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Hölder estimates for advection fractional-diffusion equations

LUIS SILVESTRE

Abstract. We analyse conditions for an evolution equation with a drift and frac-
tional diffusion to have a Hölder continuous solution. In case the diffusion is of
order one or more, we obtain Hölder estimates for the solution for any bounded
drift. In the case when the diffusion is of order less than one, we require the
drift to be a Hölder continuous vector field in order to obtain the same type of
regularity result.

Mathematics Subject Classification (2010): 35B65 (primary); 35R11 (sec-
ondary).

1. Introduction

This papers concerns the solutions of an equation of the form

ut + b · ∇u + (−△)su = f. (1.1)

We will prove that the solution u becomes immediately Hölder continuous. In the

case s ∈ [1/2, 1), all we require for the vector field b is that it is bounded. In the

case s ∈ (0, 1/2), we require b to be in the Hölder class C1−2s .

The case s = 1/2 is often referred to as the critical case because the diffusion

is an operator of the same order as the advection. Both terms in (1.1) have the same

weight at all scales and no perturbation techniques can be applied to obtain regular-

ity of the solution u. This critical case was already studied in [11], where the result

was used to establish the existence of classical solutions for the Hamilton-Jacobi

equation with critical fractional diffusion. The main ideas in this paper originated

in that work. In future work, we plan to apply the result of this paper to other

nonlinear equations like for example conservations laws with fractional diffusion.

It is interesting to compare this result in the critical case s = 1/2 with the result

in [4]. In that paper the same equation is studied and the Hölder continuity result is

obtained using De Giorgi’s approach for parabolic equations. The only difference

is that the assumptions for b in [4] are that it belongs to the BMO class and it is
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divergence free. In this paper (or in [11]) we do not assume b to be divergence free,

but we need the slightly stronger assumption that b ∈ L∞ instead of just belonging

to the BMO class. The methods used in the proofs are of a different nature. In [4],

thanks to the assumption that div b = 0, they use variational techniques (in the style

of De Giorgi), whereas in this article our techniques are purely non-variational and

are ultimately based on quantitative comparison principles which are arguably sim-

pler. An alternative approach is used in [8] where the Hölder continuity is obtained

through the study of the dual equation. They still require that div b = 0 in order for

the dual equation to have the same advection-diffusion form.

The case s < 1/2 is known as the supercitical case because the diffusion is of

lower order than the advection. This means that in small scales the drift term will be

stronger than the diffusion which seems to suggest that it would not be possible to

prove any regularity for u. However, if we assume a Hölder modulus of continuity

for b, we can compensate this deterioration of our control of the drift term in small

scales by a change of variables following the flow of b. The supercitical case is the

main focus of this article.

It is interesting to compare our result in the case s < 1/2 with the result of [7].

In that article, Constantin and Wu explore the applicability of Caffarelli-Vasseur

[4] techniques to the supercritical regime. They need to assume that b ∈ C1−2s

and div b = 0. Therefore, in the supercitical regime, our non-variational method

provides a strictly better result than the De Giorgi’s approach, since the regularity

assumption on b is the same, but we do not need to assume div b = 0. This result is

used in [6] to obtain the well posedness of a modified supercitical quasi-geostrophic

equation.

The case s > 1/2 is often referred to as the subcritical case because the diffu-

sion is of higher order than the advection in (1.1). The method in this paper provides

a Hölder continuity result for u if b ∈ L∞ in the subcritical case. This condition

is far from sharp, since one could obtain the same results under more general con-

ditions. In [2], heat kernel estimates are obtained using perturbation techniques for

s ∈ (1/2, 1) for vector fields which belong just to a Kato class. In [12], Hölder es-

timates are obtained in the case s ∈ (1/2, 1) but for b · ∇u replaced by a term with

superlinear growth respect to ∇u. The subcritical case is not the main objective of

this paper. We still include it in our main theorem to show what result the method

provides.

Here is our main theorem.

