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HÖLDER ESTIMATES FOR DEGENERATE ELLIPTIC

EQUATIONS WITH COERCIVE HAMILTONIANS

I. CAPUZZO DOLCETTA, F. LEONI, AND A. PORRETTA

Abstract. We prove a priori estimates and regularity results for some quasi-
linear degenerate elliptic equations arising in optimal stochastic control prob-
lems. Our main results show that strong coerciveness of gradient terms forces
bounded viscosity subsolutions to be globally Hölder continuous, and solu-
tions to be locally Lipschitz continuous. We also give an existence result for
the associated Dirichlet problem.

1. Introduction

In this work we consider a class of second order degenerate elliptic equations
with superlinear Hamiltonians, whose simplest model is the following:

(1.1) −tr
(
A(x)D2u

)
+ λu+ |Du|p = f(x) , x ∈ Ω .

Here Ω is an open bounded subset of RN , N ≥ 2, and A : Ω �→ S+
N is a bounded

and continuous map into the space of symmetric nonnegative matrices of order N ,
λ ≥ 0 and p > 1 are given numbers and f : Ω �→ R is a continuous function.

It is well known that equations such as (1.1) arise in stochastic control as the
Hamilton-Jacobi-Bellman equation satisfied by the value function of optimization
problems for degenerate diffusion processes. More precisely, let Xt be the state of
the controlled system governed by the Ito differential equation

dXt = a(Xt) dt+
√
2Σ(Xt) dWt , X0 = x ∈ Ω ,

where Wt is an M -dimensional Brownian motion, Σ(x) is a nonnegative N × M
matrix and the drift a(Xt) is interpreted as a feedback control, and consider the
cost functional

J(x, a) = Ex

{∫ τx

0

[
f(Xt) +

p− 1

p
p

p−1

|a(Xt)|
p

p−1

]
e−λt dt+ ϕ(Xτx)e

−λτx

}
,

where Ex is the conditional expectation with respect to X0 = x, τx is the first exit
time from Ω and a belongs to a set Ax of admissible control laws. Then, classical
Dynamic Programming arguments, see [9], show that the value function

(1.2) u(x) =: inf
a∈Ax

J(x, a)
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is a viscosity solution of equation (1.1) with A(x) = Σ(x)Σ(x)T . In addition, the
equation can be complemented either with the Dirichlet boundary condition u = ϕ
(for the so-called exit-time problem, ϕ representing a cost to be paid when the state
reaches the boundary) or with the condition that τx = +∞; i.e., the process stays
in Ω for all time with probability one (the state constraint problem).

Several contributions exist in the literature for similar problems. In the case
of equation (1.1), we refer in particular to [10] for a deep and complete study of
the state constraint problem in the model nondegenerate case A(x) ≡ Id (purely
Brownian motion). In that situation, the authors prove that the value function u is
the maximal solution of (1.1), that it is locally Lipschitz and that, if 1 < p ≤ 2, then
u blows up at the boundary, while if p > 2, u is bounded and Hölder continuous up
to the boundary. This fundamental difference between the cases p ≤ 2 and p > 2
reflects a similar feature occurring in the study of the exit-time problem (see [4]);
namely, if 1 < p ≤ 2, then the Dirichlet problem can be solved (in the classical
sense) for any boundary datum ϕ, while if p > 2, this is no longer true and there
can be a loss of boundary conditions. In that case, the best one can expect in
general is that the Dirichlet condition u = ϕ is satisfied in a generalized relaxed
sense.

When studying similar problems (involving state constraint or relaxed boundary
conditions), a crucial role is played by gradient estimates and local barrier effects.
Motivated by this, as well as by related applications to corresponding ergodic (or
homogenization) problems, we study here the regularity properties of (viscosity)
solutions of (1.1) in the general possibly degenerate case (A(x) ≥ 0) with special
attention to estimates independent of the boundary behavior of the solutions. A
crucial role is played by the superlinear character of the Hamiltonian in order to get
general Hölder or Lipschitz estimates. Note that when (1.1) is the Hamilton-Jacobi-
Bellman equation associated to the control problem (1.2), then standard synthesis
procedures show that the vector field a(x) = −p |Du(x)|p−2Du(x) provides an
optimal feedback law and hence a further motivation in investigating the Lipschitz
regularity of solutions.

The main results that we give concern the superquadratic case p > 2, where
we prove that viscosity subsolutions of (1.1) are Hölder continuous. In a simple
version, this result can be stated as follows:

Theorem 1.1. Let Ω ⊂ RN have Lipschitz boundary and satisfy the uniform inte-
rior sphere condition. If u is a bounded, upper semicontinuous, viscosity subsolution
of (1.1) with p > 2, then u is Hölder continuous in Ω and satisfies

(1.3) |u(x)− u(y)| ≤ M |x− y|α ∀x, y ∈ Ω , α =
p− 2

p− 1
,

where M depends on p, ‖A‖L∞(Ω), ‖f‖L∞(Ω), ‖λu−‖L∞(Ω) and on ∂Ω.

The above result extends the Hölder estimates of classical solutions, proved in
[10] for the model case A(x) = Id. What is remarkable is that the result of Theorem
1.1 applies not only to solutions but even to subsolutions, which is not common for
second order problems. This reminds us instead of what happens for coercive first
order equations, where subsolutions are known to be Lipschitz continuous (see e.g.
[1], [2], [12]). Here, when p > 2, the strongly coercive first order term in (1.1)
allows us to control the possible oscillations due to the diffusion term. Moreover,
if A(x) ≡ 0, our proof shows that the exponent α can be taken to be one, which
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is consistent with the first order case. Otherwise, the exponent α found in (1.3) is
optimal.

Another interesting feature of the above estimate is that it is independent of the
boundary value of the solution u. This means that in the study of the Dirichlet
problem the Hölder regularity of the boundary datum ϕ is necessary in order to
find a strong solution, satisfying pointwise the condition u = ϕ. This allows us
to complement previous results obtained in [4] concerning the relaxed formulation
of the Dirichlet problem associated to (1.1), in case A(x) does not degenerate in
the normal direction at ∂Ω. More precisely, under some compatibility conditions
between f and ϕ and assuming an upper bound on the Hölder constant of ϕ,

we prove (Theorem 2.12) the existence of a C0, p−2
p−1 (Ω) viscosity solution of (1.1)

satisfying pointwise the Dirichlet condition u = ϕ.
The above results, which hold in the range p > 2, will be proved in Section

2. More precisely: in Section 2.1 we prove the basic local Hölder estimate for
subsolutions of (1.1); this actually contains the main idea of our proofs and admits
several extensions with respect to the model problem (1.1) (see also Theorem 2.11).
In Section 2.2 we extend the local estimate up to the boundary by using only
the regularity and geometric properties of ∂Ω, thus obtaining the complete result
(Theorem 2.7). In Section 2.3 we consider, under this new light, the Dirichlet
problem associated to (1.1).

