(%o )dx) , 1<p<d,

(1) M,(D) = o
(Jo kb4 0xy» xydx - m(DY) ™, d<p,
where rzgfffiﬁ. Ford—-1<p<oo,
l/p
(7.2) M,(D) < (/I)kj‘l(xo,x)dx) .

Remarks. The statement of Theorem 9 has p > d — 1 in (7.2) since otherwise
the right-hand side is infinite, as is easily checked.
For d<p

kP (xg, x) < k579 (xg, x) - m(D)Y’

where r is as in Theorem 9. This follows from the application of Holder’s
inequality in (7.5) below. Thus (7.2) is stronger than (7.1) if p > d .
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Proof. Let W be a Whitney decomposition of D and for each Q € W, let Yo
be a fixed arc joining X, to the center of @, such that

ds
(73) / = S 2kp(.x0 s xQ)
7o Op(x)77T

Define P(Q) to be the union over the cubes in W which intersect Yo -

Lemma 9. For 1 <p < o0,

& <k (xy. )

(7.4) / — =
P &, (y)F

whenever x € Q, Q€W and Q # Q,.

Proof. Fix x € Q with Q € W and Q # Q,. By the triangle inequality,
kp(xo , xQ) < kp(xo, X))+ kp(x , xQ) . Since W is a Whitney decomposition it
is obvious from the definition that k (x, x,) < d(Q)! 7= et y bean

arc in D joining x; to x. Since Q # Q, ]we can find a cube Q, € W with
d(Q,)~d(Q) and d(Q,) < |ynQ,|. Hence

[ 20O o) s k)
16,005 d(0)H

Thus, k,(x,, x) = k,(x, X,) and so k,(xq, Xg) = k,(x,, x) whenever x € Q.
Hence it suffices to prove (7.4) with x = Xg-

Let Yo be the arc in (7.3). For R € W, denote by R, the union of all cubes
in W which have a nonempty intersection with R. It is easily seen that there
are cubes Q,, ..., @, in W for which (a) yQﬂQi is nonempty for 1 <i<k,
(b) Q, ¢ Qj for i # j and (c) P(Q) C UQ,. Clearly, we then have that

i=1 /7NQ; O (y) P!
5/ ds(H < 2-k,(xy, Xp)
7o Op(¥)7 T

This completes the proof of Lemma 9.
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Returning to the proof of Theorem 9, we let d — 1 < p < oo, apply Theorem
8 with 4 =0 and use Lemma 9 to conclude (7.2):

_ 1/p
dy !
LS S d
M, (D)= (/D (/P(QX) S, ()7 “””) x)
1/
< (/Dk;’_l(xo,x)dx) p.

For p > d we have that p'(d — 1) < d. Arguing in a similar manner, but
using the Holder inequality we get that

dy 7!
M,(D) 2 ( /| ( / o ————%(y)p,(d_l)) dx)
(7.5) dy \'* v
. y "d
(/D (/P(QX) 5D(y)d> e x)

: </D kﬁ_ﬁ(Xo: x)dx- m(D)’) 1/p |

and the proof of (7.1) is complete in this case.

Observe that Lemma 9, with p = 4, was used in this last argument. We
choose to use quasi-hyperbolic geodesics Yo in this case, to generate the sets
P(Q).

Finally, for the case 1 < p < d in (7.1) we apply Theorem 8 with 1 =
(d —p)/p(d — 1) to obtain the inequality

_ /p
1 ay \"
IR d
M, (D) = sup (d(Q)d_” /S(Q) </P(Qx’ 53(”) x)

1 1/p
-1
<sup (——— [ kg xdx)
oew (d(Q)” P s 0
which proves (7.1) for | < p < d. The case p = 1 is part of Theorem 8 and
thus the proof of Theorem 9 is complete.

1/p

IA

Definition. Let D be a domain and x;, € D. We say that D is an »n-John
domain for n > 1 provided there is a constant « > 0 such that, for each
X, € D, there is an arc y joining X, to x, in D along which

(7.6) 0p(x) 2a|y(x,x1)|”, X €.