Theorem 1.1. Let u be a bounded function inR
n×[0, 1] which solves the equation

(1.1). Assume that s ∈ (0, 1), f ∈ L∞. If s ∈ [1/2, 1), we assume b ∈ L∞. If

s ∈ (0, 1/2), we assume b ∈ C1−2s . Then u is Hölder continuous for positive time

t ∈ (0, 1]. Moreover, there is an estimate

|u(x, t) − u(y, r)| ≤ C
|x − y|α + |t − r |α/(2s)

tα/(2s)
(‖u‖L∞ + ‖ f ‖L∞)

for every x, y ∈ B1/2 and 0 ≤ r ≤ t ≤ 1, where the constants C and α depend on

s, n and ‖b‖C1−2s but not on u or f .
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It is our intention to keep this article as simple and accessible as possible. The

fractional Laplacian could be replaced by arbitrary integro-differential operators of

order 2s, even with discontinuous coefficients, as in [11], but we chose to keep only

the fractional Laplacian in order to make the article accessible to a larger audience.

Moreover, we will concentrate on proving the a priori estimate for Theorem 1.1,

assuming that we have a classical solution. In the last section, we will discuss the

notions of weak solution and how the proof would adapt to those scenarios.

2. Scaling

If u satisfies the equation

ut + b · ∇u + (−△)su = f

then the function uλ = λ−αu(λx, λ2s t) satisfies

uλ
t + λ2s−1b · ∇uλ + (−△)suλ = λ2s−α f λ

with f λ(x, t) = f (λx, λ2s t).

We define the parabolic cylinders in terms of the scaling of the equation:

Qr := Br × [−r2s, 0].

3. The diminish of oscillation lemma

The proof of the diminish of oscillation lemma uses essentially the same ideas as

the proof in [11] for the case s = 1/2. The generalization to the full range s ∈ (0, 1)

does not present major difficulties. In this section we present the proof in full detail.

Lemma 3.1 (point estimate). Let u ≤ 1 in R
n × [−2, 0] and assume it satisfies

the following inequality in BR × [−2, 0].

ut − A|∇u| + (−△)su ≤ ε0 (3.1)

Where R = 2+ A. Assume also that

|{u ≤ 0} ∩ (B1 × [−2,−1])| ≥ µ > 0.

Then, if ε0 is small enough there is a θ > 0 such that u ≤ 1− θ in B1 × [−1, 0].

(the maximal value of ε0 as well as the value of θ depend only on s, µ and n)

Remark 3.2. Note that if for some bounded vector field b, the function u satisfies

the equation

ut + b · ∇u + (−△)su = f, (3.2)

then u also satisfies the inequality (3.1) with A = ‖b‖L∞ .
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Proof. Let m : [−2, 0] → R be the function such that:

m(−2) = 0,

m′(t) = c0|{x ∈ B1 : u(x, t) ≤ 0}| − C1m(t).
(3.3)

The solution of this ODE for m can be computed explicitly

m(t) =

∫ t

−2

c0|{x : u(x, s) ≤ 0} ∩ B1|e
−C1(t−s) ds.

We will show that if c0 is small and C1 is large, then u ≤ 1 − m(t) + 2ε0 in

B1 × [−1, 0]. Since for t ∈ [−1, 0],

m(t) ≥ c0e
−2C1 |{u ≤ 0} ∩ B1 × [−2,−1]| ≥ c0e

−2C1µ.

We set θ = c0e
−2C1µ/2 for ε0 small and finish the proof of the lemma.

Let β : R → R be a fixed smooth non increasing function such that β(x) = 1

if x ≤ 1 and β(x) = 0 if x ≥ 2.

Let η(x, t) = β(|x | + At) = β(|x | − A|t |). As a function of x , η(x, t) looks

like a bump function for every fixed t . The bump shrinks at speed A. Recall that

A will be the L∞ bound for the vector field in the drift term, so η is a bump that is

shrinking at the maximum possible speed.

The strategy of the proof is to show that the function u stays below 1 −

m(t)η(x, t) + ε0(2+ t).

Note that if there was no diffusion, 1−mη(x, t) + ε0(2+ t) would be a super-

solution of the equation for any fixed constant m. We would be able to prove that

u < 1− θ in Q1 only in the case that u(x,−2) < 1−mη(x,−2). The diffusion is

the reason why we can use a variable value of m and obtain an actual improvement

of oscillation.

At those points where η = 0 (precisely where |x | ≥ 2 − At = 2 + A|t |),

(−△)sη < 0. Since η is smooth, (−△)sη is continuous and it remains negative

for η small enough. Thus, there is some constant β1 such that (−△)sη ≤ 0 where

η ≤ β1.

