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HOLDER DOMAINS AND POINCARE DOMAINS 

WAYNE SMITH AND DAVID A. STEGENGA 

ABSTRACT. A domain D C Rd of finite volume is said to be a p-Poincare 
domain if there is a constant Mp(D) so that 

Iv Iu - uDIP dx ~ M;(D) Iv IVulP dx 

for all functions u E CI(D). Here uD denotes the mean value of u over D. 
Techniques involving the quasi-hyperbolic metric on D are used to establish 
that various geometric conditions on D are sufficient for D to be a p-Poincare 
domain. Domains considered include starshaped domains, generalizations of 
John domains and Holder domains. D is a Holder domain provided that 
the q·uasi-hyperbolic distance from a fixed point Xo E D to x is bounded 
by a constant multiple of the logarithm of the euclidean distance of x to the 
boundary of D. The terminology is derived from the fact that in the plane, a 
simply connected HOlder domain has a Holder continuous Riemann mapping 
function from the unit disk onto D. We prove that if D is a Holder domain 
and p ~ d , then D is a p-Poincare domain. This answers a question ofAxler 
and Shields regarding the image of the unit disk under a Holder continuous 
conformal mapping. We also consider geometric conditions which imply that 
the imbedding of the Sobolev space Wi ,p (D) -+ LP (D) is compact, and prove 
that this is the case for a Holder domain D. 

1. INTRODUCTION 

We consider proper open connected subdomains D of euclidean d-space 
Rd , d ~ 2. Following [GO] we define the quasi-hyperbolic metric kD in D by 

(1.1) kD(X I ' x2 ) = i~f ~ ()~:) 

where the infimum is taken over all rectifiable arcs y joining Xl to x2 in D. 
Here we denote by ()D(X) the euclidean distance between X and aD. 

Fix a point Xo ED. We say that D is a Holder domain if 

()D(XO) 
(1.2) kD(xO' x) ~ cllog ()D(X) + c2' xED, 
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68 WAYNE SMITH AND D. A. STEGENGA 

holds for some finite constants C1 ' C2 . Our terminology is motivated by a result 
of Becker and Pommerenke. 

Suppose that D is a bounded simply connected domain in R2. A theorem 
in [BP] implies that D is a Holder domain if and only if there is a Riemann 
mapping function g satisfying the Holder condition 

(1.3) Ig(zl) - g(z2)1:::; ciz i - zJ", IzII:::; 1, Iz21:::; 1, 
for some 0: > O. In fact, if kD is replaced by the comparable hyperbolic 
metric then the exponent 0: = c; I. See [SS 1] for a localization of this. In 
[GM] Gehring and Martio established an Rd version of the Becker and Pom-
merenke result by showing that a domain D is the image of a ball under a 
HOlder continuous k-quasiconformal mapping if and only if condition (1.2) 
holds. Domains satisfying (1.2) are said to satisfy a quasi-hyperbolic boundary 
condition in [GM]. 

On the otherhand, Holder domains are closely related to the BMO-Sobolev 
extension domains studied by Jones in [J1], [12] and uniform domains. In 
[GO], Gehring and Osgood show that Jones' extension domains are equivalent 
to uniform domains. Another closely related type of domain is the John domain. 
Fix a point Xo ED, we say that D is a John domain provided that for each 
XI ED there is an arc y joining Xo to XI in D along which 
(1.4) £>D(X) ~ o:ly(x, xl)l, X E y. 
Here 0: is a positive constant, y(x, XI) is the portion of y joining X to XI 

and Iy(x, xl)1 is its arc length. 
The definition of uniform domains given in [GO] shows that uniform do-

mains are John domains, but not conversely. An elementary exercise shows that 
John domains are Holder domains. But the thickness condition (1.4), which can 
be visualized as a twisted cone condition, does not hold in general for Holder 
domains. In [SS1], an example of a Holder domain is constructed which con-
tains a sequence of tubes of width en > 0 and length en log e~ I where en tends 
to zero. Thus, (1.4) is violated and hence Holder domains are not necessarily 
John domains. See also the example in [BP]. 

Our interest in Holder domains is motivated by a question ofAxler and 
Shields [AS]. Suppose that g is a Riemann mapping function mapping the unit 
disk onto D C R2 and satisfying (1.3). They asked whether D necessarily 
satisfied the analytic Poincare inequality 

(1.5) J lIF12 dxdy :::; M J lW'I2 dxdy 

whenever F is holomorphic in D and vanishes at g(O) ED. Here M is a 
finite constant. Our main result provides an affirmative answer to this question. 
This result was known to be true provided the 0: in (1.3) was greater than 
I I 
"2 - 320 . 

Let Dc Rd be a domain with finite volume, m(D) < 00, and 1 :::; p < 00. 

We denote by Wi ,P(D) the usual Sobolev space offunctions on D that together 
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HOLDER DOMAINS AND POINCARE DOMAINS 69 

with their first order weak partial derivatives are in L P (D). The norm for 
Wi ,P(D) is given by 

lIullw',P(D) = (llulP dx + llvulP dX) lip 

We say that D is a p-Poincare domain provided 

(1.6) fD lu - uDIP dx P 
s~p fD IVulP dx = Mp (D) < 00 

holds, where the supremum is taken over all nonconstant functions u E Wi ,p (D) . 
Here u D denotes the average of u over D, u D = mtD) f u d x. Meyers and 
Serrin [MS] have shown that C l (D) is dense in Wi ,p (D) , so one only needs 
to consider functions in C l (D) to establish that a domain D is a p-Poincare 
domain. Hamilton [H] has shown that for simply connected planar domains D 
of finite area, the analytic Poincare inequality (1.5) is equivalent to (1.6) for 
p =2. 

Therefore, the Axler-Shields question is answered by our main results: 

Theorem 1. If Dc Rd is a Holder domain, then D is a p-Poincare domain for 
all p ~ d. 

Theorem 2. If a domain D is a Holder domain, then 

(1.7) l k~(xo' x)dx < 00 

for all p < 00 . 

The restriction p ~ d is necessary, as we show by an example at the end of 
§10. Nevertheless, it is surprising compared to a recent result of Martio [Mar] 
where he proves that John domains are p-Poincare domains for all p ~ 1. 
On the otherhand, this restriction compares favorably with a result of Staples 
[S] that LP -averaging domains are p-Poincare domains for p ~ d. In fact, 
condition (1.7) implies that Holder domain are L P -averaging domains for all 
p ~ 1 , see [S]. The proofs of Theorem 1 and Theorem 2 appear in §4, while 
preliminary work is contained in §§2 and 3. 

§§5, 6 and 7 contain additional conditions which are shown to be sufficient 
for the Poincare inequality to hold for a domain D. We show in §5 that a 
bounded starshaped domain is a p-Poincare domain for p ~ 1, while in §7 
generalizations of John domains that have cusps are considered. In §6 a Whitney 
decomposition of the domain D along with a family of curves in D is used 
to obtain an estimate of Mp(D). This estimate involves integration over the 
"shadow" of an arbitrary Whitney cube with respect to the curve family. In §7 
we introduce the kp metric, which is a generalization of the quasi-hyperbolic 
metric, and we use this in our study of p-Poincare domains. 

The imbedding WI,P(D) -+ LP(D) is studied in §8. We show that some of 
our sufficient conditions for the p-Poincare inequality to hold actually imply 
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70 WAYNE SMITH AND D. A. STEGENGA 

the stronger result that this imbedding is compact. In particular this is shown 
to be the case when D is a Holder domain. An example showing that this is 
not true in general is given in §9. 

The final section concerns a class of domains with simple geometry. This class 
contains the "rooms and corridors" type domains that have been used by several 
authors to study the Poincare inequality. In § lOwe use the kp metric to provide 
a complete description of such domains for which the Poincare inequality holds, 
and we partially characterize those for which the imbedding Wl,p (D) ...... L P (D) 
is compact. 

2. LENGTHS OF GEODESICS IN HOLDER DOMAINS 

Let D be a Holder domain. Definition (1.2) does not make it clear that D 
is even a bounded domain. Let Xl ED, then by Lemma 1 in [GO] there exists 
a quasi-hyperbolic geodesic y joining Xo to Xl . Thus, Y is a rectifiable arc in 
D and 

kD(YI ' Y2) = ( () de:) 
Jl'(YI'Y2) D 

for each pair of points Yl ' Y2 E y. We will show that these geodesics are 
bounded in length by a multiple of ()D(XO) . 

Theorem 3. Suppose that D satisfies (1.2). Then there is a finite constant c3 
so that whenever y is a quasi-hyperbolic geodesic joining Xo to Xl in D, the 
inequality 

(2.1 ) 

holds for all X E Y . 

Proof. Fix Xl ED and let y be a quasi-hyperbolic geodesic joining Xo to Xl 
in D. Assume that (2.1) is false, so that for every c3 < 00, there exists an 
ao E y with L = Iy(ao' xl)1 and satisfying 

(2.2) ()D(XO) 
cllog -L- + c3 < kD(xO' ao)' 

We will show that this is impossible if c3 is sufficiently large. 
Define ak E y(ak- l ,Xl) by Iy(ak- l , ak)1 = rk L, where k = 1, 2, .... 