Notice that when #n = 1 this definition agrees with the definition of John
domains given in the introduction. Power cusps are allowed in 7-John domains
for n > 1, and so these domains comprise a larger class of domains than John
domains. Martio has shown that a John domain is a p-Poincaré domain for alil
p > 1 [Mar]. We now give an extension of this result to x#-John domains.
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Theorem 10. Let 1 < p < oo. If D is an n-John domain with

d p—1
(77) n < &T—l— + d——T
then D is a p-Poincaré domain. In particular, if n < % , then D is a p-Poin-
caré domain for all 1 <p < oo.

Proof. Let W be a Whitney decomposition for D. For each Q € W, let y
be an arc joining x, to Xg along which (7.6) holds. For each pair of adjacent
cubes in W we fix an arc joining their centers which is contained in their union
and whose length is comparable to their side lengths. We replace replace y by
an arc y, constructed from these special arcs. This can be done so as to still
satisfy (7.6) provided we account for an increase of the arc length by a constant
factor. We therefore have that

(a7 n .
Ip(x) 2 —lvglx, X)IT, X €7,
d(@) XrgnQl, QO Ny, #9, QeW,

where ¢ is a dimensional constant. Let P(Q) be the union of the cubes in W
which intersect Y0~
Let 0 < A <1 be determined by

(7.8)

d

=" _<1.
(7.9) Ap Trp -1 <1
Using the property that d(Q,) <X lyQﬁQll for each Q, in P(Q) we can replace

volume measure dy on Q, by 5g_l(y)ds on yQﬁQ1 and hence we get that

dy pot ds p=l
(7.10) </ 7 ) = (/ SN TRy 2!_12) ‘
P(Q) 8, (y)P (17AE= v 8,y(y) A

Let L = c(5D(x0)/a)l/", then from (7.8) it follows that y, < L. If we use
euclidean distance as a lower bound for arc length and use that (7.9) implies
that n(1 — pA){d — 1) <p—1 we obtain that

(7.11)

ds p—1 - o (1—piyd—1) L ds p—1 B
N =\a Tal=phd-1 =4 <o
51)()’) Pl 0 s v

Yo

and hence the right-hand side of (7.10) is bounded by a constant independent
of Q.

In a similar manner we obtain an upper bound for m(S(Q)). If x isin the
interior of Q, C S(Q), then the arc Vo, Passes through the center of Q. By
(7.8) we have that

(04
d(Q) 2 —lx — x|
G

Q
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for a constant ¢, and therefore

Ap(d—1
m(s©Q) _ Y / dx
d(Q)/lp(d—l) = APd=1 S(0) Ix_lenlp(d—l)

nip(d-1) dx
a et
JTIrEY /B(O,L) P B <o
since (7.7) implies that nip(d — 1) < d.
Finally, by combining (7.10), (7.11) and the above we have that

p—1
dy dx
sup/ / ; — < A-B<x
0 S(Q)( P(©Q) 5D(y)”“‘“(d‘”> (@)=Y

and the proof is completed by applying Theorem 8.

8. COMPACTNESS OF THE IMBEDDING W ''?(D) — L?(D)

In this section we are concerned with the question of when the imbedding
of a Sobolev space into L’ is compact and the implications this has for the
Poincaré inequality. Questions of compactness are important for applications,
in part because compact operators have discrete spectra. The study of compact
imbeddings began with Rellich [R]. See also Chapter 6 of [Ad].

For a domain D in R and 1 < p < oo, recall that wlp (D) is the usual
Sobolev space of functions on D (see the introduction). Obviously, the natural
imbedding of W''?(D) into L?(D) is continuous. The next theorem gives
an equivalent condition for the imbedding to be compact. Amick considered a
closely related condition and the question of compactness for a bounded domain
with p =2 in [Am].

Theorem 11. Let 1 < p < co and let D be an open set in RY . The imbedding
w'-?(D) — LP(D) is compact if and only if

(8.1) lim sup{/
n—oo D\D

where D, = {x € D | d,,(x) > 1/n and |x| < n}.

lulf dx | “uHW]‘p(D) < 1} =0,

n

This theorem is an easy consequence of the following lemma. We follow the
convention of extending u € L”(D) to be defined in R* by setting u equal to
0 on R’ \D.