In order to arrive to a contradiction, we assume that η(x, t) > 1 − m(t) +

ε0(2 + t) for some point (x, t) ∈ B1 × [−1, 0]. We look at the maximum of the

function

w(x, t) = u(x, t) + m(t)η(x, t) − ε0(2+ t).

Since we are assuming that there is one point in B1 × [−1, 0] where w(x, t) > 1,

w must be larger than 1 at the point that realizes the maximum of w. Let (x0, t0) be

the point where this maximum is realized. Since w(x0, t0) > 1, the point (x0, t0)

must belong to the support of η. Thus |x0| < R.

Since w achieves its maximum at (x0, t0), then at that point we have wt ≥ 0

and ∇w = 0. Therefore, ut ≥ −m′ η −m ηt + ε0 and ∇u = −m∇η. We will now

show that the equation for u cannot hold at (x0, t0).
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We start by estimating ut (x0, t0).

ut (x0, t0) ≥ −m′(t0)η(x0, t0) − m(t0)∂tη(x0, t0) + ε0

= −m′(t0)η(x0, t0) + m(t0)A|∇η(x0, t0)|
q + ε0

(3.4)

We also note that

|∇u(x0, t0)| = m(t)|∇η(x0, t0)|. (3.5)

The measure of the set |{x : u(x, s) ≤ 0}∩ B1| is used in the estimation of (−△)su.

The computations below are for fixed t = t0, so we omit writing the time t in order

the keep the computations cleaner.

Since u + mη attains its maximum at x0, u(x0) − u(x0 + y) ≥ −m (η(x0) −

η(x0+y)) for all y. Replacing this inequality in the formula for (−△)su we can eas-

ily obtain (−△)su(x0) ≥ −m (−△)sη(x0). However, we can improve this estimate

in terms of the value |{u ≤ 0} ∩ B1| (this is the key idea from [11]).

Let y ∈ R
n be such that u(x0+ y) ≤ 0. We estimate u(x0)+m η(x0)−u(x0+

y) − m η(x0 + y) using that u(x0) + mη(x0) = w(x0, t0) + ε0(1+ t0) > 1.

u(x0) + m η(x0) − u(x0 + y) − m η(x0 + y) ≥ 0− m + 1

We choose c0 small so that m ≤ 1/2 and

u(x0) + m η(x0) − u(x0 + y) − m η(x0 + y) ≥
1

2
(3.6)

Now we estimate (−△)su(x0, t0), we start writing the integral

(−△)su(x0, t0) =

∫

Rn

u(x0) − u(x0 + y)

|y|n+2s
dy

We estimate u(x0)−u(x0, y) by below with η(x0+ y)−η(x0) except at those points

where x0 + y is in the good set G := {u ≤ 0} ∩ B1 where we use (3.6)

≥ −m(t0)(−△)sη(x0, t0)

+

∫

G

(u + mη)(x0) − (u + mη)(x0 + y)

|y|n+2s
dy

≥ −m(t0)(−△)sη(x0, t0) +

∫

G\Br

1/2

|y|n+2s
dy

≥ −m(t0)(−△)sη(x0, t0) + c0|G \ Br |

for some universal constant c0 (this is how c0 is chosen in (3.3)).

We consider two cases and obtain a contradiction in both. Either η(x0, t0) > β1
or η(x0, t0) ≤ β1.
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Let us start with the second. If η(x0, t0) ≤ β1, then (−△)sη(x0, t0) ≤ 0, then

(−△)su(x0, t0) ≥ c0|G \ Br | (3.7)

Replacing (3.4), (3.5) and (3.7) into (3.2) we obtain

ε0 ≥ −m′(t0)η(x0, t0) + ε0 + c0|G|

but for any C1 > 0 this contradicts (3.3).

Let us now analyze the case η(x0, t0) > β1. Since η is a smooth, compactly

supported function, there is some constant C , such that |(−△)sη| ≤ C . Then we

have the bound

(−△)su(x0, t0) ≥ −m(t0)(−△)sη(x0, t0) + c0|G| ≥ −Cm(t0) − c0|G \ Br |

Therefore, replacing in (3.2), we obtain

ε0 ≥ −m′(t0)η(x0, t0) + ε0 + c0|G| − Cm(t0)

and we have

−m′(t0)η(x0, t0) − Cm(t0) + c0|G| ≤ 0.