Let Ak = sup{ ()D(X)/ L I X E y(ak , Xl)}' where k ~ O. Combining (1.2) and 
(2.2) we get that 

()D(XO) ()D(XO) 
cl log -L- + c3 < cl log ()D(X) + c2 

for all X E y(ao' Xl) and hence that AO $ exp(2;C3 ). We choose c3 large 
I 

enough so that c3 > c2 and AO < 1/2. 
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HOLDER DOMAINS AND POINCARE DOMAINS 71 

and hence 
-I -1 2-k 1 ci c i --k:::; A :::; logX-. 

(2Ao) k-I k 
(2.3) 

Now, c3 can be chosen (depending only on cl ) so that AO is so small that 

-I 1 ci log-- <--
A~+I - (2Ao)k ' 

(2.4) 

Combining (2.3) and (2.4) we see that Ak :::; A~+I and hence the induction 
hypothesis is satisfied. Since 0 < £5n(x l ) :::; LAk :::; LA~+I holds for all k 2: 1 
and AO < 1 we have a contradiction which proves the theorem. 

Corollary 1. Suppose that D is HOlder domain and that Y is a quasi-hyperbolic 
geodesic joining Xo to XI in D. Then 

(a) There is a constant c4 = C4 (C I ,c2 ) so that IYI :::; c4£5n (xo). In particular, 
D is bounded. 

(b) There is a constant c5 = C5(C I ,c2 ) so that whenever YI is a subarc of Y 
and L = ly l l/2£5n (xo) ' then 

(2.5) ~ :::; c5 max { ~n((X)) I X E YI}. 
logy un Xo 

Proof. The proof of (a) follows immediately from (2.1). To prove (b), as-
sume that YI = y(a, c) and that b E YI satisfies Iy(a, b)1 = IY I I/2. Let 
A = max{£5n(x)/£5n(xo) I X E YI }. It follows from (2.1) that 

L lyll 2£5n (xo) 
A 2Mn (xo):::; k(a, b) :::; cllog lyll + c3 

and hence that 

~I < [c i + ~I 1 A:::; [c i + ~2l A = C5A log y - log y log ~ 

which is (2.5). This completes the proof. 
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72 WAYNE SMITH AND D. A. STEGENGA 

We observe that (2.5) places a restriction on the length of a tube in D. If a 
tube has a diameter of e, then its length is O(eloge- l ). 

3. THE EXPONENTIAL INTEGRABILITY OF kD IN JOHN DOMAINS 

Let W = {Q} be a Whitney decomposition of D into closed dyadic cubes 
with disjoint interiors. This means that the coordinates of the vertices of each 
cube are dyadic rational numbers and that the diameter of each cube Q E W , 
which we denote by d(Q), is comparable to its distance to aD. See Chapter 
6 of Stein's book [St] for the existence of such a decomposition. Let Xo be the 
center of some fixed cube Qo E W. Suppose that Q E w, Q =f Qo and that 
xQ is the center of Q. If x E Q, then kD(xO' x)/kD(xO' xQ) is bounded from 
above and from below by positive constants (depending on W, which in turn 
only depends on d). We use the notation a ~ b and a ::S b to denote that a, 
b are either comparable or satisfy an inequality with a constant depending only 
on the dimension d. 

Lemma 1. Suppose that an > 0 and that 

(3.1) 

then an ~ 2ea l exp( -n/2e) . 
Proof. We compute for k ~ 1 , 

n = 1,2, ... , 

00 00 n 00 00 

'" k '" '" k-l '" k-l '" ~ n an ~ k ~ an ~ m = k ~ m ~ an 
n=l n=l m=l m=l n=m 

00 

'" k-l ~ek ~m am 
m=l 

and hence L nk an ~ l+l k!a l • Therefore, 

00 n 2c 00 ea L e / an ~ L -;}- ~ 2ea l 
n=l k=O 2 

and the result follows. 

In order to provide a clearer picture of our proof of Theorem 2 we first 
consider the simpler case of John domains. The following theorem can also be 
derived using results in [MY]. 

Theorem 4. If D is a John domain, then 

Iv erkD(xO ,x) dx < 00 

for some r > 0 . 
Proof. Assume that (1.4) holds and put fJ = f5D(XO)/o.. Then II'I ~ fJ for all 
arcs I' satisfying (1.4). Since W is a Whitney decomposition we can choose 
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HOLDER DOMAINS AND POINCARE DOMAINS 73 

a> 0 so that 
(3.3) 

whenever QI' Q2 E Wand QI n Q2 is nonempty. Let Dn = U{Q E W I an < 
d(Q)/2P ~ an-I} for n = 1, 2, .... 

Since D c B(xo' P) we see that D is the disjoint union of the Dn's and 
by making the a in (3.3) smaller we may assume that Xo E D I • Suppose that 
XI E U:;O Dk and that y is an arc in D joining Xo to XI along which (1.4) 
holds. Because of (3.3), there must be a point X E Y and a cube Q E W 
with X E Q c Dn. Since 0D(X) ~ 0D(XQ ) , there is a dilation Q of Q with 

~ d ~ 

m(Q) ~ m(Q)/a and so that XI E Q. 
Let Dn = U{Q I Q E W, Q c Dn}. Then we have shown that 

f: m(Dk) = m (U Dk) ~ m(Dn) ::S m(~n). 
k=n n a 

Applying Lemma 1 we see that 

m(Dn) ~ cen , n = 1,2, ... , 
for some constant C and 0 < e < 1. Since D must also be a Holder domain 
we have that for X E Q c Dn ' 

0D(XO) 2P 
kD(xO' x) ~ cllog 0D(X) + c2 ~ cllog d(Q) + c3 ~ c4n 

where the cj 's are appropriate constants. 
Finally, combining the above estimates we obtain that 

provided r is sufficiently small. This completes the proof. 

In [11] it is essentially shown that m(aD) = 0 whenever D is a John do-
main. Later Martio and Yourinen showed the stronger result that the Hausdorff 
dimension of aD is less than d . Carl Sundberg observed that this result follows 
from Theorem 4 and we thank him for allowing us to include this corollary. 

Corollary 2 [MY, Corollary 6.4]. If D is a John domain, then the Hausdorff 
dimension of a D is less than d. 
Proof. Assume that D is a John domain with fixed point Xo E D and a satis-
fying (1.4). We cover aD with a collection of balls B(y l , rl ), ••. ,B(yn , rn ), 
where each Yj E aD. Assume that rj is small enough so that Xo ¢. B(Yj' 3r) . 
Now it follows from (1.4) that there is a ball B(xj' arj ) c B(Yj' 3r)nD. Hence 

d m(B(Yj' 3r) n D) ~ rj . 
From Lemma 2.1 in [GP] we have 

(3.4) I °D(XO) I log 0D(X) ~ kD(xO' x), XED, 
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74 WAYNE SMITH AND D. A. STEGENGA 

and it follows that 

(3.5) -r < (_3_)r rko(xo,x) 
ri - t5D(XO) e , x E B(Yi' 3r) n D. 

By a standard covering lemma, we can find disjoint balls {B(Yn' 3rn )} whose 
triples cover aD. Integrating (3.5) over B(yn , 3rn ) n D yield~ that I 

I I 

L(9rn)d-r ~ L 1 erko(Xo'X) dx 
i i B(y.;, 3r.;)nD 

< 1 rko(xo,x) d _ e x. 
D 

By the theorem, T > 0 can be chosen small enough so that this last integral 
is convergent. Hence the dimension of aD is no greater than d - T and the 
proof is complete. 

4. THE LP -INTEGRABILITY OF KD IN HOLDER DOMAINS 

We continue to assume that W is a Whitney decomposition of D with Xo 
the center of some cube Qo. In order to prove Theorem 2 and consequently 
Theorem 1, we modify the argument given in §3 for John domains. The idea 
is that while D is not a John domain, it still will have t5D(x) comparable to 
Iy(x, xl)1 at many points along a quasi-hyperbolic geodesic y joining Xo to XI 
in D. 

We start with a modification of Lemma 1 where the right-hand side is replaced 
with an average. 

Lemma 2. Suppose that ak ~ 0 and that 

(4.1 ) n = 1,2, ... , 

for a finite constant c i . Then there is a finite constant c2 ~ c i so that for all 
p ~ 1: 

00 2 

(4.2) Leak ~ c!z2P (a l + a2 + a3 )· 
k=1 

Proof. Let bn = E{ak 14n ~ k < 4n+l} for n = 0, 1, .... By hypothesis, 

00 c 
b < "\'a <_I b 

n - L..J k - 4n-1 n-I' 
k=4" 

n > O. 

For integers p > 0, we therefore have that 
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HOLDER DOMAINS AND POINCARE DOMAINS 75 

assuming that cI ~ 1. Hence 
00 00 2 

"'ea < "'4(n+I)Pb <4p~+I2(P+I)(p+2)b <2P c!.b 
L..t k-L..t n- I 0- 20 
k=O n=O 

and the proof is complete. 

Lemma 3. Suppose that D is a Holder domain, that XI E D and that y is 
a quasi-hyperbolic geodesic joining Xo to XI in D. If c)D(XI) S c)D(xo)T3n 
for some integer n ~ 1, then there are n distinct integers m I , ... , m n , with 
n S mi S 3n, and points YI' ... , Yn in D so that 

( 4.3) 
Proof. Assume that c)D(XO) = 1 . Choose consecutive points ao' ... ,a2n satis-
fying 

( 4.4) m = 0, ... , 2n. 

This is always possible because if Iyl < Tn ,then 1 = c)D(XO) S 2-n +T3n < 1. 
Let 1m be the interval y(am- I , am) for m = 1, ... , 2n. 