Lemma 10 [Ad, 2.21, p. 31]. Let 1 < p < 0o. A bounded subset X in L*(D)
is precompact in LF (D) if and only if for every & > O there exists 6 >0 and a
compact subset K of D such that

(8.2) /|u(x+h)—u(x)|"dx<a”, W <6, ueX,
D

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



88 WAYNE SMITH AND D. A. STEGENGA

and
(8.3) / lulf dx < &°, ueX.
D\K

Proof of Theorem 11. First suppose that the imbedding is compact. We apply
Lemma 10 with X = {u € wi?(Dy| lwllpr0py < 1}. Thus, given ¢ > 0 there
is a compact set K C D such that (8.3) holds. Since K C D, for all sufficiently
large n, (8.1) follows.

For the converse, we adapt an argument from [Ad, p. 147]. Suppose that
(8.1) holds. Let X = C'(D)n{ue W" (D) | |lullyr.p < 1}. Then if u € X
and ~ < 1/n, we have

p
- ’ - h)ld d
/Dn]u(x+h) u(x)| dxs/ (/ | ux+t ) t) X

§|h|p/ dx/ Vulx + th)] d
D, 0

< 1h|"/ Vul dx.
D

This fact together with (8.1) clearly shows that (8.2) holds for u € X . Further-
more, (8.3) follows immediately from (8.1) by letting K be the closure of D,
for n sufficiently large. The compactness of the imbedding now follows from
the Lemma 10, and the proof is complete.

Corollary 5. Let d — 1 <p<oc and x,€D. If
(8.4) / K (xy, %) dx < 0,
D

then the imbedding W' ?(D) — L*(D) is compact.

Proof. Recall that d — 1 < p 1is necessary for (8.4) to hold. Let W be a
Whitney decomposition of D and let {D,} be as in (8.1). Then there are
positive constants ¢, and ¢, such that

D\D,c| {Qe W |d(Q) < ¢ /n} cD\D,,, n>1.
Suppose that lluHWx,p < 1. We then have

/D\D wPdx< Y /|u| dx

d(@)<c /n

(8.5) <3f u—uyl” dx + |uy —uy 'm(Q)
d(Q)<c /n {'/ ¢ e }

+3|uy ["m(D\ D, )

Now,

Z / |u — uQ| dx < sup Mp(Q)/ |Vul’ dx < (%)p ,

d(Q)<e, /n d(Q)<ce/n D\D,,
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where ¢, is a dimensional constant by Lemma 6. Also, as in the proof of
Theorem 8 (with A = 0) we get that

Y g - ug 'm(Q) 5/D|Vu|pdx/ K2 (xy, ) dx = (1),

d(Q)<e, /n D\D,,

since k p(xo ,x)eL? _I(D) . The last term on the right side of (8.5) also goes
to zero as n tends to infinity since D clearly has finite volume by condition
(8.4). So we have that (8.1) holds and we are done by Theorem 11.

The following result is an immediate consequence of Theorem 2, Corollary
5 and the Remark in §7.

Corollary 6. If p > d and D is a Holder domain, then the imbedding W'** (D)
— LP(D) is compact.

We next consider the relationship between the Poincaré inequality and the
compactness of the imbedding w2 (D) — Lf(D). The following result may
well be known. We include a proof since we have been unable to find a reference.

Theorem 12. Suppose that 1 < p < oo and m(D) < oo. If the imbedding
whP(D) — LP(D) is compact, then M (D) < oo.

Proof. Arguing by contradiction we assume that the imbedding is compact but
that M (D) is infinite. Then there is a sequence {u,} C C (D) such that

(8.6) /Iunlpdle, /undx=0 and lim / Vu, [ dx =0,
D D =00 Jp

By the compactness of the imbedding there is a subsequence which we continue
to denote {u,} and u € L°(D) such that u, — u in L”(D). Now let a be
a multi-index with |a| =1 and let ¢ € C(;x’ (D), where this denotes functions
compactly supported on D and having continuous partial derivatives of all
orders. Then
D%u(g) = —/ uD®¢dx=—lim [ u, D¢dx= lim | ¢D"u, dx =0,
D h—0oC D n—o0 D

since ||V, |l py — O by (8.6). Thus u has a weak gradientin D and Vu =0.
Since M,(B) < oo for each ball B C D, we see that this means that u is
locally constant in D. Since D is a connected set, u is almost everywhere
equal to a constant in D. This is a contradiction since it follows from (8.6)
that ||ul|;»p =1 and Jpudx =0, and the proof is complete.