On the other hand, in Section 3 we address the issue of Lipschitz continuity
for solutions, and this for the whole superlinear range p > 1. Thus we prove in
Theorem 3.1 that viscosity solutions of (1.1) are locally Lipschitz continuous and
that the gradient estimate |Du(x)| ≤ K

d(x)
1

p−1
holds almost everywhere in Ω, where

d(x) is the distance function from the boundary of Ω. Theorem 3.1 extends previous
similar results obtained using the classical Bernstein method in [10], [13] for the
nondegenerate case or in the recent paper [14] for the degenerate problem set in the
whole space. Similar results have been established in [3] through the so-called weak
Bernstein method applied to viscosity solutions. Let us point out with respect to
these previous works that our proof here uses a different approach which does not
require regularization procedures and avoids, in any sense, the differentiation of the
equation, applying directly to continuous viscosity solutions. A similar approach is
possible by using in its full strength the coercivity of the Hamiltonian. Moreover,
though at the expense of a (quite hard) localization of our test functions, we obtain
an estimate which is independent of the boundary behavior and is stable as λ → 0,
being applicable to ergodic as well as to homogenization problems.

2. Hölder continuity of subsolutions

Let Ω ⊂ RN (N ≥ 2) be an open and bounded set. We consider a function u
which satisfies in the standard viscosity sense (see [8]) the inequality

(2.1) −tr
(
A(x)D2u

)
+ λu+ |Du|p ≤ f(x) ,

where λ ≥ 0, x �→ A(x) is a continuous map from Ω into the space S+
N of nonnegative

symmetric matrices of order N , and f is a continuous function. In all of this section,
the exponent p will be assumed to satisfy p > 2.
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2.1. Local Hölder estimates. Let us start by considering viscosity solutions of
inequality (2.1) posed in a ball of RN . Here and in the following, we use the notation
Br(x0) for the open ball centered at x0 ∈ RN and having radius r > 0.

Lemma 2.1. Let B be any open ball in RN and let d∂B denote the distance function
from the boundary of B. If u ∈ USC(B) is a bounded viscosity subsolution of
equation (2.1) in B with p > 2, then

(2.2) u(x)− u(y) ≤ K

(
|x− y|

d∂B(x)1−α
+ |x− y|α

)
∀x, y ∈ B ,

where α = p−2
p−1 and K is a positive constant depending only on p, ‖A‖L∞(B) and

‖dp(1−α)
∂B (f+ + λu−)‖L∞(B).

Proof. Let B = Br(x0) and let us select a smooth monotone radial function d ∈
C2(B) satisfying the following properties:

(2.3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d(x) = d∂B(x) = r − |x− x0| if

r

2
≤ |x− x0| ≤ r ,

c0 d∂B(x) ≤ d(x) ≤ d∂B(x) ∀x ∈ B ,

|Dd(x)| ≤ 1 , −c1
r
IN ≤ D2d(x) ≤ ON ∀x ∈ B ,

for some positive constants c0 and c1, and with IN and ON standing for, respec-
tively, the unit and the null squared matrix of order N .

We consider, for fixed y ∈ B and k, L > 0 to be specified later, the function

wy,k,L(x) = u(x)− u(y)− k

(
|x− y|
d(x)1−α

+ L |x− y|α
)

,

and we set
My,k,L = sup

x∈B
wy,k,L(x) .

We claim that for k and L large enough, one has My,k,L ≤ 0. For, assume by
contradiction that

(2.4) My,k,L > 0 .

In this case, My,k,L is in fact a maximum achieved inside B \ {y}, by the upper
semicontinuity of u and since

wy,k,L(y) = 0 and lim
x→∂B

wy,k,L(x) = −∞ .

Then, there exists x̂ ∈ B (let us omit the dependence on y, k, L for convenience),
x̂ = y, such that u− Φ has a maximum at x̂, where

Φ(x) = u(y) + k

(
|x− y|
d(x)1−α

+ L |x− y|α
)

.

Since u is a viscosity subsolution of (2.1) and Φ(x) is a smooth function around x̂,
then we have

(2.5) −tr
(
A(x̂)D2Φ(x̂)

)
+ |DΦ(x̂)|p ≤ f(x̂)− λu(x̂) ≤ f+(x̂) + λu−(x̂) ,

with f+ = f ∨ 0 and u− = −u ∧ 0. Computing we get
(2.6)

DΦ(x) = k

[(
d(x)α−1 + αL |x− y|α−1

) x− y

|x− y| − (1− α) d(x)α−2|x− y|Dd(x)

]
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and

D2Φ(x) = k

[(
d(x)α−1 + αL |x− y|α−1

)
|x− y|

(
IN − x− y

|x− y| ⊗
x− y

|x− y|

)
−(1− α)d(x)α−2

(
x− y

|x− y| ⊗Dd(x) +Dd(x)⊗ x− y

|x− y|

)
+(1− α)(2− α)|x− y| d(x)α−3Dd(x)⊗Dd(x)

−(1− α)|x− y| d(x)α−2D2d(x)

−α(1− α)L|x− y|α−2 x− y

|x− y| ⊗
x− y

|x− y|

]
.

We then have, setting η = x−y
|x−y| ,

tr
(
A(x)D2Φ(x)

)
= k

[(
d(x)α−1

|x− y| + αL|x− y|α−2

)
(tr(A(x))−A(x)η · η)

−2(1− α)d(x)α−2A(x)η ·Dd(x)

+(1− α)(2− α)|x− y|d(x)α−3A(x)Dd(x) ·Dd(x)

−(1− α)|x− y|d(x)α−2 tr
(
A(x)D2d(x)

)
−α(1− α)L|x− y|α−2A(x)η · η

]
.

By (2.3) and since A(x) is defined to be nonnegative, we deduce that

tr
(
A(x)D2d(x)

)
≥ −c1

r
tr (A(x)) ≥ −c1

r
‖A‖L∞(B) ,

so that, for x, y ∈ B,

−|x− y|tr
(
A(x)D2d(x)

)
≤ 2c1 ‖A‖L∞(B) .

Therefore, by recalling also that α < 1, we obtain

tr
(
A(x)D2Φ(x)

)
≤ c k‖A‖L∞(B)

(
d(x)α−1

|x− y| + d(x)α−2

+|x− y| d(x)α−3 + L|x− y|α−2

)
,

for some constant c > 0. Henceforth we set ξ := |x̂−y|
d(x̂) and we denote by the same

letter c several universal constants which may vary from line to line. The above
inequality together with (2.5) and (2.6) then yields

kpd(x̂)(α−1)p

∣∣∣∣(1 + αLξα−1
) x̂− y

|x̂− y| − (1− α) ξ Dd(x̂)

∣∣∣∣p
≤ f+(x̂) + λu−(x̂) + c k‖A‖L∞(B)d(x̂)

α−2

(
1 + ξ +

1

ξ
+ L ξα−2

)
;
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hence

(2.7)

kp
∣∣∣∣(1 + αLξα−1

) x̂− y

|x̂− y| − (1− α) ξDd(x̂)

∣∣∣∣p
≤ d(x̂)p(1−α)(f+(x̂) + λu−(x̂))

+c k‖A‖L∞(B)d(x̂)
α−2−p(α−1)

(
1 + ξ +

1

ξ
+ L ξα−2

)
.

Now observe that, since the function d(x) is nonnegative and concave in B, we have

0 ≤ d(y) ≤ d(x)−Dd(x) · (x− y) ∀x, y ∈ B ,

which implies

Dd(x) · x− y

|x− y| ≤
d(x)

|x− y| ∀x, y ∈ B .

This yields the estimate∣∣∣∣(1 + αLξα−1
) x̂− y

|x̂− y| − (1− α) ξDd(x̂)

∣∣∣∣2
≥
(
1 + αLξα−1

)2
+ (1− α)2ξ2|Dd(x̂)|2 − 2(1− α)

(
1 + αLξα−1

)
.