Suppose that c)D(X) S Ply(x, xI)1 for all X E 1m where m = m I ' ... , mn 
and the {mJ are distinct integers in the interval [1, 2n]. Using Theorem 3, 
it follows that 

n ~~rn-mi+l ds ~[ ds 
-log2 = L..t - < L..t --
P i=I r n- mi ps - i=I Imi c)D(X) 

< kD(xO ' a2n ) S cI log ly(a2n ' XI) I-I + c3 S c4n 

and hence that P > C;I log 2 . In otherwords, if we choose P = C;I log2, then 
we cannot find n of these intervals. 

Thus, there must be n distinct intervals 1m ' ... , 1m which contain a point 
I n 

Yi satisfying c)D(Yi) ~ PIY(Yi' XI )1· We therefore have a lower bound for c)D(Y) 
which is comparable to 2-n- mi . On the other hand, we have that c)D(Y) can 
not exceed Iy(yi , xI)1 + c)D(XI) ::S T n- m,. This proves (4.3) and the proof is 
complete. 

Proof of Theorem 2. We continue to assume that c)D(XO) = 1 . Define 

( 4.5) { b-I b } 
Dm = U Q E WI 2m S d(Q) S 2m , m = 1,2, ... , 

where b is chosen large enough so that D = U D m ' which is possible since D is 
bounded, and so that the points Yi satisfying (4.3) in Lemma 3 must belong to 
Dm . This can be done since W is a Whitney decomposition. We also choose 
b l~rge enough so that m(Dm) > 0 for all m. 

Let Q E W, then one easily sees that there is only a fixed number of sets 
Dm that Q can belong to and hence the function .Em XD is bounded on D. 
Here XD denotes the characteristic function of the set Dm 

• 
m m 
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Let Xl E Q E Wand suppose that Q c U~+n Dm' Since JD(X I ) :::::; d(Q) ::; 
o 

b2- 3n - n h >: ( -3n o we can c oose no so that uD Xl) ::; 2 . Hence by Lemma 3 we can 
find n distinct integers m l , ... ,mn with n ::; m i ::; 3n and points Yi E Qi E 
W satisfying (4.3), where Qi C Dm' Using the constants in (4.3) we see that 

I 

there is a dilation Qi of Qi , so that Xl E Qi for all i, and m(Qi) ~ m(Qi)' 
This means that 

( 4.6) 

where Dm = U{Q I Q E Wand Q C Dm}' 
Let am = m(Dm) for m ;::: O. Using (4.6) and the fact that 

bounded we get 

f am = ! f XD dx ~ m ( U Dm) 
3n+no D 3n+no m 3n+no 

! 1 3n 1 3n 
::; -" Xv dx::; - "m(D ) 

n~ m n~ m 
D m=n m=n 

1 3n 1 3n 
~ - L m(Dm) = - " am' n n~ m=n m=n 

Therefore, if we take N = n ;::: no ,then 3n + no ::; 4N and so 
00 00 3n 4N-1 

L am::; L am::; ~ Lam ::; ~ Lam' 
m=4N m=3n+no m=n m=N 

IS 

Thus, the hypothesis to Lemma 2 is satisfied for large N. Since am > 0 for 
all m we can increase the constant in (4.1) so that it is true for all N. As in 
the proof of Theorem 4, kD(xO' x) ~ m on Dm and hence (1.7) follows from 
(4.2). This completes the proof of Theorem 2. 

In a recent paper by S. Staples, L P -averaging domains are characterized by 
the L P -integrability of kD(xO ' x). Hence Holder domains are L P -averaging 
domains, see Theorem 2.6 in [S]. Furthermore, Theorem 3.4 in that paper proves 
that D is a p-Poincare domain provided that kD is in L P (D) and p ;::: d. (See 
Theorem 9 below for a sharpening of this result.) Thus, the proof of Theorem 
1 is completed and we also have the following corollary: 

Corollary 3. If D is a HOlder domain and 1 ::; p < 00, then 

( 4.7) ! P lIP lu - uDI dx::; CD sup -(B) lu - uBI dx, 
D BcD m B 

where CD is a constant and the supremum is taken over all balls B contained in 
D. 

As a consequence of Lemma 3 we also have the following result. 
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Corollary 4. If D is a Holder domain, then m(aD) = o. 
Proof. Suppose that m(aD) > o. Let Yo E aD be a point of density for aD. 
This means that for any e > 0 , 

(4.8) m(B(yo' r) n aD) > 1 _ e 
m(B(yo' r)) -

provided r is sufficiently small. 
Let XI E D n B(yo' r). Assume that Xo i B(yo' r) and that IXI - Yol is 

very small. By following a quasi-hyperbolic geodesic from XI to xo' we can 
find a point xED n B(yo' r) with JD(x) comparable to Ix - Yol. Shrinking r 
to Ix - Yol results in a contradiction to (4.8) provided e is sufficiently small. 
The proof is complete. 

Remark. Domains are constructed in [S] where kD is in Ld-I(D) and yet 
m(aD) > O. 

Question. Does there exist a Holder domain in Rd whose boundary has Haus-
dorff dimension d? 

5. STARS HAP ED DOMAINS IN Rd 

It is well known that balls are p-Poincare domains and that Mp(B(a, r)) ~ r, 
for 1 :::; p < 00. Recall that a ~ b means that a/ b is bounded from above 
and from below by positive dimensional constants. See Chapter 7 in [GT] for 
generalization to convex domains and Chapter 2 of [M] for domains which are 
starshaped with respect to an open set. In this section, we give new and simpler 
proofs of these theorems in addition to extending the generality to the class of 
bounded starshaped domains. 

Lemma 4. If Q = [0, ad x··· x [0, ad]' then Mp(Q):::; d .max(a l , ... , ad). 
I Proof. Assume that max(a l , ... , ad) = 1 and that u E C (Q). For x, y E Q 

and 1 :::; p < 00 we have that 

d loa. 
lu(x) - u(y)IP :::; dP- 1 L I IV'u(YI ' ... ,y;_1 ' t, X;+I ' ... , xd)IP dt 

;=1 0 

and hence that 

~ IU(X) - mtQ) ~ u(y) dylP dx:::; mtQ) ~ dx ~ lu(x) - u(y)IP dy 

:::; dP- 1 t m(lQ) r r ti IV'u(YI ' ... , t, ... , xd)IP dtdxdy 
;=1 1Q 1Q 10 
d 

= dP- 1 La;! IV'ulP dx:::; dP I IV'u lP dx. 
~I Q Q 

The proof is now completed with a change of variables argument. 
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Remark 1. In view of the Poincare inequality given on page 164 (page 157 in 
the first edition) in [GT] it is surprising that the Poincare constant, Mp(Q) , is 
independent of the small a j 's. Even for the unit cube Q, the constant in [GT] 
grows exponentially with d. 
Remark 2. In general, one can modify the above argument to show that 

Mp(DI x D2) ::; 3 max(Mp(DI ) , Mp(D2)). 

Denote by Q(x, r) the cube with center x and side length 2r. 

Lemma S. Suppose Q(O, 2a) cD and 1 ::; p < 00. Let 

Np(D) = s~p { II~~":~~~) I U E d (D) is nonconstant and u = 0 on B(O, a) } . 

Then 
-d-6 (m(D) ) lip 

(5.1) 2 Mp(D) ::; NpCD) ::; 2 1 + m(B(O, a)) Mp(D). 

Proof. Assume that Np(D) is finite. Let u = 0 on B(O, a), u = a off B(O, 2a) 
and u(x) = Ixl- a at all other points. Then 

lIuIILP(D) > (/;a(r _ a)pl-I dr) liP> (ad+P j(p + 1)) lip 
II V' II - f2a d I - d d U LP(D) Ja r - dr 2 a jd 

and hence a limit argument yields the lower bound 

(5.2) a(dj2d (p + l))l/p ::; Np(D). 

Put rp=l-uja and suppose that v is in CI(D) and satisfies VQ(O,2a) =0. 
Write v = VI + v2 where VI = rpv. Since vQ(O,2a) = 0 we have by Lemma 4, 
that 

(5.3) IIvII LP(Q(O,2a)) ::; 4adllV'vIILP(Q(O,2a))" 
Now v2 = 0 on the set B(O, a) and lV'rpl = 0 off the set B(O, 2a) , thus it 
follows from (5.3) that 

IIV21ILP(D) ::; Np(D)IIV'v2I1LP(D) 
::; Np(D)(II(1 - rp)V'vIILP(D) + IlvV'rpIlLP(D)) 

::; Np(D)(IIV'vliLP(D) + ~llvIILP(Q(O,2a))) 
::; 5dNp(D)IIV'v II LP(D)" 

Finally, since VI = 0 off the set Q(O, 2a) we use (5.3) again and (5.2) to 
obtain that 

IIv - vDIILP(D) ::; 211v - (VI)DIILP(D) 
::; 2(lIv l - (VI)DIILP(D) + Ilv21ILP(D)) < 10d(a + Np(D))IIV'vIILP(D) 

::; 10d«2d (p + l)jd)l/p + l)Np(D)IIV'vIIU(D) 
d d+6 

::; 10(2 e + d)Np(D)IIV'vIlLP(D) ::; 2 Np(D)IIV'vIlU(D). 
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This completes the proof of the first inequality in (5.1). 
To prove the other inequaility in (5.1) notice first that if U E CI(D) and 

uB(O,a) = 0, then 

P ( 1 r ) lip 1 r P 
IUDI ~ m(B(O, a)) iB(O,a) Iu - uDI dx ~ m(B(O, a)) iD Iu - uDI dx. 