9. EXAMPLE OF A NONCOMPACT EMBEDDING

In §8 we showed that the sufficient condition for the Poincaré inequality
from Theorem 10 actually implies that the imbedding W''”(D) — L”(D) is
compact. We now show that this does not extend to all of our other sufficient
conditions for the Poincaré inequality. More precisely, we construct a domain
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D for which the imbedding W''?(D) — L”(D) is not compact, and we use
(6.2) of Theorem 8 with p =2, d =3 and 4 =1/4 to show M,(D) < co.

Let {x,}>, be a sequence of points in R® such that |x;| = 1 and the balls
{B(x,,27")} are pairwise disjoint. Now set y, = (1 + 2"'+1)xi and define

¢, =UiBx, 27 ) x elx,, (1+27)x,1},

R,=B(y;,2”") and D=B(0,1)ul J(C,UR).
i=1
Thus D consists of a central room B(0, 1) and a sequence of rooms {R}
connected to B(0, 1) by narrow corridors {C,} .

General rooms and corridors type domains such as D are studied in detail in
§10. We could apply Theorem 15 from that section to easily see that M, (D) <
oo and that the imbedding WI’Z(D) — L (D) is not compact. Our goal now,
however, is to show that the hypotheses of Theorem 8 do not imply that such
an imbedding is compact. We also wish to demonstrate how Theorem 8 can be
used to show that a specific domain is a p-Poincaré domain. Accordingly, we
proceed to show that D satisfies the hypotheses of Theorem 8.

To each point x € D we associate an arc y_ in D with initial point 0 and
terminal point x. These arcs will be used to determine the sets P(Q) in this
example. The arc associated with x € B(0, 1) traces the line segment [0, x].
For x € C\{B(0, 1)UR,} let X be the pointon [0, (1+2 ')x,] which is closest
to x, and define y, to be the arc that traces the line segments [0, X] followed
by [%, x]. For x € R, we define y, so that it traces the line segments [0, y,]
followed by [y,, x]. This completes the description of the family of arcs.

Let W be a Whitney decomposition for D. For Q € W, denote by Yo the
arc from our family of arcs associated with X, » the center of Q. Define P(Q)
to be the union of all cubes in W that intersect Yo+ We shall show that D is
a 2-Poincaré domain by applying Theorem 8 with 4 = 1/4 and this definition
of the sets P(Q). Thus it suffices to show that

1 dy
9.1 sup——/ / ———dx < oo.
®-1) oew d(Q) Jso) Jri0,) 6, (v)

We sketch a proof that (9.1) holds. It is easily checked that if x € D, then

ds
/y, W < kp(0, x).

Thus, by Lemma 9, it suffices to show that

l
(9.2) sup 0 /S(Q) k0, x)dx < oo.

Qew

First consider a cube Q C C, U R, with the property that the diameter of
S(Q) satisfies d(S(Q)) < lOéD(xQ). An easy estimate shows that for such a
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cube k,(0, x,) < 2" +log(1/d(Q)), so m(Q)-k,(0, x,) < d(Q)*. Also it is
easily seen that

, 4@ )
| kplxgsxdx d(@* [ togg di < (Q)
5(Q) 0 !

Thus
1 1
m S(0) kD(0 .X) d'x d(Q) (m(S(Q)) 'kD(Oy XQ) + /S(Q) kD(-an X) dX)
=<1

A similar computation establishes that the same estimate holds for a cube
Q c C,UR,; with the property that d(S(Q)) > 105D(xQ). The key point is
showing that

(9.3) / kp(x;, x)dx </ kp(x;, x) dx <272
C,UR,

Thus we have shown that if Q C C,UR,, then
1

9.4 — k.0, x)dx < 1.
oY 70 Jsig** ™
We now consider a cube Q € B(0, 1). As above we have that
1
9.5 ——/ k. (0, x)dx < 1.
9:3) d(Q) Jsnso.1) ol )

Also, since {B(x;, 2_i)} are pairwise disjoint
> 27 < d(0)%
R,CS(Q)
This with (9.3) shows

/ kp(0, x)dx < Y (kD(O, x;)-m(C;UR,)) +/ kp(x,, x)dx)
S(Q\B(0, 1) RCS(Q) C,UR,
< S @2
R,CS(Q)
<d(Q)"
This estimate together with (9.5) shows that if Q C B(0, 1), then
1
—— k, (0, x)dx < 1.
7Q) Jsig 0"

Now (9.2) follows from this and (9.4), so we have shown that M,(D) < oo.
To finish this example we now need to demonstrate that the imbedding
WI’Z(D) — L2(D) is not compact. For 1 <i < oo, define

0, xeD\(C,UR),
u(x)=1{ 2°7(x| - 1), x€C,NB0,1+27",
22, x€(R,UC)\ B0, 1+27".
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A straightforward calculation shows that |Iui”L2(D) ~ 1 and HuiHWn,z(D) ~ 1,
forall i.