From Young’s inequality we then obtain∣∣∣∣(1 + αLξα−1
) x̂− y

|x̂− y| − (1− α) ξDd(x̂)

∣∣∣∣2
≥ 1

2

(
1 + αLξα−1

)2
+ (1− α)2ξ2|Dd(x̂)|2 − 2(1− α)2 .

Moreover, by (2.3) we have |Dd(x̂)| = 1 if d(x̂) ≤ r/2 and ξ = |x̂−y|
d(x̂) ≤ 4 if

d(x̂) ≥ r/2. Hence∣∣∣∣(1 + αLξα−1
) x̂− y

|x̂− y| − (1− α) ξDd(x̂)

∣∣∣∣2 ≥ 1

2

(
1 + αLξα−1

)2
+ (1− α)2ξ2 − c .

Next, we choose L > 1 sufficiently large depending on α such that

1

2

(
1 + αLξα−1

)2
+ (1− α)2ξ2 − c ≥ 1

4

[(
1 + αLξα−1

)2
+ (1− α)2ξ2

]
∀ ξ > 0 ,

so that
(2.8)∣∣∣∣(1 + αLξα−1

) x̂− y

|x̂− y| − (1− α) ξDd(x̂)

∣∣∣∣2 ≥ 1

4

[(
1 + αLξα−1

)2
+ (1− α)2ξ2

]
.

By using (2.8), together with (2.7), we obtain, since p > 2,

(2.9)

(
k

2

)p [
1 +
(
αLξα−1

)p
+ ((1− α)ξ)

p
]

≤ ‖dp(1−α)
(
f+ + λu−) ‖L∞(B)

+c k‖A‖L∞(B)d(x̂)
α−2−p(α−1)

(
1 + ξ +

1

ξ
+ L ξα−2

)
.
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The choice α =
p− 2

p− 1
gives p(α− 1) = α− 2; hence

(
k

2

)p [
1 +
(
αLξα−1

)p
+ ((1− α)ξ)

p
]

≤ ‖dp(1−α)
(
f+ + λu−) ‖L∞(B) + c k‖A‖L∞(B)

(
1 + ξ +

1

ξ
+ L ξp(α−1)

)
.

Moreover, since p(α− 1) = α− 2 < −1 and L > 1, it easily follows that(
α ∧ (1− α)

2

)p

kp
(
1 + Lpξp(α−1) + ξp

)
≤ ‖dp(1−α)

(
f+ + λu−) ‖L∞(B) + c k‖A‖L∞(B)

(
1 + Lpξp(α−1) + ξp

)
.

We conclude that, if k � ‖A‖1/(p−1)
L∞(B) , then (2.4) implies that

k ≤ c ‖dp(1−α)
(
f+ + λu−) ‖1/pL∞(B) .

Therefore, for

k � ‖A‖1/(p−1)
L∞(B) ∨ ‖dp(1−α)

(
f+ + λu−) ‖1/pL∞(B)

we obtain a contradiction showing that (2.4) cannot hold. This means that

u(x)− u(y) ≤ k

(
|x− y|
d(x)1−α

+ L|x− y|α
)

∀x, y ∈ B ,

so that, by also recalling (2.3), inequality (2.2) is proved to hold with

K = c
(
‖A‖1/(p−1)

L∞(B) ∨ ‖dp(1−α)
∂B

(
f+ + λu−) ‖1/pL∞(B)

)
. �

Remark 2.2. In the completely degenerate case A(x) ≡ ON , inequality (2.9) implies

kp ≤ 2p‖dp(1−α)
∂B

(
f+ + λu−) ‖L∞(B)

for any 0 < α < 1. This yields that estimate (2.2) holds for any α < 1 with a

constant K > 0 depending only on p and ‖dp(1−α)
∂B (f+ + λu−) ‖L∞(B). By letting

α → 1 one recovers the Lipschitz regularity which is known to hold for subsolutions
of coercive first order equations (see e.g. [1, 2, 12]).

We observe that, by reversing the roles of x and y in inequality (2.2), under the
assumptions of Lemma 2.1, any subsolution u satisfies

(2.10) |u(x)− u(y)| ≤ K

[
|x− y|

(d∂B(x) ∧ d∂B(y))1−α
+ |x− y|α

]
∀x, y ∈ B .

This immediately implies that u is actually continuous in B. More than that, we
have the following result.

Lemma 2.3. Let u : B → R be a function satisfying inequality (2.10) for some
0 < α < 1. Then u can be extended up to the boundary as a function in C0,α(B),
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and

(2.11) |u(x)− u(y)| ≤ K1|x− y|α ∀x, y ∈ B ,

with a constant K1 > 0 depending only on K and α.

Proof. First we consider the one-dimensional case: assume that u : (0, 1) → R

satisfies

(2.12) |u(s)− u(t)| ≤ K

[
|s− t|

(s ∧ t)1−α
+ |s− t|α

]
∀ s , t ∈ (0, 1).

For example, let s < t, and consider the sequence of points ak = s+ t−s
2k

. Then ak
is a decreasing sequence starting from a0 = t and converging to s. By (2.12) we
have

|u(an)− u(t)| ≤
n∑

k=1

|u(ak)− u(ak−1)| ≤ K

n∑
k=1

[
(ak−1 − ak)

a1−α
k

+ (ak−1 − ak)
α

]
.

Since ak−1 − ak = 2(ak − ak+1) =
(t−s)
2k

, we get

|u(an)− u(t)| ≤ K
n∑

k=1

[
2
(ak − ak+1)

a1−α
k

+
(t− s)α

2αk

]

≤ K

[
n∑

k=1

2

∫ ak

ak+1

rα−1dr +
(t− s)α

2α − 1

]

≤ K

[
2

∫ t

s

rα−1dr +
(t− s)α

2α − 1

]
≤ K

(
2

α
+

1

2α − 1

)
|t− s|α = K ′|t− s|α .

Letting n → ∞ gives the conclusion. This shows that a function u : B → R

satisfying (2.10) is α–Hölder continuous when restricted along any radius of the
ball B.

In order to extend inequality (2.11) to all x, y ∈ B, we use the same argument as
in [13]. Suppose for example that d∂B(x) ≤ d∂B(y) and write x = x̄+ d∂B(x)ν(x̄),
y = ȳ+d∂B(y)ν(ȳ), where x̄, ȳ are the projections of x,y on ∂B and ν is the inward
normal vector field to ∂B. We distinguish several cases: if |x − y| ≤ d∂B(y), then
consider the point z = x̄ + d∂B(y)ν(x̄), which has the same distance of y but lies
on the same radius as x. From the one dimensional result and (2.10) we obtain

|u(x)− u(y)| ≤ |u(x)− u(z)|+ |u(z)− u(y)|

≤ K ′
[
|d∂B(x)− d∂B(y)|α +

|z − y|
d∂B(y)1−α

+ |z − y|α
]

and since |z − y| ≤ |x− y|+ |d∂B(x)− d∂B(y)| ≤ 2|x− y| and |x− y| ≤ d∂B(y), we
deduce (2.11).