Thus 

2-P Iv lulP dx ~ Iv Iu - uDIP dx + luDIP m(D) 

< ( m(D)) r P - 1 + m(B(O, a)) iD lu - uDI dx 

( m(D)) P r P 
~ 1 + m(B(O, a)) Mp (D) iD IVul dx, 

and the result follows. 
Theorem 5. If Q(O, 2a) cDc B(O, b), 1 ~ p < 00 and D is starshaped with 
respect to the origin, then 

d-l 

(5.4) Mp(D) ~ 2d+6b (~)-p 

Proof. Let u E CI(D) and assume that u = ° on B(O, a). For Ix'i = 1 we 
assume that rx' ED for ° ~ r < b(x') and that b(x')x' E aD. By hypothesis, 
2a ~ b(x') ~ b. For such x' we have the inequality 

rb(X') d I rb(X') (1 f' )P d I 
io lu(rx')IP r - dr ~ bP io r ia IVu(tx')1 dt r - dr 

rb d 2 rb(X') 
~ bP io r - dr ia IVu(tx')IP dt 

(b)d-I rb(X') 
~ bP a io IVu(tx')IPl-I dt 

and hence integration over the sphere yields that 
d-l 

(5.5) Np(D) ~ b(~)-p . 

By Lemma 5 the result follows and the proof is complete. 
For 1 < p < 00 , this last theorem can be improved by using Muckenhoupt's 

weighted norm inequality for the Hardy-Littlewood maximal function as we 
did earlier for the analytic Poincare inequality in the plane, see Theorem 2.1 in 
[SS2]. 

Theorem 6. If Q(O, 2a) cDc B(O, b) and 1 ~ p < 00 and D is starshaped 
with respect to the origin, then there are constants cp = cp (p, d) such that 

{
(~)d_P, l~p<d, 

(5.6) M:(D) ~ cpbP (log(~ + l))d-l, P = d, 
1, P > d. 
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Proof. The case p = 1 is contained in Theorem 5. Fix 1 < p < 00 and define 
w(t) = min((a + Itj)d-I ,bd- I) for -00 < t < 00. Then a straightforward 
calculation shows that 

(5.7) 1 r (1 r _...L )P-I 
Ap = s~p j/f 11 W dt j/f 11 W p-i dt 

is comparable to the quantities on the right hand side of (5.6). 
We modify the proof of Theorem 5 slightly to obtain that whenever lx' I = 1 

and u = 0 on B(O, a) , we have that 

rb(X'l d I rb(X'l (1 r )P d I 
10 lu(rx')IPr - dr ~ bP 1a r _ ala IVu(tx')1 dt r - dr 

rb(X'l d I 
~ cpbP Ap 10 IVu(rx')IP r - dr 

where this last inequality is due to Muckenhoupt, see [Mu]. The proof is then 
completed as previously. 

The constants on the right-hand side of (5.6) can be improved if the domain 
D is such that integration with respect to polar coordinates in the proof can be 
replaced by integration with respect to rectangular coordinates. For p > 1, this 
is because the weight w(t) in (5.7) reduces to w(t) = 1, so that Ap = 1. A 
similar modification of the proof of Theorem 5 works for p = 1. Using these 
ideas we obtain the following theorem; we omit further details. It generalizes 
Theorem 2.2 of [SS2], and will be required in section 10. We use Qd-I to 
denote a cube in Rd - l • 

Theorem 7. Suppose that h(x) is a lower semicontinuous function defined on 
Qd-I(O, a) and satisfies 0 < a ~ h(x) ~ b for all x. If 

D = B(O, 2a) U {(x, t) : x E Qd-I(O, a), -a < t < h(x)} , 

then M; (D) ~ cpbP, 1 ~ p < 00 . 

6. A SUFFICIENT CONDITION FOR THE POINCARE INEQUALITY 

We assume throughout that D is a domain in Rd with finite volume and 
Whitney decomposition W. Fix a cube Qo E Wand let Xo be its center. We 
assume that, for each Q E W, there is a set P( Q) c D containing a chain 
Qo' ... , Qn of cubes in W, starting with Qo and ending with Qn = Q. This 
means that Qi is adjacent to Qi+ l in W, so that a face of the smaller cube 
is contained in a face of the larger cube, and Qi C P( Q) for 0 ~ i ~ n. Now 
define 

(6.1 ) 

As an example of how one might construct the the sets P( Q), we could 
simply take the cubes in W which intersect a quasi-hyperbolic geodesic joining 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HOLDER DOMAINS AND POINCARE DOMAINS 81 

Xo to the center of Q. A geometric interpretation of S(Q) , in this case, is that 
it is the points in the shadow of Q, assuming that light travels from Xo along 
the quasi-hyperbolic geodesics in D. For xED, let Qx denote a cube in W 
containing x. 
Theorem 8. If D satisfies the above conditions and A. is a real number, then 

(6.2) M (D) ~ sup {r (r ~Y )P-I dx _ }I/P 
P QEW jS(Q) jP(Qx) t5D(y)P (I-A)(d-I) d(Q)AP(d I) 

for 1 < p < 00, pI = ~ and 

(6.3) M (D) ~ sup m(S(Q)) 
I QEW d(Q)d-1 

when p = 1. 

Remark. Although we have stated Theorem 8 for an arbitrary real number A., 
the result is only of interest for A. satisfying ~(LI) < A. :5 p(ll)' The right 
side of (6.2) will be infinite for any other choice of A.. We omit the details of 
this computation. 

Lemma 6. Let QI' Q2 be adjacent cubes in W. Then Mp (QI) and Mp (QI UQ2) 
are both comparable to d(QI)' for 1 :5 p < 00. 

Proof. The first assertion is Lemma 4 and the second follows from Theorem 5. 

Remark. Lemma 6 is well known and follows from the uniform cone condition 
(see § 1.1.11 of [MD. We give a new proof of this classical result in Theorem 10. 

Lemma 7. For 1 :5 p < 00, 

(LQEW IUQ - uQ IPm(Q))I/p 
(6.4) Mp(D) ~ sup d(Q) + sup /IV /I 0 

QEW u U LP(D) 

Proof. For U E C l (D) , we have that 

j Iu - uDIP dx:5 2P j Iu - uQ/ dx = 2P L jlu - uQ/ dx 
D D QEW Q 

:5 4P L (jlu - uQIP dx + IUQ - uQ/m(Q)) 
QEW Q 

:5 4P (sup M:(Q)j IVulP dx + L IUQ - uQ/m(Q)) . 
QEW D QEW 

The result now follows from Lemma 6. 

Lemma 8. If U E CI(D) and Q E W, then 

( 6.5) 
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Proof. Let QO' ... , Qn be a minimal chain of cubes in P(Q) which joins Qo 
to Q. The Qi 's must then be distinct, for if this were not the case, we could 
remove a subsequence of adjacent cubes and still have a chain from Qo to Q. 
Using Lemma 6 we then have that 

n 
IUQ - uQol ~ L IUQi - UQi_11 

;=1 nIl 
~L (Q Q) lu-uQuQ_ldx m . U . I Q UQ I I I i=1 1 1- i i-I 

~ t MI (Qi U Qi-I) r lV'ul dx 
;=1 m(Q; U Q;-I) lQiuQi_1 

nIl ~ L d I lV'uldx 
i=1 d(Q;) - QiUQi-1 

-< r lV'ul dx < r lV'ul dx 
- lUQi c5D(x)d-1 - lp(D) c5D(x)d-1 

and the proof is complete. 

Proof of Theorem 8. Let M denote the right-hand side of (6.2) and assume that 
it is finite. If Q E W, then Q c SeQ) n P(Q) and hence for some A we have 
that 

m(Q) dy < M P ( )
P-I 

d(Q)AP(d-l) k c5D(y/(I-A)(d-l) -

and it follows that 

(6.6) d(Q) ~ M, QE W. 
Suppose that U E C I (D) and put 

(6.7) dy ( )
P-I 

F (x, A) = I P t(Qx) c5D(y)P (I-A)(d-I) 

for xED, -00 < A < 00 and 1 < p < 00. For p = 1 , let FI = 1 and set 
A = 1. Using Lemma 8 and Holder's inequality we see that 

L IUQ - uQ/m(Q) ~ L (r IV'UI~~I)P m(Q) 
QEW QEW 1 P(Q) c5D(x) 

" 1 lV'ulP dx ~ L.J Ap(d-I) Fp(xQ' A)m(Q) 
QEW P(Q) c5D(x) 

= r lV'ulP {" XP(Q)(x)Fp(xQ, A) m(Q)} dx. 
lD' L.J c5 (x)AP(d-l) QEW D 

Since m(U{8Q I Q E W}) = 0 ,we need only consider xED with x in the 
interior of some QI E W. For such x, XP(Q)(x) =I- 0 if and only if Q c S(QI). 
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In addition, d(QI) ~ cc5D (x) , for x E QI ' where C;:::;j 1. Thus, we simplify the 
above to get that 

and hence that 

O::QEW IUQ - uQ/m(Q))IIP 
------:-:-:::=--,,,---"----- -< M 

II Vu II LP(D) -
(6.7) 

Finally, Lemma 7 combined with (6.6) and (6.8) give the required bound on 
Mp(D) and the proof is complete. 