If the imbedding W1’2(D) — L2(D) were compact it would follow that
there is a subsequence of {u;} converging to u € L2(D) in norm. But then
[l oy & L which is a contradiction since u;(x) — 0 almost everywhere.

Hence the imbedding w! ’Z(D) — LZ(D) is not compact, and we are done with
the example.

10. ROOMS AND CORRIDORS TYPE EXAMPLES

It is a well-known elementary fact that a finite union of Poincaré domains
is again a Poincaré domain. In this section we take up the study of infinite
unions of Poincaré domains. A “rooms and corridors” type domain consists of
a central cube shaped room along with an infinite disjoint collection of cube
shaped rooms which are connected to the central room by narrow corridors (or
tubes if d > 2), such as the domain constructed in §9. The resulting domain
may or may not have M i finite. The use of rooms and corridors type examples
in the study of the Poincaré inequality can found in [CH], [M], [S] and [SS2],
and variants of these domains are used in [Am] and [AS].

In this section, we characterize those rooms and corridors type examples
which are p-Poincaré domains by using the kp metric introduced in §7. We
then construct a specific example to show that the condition p > d in Theorem
1 is necessary. Results on compact imbeddings of rooms and corridors type
domains are also obtained. The theorems in this section again demonstrate the
important relationship between the kp metric and the p-Poincaré inequality.
Some of these results generalize earlier results of ours in [SS2].

Definition. Let T be a domain in R®. For X ,Xx, €T and 1 <p < oo, we

define A, (x,, x,) = kl‘f,_Tl(x1 , x,). For p=1, we put

(10.1)  hy p(x,, xy) = inf{supé;_d(x) | y is a path from x, to x, in T} .
’ XEy

This definition is motivated by the fact that for a fixed arc y in T,
p—1
lim /-—ﬂ—— = supd;_d(y).
? Op(

p—1 d’:_i yEY
y)»

Lemma 11. Let T be a domain in R? . Suppose that W is a Whitney decom-
position of T and that 1 < p < oo. Then

(10.2) g — g " < h, 1(x;, %) /7 IVul’ dx

whenever Q,, Q, € W, with x, € Q, for i=1, 2, and ueCl(T).
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Proof. For p>1,let y beanarcin T joining x, to x, and satisfying

(10.3) /Ld_ <2k, 7(x,, Xy).
14 5T(y)"__T ,

Let P be the collection of Whitney cubes in W which intersect y. By Lemmas
8 and 9 and (10.3) we obtain that

p
[Vul
lug —uy | = (/ — 7
Ql Qz P6T(y)d 1
d !
s/]Vu|pdx- /_y_
r P oy (y) Y

= kﬁ’_Tl(x1 y X,) /P |Vul’ dx
=h, +(x,x,) ~/P \Vul” dx

which verifies (10.2) in this case. An analogous argument for the case p = 1
establishes (10.2) for all 1 < p < oo. This completes the proof.

See [SS2] where this lemma is proved for the special case of simply connected
planar domains with p = 2 and u an analytic function on 7 .

We now consider a more general configuration of a connected domain D C
R? with finite volume. We assume that D = Upe, G, whereeach G, isan open
connected subdomain of D. Moreover, we assume that {G,} - is a disjoint
collection and that G,NG, is a nonempty set for each n. Corresponding to each
region G, , with n > 1, there is a subregion Gn of G, for which G, N Gn is a
nonempty set. Put 7, = G, U Gn for n > 1, so that T, is an open connected
subdomain of D. Using the construction on page 167 of Stein’s book [St],
we construct a Whitney decompositions W, of T, with defining parameters
independent of # . Finally, assume that Q,, Qn e W, with Q, CG,, Qn C Gn

and that x,, X, are the centersof Q, , Q

Theorem 13. Let 1 < p < oo and let M, K be finite constants. If

(a) m(G,), m(Q,). m(Gn) and m(Qn) are all comparable for each n > 1,
with constants independent of n,