We replace the value of m′(t0) in the above inequality using (3.3)

(C1η(x0, t0) − C)m(t0) + c0(1− η(x0, t0))|G| ≤ 0.

Recalling that η(x0, t0) ≥ β1, we arrive at a contradiction if C1 is chosen large

enough.

The following lemma is a crucial step in the proof of Hölder continuity. It

says that if a solution of the equation in the unit cylinder Q1 = B1 × [−1, 0] has

oscillation one, then its oscillation in a smaller cylinder Qr is less than a fixed

constant (1 − θ). This type of lemmas are very common when proving Hölder

regularity results. Sometimes they are called growth lemmas, since they say that

the oscillation in a cylinder of a solution u necessarily grows when considering a

larger cylinder. For nonlocal equations one needs to add an extra condition giving

a bound to the oscillation of the function u outside Q1.

Lemma 3.3 (diminish of oscillation). Assume that u satisfies the following equa-

tion in Q1
ut − b · ∇u + (−△)su = f

Where b is a bounded vector field. There are universal constants θ > 0, α > 0 and

ε0 > 0 (depending on ||b||L∞ , the dimension n and s) such that if

|| f ||L∞(Q) ≤ ε0

osc
Q1

u ≤ 1

osc
BM×[−1,0]

u ≤ |M/r |α for all M > 1.
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where r is a constant depending on ‖b‖L∞ and s. Then

osc
Qr

u ≤ (1− θ)

Proof. Let us choose a constant R > 1 so that R = 2 + ||b||L∞ if s ≥ 1/2 or

R = R1−2s ‖b‖L∞ + 2 if s ≤ 1/2.

We consider the rescaled version of u:

ũ(x, t) = u(x/(2R), t/(2R)2s).

The function ũ satisfies the equation

ũt + (2R)1−2sb · ∇ũ + (−△)s ũ = (2R)−2s f.

In B2R × (−2R, 0]. We want to apply Lemma 3.1 to ũ minus a constant. Note that

either with s ∈ [1/2, 1) or s ∈ (0, 1/2) the vector field (2R)1−2sb is bounded by

A = (2R)1−2s ‖b‖L∞ .

Let m = (supQ1 u + infQ1 u)/2 be the median value of u in Q1 (and also the

median value of ũ in Q2R).

The function ũ will stay either above m of below m in half of the points in

B1 × [−2,−1] (in measure). More precisely, either {ũ ≤ m} ∩ (B1 × [−2,−1]) ≥

|B1|/2 or {ũ ≥ m}∩(B1×[−2,−1]) ≥ |B1|/2. Let us assume the former, otherwise

we can repeat the proof with (supQ1 u − ũ) instead of ũ.

We will conclude the proof as soon as we can apply Lemma 3.1 to 2(ũ − m).

The only hypothesis we are missing is that 2(ũ − m) is not bounded above by 1

outside B2R . So we have to consider v = min(1, 2(ũ − m)) instead, and estimate

the error in the right hand side of the equation. We prove that if α is small enough,

then v satisfies

vt − A|∇v| + (−△)sv ≤ ε̃0 (3.8)

for a small ε̃0 so that we can apply Lemma 3.1.

Note that inside Q2R , ũ ≤ 1, thus v = 2(ũ − m). The error in the equation in

QR comes only from the tails of the integrals in the computation of (−△)sv. Indeed

vt = ut and ∇u = ∇v. Let us estimate (−△)sv − (△)s ũ in QR .

We choose ε0 smaller than ε̃0 (the small constant from Lemma 3.1) such that

(−△)sv(x, t)−(−△)s ũ(x, t) =

∫

x+y /∈B2R

(ũ(x + y) − sup
Q1

u)+
dy

|y|n+2s

≤

∫

x+y /∈B2R

(((2R)2|x+ y|)α−1)+
dy

|y|n+2s
≤ ε̃0− ε0

if α is chosen small enough.