7. JOHN DOMAINS WITH CUSPS AND INTEGRABILITY CONDITIONS FOR KD 

We give some applications of Theorem 8 in this section by constructing sets 
P( Q) from families of arcs in D generated by a new distance function on D. 
For 1 < p < 00 the metric kp in D is defined by 

kp(xI' x2 ) = inf r ds d I )' i), c5D (x)p-l 

where the infimum is taken over all rectifiable arcs y joining XI to x 2 in D. 
Notice that kd = kD • Martin has shown that geodesics exist for kp if 1 < P ~ d 
[Ma, 2.11], but we will not need this fact. 

Theorem 9. For 1 ~ p < 00, 

{ 
SUPQEW C(Q;d-P fS(Q) k~-I (xo' x) dX) liP, 

(7.1) Mp(D)::::; 1/ 
(JD k~-7I (xo' x) dx . m(D)') P, 

l~p<d, 

d~p, 

where r = d~-!l) . For d - 1 < p < 00, 

(7.2) Mp(D)::::; (In k;-I(XO' X)dX) I/p 

Remarks. The statement of Theorem 9 has p > d - 1 in (7.2) since otherwise 
the right-hand side is infinite, as is easily checked. 

For d ~p 
p_1 p_IL , 

kp (xo' x) ::::; kD d (xo' x) . m(D) 

where r is as in Theorem 9. This follows from the application of Holder's 
inequality in (7.5) below. Thus (7.2) is stronger than (7.1) if p ~ d. 
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Proof. Let W be a Whitney decomposition of D and for each Q E W , let I' Q 

be a fixed arc joining Xo to the center of Q, such that 

(7.3) 

Define P( Q) to be the union over the cubes in W which intersect I' Q . 

Lemma 9. For 1 < p < 00, 

(7.4) /, dy -_'-:-,-- ::::: k (xo, x) 
P(Q) 6D (y)P (d-I) p 

whenever x E Q, Q E Wand Q =f. Qo . 

Proof. Fix x E Q with Q E Wand Q =f. Qo . By the triangle inequality, 
kp(xo, xQ) ~ kp(xo, x) + kp(x, x Q). Since W is a Whitney decomposition it 
is obvious from the definition that kp(x, xQ) ::::: d(Q)I-(d-I)/(p-l) . Let I' be an 
arc in D joining Xo to x. Since Q =f. Qo ]we can find a cube Q1 E W with 
d(QI) ~ d(Q) and d(QI) ::::: II' n Q11. Hence 

1 ds >- II' n Q11 >- d(Q)I-~=: >- k (x x ). 
d-I - d-I - - P , Q 

Y 6D (y) pc:T d (QI) pc:T 

Thus, kp(xo, x) ~ kp(x, xQ) and so kp(xo, xQ) ::::: kp(xo, x) whenever x E Q. 
Hence it suffices to prove (7.4) with x = xQ • 

Let I'Q be the arc in (7.3). For R E W, denote by .k, the union of all cubes 
in W which have a non empty intersection with R. It is easily seen that there 
are cubes QI' ... , Qk in W for which (a) I'Q nQi is nonempty for 1 ~ i ~ k, 
(b) Q i <t. Qj for i =f. j and (c) P( Q) C UQi. Clearly, we then have that 

i=1 i=1 

k 1 ds :::::2:: d-I 
i=1 yQnQ,6D(y)pc:T 

::::: r ds d I ~ 2· kp(xo, xQ). 
}YQ 6D(y)pc:T 

This completes the proof of Lemma 9. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HOLDER DOMAINS AND POINCARE DOMAINS 85 

Returning to the proof of Theorem 9, we let d - 1 < p < 00 , apply Theorem 
8 with A. = 0 and use Lemma 9 to conclude (7.2): 

M (D) ::S (f (f d~ )P-l dX) IIp 
p iD iP(Qx)OD(y)P(d-l) 

::S (Iv k;-l (Xo' x) dX) IIp 

For p ~ d we have that p'ed - 1) $ d. Arguing in a similar manner, but 
using the HOlder inequality we get that 

M (D) ::S d~ dx ( 
p-l )l~ 

p In (t., dD(y)" (d-I)) 

$ ( f (f ~)P-2 m(P(Qx)/ dX) IIp 
iD iP(Qx) 0D(y) 

(7.5) 

::S (Iv ~-J (xo' x) dx . m(D)') lIP, 

and the proof of (7.1) is complete in this case. 
Observe that Lemma 9, with p = d, was used in this last argument. We 

choose to use quasi-hyperbolic geodesics Y Q in this case, to generate the sets 
P(Q) . 

Finally, for the case 1 < p < d in (7.1) we apply Theorem 8 with A. = 
(d - p)jp(d - 1) to obtain the inequality 

M (D) ::S sup ( 1 f ( f .-!!L) p-l dX) IIp 
P QEW d(Q)d-p is(Q) iP(Qx) O~(Y) 

::S sup ( 1 d- f k~-\xo' x) dX) lIP, 
QEW d(Q) P is(Q) 

which proves (7.1) for 1 < p < d. The case p = 1 is part of Theorem 8 and 
thus the proof of Theorem 9 is complete. 

Definition. Let D be a domain and Xo ED. We say that D is an I1-John 
domain for 11 ~ 1 provided there is a constant a > 0 such that, for each 
Xl ED, there is an arc y joining Xo to Xl in D along which 

(7.6) 0D(X) ~ aly(x, xl)I" , X E y. 

Notice that when 11 = 1 this definition agrees with the definition of John 
domains given in the introduction. Power cusps are allowed in I1-John domains 
for 11 > 1, and so these domains comprise a larger class of domains than John 
domains. Martio has shown that a John domain is a p-Poincare domain for all 
p ~ 1 [Mar]. We now give an extension of this result to I1-John domains. 
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Theorem 10. Let 1 ::; p < 00. If D is an y/-John domain with 

(7.7) 
d p - 1 

Y/<d-l+d-l 

then D is a p-Poincare domain. In particular, if Y/ < d~' ' then D is a p-Poin-
care domain for all 1 ::; p < 00 . 

Proof. Let W be a Whitney decomposition for D. For each Q E W, let Y 
be an arc joining Xo to xQ along which (7.6) holds. For each pair of adjacent 
cubes in W we fix an arc joining their centers which is contained in their union 
and whose length is comparable to their side lengths. We replace replace Y by 
an arc Y Q constructed from these special arcs. This can be done so as to still 
satisfy (7.6) provided we account for an increase of the arc length by a constant 
factor. We therefore have that 

(7.8) 
a II 

6D(X) ~ cll IYQ(x, xQ)I, x E YQ' 

d(Q,)::::; lyQnQ,I, Q, nYQ i- 0, Q, E W, 

where c is a dimensional constant. Let P( Q) be the union of the cubes in W 
which intersect Y Q . 

Let 0 < A ~ 1 be determined by 

(7.9) 1 _ d 1 
/l.p - d + p - 1::; . 

Using the property that d(Q,)::::; lyQnQ,1 for each Q, in P(Q) we can replace 

volume measure dy on Q, by 6~-'(y)ds on YQ n Q, and hence we get that 

( r d )P-' ( r d )P-' if 6 ( l/-A)(d-') ::::; iv (I:Pi.lld-11 
P(Q) D Y YQ 6D (y) P I 

(7.10) 

Let L = C(6D(XO)/a) '/11 , then from (7.8) it follows that YQ ::; L. If we use 
euclidean distance as a lower bound for arc length and use that (7.9) implies 
that y/(1 - pA)(d - 1) < p - 1 we obtain that 
(7.11) 

(1 d )P-' (1I)(1-PA)(d-') (rL d )P-' 
II:Pi.lid-11 ::; ~ io ~II P~id II = A < 00 

YQ 6 D (y) P lOS P I 

and hence the right-hand side of (7.10) is bounded by a constant independent 
of Q. 

In a similar manner we obtain an upper bound for m(S(Q)). If x is in the 
interior of Q, c S(Q), then the arc YQI passes through the center of Q. By 
(7.8) we have that 
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for a constant ci and therefore 

m(S(Q)) ciAP(d-l) r dx 
d(Q)AP(d-l) :s c/p(d-I) JS(Q) jx _ xQjIJAP(d-l) 

cIJAP(d-l) 1 dx 
< I =B<oo - clp(d-I) B(O,L) jxjIJAP(d-l) 

since (7.7) implies that YJAp(d - 1) < d. 
Finally, by combining (7.10), (7.11) and the above we have that 

sup r ( r dy )P-I dx :s A . B < 00 
Q JS(Q) Jp(Q) 0D(y)P'(I-A)(d-l) d(Q)AP(d-l) 

and the proof is completed by applying Theorem 8. 

8. COMPACTNESS OF THE IMBEDDING Wl,p (D) -+ L P (D) 

In this section we are concerned with the question of when the imbedding 
of a Sobolev space into L P is compact and the implications this has for the 
Poincare inequality. Questions of compactness are important for applications, 
in part because compact operators have discrete spectra. The study of compact 
imbeddings began with Rellich [R]. See also Chapter 6 of [Ad]. 

For a domain D in Rd and 1 :s p < 00, recall that Wi ,p (D) is the usual 
Sobolev space of functions on D (see the introduction). Obviously, the natural 
imbedding of Wi ,p (D) into L P (D) is continuous. The next theorem gives 
an equivalent condition for the imbedding to be compact. Amick considered a 
closely related condition and the question of compactness for a bounded domain 
with p = 2 in [Am]. 