On the other hand, if r > |x − y| > d∂B(y), then we consider the points w1 =
x̄+ |x− y|ν(x̄) and w2 = ȳ + |x− y|ν(ȳ), which are, respectively, on the x̄–normal
and on the ȳ–normal at same distance |x − y| from the boundary. Similarly as
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before we have

|u(x)− u(y)| ≤ |u(x)− u(w1)|+ |u(w2)− u(y)|+ |u(w1)− u(w2)|

≤ K ′
[
||x− y| − d∂B(x)|α + ||x− y| − d∂B(y)|α

+
|w1 − w2|
|x− y|1−α

+ |w1 − w2|α
]

and since we are in the case |x− y| > d∂B(y) ≥ d∂B(x) we conclude again (2.11).
Finally, if |x− y| ≥ r, we consider the center x0 of B and we obtain

|u(x)− u(y)| ≤ |u(x)− u(x0)|+ |u(y)− u(x0)| ≤ 2K ′rα ≤ 2K ′|x− y|α . �
Lemma 2.1 and Lemma 2.3 jointly yield the following local Hölder estimate.

Theorem 2.4. Let Ω be an open bounded subset of RN , and let u ∈ USC(Ω) be a
bounded viscosity solution of

−tr
(
A(x)D2u

)
+ λu+ |Du|p ≤ f(x) , x ∈ Ω ,

with λ ≥ 0, p > 2, A : Ω → S+
N bounded and continuous and f : Ω → R continuous

such that d
p/p−1
∂Ω f+ is bounded, d∂Ω being the distance function from ∂Ω.

Then, u is locally Hölder continuous in Ω, and there exists a positive constant

K1 depending only on p, ‖A‖L∞(Ω) and ‖dp/p−1
∂Ω (f+ + λu−)‖L∞(Ω) such that

|u(x)− u(y)| ≤ K1|x− y|α ∀x, y ∈ B ,

for any open ball B ⊂ Ω and with α = p−2
p−1 .

Remark 2.5. In Theorem 2.4, the exponent α = p−2
p−1 is the best one can expect.

Indeed, a direct computation shows that the function u(x) = |x|(p−2)/(p−1) satisfies

−Δu+ λu+ |Du|p ≤ λ in B1(0) ⊂ RN ,

as soon as N ≥ 2.

2.2. Global Hölder estimates. This section is devoted to extending Theorem
2.4, in order to prove the global Hölder continuity of any subsolution u without
imposing any boundary condition on u. Once u is known to be uniformly locally
Hölder continuous in a domain Ω ⊂ RN (as stated in Theorem 2.4), its global Hölder
continuity can be obtained under some smoothness assumptions on the boundary
of Ω.

Henceforth, we say that an open bounded subset Ω ⊂ RN has Lipschitz boundary
if around each point x0 ∈ ∂Ω the domain Ω can be represented as the subgraph of
a Lipschitz continuous function of N − 1 variables.

We also say that Ω satisfies the uniform interior sphere condition, with a radius
r > 0, if for every x0 ∈ ∂Ω there exists a unit vector ν(x0) such that

Br (x0 + r ν(x0)) ⊂ Ω .

Note that any such unit vector ν(x0) belongs to the normal cone to Rn \ Ω at x0

(see e.g. [7] for the definiton of tangent and normal cones to closed sets).

Lemma 2.6. Let Ω ⊂ RN be an open bounded domain having Lipschitz boundary
and satisfying the uniform interior sphere condition. If u : Ω → R is a continuous
function such that there exist K1 > 0 and 0 < α < 1 satisfying

(2.13) |u(x)− u(y)| ≤ K1|x− y|α ∀x, y ∈ B ,
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for any open ball B ⊂ Ω, then u can be extended up to ∂Ω as a function satisfying

(2.14) |u(x)− u(y)| ≤ M |x− y|α , ∀x, y ∈ Ω ,

where M ≥ K1 is a constant depending on α, K1 and ∂Ω.

Proof. By the interior sphere property, every point x ∈ ∂Ω also lies on the boundary
of some open ball contained in Ω. In particular, for every x ∈ ∂Ω, let Bx ⊂ Ω be
the largest open ball such that x ∈ ∂Bx. Thanks to assumption (2.13), we can
therefore define the function u at x ∈ ∂Ω by setting

u(x) = lim
y→x
y∈Bx

u(y) .

We note that with this definition, for every x ∈ Ω and for any x̄ ∈ ∂Ω such that
|x− x̄| = d∂Ω(x), (2.13) implies that

(2.15) |u(z)− u(x̄)| ≤ K1|z − x̄|α , ∀ z ∈ Bd∂Ω(x)(x) .

Let x, y ∈ Ω be distinct points and let us prove (2.14).
If |x−y| < d∂Ω(x)∨d∂Ω(y), then both x and y lie in Ω and either y ∈ Bd∂Ω(x)(x)

or x ∈ Bd∂Ω(y)(y). In both cases, (2.14) follows directly from (2.15) with M = K1.
Hence, we can assume that |x−y| ≥ d∂Ω(x)∨d∂Ω(y). If x̄, ȳ ∈ ∂Ω are boundary

points such that |x− x̄| = d∂Ω(x) and |y − ȳ| = d∂Ω(y), then by (2.15) we have

|u(x)− u(y)| ≤ |u(x)− u(x̄)|+ |u(y)− u(ȳ)|+ |u(x̄)− u(ȳ)|
≤ K1 (d∂Ω(x)

α + d∂Ω(y)
α) + |u(x̄)− u(ȳ)|

≤ 2K1|x− y|α + |u(x̄)− u(ȳ)| .
If we show that

(2.16) |u(x)− u(y)| ≤ K2|x− y|α , ∀x, y ∈ ∂Ω ,

then from the above we obtain

|u(x)− u(y)| ≤ 2K1|x− y|α +K2|x̄− ȳ|α ≤ (2K1 + 3αK2)|x− y|α ,

that is, (2.14). Therefore, it is enough to prove (2.16).
We claim that, by the Lipschitz regularity of ∂Ω, there exists δ > 0 such that

for all x, y ∈ ∂Ω one has

(2.17) |x− y| < δ =⇒ |ν(x)− ν(y)| < 2− δ ,

for any choice of unit vectors ν(x) and ν(y) belonging to the normal cones at x and
y, respectively. Indeed, if not, we could find sequences {xk} and {yk} of boundary
points converging to the same point x0 ∈ ∂Ω and such that, for every k, there exist
normal unit vectors ν(xk) and ν(yk) satisfying |ν(xk)−ν(yk)| ≥ 2−1/k. By letting
k → ∞, we would obtain two unit vectors ν1 and ν2 both in the normal cone at x0

satisfying |ν1 − ν2| = 2, that is, such that ν1 = −ν2. But this is impossible for a
Lipschitz domain (see Corollary 2 and Theorem 3 in [15]).

We set δ0 = δ ∧ δ r, where r > 0 is such that Ω satisfies the uniform interior
sphere condition with radius r, and let x, y ∈ ∂Ω with |x−y| < δ0. By the uniform
interior sphere condition, there exist unit vectors ν(x) and ν(y) such that

B |x−y|
δ

(
x+

|x− y|
δ

ν(x)

)
, B |x−y|

δ

(
y +

|x− y|
δ

ν(y)

)
⊂ Ω .
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Moreover, by (2.17) one has∣∣∣∣(x+
|x− y|

δ
ν(x)

)
−
(
y +

|x− y|
δ

ν(y)

)∣∣∣∣ ≤ |x− y|+ |x− y|
δ

|ν(x)− ν(y)|

< 2
|x− y|

δ
,

which implies that there exists a point

z ∈ B |x−y|
δ

(
x+

|x− y|
δ

ν(x)

)
∩B |x−y|

δ

(
y +

|x− y|
δ

ν(y)

)
.