Thus, v satisfies (3.8). We can apply Lemma 3.1 to v and conclude the proof

with r := 1/(2R).
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Remark 3.4. Note that the diminish of oscillation lemma does not require the vec-

tor field b to be Hölder continuous but only bounded. The Hölder continuity of b

will be required to prove the Hölder continuity of the solution u if s < 1/2 because

Lemma 3.3 needs to be a applied at all scales. Thus, the regularity of b compen-

sates the bad scaling of the equation. This observation helps obtain some regularity

results for some nonlinear supercitical equations in [10] and [5].

4. Hölder regularity

In this section we prove our main result about Hölder continuity. Note that the result

stated in this section requires the function to solve the equation only in a cylinder

in order to have Hölder continuity in a smaller cylinder. This is a local result, from

which the global result of Theorem 1.1 immediately follows.

For the case s ∈ [1/2, 1), the proof is a simple adaptation of the proof in [11].

For s ∈ (0, 1/2) we need to make a change of variables at the beginning following

the flow of vector field b in order to obtain the extra cancellation which allows us

to use the hypothesis b ∈ C1−2s .

Theorem 4.1. Let u be a bounded function in R
n × [−1, 0] which satisfies the

following equation in B1 × [−1, 0]

ut − b · ∇u + (−△)su = f (4.1)

There there is an α > 0 such that the function u is Cα at (0, 0). Moreover we have

the estimate

|u(x, t) − u(0, 0)| ≤ C(|x |α + |t |α/(2s))(‖u‖L∞ + ‖ f ‖L∞) (4.2)

for every x ∈ R
n and −1 ≤ t ≤ 0.

The constants C and α depend on s, ||b||L∞ and the dimension n only.

Proof. For any (x0, t0), we consider the normalized function

v(x, t) =
1

2 ‖u‖L∞ + ‖ f ‖L∞ /ε0
u(x, t).

where ε0 is the constant from Lemma 3.3.

We prove the Cα estimate (4.2) by proving a Cα estimate for v at (0, 0). Note

that oscRn×[−1.0] v ≤ 1. Moreover, v is also a solution of an equation like (4.1) and

the corresponding right hand side f has L∞ norm less than ε0
In the supercitical case s < 1/2, we need to compensate the bad scaling of the

drift term with the required Hölder regularity of b. In order to take advantage of

this, it is convenient to have b(0, t) = 0, so that the Hölder continuity translates
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into a decay in b close to the origin. Let us make a change of variables ṽ(x, t) =

v(x + A(t), t), where A(t) is a solution of the ODE:

A(0) = 0

A′(t) = b(A(t), 0).

Note that the assumption that b is Hölder continuous does not guarantee the unique-

ness of the curve A(t) following the flow of b. However, just from the continuity of

b there exists one solution A. The uniqueness of this solution is not relevant for the

proof below.

Thus, ṽ satisfies the equation

ṽt + b̃ · ∇ṽ + (−△)s ṽ = f (x + A(t), t).

Where b̃(x, t) = b(x+A(t), t)−b(A(t), t) is a Hölder continuous vector field such

that |b̃(x, t)| ≤ C|x |1−2s . Note that (x, t) -→ (a + A(t), t) is a Lipschitz change of

variables, so the Hölder regularity of v and ṽ are the same. From this point on we

will write v and b but we mean ṽ and b̃ if we are considering the supercritical case.

For the critical or subcritical case, no change of variables is necessary.

Let r ∈ (0, 1) be as in Lemma 3.3. We will prove the following exponential

decay of the oscillation in cylinders for some α > 0 to be chosen later.

osc
Q
rk

v ≤ rαk for k = 0, 1, 2, 3, . . . (4.3)

The Hölder estimate follows immediately from (4.3).

We prove (4.3) by induction in k. Indeed, for k = 0 it is known to be true from

the hypothesis oscRn×[−1,0] v ≤ 1. Let us assume that it holds until certain value of

k. We scale again by considering

w(x, t) = r−α0kv(rkx, r2sk t).

As it was discussed in section 2, w satisfies the equation

wt − rkα(2s−1)b(rkx, r2sk t) · ∇w + (−△)sw = rk(2s−α) f

Since we are choosing α ≤ 2s, ||rk(2s−α) f ||L∞ ≤ ε0.