Theorem 11. Let 1 :s p < 00 and let D be an open set in Rd. The imbedding 
Wi ,P(D) -+ LP(D) is compact if and only if 

(8.1) lim sup {! jujP dx jjjujjWiP(D) :s I} = 0, 
n->(X) D\Dn 

where Dn = {x E D j 0D(X) > lin and jxj < n}. 

This theorem is an easy consequence of the following lemma. We follow the 
convention of extending u E LP(D) to be defined in Rd by setting u equal to 
o on Rd \D. 
LemmalO[Ad,2.2l,p.31]. Let 1 :Sp<oo. A bounded subset X in LP(D) 
is precompact in LP (D) if and only if for every e > 0 there exists ° > 0 and a 
compact subset K of D such that 

(8.2) In ju(x + h) - u(x)jP dx < eP, jhj<o,uEX, 
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and 

(8.3) r lulP dx < eP, U E X. 
JD\K 

Proof of Theorem 11. First suppose that the imbedding is compact. We apply 
Lemma 10 with X = {u E WI,P(D) Iliull wl,P(D):5 I}. Thus, given e > ° there 
is a compact set KeD such that (8.3) holds. Since K C Dn for all sufficiently 
large n, (8.1) follows. 

For the converse, we adapt an argument from [Ad, p. 147]. Suppose that 
(8.1) holds. Let X = CI(D) n {u E WI,P(D) Iliullwl,P(D) :5 I}. Then if u E X 
and h < lin, we have 

( 
I d )P l IU(X+h)-U(X)IPdX:51 1IdtU(X+th)ldt dx 

~ ~ 0 

:5 IhlP 1 dx 11 IVu(x + th)IP dt 
Dn 0 

:5 IhlP Iv IVulP dx. 

This fact together with (8.1) clearly shows that (8.2) holds for U EX. Further-
more, (8.3) follows immediately from (8.1) by letting K be the closure of Dn 
for n sufficiently large. The compactness of the imbedding now follows from 
the Lemma 10, and the proof is complete. 

Corollary 5. Let d - 1 < p < 00 and Xo ED. If 

(8.4) Iv k;-I(XO' x)dx < 00, 

then the imbedding WI ,p (D) -+ LP (D) is compact. 
Proof. Recall that d - 1 < p is necessary for (8.4) to hold. Let W be a 
Whitney decomposition of D and let {Dn} be as in (8.1). Then there are 
positive constants cI and c2 such that 

D\Dn c U{Q E WI d(Q):5 cdn} c D\Dnc2 ' 

Suppose that Ilullwl,P(D) :5 1. We then have 

1 lulP dx :5 E jlulP dx 
D\Dn d(Q)"5.cdn Q 

n ~ 1. 

(8.5) :5 3P E {jlu - uQIP dx + IUQ - uQ/m(Q)} 
d(Q)"5.c1/n Q 

Now, 
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where c3 is a dimensional constant by Lemma 6. Also, as in the proof of 
Theorem 8 (with A. = 0) we get that 

L: IUQ - uQ/m(Q)::; l lV'UIP dx 1 'S-I(XO' x)dx = 0(1), 
d(Q)'5.ctin D D\DnC2 

since kp(xo, x) E L P- I (D). The last term on the right side of (8.5) also goes 
to zero as n tends to infinity since D clearly has finite volume by condition 
(8.4). So we have that (8.1) holds and we are done by Theorem 11. 

The following result is an immediate consequence of Theorem 2, Corollary 
5 and the Remark in §7. 

Corollary 6. If p ~ d and D is a Holder domain, then the imbedding Wi ,P(D) 
---- L P (D) is compact. 

We next consider the relationship between the Poincare inequality and the 
compactness of the imbedding Wi ,p (D) ---- L P (D). The following result may 
well be known. We include a proof since we have been unable to find a reference. 

Theorem 12. Suppose that 1 ~ p < 00 and m(D) < 00. If the imbedding 
Wi ,P(D) ____ LP(D) is compact, then Mp(D) < 00. 

Proof. Arguing by contradiction we assume that the imbedding is compact but 
that Mp(D) is infinite. Then there is a sequence {un} C CI(D) such that 

(8.6) fD lunlP dx = 1, f un dx = 0 and lim f lV'unlP dx = O. 
if iD n--+ooiD 

By the compactness of the imbedding there is a subsequence which we continue 
to denote {un} and U E LP(D) such that un ---- U in LP(D). Now let a be 
a multi-index with lal = 1 and let ¢ E C;, (D) , where this denotes functions 
compactly supported on D and having continuous partial derivatives of all 
orders. Then 

Dau(rp)=_ f uDarpdx=-lim f unDarpdx= lim f rpDaundx=O, 
i D n--+oo i D n--+oo i D 

since IIV'unllLP(D) ---- 0 by (8.6). Thus U has a weak gradient in D and V'u = O. 
Since Mp(B) < 00 for each ball BcD, we see that this means that U is 
locally constant in D. Since D is a connected set, U is almost everywhere 
equal to a constant in D. This is a contradiction since it follows from (8.6) 
that IIuIILP(D) = 1 and JD U dx = 0, and the proof is complete. 

9. EXAMPLE OF A NONCOMPACT EMBEDDING 

In §8 we showed that the sufficient condition for the Poincare inequality 
from Theorem 10 actually implies that the imbedding Wi ,P(D) ---- LP(D) is 
compact. We now show that this does not extend to all of our oth~r sufficient 
conditions for the Poincare inequality. More precisely, we construct a domain 
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D for which the imbedding Wi ,P(D) ~ LP(D) is not compact, and we use 
(6.2) of Theorem 8 with p = 2, d = 3 and A. = 1/4 to show M 2(D) < 00. 

Let {XJ:I be a sequence of points in R3 such that IXil = 1 and the balls 
{B(Xi' Tin are pairwise disjoint. Now set Yi = (1 + Ti+I)Xi and define 

00 

Ri=B(Yi,ri) and D=B(O,l)UU(Ci URJ 
i=1 

Thus D consists of a central room B(O, 1) and a sequence of rooms {RJ 
connected to B(O, 1) by narrow corridors {CJ. 

General rooms and corridors type domains such as D are studied in detail in 
§10. We could apply Theorem 15 from that section to easily see that M 2 (D) < 
00 and that the imbedding Wi ,2(D) ~ L2(D) is not compact. Our goal now, 
however, is to show that the hypotheses of Theorem 8 do not imply that such 
an imbedding is compact. We also wish to demonstrate how Theorem 8 can be 
used to show that a specific domain is a p-Poincare domain. Accordingly, we 
proceed to show that D satisfies the hypotheses of Theorem 8. 

To each point xED we associate an arc l' x in D with initial point 0 and 
terminal point x. These arcs will be used to determine the sets P( Q) in this 
example. The arc associated with x E B(O, 1) traces the line segment [0, x]. 
For x E Ci\{B(O, l)URJ let x be the point on [0, (l+Ti )xi ] which is closest 
to x, and define l'x to be the arc that traces the line segments [0, x] followed 
by [x, x]. For x E Ri we define l'x so that it traces the line segments [0, Yi] 
followed by [Yi , x]. This completes the description of the family of arcs. 

Let W be a Whitney decomposition for D. For Q E W , denote by l' Q the 
arc from our family of arcs associated with xQ ' the center of Q. Define P(Q) 
to be the union of all cubes in W that intersect l'Q' We shall show that D is 
a 2-Poincare domain by applying Theorem 8 with A. = 1/4 and this definition 
of the sets P(Q). Thus it suffices to show that 

(9.1) sup _1_ f f ~dx < 00 
QEW d(Q) jS(Q) jP(Qx) c5D (y)3 . 

We sketch a proof that (9.1) holds. It is easily checked that if XED, then 

ix c5:(~) ~ kD(O, x). 

Thus, by Lemma 9, it suffices to show that 

(9.2) sup d(lQ) f kD(O, x) dx < 00. 
QEW jS(Q) 

First consider a cube Q c Ci U R; with the property that the diameter of 
S(Q) satisfies d(S(Q)) :::; 10c5D (xQ). An easy estimate shows that for such a 
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. 2 
cube kD(O, xQ) :::; t + 10g(1/d(Q)), so m(Q)· kD(O, xQ) :::; d(Q) . Also it is 
easily seen that 

1 21d(Q) 1 2 
kD(xQ, x) dx :::; d(Q) log - dt :::; d (Q). 

S(Q) ° t 
Thus 

d(~) fs(Q) kD(O, x) dx :::; d(~) ( m(S(Q)) . kD(O, xQ) + fs(Q) kD(xQ, x) dX) 

:::;1. 
A similar computation establishes that the same estimate holds for a cube 

Q c Ci U Ri with the property that d(S(Q)) 2': lOoD(xQ), The key point is 
showing that 

(9.3) 

Thus we have shown that if Q c Ci URi' then 

(9.4) d(~) fs(Q) kD(O, x) dx :::; 1. 

We now consider a cube Q c B(O, 1). As above we have that 

(9.5) d(lQ) ( kD(O, x) dx :::; 1. 1 S(Q)nB(O, I) 

Also, since {B(Xi' 2-i)} are pairwise disjoint, 

L 2- 2i :::; d(Q/. 
R;CS(Q) 

This with (9.3) shows 

( kD(O, x) dx:::; .L (kD(O, Xi) • m( Ci U R) +! kD(Xi , x) dX) 
lS(Q)\B(O, I) R,CS(Q) C;UR; 

:::; L (i2- 3i + 2- 2i ) 

R;cS(Q) 

:::;d(Q/. 
This estimate together with (9.5) shows that if Q c B(O, 1), then 

d(~) fs(Q) kD(O, x) dx :::; 1. 