(b) {Q0,},>, is disjoint and

o0

sup y_ x4 (X) < K,
xeb n=1 ’

(c) M;’(Gn) <M forall n>0 and
(d) Ay 1 (X, %,)-m(G,) <M forall n>1,
then M,(D) < oo.
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Proof. Let u be a function defined on D satisfying Vu € L?(D) and u =0
on Q,. For n> 1, we use (a) to compute that

/ lul” dx j/ u—ug |”dx +|ug —uy 'm(Q,)
G" a n n n
+lug, —uy Pm(G,) + lup m(Q,)
§2/ | —ug |pdx+/ ]u|pdx+|uQ — U |pm(Gn)
Gn n Q" n n
=2-4,+B,+C,
By (c), we have that

YA, <MY | (Vufdx<M | |Vufdx.
= n=1"Cx D

Since u =0 on @, it follows from Lemma 5 and conditions (b), (c) that

o0
B
<),

Combining these estimates we obtain that

/ u’ dx < Z/ luf’ dx jM/ Vul dx+3°C,.
D n=0 G, D n=1

Using Lemma 11 we obtain that

lulf dx < M/ IVul’ dx.
D

0

(10.4) g, — g <h, 1 (%,, xn)-/T vufdx, n>1.

Finally, we have by conditions (b), (d) and (10.4) that
o] o0
Y Co <3 hy (%, %) - m(G,) /T Vul’ dx
n=1 n=1 n

< M/ IVul? Y xp dx < MK/ [Vul’ dx,
D n=1 " D

and hence that
/ W’ dx < M(K + 1)/ (Yl dx
D D

whenever u vanishes on Q,. Thus, the proof is complete by Lemma 5.

We now consider an infinite union of domains {G,} with the property that
each of the imbeddings whe G,) — ) (G,) is compact. The assumptions and
the notation introduced prior to Theorem 13 are still in force.

Theorem 14. Let 1 < p < 0o and let M, K be finite constants. If
(a) m(G,), m(Q,), m(G,) and m(Q,) are all comparable for each n > 1,
with constants independent of n,
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(b) {Q,},>, is disjoint and

sup ZXT

xeD
. p _
(©) Jlim M7(G,) =0
(d) nlLrglo hp’Tn(fcn , X,) -m(G,) =0
(e) nlirglo o,(%,) =0, and
(f) the imbedding W'?(G,) — L*(G,) is compact for all n >0,
then the imbedding W'** (D) — L?(D) is compact.

Proof. Theorem 11 will be used to show the compactness of the imbedding. As
a first step, we show that

3 / jl? dx | l0.0 _1}_ lim S, =0.

n=N+1

(10.6) hm sup{

Arguing as in the proof of Theorem 13, by using (a) we see that

' ’ ’
Sy 2Ay+By+Cy,

!
A, = sup { /|u—uG$dx|||u||W1p - }
n=N+1

e Ny —1}
uof 5, et

Cy= sup{ > g — ”Q,,lpm(Gn) Hlullyr oy = 1}'

n=N+1

where

By (c) we have that lim,_ A;\, =0, since

/Glu—anlpdele(Gn)/G ul” dx.

For any k > 1, by (e) and the fact that Qn € W, , we can pick N such that

U 0,cD\D,.
n=N+1
where D, is as in (8.1). Thus by applying (f) with n = 0 and Theorem 11,
we have that im,_, B;\, = 0. Now, using (10.4) and (b) as is the proof of
Theorem 13, we estimate

C <sup{ Z h, xn,x) m(G,) / [Vulf dx | ||ully. p(D)—l}

n=N+1

<K h -m(G ).
301, 7o) m(G)
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Thus lim,,_, Czlv = 0, by (d). The proof of (10.6) is now complete.
It is an easy consequence of the definition of a compact imbedding that, since
each imbedding wt-p G,) — L (G,) is compact, the imbedding

() ()

is compact for each N > 0. (Alternately, one can use Theorem 11 to see this.)
Thus by Theorem 11 again, and with D, as in (8.1),