By (2.15), it then follows that

|u(x)− u(y)| ≤ |u(x)− u(z)|+ |u(y)− u(z)|

≤ K1 (|x− z|α + |y − z|α) ≤ 2α+1

δα
K1|x− y|α .

Inequality (2.16) is thus proved for x, y ∈ ∂Ω satisfying |x − y| < δ0. By covering
∂Ω with a finite number n of balls of radius δ0, we get (2.16) with a constant K2

depending on K1, α, δ, r and the number n. �

As a consequence of Theorem 2.4 and Lemma 2.6 we can state the following
global Hölder estimate.

Theorem 2.7. Let Ω ⊂ RN be an open bounded domain having Lipschitz boundary
and satisfying the uniform interior sphere condition. Let u ∈ USC(Ω) be a bounded
viscosity solution of

−tr
(
A(x)D2u

)
+ λu+ |Du|p ≤ f(x) , x ∈ Ω ,

with λ ≥ 0, p > 2, A : Ω → S+
N bounded and continuous and f : Ω → R continuous

such that d
p/p−1
∂Ω f+ is bounded, d∂Ω being the distance function from ∂Ω.

Then, u is Hölder continuous in Ω, and there exists a positive constant M de-

pending only on p, ‖A‖L∞(Ω), ‖dp/p−1
∂Ω (f+ + λu−)‖L∞(Ω) and on ∂Ω such that

(2.18) |u(x)− u(y)| ≤ M |x− y|α ∀x, y ∈ Ω , α =
p− 2

p− 1
.

Remark 2.8. According to Remark 2.2, if A(x) ≡ 0 in Ω, then any bounded sub-
solution u is such that |Du| ∈ L∞(Ω). In this case, in order to obtain that u is
Lipschitz continuous in Ω, it is enough to assume that Ω has Lipschitz boundary.

Remark 2.9. If Ω is a convex domain of class C2, we can avoid passing through the
local estimate of Theorem 2.4 in order to get the global regularity. In this case, we
can apply the arguments of the proof of Lemma 2.1 by replacing B with Ω, and
then, thanks to Lemma 2.3, we obtain directly the global estimate (2.18). Actually,
even if Ω is not convex, but it is of class C2, the proof of Lemma 2.1 can be slightly
modified so as to yield (jointly with Lemma 2.3) estimate (2.18) with a constant M
depending not only on ‖λu−‖L∞(Ω) but also on ‖u‖L∞(Ω). Thus, the use of the local
estimate given by Theorem 2.4 is needed both for relaxing the assumptions on the
smoothness of ∂Ω and for having estimate (2.18) with a constant M independent
of ‖u‖L∞(Ω).
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Remark 2.10. The continuity assumption on f(x) and A(x) plays no role in the es-
timate of Lemma 2.1 and in the result of Theorem 2.7. It was assumed only in order
to consider the standard (pointwise) definition of viscosity subsolutions. The same
results hold if f(x), A(x) are assumed to be measurable and essentially bounded,
and considering subsolutions u in the so-called Lp-viscosity sense introduced in [6].

It is clear from the proof of Lemma 2.1 that all the results of this section hold
in more generality and in particular for some fully nonlinear operators as well.

More precisely, the same conclusions of Theorem 2.4 and Theorem 2.7 hold if
u ∈ USC(Ω) is a bounded viscosity solution of

(2.19) F (x,Du,D2u) + λu+ |Du|p ≤ f(x) , x ∈ Ω ,

where λ, p, f(x) satisfy the assumptions of the above theorems and F (x, ξ,M) is a
continuous function, degenerate elliptic, i.e.
(2.20)

F (x, ξ,M1)− F (x, ξ,M2) ≤ 0 ∀x ∈ Ω, ξ ∈ RN , M1,M2 ∈ SN : M1 ≥ M2

and satisfying, for some positive constants Λ, γ > 0:

F (x, ξ,M) ≥ −Λ ‖M‖ ∀x ∈ Ω, ξ ∈ RN : |ξ| > γ, M ∈ SN .

Moreover, the same approach can provide similar results in even more general
situations, including quasilinear operators such as the m–Laplacian. For the sake
of clarity, let us state precisely this extended result.

Theorem 2.11. Let Ω ⊂ RN be an open bounded domain having Lipschitz boundary
and satisfying the uniform interior sphere condition. Let F (x, ξ,M) be a continuous
function satisfying (2.20) and the growth assumption

F (x, ξ,M) ≥ −Λ |ξ|m−2 ‖M‖ ∀x ∈ Ω, ξ ∈ RN : |ξ| > γ, M ∈ SN

for some constants Λ, γ > 0 and for some m > 1, and let u ∈ USC(Ω) be a bounded
viscosity solution of (2.19), where λ ≥ 0, p > m, f : Ω → R is continuous and such

that d
p/p−(m−1)
∂Ω f+ is bounded.

Then, u is Hölder continuous in Ω, and there exists a positive constant M de-

pending on p, m, Λ, γ, ‖dp/p−(m−1)
∂Ω (f+ + λu−)‖L∞(Ω) and on ∂Ω such that

(2.21) |u(x)− u(y)| ≤ M |x− y|α ∀x, y ∈ Ω , α =
p−m

p− (m− 1)
.

The proof of this result follows exactly the same steps as for Theorem 2.7, the
only minor change appearing in the basic estimate of Lemma 2.1. Here it is enough
to observe that, by construction of the test function Φ, we have (see (2.6) and (2.8))

1

4

[(
1 + αLξα−1

)
+ (1− α)ξ

]
kd(x)α−1 ≤ |DΦ|

≤ k d(x)α−1
[(
1 + αLξα−1

)
+ (1− α)ξ

]
,

which allows us to take care of the weight |DΦ|m−2 with similar estimates from
above and from below.
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2.3. Solvability of the Dirichlet problem. In this section we address the prob-
lem of existence of solutions of (1.1) complemented with Dirichlet type boundary
conditions, namely

(2.22)

{ −tr
(
A(x)D2u

)
+ λu+ |Du|p = f(x) in Ω ,

u = ϕ on ∂Ω .

We assume the following standard conditions:

Ω ⊂ RN open, bounded, of class C2 , with N ≥ 2 ,(2.23)

f ∈ C(Ω) ,(2.24)

λ > 0 ,(2.25)

ϕ ∈ C(∂Ω) ,(2.26)

∃ a Lipschitz map Σ : Ω → MN×M : such that
A(x) = Σ(x)Σ(x)T ,

(2.27)

where MN×M is the space of N ×M matrices.
Moreover, we will focus on the case when the problem is nondegenerate at the

boundary; more precisely, we assume that there exists a positive constant σ such
that

(2.28) A(x)ν(x) · ν(x) ≥ σ > 0 ∀x ∈ ∂Ω .

Then, it is well known that if 1 < p ≤ 2, problem (2.22) has a unique strong
viscosity solution, that is, a function u ∈ C(Ω) which is a viscosity solution in Ω
and satisfies pointwisely u = ϕ on ∂Ω. By contrast, when p > 2, the results of
[4, 10] imply that problem (2.22), even in the uniformly elliptic case and posed
in a smooth domain, cannot be solved in general. The best one can obtain is the
existence of a viscosity solution satisfying the boundary condition in the relaxed
viscosity formulation (see [5, 8]). Precisely, in [4], the authors prove that (2.22)
has a unique generalized viscosity solution, that is, a function u ∈ C(Ω) which is a
viscosity solution in Ω, u ≤ ϕ on ∂Ω and it satisfies, in the viscosity sense,

x ∈ ∂Ω , u(x) < ϕ(x) =⇒ −tr
(
A(x)D2u

)
+ λu+ |Du|p ≥ f(x) .