Now (9.2) follows from this and (9.4), so we have shown that M 2(D) < 00. 

To finish this example we now need to demonstrate that the imbedding 
Wi ,2(D) -> L2(D) is not compact. For 1 :::; i < 00, define 

{ 
0, xED \ (Ci U R) , 

5)2 - i U i (X) = 2 1 (I x I - 1) , x E Ci n B (0, 1 + 2 ), 

23i/ 2 , x E (Ri U Ci ) \ B(O, 1 + 2- 1). 
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A straightforward calculation shows that Ilui11L2(D) ~ 1 and Iluillwl.2(D) ~ 1, 
for all i. 

If the imbedding W I •2(D) -+ L2(D) were compact it would follow that 
there is a subsequence of {u) converging to U E L2(D) in norm. But then 
lIu11 L2(D) ~ 1, which is a contradiction since ui(x) -+ 0 almost everywhere. 
Hence the imbedding W I •2(D) -+ L2(D) is not compact, and we are done with 
the example. 

10. ROOMS AND CORRIDORS TYPE EXAMPLES 

It is a well-known elementary fact that a finite union of Poincare domains 
is again a Poincare domain. In this section we take up the study of infinite 
unions of Poincare domains. A "rooms and corridors" type domain consists of 
a central cube shaped room along with an infinite disjoint collection of cube 
shaped rooms which are connected to the central room by narrow corridors (or 
tubes if d > 2), such as the domain constructed in §9. The resulting domain 
mayor may not have Mp finite. The use of rooms and corridors type examples 
in the study of the Poincare inequality can found in [CH], [M], [S] and [SS2], 
and variants of these domains are used in [Am] and [AS]. 

In this section, we characterize those rooms and corridors type examples 
which are p-Poincare domains by using the kp metric introduced in §7. We 
then construct a specific example to show that the condition p ~ d in Theorem 
1 is necessary. Results on compact imbeddings of rooms and corridors type 
domains are also obtained. The theorems in this section again demonstrate the 
important relationship between the kp metric and the p-Poincare inequality. 
Some of these results generalize earlier results of ours in [SS2]. 

Definition. Let T be a domain in Rd. For XI' x 2 E T and 1 < p < 00, we 
define hp.T(xI , x2 ) = k:~;'(xI' x2 ). For p = 1, we put 

(10.1 ) hI T(X I , x2) = inf {sup a~-d (x) I y is a path from XI to x2 in T} . 
• xE), 

This definition is motivated by the fact that for a fixed arc y in T, 

lim ( ( dSd I )P-I = supa~-d(y). 
p->I J)' aT(y)p-I yE), 

Lemma 11. Let T be a domain in Rd. Suppose that W is a Whitney decom-
position of T and that 1 ~ P < 00. Then 

(10.2) IUQ1 - uQ21P :5 hp. T(XI ' x2) ·Ir IVulP dx 

whenever QI' Q 2 E W, with Xi E Q; for i = 1, 2, and U E CI(T). 
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Proof. For p> 1, let y be an arc in T joining XI to x 2 and satisfying 

(10.3) 1 ds 
--d-:---:-I ~ 2kp T(X I , x2)· 

l' c5T (y)p-l , 

Let P be the collection of Whitney cubes in W which intersect y. By Lemmas 
8 and 9 and (10.3) we obtain that 

lu - u IP -< ( { lV'ul )P 
Q1 Q2 - }p c5T (y)d-1 

~ {1V'uIP dx· ({ d~(d_I))P-I 
) P } p c5T (y)P 

p-I (p 
::; kp,T(XI , x 2)'}p lV'ul dx 

= hp, T(X I , x2) 'hlV'uIP dx 

which verifies (10.2) in this case. An analogous argument for the case p = 
establishes (10.2) for all 1 ~ p < 00. This completes the proof. 

See [SS2] where this lemma is proved for the special case of simply connected 
planar domains with p = 2 and u an analytic function on T. 

We now consider a more general configuration of a connected domain D C 
Rd with finite volume. We assume that D = U:'o Gn where each Gn is an open 
connected subdomain of D. Moreover, we assume that {Gn}:'1 is a disjoint 
collection and that GnnGo is a nonempty set for each n. Corresponding to each 
region Gn , with n ~ 1, there is a subregion Gn of Go for which Gn n Gn is a 
nonempty set. Put Tn = GnU G n for n ~ 1 , so that Tn is an open connected 
subdomain of D. Using the construction on page 167 of Stein's book [St], 
we construct a Whitney decompositions ~ of Tn with defining parameters 
independent of n. Finally, assume that Qn' Qn E Wn with Qn c G n' Qn C G n 
and that xn ' xn are the centers of Qn' Qn· 

Theorem 13. Let 1 ~ p < 00 and let M, K be finite constants. If 
(a) m(Gn). m(Qn). m(Gn) and m(Qn) are all comparable for each n ~ 1, 

with constants independent of n , 
(b) {Qn} n~ I is disjoint and 

00 

SUPLXT(x)~K, 
xED n=1 n 

(c) M;(Gn) ~ M for all n ~ 0 and 
(d) hp, Tn (Xn' Xn) . m(Gn) ~ M for all n ~ 1, 

then Mp(D) < 00. 
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Proof. Let U be a function defined on D satisfying Y'u E LP(D) and U == 0 
on Qo' For n 2: 1, we use (a) to compute that 

{ lulP dx ~ ( Iu - uG IP dx + lUG - uQ IPm(Qn) iGn lG" n n n 

P P N + IU Qn - uQnl m(Gn) + IUQnl m(Qn) 

:5 2 { Iu - uG IP dx + ( lulP dx + IUQ - uQ IPm(Gn) 
J~ n J~ n n 

= 2· An + Bn + en' 
By (c), we have that 

EAn :5 ME llY'ulP dx:5 M l lY'ulP dx. 
n=l n=l Gn D 

Since U == 0 on Qo it follows from Lemma 5 and conditions (b), (c) that 

E Bn:5 { lulP dx ~ M { lY'ulP dx. 
n=l JGo JD 

Combining these estimates we obtain that 

Iv lulP dx :5 ~ in lulP dx ~ M Iv lY'ulP dx + ~ en' 

Using Lemma 11 we obtain that 

(l0.4) IU Qn - uQ/ ~ hp,Tn (xn, xn)· hn lY'ulP dx, n 2: 1. 

Finally, we have by conditions (b), (d) and (10.4) that 

E en :5 E hp, Tn (Xn' X n)· m(Gn) .! lY'ulP dx 
n=l n=l Tn 

:5 M { lY'ulP EXT dx:5 MK ( lY'ulP dx, 
JD n=l n JD 

and hence that Iv lulP dx ~ M(K + 1) Iv lY'ulP dx 

whenever u vanishes on Qo' Thus, the proof is complete by Lemma 5. 
We now consider an infinite union of domains {Gn } with the property that 

each of the imbeddings W1,P(Gn) -+ LP(Gn) is compact. The assumptions and 
the notation introduced prior to Theorem 13 are still in force. 

Theorem 14. Let 1 :5 p < 00 and let M, K be finite constants. If 
(a) m(Gn), m(Qn), m(Gn) and m(Qn) are all comparable for each n 2: 1, 

with constants independent of n , 
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00 

SUp 2: XT (X) ::; K, 
xED n=1 n 

( C) lim MpP ( G n) = 0 , 
n--->oo 

(d) }~I1Johp,TJxn,xn)·m(Gn)=O, 
(e) lim <>D(.Xn) = 0, and 

n--->oo 
(f) the imbedding WI,p(Gn) --+ LP(Gn) is compact/or all n 2: 0, 

then the imbedding Wl,p (D) --+ LP (D) is compact. 

Proof. Theorem 11 will be used to show the compactness of the imbedding. As 
a first step, we show that 

(10.6) lim sup {f: ( lulP dx Illullwl,P(D) = I} = lim SN = O. 
N--->oo n=N+I JGn N--->oo 

Arguing as in the proof of Theorem 13, by using (a) we see that 
I I I 

S N ~ AN + B N + CN ' 

where 

A~ = sup { f: flU - uG/ dx Iliullwl,P(D) = I} , 
n=N+I Gn 

B~ = sup { f: i lulP dx Iliullwl,P(D) = I} , 
n=N+I Qn 

C~ = sup { f: IUQn - uQ/m(Gn) Illullwl,P(D) = I}. 
n=N+I 

By (c) we have that limN--->oo A~ = 0, since 

flU - uG/ dx::; M;(GJ [lulP dx. 
Gn Gn 

For any k 2: 1 , by (e) and the fact that Qn E Wn ' we can pick N such that 
00 

U Qn c D\Dk' 
n=N+I 

where Dk is as in (8.1). Thus by applying (f) with n = 0 and Theorem 11, 
we have that limN--->oo B~ = O. Now, using (10.4) and (b) as is the proof of 
Theorem 13, we estimate 

C~::;suP{ f: hp,Tn(Xn,xn)·m(Gn)·11\7UIPdXlllullwl,p(D)=I} 
n=N+I ~ 

::; K sup hp T (xn' x n ) • m(Gn )· 
n::::N+I 'n 
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Thus limN--+oo C~ = 0, by (d). The proof of (10.6) is now complete. 
It is an easy consequence of the definition of a compact imbedding that, since 

each imbedding Wi ,P(Gn ) ~ LP(Gn ) is compact, the imbedding 

is compact for each N 2: O. (Alternately, one can use Theorem 11 to see this.) 
Thus by Theorem 11 again, and with Dk as in (S.l), 

(10.7) lim sup { r lulP dx Illullw),p(G.) = I} = 0, N 2: O. 
k--+oo JU~~o Gn \Dk N 

But since 

(10.6) and (10.7) imply that 

lim sup {! lul P dx Iliullw)p(D) = I} = 0, 
k--+oo D\Dk 

so an application of Theorem 11 completes the proof. 