. p
(16.7) klirgosup{/ . lu|” dx | HuHWl,p(GN) = 1} =0, N>0.
U,,=0 n k
But since
N oo
D\D, C (U Gn\Dk) U ( U Gn>,

n=0 n=N+1
(10.6) and (10.7) imply that

lim sup /
k— o0 D\D

so an application of Theorem 11 completes the proof.

k

Iu|p dx | “uHWW’(D) - 1} =0,

We now proceed to simplify the above geometric configurations. Let R,
denote the ball B(x,, c,) with center x, and radius c¢,, where n=0,1,....
We assume that x, =0, ¢, =1, 1< |x,| <2, a, <c¢, and that the collection
of balls {R,}%  is disjoint. For n > 1, let x, = x,/|x,|, b, =|x, —x,| — ¢,
and C, = U{B(x,q,) | 0 < |x —xi,l < b,}. We further assume, for n > 1,
that the sets {C,UR,} are disjoint and that D is constructed using the rooms
R, and the corridors C,, i.e.

D=R,U <G(Rnucn)).

n=1

Theorem 15. Let 1 < p < oo and let D be the domain constructed above.
(i) M,(D) is finite if and only if

(10.8) sup hp(xo, x,) - m(R,) < oo.
(i1) Further suppose that
24!
(10.9) sup —+——* < 1.
n C,

Then the imbedding W'**(D) — L”(D) is compact if and only if
(10.10) lim A (x,, x,)- m(R,) = 0.

n—oo P
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Remark. The geometric interpretation of (10.9) is that m(C,) < m(R,). With-
out a restriction of this type it is easy to construct a counterexample with a
starshaped domain.

Proof. (i) Assume that (10.8) holds. We establish that M (D) is finite by show-
ing that conditions (a)-(d) in Theorem 13 hold. Let G, = ROLJ(U:’;l C,). Then
G, is starshaped with respect to the origin and hence is a p-Poincaré domain
by Theorem 6. For n > 1 put G, = R, . Then by Theorem 6 again we see that
condition (c) holds for some finite constant M .

For n>1,let R,, C, denote the reflections of the sets R,, C, about the
sphere |x| =1 in RY. We put Gn = Rn U (:‘n U C, and construct a Whitney
decomposition W, of T, = GnUGn with constant defining parameters. Finally,
we put ( to be a cube in W, containing x, and let Qn be a cube in W,
containing the reflection %, of x, . Clearly, conditions (a) and (b) hold, with
K=1.

To prove that condition (d) holds, we will use the symmetry of 7,. For
p>1,let I', beanarcin D joining x, to x, so that

(10.11) / —ds—d_,52kp(x0,xn).
L op(y)eT

Let y, be the subarc of I', starting from the last exit from R, to the endpoint
x,. Let 7, be the reflection of 7, about the sphere |x| = 1. Clearly, §, Uy,
is an arc in 7, joining %, to x,. Hence by symmetry,

k,,,Tn(x,,,fcn)sf ds 5/ s
a7y JTn(y)p*l 7n arn(y)p_l

=/ LHS/ Ld_lﬁzkp(xo’xn)'
T Op(¥)r=T T O (y) Tt

n

(10.12)

Thus, condition (d) holds for the case | < p < co. A similar argument yields
(d) in case p =1. Hence M, (D) is finite by Theorem 13.

To prove the converse suppose that Mp(D) is finite. We must find a bound
M < oo so that

(10.13) h,(xy, x,)-m(R,) <M

holds for all n. Fix n and let 7, be the line segment [x,, x,]. Integration
over 7y, gives an upper bound for kp(xo ) X,) -
We first assume that 1 <p <d. If b, +¢, < 2a,, then

|—-4=L

-1
Kl (x x)-m(R)<<a Z:‘l>p Al =d <1
0°"n n/ — n —

D n n

and so (10.13) holds with some M which is independent of n. If b, +c, > 2a,,
we construct a function u#, which vanishes on D except for pointsin C,UR, .
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For x € C,UR, , we define

) x-x'|-a /
U (x)=mimn|l, ——2—12 xX-x]>a.
n( ) ( > 2an+bn b nl— n

Clearly, u, = 1 on at least half of R, and hence
m(R,) 5/ |un|p dx < Mg(D)/ |Vun|p ax.
R, D

If b, <a,, then it is easily seen that k;’_l(xo, x)=<a ¥ and |Vu |=<a;".
Thus,
m({lvuz| # 0}) <ai?

n
an

/D|Vun|p dx < < k;_p(xo, X,).