In the case p > 2, a loss of the boundary condition may actually occur. This
phenomenon is consistent with the results obtained in [10] on the maximal solution
of (1.1). Since, if p > 2, the maximal solution U turns out to be bounded in Ω,
it is clear that every boundary datum ϕ cannot be reached in the region where it
exceeds U . In particular, the upper bound ϕ ≤ U is a necessary condition on ϕ for
the solvability of (2.22) in the strong viscosity sense.

Moreover, by Theorem 2.7, every function u ∈ C(Ω) which satisfies the equation
in Ω is (p − 2)/(p − 1)–Hölder continuous up to the boundary. Hence, another
necessary condition on ϕ is the existence of M ≥ 0 such that

(2.29) |ϕ(x)− ϕ(y)| ≤ M |x− y|α ∀x, y ∈ ∂Ω , α =
p− 2

p− 1
.

In the next result we exhibit in the case p > 2 some sufficient conditions ensur-
ing the existence of a solution u ∈ C(Ω) of (2.22) which assumes pointwisely the
boundary datum.
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Theorem 2.12. Assume that (2.23)–(2.28) hold true, and that p > 2. There exists
a constant M0 > 0, depending on p, N , σ, A(x) and on the domain Ω, such that if
ϕ satisfies (2.29) with M < M0 and if

(2.30) λ inf ϕ ≤ inf f ,

then the Dirichlet problem (2.22) has a unique viscosity solution u ∈ C0, p−2
p−1 (Ω)

such that u(x) = ϕ(x) for every x ∈ ∂Ω.

Proof. The uniqueness is an immediate consequence of the standard Comparison
Principle for viscosity solutions (see [8]). Also the (p− 2)/(p− 1) Hölder continuity
of the solution directly follows from Theorem 2.7.

Therefore, it is enough to show the existence of a solution u ∈ C(Ω) satisfying
u = ϕ on ∂Ω. This is equivalent to proving the existence of a viscosity subsolution
v ∈ C(Ω) satisfying v = ϕ on ∂Ω. Indeed, if such a subsolution v exists, then the
generalized solution u ∈ C(Ω) proved in [4] to exist satisfies u ≥ v in Ω and u ≤ ϕ
on ∂Ω; hence ϕ = v ≤ u ≤ ϕ on ∂Ω.

We will construct the subsolution v first in a small neighborhood Nδ = {x ∈ Ω :
d∂Ω(x) < δ} of ∂Ω, and then we will extend it to the whole Ω. To this purpose,
using that Ω is of class C2, assumption (2.28) and the continuity of A(x), we can
fix δ0 such that d∂Ω(x) is a function of class C2 in Nδ0 and

(2.31) A(x)Dd∂Ω(x) ·Dd∂Ω(x) ≥
σ

2
∀x ∈ Nδ0 .

For δ < δ0, let us consider the function

vy(x) = ϕ(y)−M |x− y|α − μM d∂Ω(x)
α ,

where y ∈ ∂Ω is fixed, μ > 0 will be chosen later and α = p−2
p−1 as usual. Notice

that vy is of class C2 in Nδ, and, by a direct computation, we have

−tr
(
A(x)D2vy

)
+ λ vy + |Dvy|p

= αM |x− y|α−2

(
tr (A(x)) + (α− 2)A(x)

x− y

|x− y| ·
x− y

|x− y|

)
−μM α (1− α) d∂Ω(x)

α−2A(x)Dd∂Ω(x) ·Dd∂Ω(x)

+μM αd∂Ω(x)
α−1tr

(
A(x)D2d∂Ω(x)

)
+λ vy(x) +Mpαp

∣∣|x− y|α−2(x− y) + μ d∂Ω(x)
α−1Dd∂Ω(x)

∣∣p .
Since |x− y| ≥ d∂Ω(x) and (α− 1)p = α− 2, we obtain, using (2.31),

−tr
(
A(x)D2vy

)
+ λ vy + |Dvy|p − f

≤ αM d∂Ω(x)
α−2

[
N‖A‖L∞ − μ

(
(1− α)

σ

2
− δ K ‖A‖L∞

)
+ (αM)p−1(1 + μ)p

]
+(λ vy(x)− f(x)) ,

for x ∈ Nδ and with K = supx∈Nδ
|D2d∂Ω(x)|. By observing that

vy ≤ inf ϕ+Mdiam(Ω)α
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and by using (2.30), we deduce

−tr
(
A(x)D2vy

)
+ λ vy + |Dvy|p − f

≤ αM d∂Ω(x)
α−2

[
N‖A‖L∞ − μ

(
(1− α)

σ

2
− δ K ‖A‖L∞

)
+(αM)p−1(1 + μ)p + λ

δ2−α

α
diam(Ω)α

]
.

Hence

−tr
(
A(x)D2vy

)
+ λ vy + |Dvy|p ≤ f in Nδ ,

provided that
(2.32)

N‖A‖L∞−μ
(
(1− α)

σ

2
− δ K ‖A‖L∞

)
+(αM)p−1(1+μ)p+λ

δ2−α

α
diam(Ω)α ≤ 0 .

Let us assume for the time being that (2.32) is satisfied. Then, we have proved
that, for every y ∈ ∂Ω, the function vy is a (classical) subsolution in Nδ. This
implies that the function

vδ(x) = sup
y∈∂Ω

vy(x) , x ∈ Nδ

is a subsolution as well. We notice that vδ(x) = ϕ(x) for x ∈ ∂Ω by (2.29), and,
moreover, vδ(x) ≤ supϕ−M (1 + μ) δα for x ∈ ∂Nδ ∩ Ω = {x ∈ Ω : d∂Ω(x) = δ}.
If we further assume that

(2.33) supϕ− inf ϕ < M (1 + μ)δα ,

then we can select a constant γ such that

(2.34) supϕ−M (1 + μ)δα < γ < inf ϕ .

We then define

v(x) =

{
vδ(x) ∨ γ if x ∈ Nδ ,

γ if x ∈ Ω \ Nδ .

We notice that, by (2.30) and (2.34), γ is a constant subsolution in Ω and, moreover,
γ > vδ(x) for every x ∈ ∂Nδ ∩Ω. This implies that v ∈ C(Ω) is a subsolution in Ω.
Furthermore, again by (2.34), we have that γ < vδ(x) = ϕ(x) for all x ∈ ∂Ω and
then v = ϕ on ∂Ω.

The proof is then completed if we show that (2.32) and (2.33) hold true. From
(2.29) it follows that supϕ − inf ϕ ≤ M (diamΩ)α. Therefore, (2.33) is satisfied if
we impose that

μ >

(
diamΩ

δ

)α

− 1 .

Then, in order to also verify (2.32), we have to check the existence of μ and δ (with
0 < δ < δ0) satisfying the above condition and such that

(αM)p−1 <
μ
(
(1− α) σ

2 − δ K ‖A‖L∞(Ω)

)
− (N ‖A‖L∞(Ω) + λ δ2−α

α diam(Ω)α)

(1 + μ)p
.