In the case 2s ≥ 1, rkα(2s−1) ≤ 1, so the L∞ norm of the drift term stays

bounded. In the case 2s < 1, we use the Hölder decay of b to get a uniform L∞

bound for rkα(2s−1)b(rkx, r2sk t) for |x | ≤ 1.

From the inductive hypothesis, we also have

osc
Q1

w ≤ 1 (4.4)

osc
Q
r−k

w ≤r−α0k for k=1, 2, . . . therefore osc
BM×[−1,0]

w(x,t)≤ |M/r |α0 for any M>1.

(4.5)
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If α is small enough, we can apply Lemma 3.3 to obtain oscQr w ≤ 1 − θ . So, if

α is chosen smaller than the one of Lemma (3.3) and also so that 1 − θ ≤ rα , we

have oscQr w ≤ rα , which means oscQ
rk+1

v ≤ rα(k+1), which finished the proof

by induction.

We have finished the proof of (4.3) for some small α > 0 depending on s,

||b||L∞ and n.

5. Weak solutions and generalizations

In order to keep this article short and simple, we did not state the theorems in their

most general form. We analyze in this last section the possible generalizations and

the applicability of the result to weak solutions of (1.1).

5.1. Viscosity solutions

When b is a continuous vector field, the solution u of (1.1) can be understood in

the viscosity sense. Note that in the supercitical case s < 1/2, we assume that b is

Hölder continuous.

By definition, a lower semicontinuous function u is a supersolution of (1.1) in

a set ( if every time there is a smooth function ϕ such that for some (x0, t0) ∈ (

and ρ > 0, ϕ(x0, t0) = u(x0, t0) and ϕ(x, t) ≤ u(x, t) for all points (x, t) such that

|x − x0| ≤ ρ and t0 − ρ ≤ t ≤ t0 (we say ϕ touches u from below at (x0, t0)), then

the function

v(x, t) =

{

ϕ(x, t) if |x − x0| < ρ and |t − t0| < ρ

v(x, t) otherwise

satisfies the inequality vt (x0, t0)+b(x0, t0)·∇v(x0, t0)+(−△)sv(x0, t0)≥ f (x0, t0).

Correspondingly, an upper semicontinuous function u is a subsolution if every

time ϕ touches u from above, the above constructed function v satisfies the opposite

inequality. A continuous function u is said to be a solution when it is a subsolu-

tion and a supersolution at the same time. For more details on the definition and

properties of viscosity solutions for integro-differential equations see [1] or [3].

The definition of viscosity solution is appropriate for elliptic or parabolic equa-

tions that satisfy a comparison principle. As we can see in the definition, it requires

that the operator can be evaluated in smooth test functions. Hence, the vector field

b needs to be continuous. On the other hand, the definition of viscosity solutions

does not require the equation to be linear. Thus, in the critical and subcritical case,

the equation (1.1) can be replaced by the couple of inequalities

ut + A|∇u| + (−△)su ≥ B

ut − A|∇u| + (−△)su ≤ B

where A = ‖b‖L∞ and B = ‖ f ‖L∞ .
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The proofs presented in this article follow naturally the viscosity solution spirit.

Indeed, the adaptation of the proof of Lemma 3.1 is straight forward since the func-

tion w constructed in that proof acts as the smooth test function touching u from

above.

5.2. The vanishing viscosity method

The results of this paper can be used to study the regularity of solutions to nonlin-

ear equations. In [11], the Hölder estimates were applied to the derivative of the

solution to a Hamilton-Jacobi equation with fractional diffusion. The author is also

planning to apply the main theorem in this paper to study the regularity of conser-

vation laws with fractional diffusion. For these nonlinear problems, one can use

the vanishing viscosity approximation which makes the solution smooth (depend-

ing on the artificial viscosity) and then obtain some estimates that are independent

of the viscosity coefficient. In this subsection, we show that our results apply in the

vanishing viscosity setting.

For ε > 0, we can approximate the solution to (1.1) with the solution to

uε
t + b · ∇uε + (−△)suε − ε△uε = f. (5.1)

Following the arguments in this article, one can prove that the solution uε is Hölder

continuous with an a priori estimate independent of ε.

The proof of Lemma 3.1 applies to (5.1) as long as ε is bounded above by some

constant C (for example by one). Let us restate the lemma here so that it is suitable

for the vanishing viscosity method.