Thus, (10.13) holds in this case.
If b, >a,, then k[’:_l(xo, x,)<b 7" /a%" and |Vu,| < b . Again,

v d-1 _
Alvunlpdx j m({| L;Zl # 0}) f anZ f kpl P(xo’ xn)

and so (10.13) holds. We have therefore completed the proof for the case
l<p<d.

For d < p, the same proof works, only the estimates are more elementary
since the integral

is convergent. The case p = | can also be done with a similar argument.
Finally, the case p = d requires a slightly different construction for u,. If
b, > a, , then the proof is as before. But if b, < a,, then we define

. 10g(|x—x;|/an) '
u,(x) = min (1, log((2an+bn)/an)> , x-x,l>a,,

whenever x € C, UR, . Analogous estimates show that (10.13) holds in this
case also and the proof of part (i) is complete.

(ii) Assume that (10.10) holds. We will use Theorem 14 to show that the
imbedding W'*¥(D) — L”(D) is compact. Define G, = R,, and for n > 1,
G,=R,UC, and G, =R, UC,, where R, and C, are as in the proof of (i).
Let Q,, Q,, x, and X, also be defined as in the proof of (i). Using (10.9)
and estimating k,(x,, x,) as in (i), we get that

bﬁ < bﬁ_lc:/a:_l <h,(x,,%,) - m(R,).

Hence b, — 0, by (10.10) and (10.12). We also have that ¢, — 0 since
m(D) < oo.

As in the proof of (i), conditions (a) and (b) of Theorem 14 are immediate
by the definition of Q,, Qn and x,. Condition (c) holds as a consequence
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of Theorem 7, since b, + ¢, — 0. Condition (d) is immediate from (10.10)
and (10.12), while condition (e) follows since b, + ¢, — 0. Finally, it is well
known that the imbeddings in condition (f) are compact. See Chapter 6 of
[Ad], for example, or alternately Corollary 6 could be used. Thus the imbedding
w'?(D) - L?(D) is compact by Theorem 14.

To prove the converse, suppose that (10.10) fails. By passing to a subse-
quence, assume without loss of generality that inf, hp(xo, x,) -mR,) > 1.

Thus
1

1 p—1 bp—
((log—) +%>-cﬁle, n>1.
an an

First consider the case that limsup bﬁ_lc: /az_1 > 1. By passing to a subse-

quence again, without lossed generality assume that

p—1 d, d-1
(10.14) b, c,/a, =1, n>1
To finish the proof of this case, we demonstrate that the imbedding wl-p (D)

— L?(D) is not compact in a manner similiar to that used in §9. For 1 <n <

oo, define
0, xe€D\G,,
u,(x) =14 bl (x| - 1), xeCN\{l1<|x|<1+b},
i, x€R, \BO,1+b).

A straightforward calculation shows that ||u,[|;2p ~ 1 and Vi[5 <1,
for all n. (10.14) was used in the second estimate.

If the imbedding W''?(D) — L”(D) were compact, it would follow that
there is a subsequence of {u,} convergingto u € LP(D) in norm. This is a
contradiction, since it would follow that ||u|| & 1, but u,(x) =0 for all
xeD.

The final case, with lim sup(log al)” - -cff > 1, is handied similarly, with the
functions defined as in the proof of (ii). This completes the proof of Theorem
15.

Example. Fix m > 1 and let D, be constructed by attaching to the unit ball
in RY a disjoint sequence of balls, of radius ¢, = 27", and connecting tubes

of length b, = (cn)_m and radius a, = b,/n. It is easily seen that condition
(1.2) holds since

b
sup (a—” —logb,

n n

> 1 1+mlog2
logc;! log2

and hence D, is a Holder domain. Thus, Theorem 1 shows that M (D, ) is
finite for all d < p < 0.
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On the other hand, Theorem 15(i) implies that for 1 <p < d, Mp(Dm) is
finite if and only if
p—1
(10.15) sunp%-c:<oo.
n
Since the supremum in (10.15) is clearly infinity for p < d(1 — 1/m), we see
that Mp(Dm) = oo for this range of p’s. Thus, the range of p in Theorem I

is best possible.
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