We now proceed to simplify the above geometric configurations. Let Rn 
denote the ball B(xn, cn) with center xn and radius cn ' where n = 0, 1, .... 
We assume that Xo = 0, Co = 1, 1 < IXn I < 2, an ::; cn and that the collection 
of balls {Rn}:O is disjoint. For n2: 1,let x~=xn/lxnl, bn=lxn-x~l-cn 

and Cn = U{B(x, an) I 0 ::; Ix - x~1 ::; bn}. We further assume, for n 2: 1, 
that the sets {Cn URn} are disjoint and that D is constructed using the rooms 
Rn and the corridors Cn , i.e. 

Theorem 15. Let 1 ::; p < 00 and let D be the domain constructed above. 
(i) Mp(D) is fznite if and only if 

(lO.S) suphp(xo' xn) ·m(Rn) < 00. 
n 

(ii) Further suppose that 

(10.9) 

Then the imbedding Wl,p (D) ~ LP (D) is compact if and only if 

(10.10) lim hp(xo' x ) . m(Rn) = O. n---+(X) n 
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Remark. The geometric interpretation of (10.9) is that m(Cn) ~ m(Rn)' With-
out a restriction of this type it is easy to construct a counterexample with a 
starshaped domain. 

Proof. (i) Assume that (10.8) holds. We establish that Mp(D) is finite by show-
ing that conditions (a)-(d) in Theorem 13 hold. Let Go = ROU(U: 1 Cn ). Then 
Go is starshaped with respect to the origin and hence is a p-Poincare domain 
by Theorem 6. For n ~ 1 put G n = Rn . Then by Theorem 6 again we see that 
condition (c) holds for some finite constant M. 

For n ~ 1, let Rn , Cn denote the reflections of the sets Rn , Cn about the 
d - - -sphere Ixi = 1 in R . We put Gn = Rn U Cn U Cn and construct a Whitney 

decomposition Wn of Tn = GnUGn with constant defining parameters. Finally, 
we put Qn to be a cube in Wn containing xn and let On be a cube in w" 
containing the reflection xn of xn . Clearly, conditions (a) and (b) hold, with 
K=l. 

To prove that condition (d) holds, we will use the symmetry of Tn' For 
p > 1 , let r n be an arc in D joining Xo to xn so that 

(10.11) r ds d-l :::; 2kp(xo' xn)' Jr. JD(y)p-l 

Let Y n be the subarc of r n starting from the last exit from Ro to the endpoint 
xn ' Let )in be the reflection of Yn about the sphere Ixi = 1. Clearly, Yn U Yn 
is an arc in Tn joining xn to x n ' Hence by symmetry, 

k ( -) < 1 ds 1 ds p T Xn' Xn - d-l ~ d-l 
, • Y.Ul'. JT (y)P-T l'. JT (Y)P-l . . 

= r ds d 1 :::; r ds d 1 :::; 2kp(xo' xn). 
Jl'. JD(y)P-T Jr. JD(Y)P-l 

(10.12) 

Thus, condition (d) holds for the case 1 < p < 00. A similar argument yields 
(d) in case p = 1. Hence Mp(D) is finite by Theorem 13. 

To prove the converse suppose that Mp(D) is finite. We must find a bound 
M < 00 so that 

(10.13) 

holds for all n. Fix n and let Yn be the line segment [xo' xn]. Integration 
over Yn gives an upper bound for kp(xo' xn). 

We first assume that 1 < p < d. If bn + cn < 2an ' then 

1 ( 1 d_l)P-l d k;- (xO,xn)·m(Rn) ~ an- p - 1 ·an =a~:::; 1 

and so (10.13) holds with some M which is independent of n. If bn+cn ~ 2an , 
we construct a function un which vanishes on D except for points in Cn URn' 
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For x E en URn' we define 

() . (1 Ix - X~ I - an ) un X = mIn '2 b ' an + n 

Clearly, un = 1 on at least half of Rn and hence 

m(Rn) ~ llUnlP dx:5 M;(D) llY'UnlP dx. 
Rn D 

If bn :5 an' then it is easily seen that k;-I(XO ' xn) ~ a~-d and lY'unl ~ a~1 . 
Thus, r lY'unlP dx ~ m( {1Y'u;1 ¥ O}) ~ a:-P ~ k;-P (xo' xn). 

JD an 
Thus, (10.13) holds in this case. 

If bn ~ an' then k%-I(XO' x n) ~ b~-I /a~-I and lY'unl ~ b~1 . Again, 

l lY'U IP dx --< m( {1Y'unl ¥ O}) --< bna~-I --< kl-P(x x) 
n - bP - bP - P 0' n 

D n n 

and so (10.13) holds. We have therefore completed the proof for the case 
l<p<d. 

For d < p, the same proof works, only the estimates are more elementary 
since the integral 

10 1 dt 
d=T < 00 

o (FT 

is convergent. The case p = 1 can also be done with a similar argument. 
Finally, the case p = d requires a slightly different construction for un' If 
bn ~ an ' then the proof is as before. But if bn :5 an ' then we define 

whenever x E en uRn' Analogous estimates show that (10.13) holds in this 
case also and the proof of part (i) is complete. 

(ii) Assume that (10.10) holds. We will use Theorem 14 to show that the 
imbedding Wl,p (D) ----> LP (D) is compact. Define Go = Ro' and for n ~ 1, 
Gn = Rn U en and (;n = Rn U Cn ' where Rn and Cn are as in the proof of (i). 
Let Qn' On' xn and xn also be defined as in the proof of (i). Using (10.9) 
and estimating kp(xo' xn) as in (i), we get that 

b~ ~ b~-I c: /a:- I ~ hp(xn' xn) . m(Rn)' 

Hence bn ----> 0, by (10.10) and (10.12). We also have that cn ----> 0 since 
m(D) < 00. 

As in the proof of (i), conditions (a) and (b) of Theorem 14 are immediate 
by the definition of Qn' On and xn ' Condition (c) holds as a consequence 
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of Theorem 7, since bn + cn -+ o. Condition (d) is immediate from (10.10) 
and (10.12), while condition (e) follows since bn + cn -+ o. Finally, it is well 
known that the imbeddings in condition (f) are compact. See Chapter 6 of 
[Ad], for example, or alternately Corollary 6 could be used. Thus the imbedding 
WI,P(D) -+ LP(D) is compact by Theorem 14. 

To prove the converse, suppose that (10.10) fails. By passing to a subse-
quence, assume without loss of generality that infn hp(xo' xn) . m(Rn) >- 1. 
Thus 

(( 1 )P-I bP- 1) log - + _n_ . cd >- 1 a d-I n - , 
n an 

n?1. 

First consider the case that limsupb~-lc~/a~-1 t 1. By passing to a subse-
quence again, without lossed generality assume that 

(10.14) bP-1 d/ d-l >- 1 n cn an - , n? 1. 

To finish the proof of this case, we demonstrate that the imbedding Wl,p (D) 
-+ L P (D) is not compact in a manner similiar to that used in §9. For 1 ~ n ~ 
00, define 

XED\Gn , 

x E en \ {I < Ixi < 1+ bn}, 

x E Rn \ B(O, 1 + bn). 

A straightforward calculation shows that IlunIIL2(D) ~ 1 and IIV'unIILP(D) ~ 1, 
for all n. (10.14) was used in the second estimate. 

If the imbedding WI,P(D) -+ LP(D) were compact, it would follow that 
there is a subsequence of {un} converging to U E LP(D) in norm. This is a 
contradiction, since it would follow that IluIILP(D) ~ 1, but un(x) -+ 0 for all 
xED. 

The final case, with lim sup(log if-t- 1 • c~ t 1 , is handled similarly, with the 
functions defined as in the proof of (ii). This completes the proof of Theorem 
15. 

Example. Fix m ? 1 and let Dm be constructed by attaching to the unit ball 
in Rd a disjoint sequence of balls, of radius cn = 2-n , and connecting tubes 
of length bn = (cn)-m and radius an = bn/n. It is easily seen that condition 
(1.2) holds since 

(b) 1 1 + m log 2 sup -2!. -logbn · -1 = I 2 < 00 
n an logcn og 

and hence Dm is a Holder domain. Thus, Theorem 1 shows that Mp(Dm) is 
finite for all d ~ p < 00 . 
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On the other hand, Theorem 15(i) implies that for 1 ~ p < d, Mp(Dm) is 
finite if and only if 

bP- 1 
(10.15) sup ~_I • c~ < 00. 

n an 

Since the supremum in (10.15) is clearly infinity for p ~ d(l - 11m), we see 
that Mp(Dm) = 00 for this range of p's. Thus, the range of p in Theorem 1 
is best possible. 
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