Without loss of generality, we assume that δ is small enough so that (1 − α) σ
2 −

δ K ‖A‖L∞(Ω) > 0. Then, it is easy to verify the existence of μ satisfying the above
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conditions provided M < M0, where

Mp−1
0 = sup

C

[
μ
(
(1− α) σ

2 − δ K0 ‖A‖L∞(Ω)

)
− (N ‖A‖L∞(Ω) + λ δ2−α

α diam(Ω)α)

αp−1(1 + μ)p

]

with C = {(δ, μ) : 0 < δ < min(δ0,
(1−α)σ

2K0‖A‖L∞(Ω)
) , μ >

(
diamΩ

δ

)α − 1}, where δ0 is

the value fixed above and K0 = supx∈Nδ0
|D2d∂Ω(x)|. �

Remark 2.13. Assumption (2.30) in the above theorem may be regarded as a com-
patibility condition among the data of the problem ϕ, f , λ. In the special case in
which ϕ(x) ≡ ϕ0 is constant, this reduces to λϕ0 ≤ inf f and was already found in
[11].

Remark 2.14. The assumption of nondegeneracy (2.28) is needed in the above
result. Indeed, in the degenerate case A(x) = 0 solutions are known to be Lipschitz
continuous up to the boundary; hence ϕ could not have been assumed to be just
Hölder continuous. We recall that for first order equations a necessary and sufficient
condition for solving the Dirichlet problem with Lipschitz boundary data can be
found in [12].

3. Lipschitz estimates: Bernstein’s method revisited

In this section we complement the regularity results of Section 2 by considering
solutions, and not only subsolutions, of (1.1) and for the whole range p > 1. More
precisely, let Ω ∈ RN be open and bounded, and let us consider the equation

(3.1) −tr
(
A(x)D2u

)
+ λu+H(x,Du) = 0 x ∈ Ω .

We assume that λ ≥ 0, that the map A : Ω → S+
N satisfies

(3.2)
∃ a Lipschitz map Σ : Ω → MN×M such that

A(x) = Σ(x)Σ(x)T ,

whereMN×M is the space ofN×M matrices, and that there exist positive constants
γ0, γ1, γ2 and functions f , g1 , g2 ∈ C(Ω) such that

(3.3)

H(x, ξ) ≥ γ0 |ξ|p − f(x) , p > 1 ,

|H(x, ξ)−H(x, η)| ≤ γ1
(
|ξ|p−1 + |η|p−1

)
|ξ − η| ,

|H(x, ξ)−H(y, ξ)| ≤ γ2 (g1(x) + g2(x) |ξ|p) |x− y| .
We have the following result.

Theorem 3.1. Assume that (3.2), (3.3) hold true and that the continuous functions

f , g1 and g2 are such that d
p

p−1

∂Ω f , d
2p−1
p−1

∂Ω g1 and d∂Ω g2 are bounded in Ω, where
d∂Ω(x) = dist(x, ∂Ω). Let u ∈ C(Ω) be a bounded viscosity solution of (3.1) in Ω
with λ ≥ 0.

Then u is locally Lipschitz continuous and there exists a positive constant K

(depending on p, ‖Σ‖L∞(Ω), ‖Σx‖L∞(Ω), ‖d
p

p−1

∂Ω (f − λu)
+ ‖L∞(Ω), ‖d

2p−1
p−1

∂Ω g1‖L∞(Ω),
‖d∂Ω g2‖L∞(Ω), and γi, i = 0, 1, 2) such that

|Du(x)| ≤ K

d(x)
1

p−1

for a.e. x ∈ Ω.
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Proof. Let us initially assume that Ω = B is a unit ball. Then, u ∈ C(B) is a
bounded viscosity solution of equation (3.1) in B. We denote by d∂B the distance
function from the boundary of B, and we select a smooth monotone radial function
d ∈ C2(B) satisfying the following properties:

(3.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d(x) = d∂B(x) if d∂B(x) ≤

1

2
,

d∂B(x)

2
≤ d(x) ≤ d∂B(x) ∀x ∈ B ,

|Dd(x)| ≤ 1 , D2d(x) ≤ 0 ∀x ∈ B .

Consider the function

Φ(x, y) = k |x− y|ϕ(x, y),
where

(3.5) ϕ(x, y) =
1

d(y)γ

[
L+

(
|x− y|
d(x)

)β
]
.

The constants γ, β, L are positive and will be fixed later. Note that ϕ(x, y) blows
up as either d(x) or d(y) tend to zero; indeed ϕ should be regarded as a cutoff
function which allows us to get rid of the boundary.

Our claim is that, by choosing k large enough, we have

u(x)− u(y)− Φ(x, y) ≤ 0 ∀x , y ∈ B .

Indeed, suppose by contradiction that the function w(x, y) = u(x)− u(y)−Φ(x, y)
is positive somewhere. Then, it should have a positive maximum taken at points x,
y inside B and such that x = y. By a standard result in viscosity solutions theory
(see e.g. [8]), for every ε > 0 there exist matrices X = X(ε), Y = Y (ε) ∈ SN such
that

(3.6)

(DxΦ(x, y) , X) ∈ J
2,+

u(x) , (−DyΦ(x, y) , Y ) ∈ J
2,−

u(y) ,

−(
1

ε
+ ‖D2Φ(x, y)‖)I2N ≤

(
X 0

0 −Y

)
≤ D2Φ(x, y) + ε

(
D2Φ(x, y)

)2
,

where J
2,±

denotes the closure of the second order super(sub)-jet.
Since u is a viscosity subsolution of (3.1), this implies that

(3.7) −tr (A(x)X) + λu(x) +H(x,DxΦ) ≤ 0 ,

and, coupling with the condition of supersolution, that

(3.8) −tr (A(x)X −A(y)Y ) + λ (u(x)− u(y)) +H(x,DxΦ)−H(y,−DyΦ) ≤ 0 .

In particular, for any t > 0 we have

t tr (A(x)X)− tr ((1 + t)A(x)X −A(y)Y )

+λ (u(x)− u(y)) +H(x,DxΦ)−H(y,−DyΦ) ≤ 0 ,

which yields, using (3.7) and since u(x)− u(y) > k|x− y|ϕ > 0,
(3.9)
tH(x,DxΦ) ≤ −t λ u(x)+tr ((1 + t)A(x)X −A(y)Y )+H(y,−DyΦ)−H(x,DxΦ) .
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Now consider the nonnegative matrix

(3.10) At =

(
(1 + t)Σ(x)Σ(x)T

√
1 + tΣ(x)Σ(y)T

√
1 + tΣ(y)Σ(x)T Σ(y)Σ(y)T

)
;

multiplying the right-most inequality in (3.6) by At and taking traces yields

tr ((1 + t)A(x)X −A(y)Y ) ≤ tr
[
AtD

2Φ(x, y)
]
+ ε tr

[
At(D

2Φ(x, y))2
]
.

Therefore we get from (3.9),

tH(x,DxΦ) ≤ −t λ u(x) +H(y,−DyΦ)−H(x,DxΦ)

+ tr
[
AtD

2Φ(x, y)
]
+ ε tr

[
At(D

2Φ(x, y))2
]
,

and finally, letting ε tend to zero,

(3.11) tH(x,DxΦ) ≤ −t λ u(x) +H(y,−DyΦ)−H(x,DxΦ) + tr
[
AtD

2Φ(x, y)
]
.