Lemma 5.1 (point estimate). Let u be a C2 function, u ≤ 1 inR
n× [−2, 0] which

satisfies the following inequality in BR × [−2, 0].

ut − A|∇u| + (−△)su − ε△u ≤ ε0 (5.2)

Where R = 2+ A and ε < 1. Assume also that

|{u ≤ 0} ∩ (B1 × [−2,−1])| ≥ µ.

Then, if ε0 is small enough there is a θ > 0 such that u ≤ 1− θ in B1 × [−1, 0].

(The maximal value of ε0 as well as the value of θ depend only on s and n.)

The proof is the same as the proof of Lemma 3.1 except that at the moment

when we find a contradiction for the equation at the maximum point of w we also

need to estimate ε△u. We would have−ε△u(x0, t0) ≥ εm(t)△xη(x0, t0), and then

we would argue that if η is small enough △η ≥ 0 or if η is large, the term Cm(t)η

controls εm(t)△xη(x0, t0) because ε < 1.

Lemma 3.1 is used at every scale in the iterative improvement of oscillation to

prove Theorem 4.1. When scaling u to large values of k in that proof the coefficient

in front of the Laplacian may grow to values larger than one. The result of Theo-

rem 4.1 is still valid for values of ε larger than zero. The proof would follow the
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following lines. First we do the same iteration to improve the oscillation in cylin-

ders using Lemma 5.1. At some scale k, the coefficient ε in front of the Laplacian

becomes larger than one for the first time. At that point we cannot apply Lemma

5.1 anymore, but the equation is just a lower order perturbation of the heat equation,

so it has Hölder estimates and the decay of the oscillation in the following cylinders

follows because of that.

Alternatively, we can apply Lemma 5.1 iteratively until we reach some scale k

that will be finer the smaller ε is. So, for every ε > 0, we can prove that |u(x) −

u(y)| ≤ C|x − y|α for |x − y| > r−k0 just by iterating Lemma 5.1 as in the proof

of Theorem 4.1. When we take ε → 0, this estimate will hold for all x and y since

k0 → ∞ as ε → 0. This is the approach that was used in [5].

5.3. Integro-differential diffusions

The fractional Laplacian (−△)s in (1.1) could be replaced by general integro-

differential operators of order 2s. These operators have the form

I u(x) =

∫

Rn

(u(x) − u(x + y))
k(x, y)

|y|n+2s
dy .

The kernel k(x, y) is assumed to be symmetric: k(x, y) = k(x,−y) and bounded

below and above: λ ≤ k(x, y) ≤ +. No modulus of continuity with respect to x is

necessary.

We now explain how to understand weak solutions of an equation of the form

ut + b · ∇u +

∫

Rn

(u(x) − u(x + y))
k(x, y, t)

|y|n+2s
dy = f (5.3)

for some kernel k, some bounded right hand side f and some vector field b (either

bounded or C1−2s depending on s). If s ∈ (0, 1/2), the vector field b is continuous

and the equation (5.3) implies that the following two inequalities hold:

ut + b · ∇u − M−u(x) ≥ −B

ut + b · ∇u − M+u(x) ≤ B

where B = ‖ f ‖L∞ , and M± stands for the maximal and minimal operators of order

2s:

M±u(x)

=

∫

Rn

+(u(x+y)+ u(x−y)−2u(x))±− λ(u(x + y) + u(x−y)− 2u(x))±

|y|n+2s
dy.

These operators were first defined in [9]. Even though it seems hard to make sense

of (5.3) in any weak sense, the two inequalities above make perfect sense in the

viscosity sense, and our Hölder estimates depend on those two inequalities only.
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In the case s ∈ [1/2, 1) the vector field b is discontinuous, so the inequalities

above do not make sense in the viscosity sense. However, we can replace the term

b · ∇u by ±A|∇u| respectively, where A = ‖b‖L∞ , in which case the viscosity

solution definition can be applied.

In [11], the Hölder estimates were proved for a function u satisfying both in-

equalities above in the viscosity sense in the case s = 1/2.
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693–704.

[11] L. SILVESTRE, On the differentiability of the solution to the Hamilton-Jacobi equation with
critical fractional diffusion, Adv. in Math. 226 (2011), 2020–2039.
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