Now we have to compute the derivatives of Φ. We get
(3.12)

DxΦ = k ϕ
x− y

|x− y| + k |x− y|Dxϕ

=
k

d(y)γ

[(
L+ (1 + β)

(
|x− y|
d(x)

)β
)

x− y

|x− y| − β

(
|x− y|
d(x)

)β+1

Dd(x)

]
and, similarly,

(3.13)

DyΦ = − k

d(y)γ

[(
L+ (1 + β)

(
|x− y|
d(x)

)β
)

x− y

|x− y|

+γ
|x− y|
d(y)

(
L+

(
|x− y|
d(x)

)β
)
Dd(y)

]
.

Henceforth, for shortness we will denote ξ = |x−y|
d(x) and, for any vector v ∈ RN \{0},

we set v̂ = v
|v| . Moreover, we denote by c several constants which may be different

from line to line.
We notice that

|DxΦ|2 =
k2

d(y)2γ

[ (
L+ (1 + β)ξβ

)2
+ β2|Dd(x)|2ξ2(β+1)

−2β
Dd(x) · (x− y)

d(x)
ξβ
(
L+ (1 + β)ξβ

)]
.

Observe now that since the function d(x) is nonnegative and concave in B, we have

d(x) ≥ Dd(x) · (x− y) ∀x, y ∈ B;

hence we get

|DxΦ|2 ≥ k2

d(y)2γ

[(
L+ (1 + β)ξβ

)2
+ β2|Dd(x)|2ξ2(β+1) − 2βξβ

(
L+ (1 + β)ξβ

)]

≥ k2

d(y)2γ

[
1

2

(
L+ (1 + β)ξβ

)2
+ β2|Dd(x)|2ξ2(β+1) − 2β2 ξ2β

]
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Moreover, by (3.4) we have |Dd(x)| = 1 if d(x) ≤ 1/2 and ξ = |x−y|
d(x) ≤ 4 if

d(x) ≥ 1/2. Thus we obtain

|DxΦ|2 ≥ k2

d(y)2γ

[
1

2

(
L+ (1 + β)ξβ

)2
+

β2

2
ξ2(β+1) − c

]
,

where c > 0 depends only on β. Here we choose L sufficiently large such that

|DxΦ|2 ≥ c
k2

d(y)2γ

[(
L+ (1 + β)ξβ

)2
+ β2ξ2(β+1)

]
.

This will fix once for all the constant L. We conclude that there exists a constant
c > 0 such that

(3.14) |DxΦ| ≥ c
k

d(y)γ
(L+ ξβ)(1 + ξ) = c k ϕ (1 + ξ).

Let us now compute D2Φ. We have

D2
xxΦ =

k

|x− y|d(y)γ
[
L+ (1 + β)ξβ

] (
I − x̂− y ⊗ x̂− y

)
+

k

d(y)γ
β(1 + β)

ξβ−1

d(x)
x̂− y ⊗ x̂− y

− k

d(y)γ
β(1 + β)

ξβ

d(x)

(
x̂− y ⊗Dd(x) +Dd(x)⊗ x̂− y

)
+

k

d(y)γ

[
β(1 + β)

ξβ+1

d(x)
Dd(x)⊗Dd(x)− βξβ+1D2d(x)

]
and

D2
xyΦ = − k

|x− y|d(y)γ
[
L+ (1 + β)ξβ

] (
I − x̂− y ⊗ x̂− y

)
− k

d(y)γ
β(1 + β)

ξβ−1

d(x)
x̂− y ⊗ x̂− y

+
k

d(y)γ
β(1 + β)

ξβ

d(x)
Dd(x)⊗ x̂− y

−k
γ

d(y)γ+1

[(
L+ (1 + β)ξβ

)
x̂− y ⊗Dd(y)− βξβ+1Dd(x)⊗Dd(y)

]
and

D2
yyΦ =

k

|x− y|d(y)γ
[
L+ (1 + β)ξβ

] (
I − x̂− y ⊗ x̂− y

)
+

k

d(y)γ
β(1 + β)

ξβ−1

d(x)
x̂− y ⊗ x̂− y

+k
γ

d(y)γ+1

(
L+ (1 + β)ξβ

) (
x̂− y ⊗Dd(y) +Dd(y)⊗ x̂− y

)
+k γ(γ + 1)

|x− y|
d(y)γ+2

(L+ ξβ)Dd(y)⊗Dd(y)

−k γ
|x− y|
d(y)γ+1

(L+ ξβ)D2d(y).
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Therefore we can sum up D2Φ as follows:

k

d(y)γ

{
(L+ (1 + β)ξβ)

|x− y|

(
B −B
−B B

)
+

β(1 + β)ξβ

|x− y|

(
T −T
−T T

)
+
β(1 + β)ξβ

d(x)

(
−(C + CT ) CT

C O

)
+

γ(L+ (1 + β)ξβ)

d(y)

(
O −D

−DT D +DT

)

+

⎛⎝β(β+1)ξβ+1

d(x) Dd(x)⊗Dd(x) β γξβ+1

d(y) Dd(x)⊗Dd(y)

β γξβ+1

d(y) Dd(y)⊗Dd(x) γ(γ+1)|x−y|
d(y)2 (L+ ξβ)Dd(y)⊗Dd(y)

⎞⎠
−
(
β ξβ+1D2d(x) O

O γ |x−y|
d(y) (L+ ξβ)D2d(y)

)}
,

where B, T , C and D are the matrices defined respectively as B = I−x̂− y⊗x̂− y,
T = x̂− y ⊗ x̂− y, C = x̂− y ⊗ Dd(x), D = x̂− y ⊗ Dd(y). By recalling the
definition of At in (3.10), we have
(3.15)
tr
[
AtD

2Φ(x, y)
]

=
k

d(y)γ

{
(L+ (1 + β)ξβ)

|x− y| tr
[(√

1 + tΣ(x)− Σ(y)
) (√

1 + tΣ(x)− Σ(y)
)T

B
]

+
β(1 + β)ξβ

|x− y| tr
[(√

1 + tΣ(x)− Σ(y)
) (√

1 + tΣ(x)− Σ(y)
)T

T
]

− 2
β(1 + β)ξβ

d(x)

√
1 + t tr

[
Σ(x)

(√
1 + tΣ(x)− Σ(y)

)T
C
]

− 2
γ(L+ (1 + β)ξβ)

d(y)
tr
[
Σ(y)

(√
1 + tΣ(x)− Σ(y)

)T
D
]

+
β(1 + β)ξβ+1

d(x)
(1 + t)|Σ(x)TDd(x)|2

+
γ(γ + 1)|x− y|(L+ ξβ)

d(y)2
|Σ(y)TDd(y)|2

+ 2
βγξβ+1

d(y)

√
1 + tΣ(x)TDd(x) · Σ(y)TDd(y)

−βξβ+1(1 + t)tr
(
A(x)D2d(x)

)
− γ|x− y|(L+ ξβ)

d(y)
tr
(
A(y)D2d(y)

)}
.

In order to estimate the first terms in the right hand side, observe that, by the
Lipschitz continuity of Σ, we have (‖Σx‖ being the Lipschitz constant)

tr
[(√

1 + tΣ(x)− Σ(y)
) (√

1 + tΣ(x)− Σ(y)
)T

B
]

≤
[(√

1 + t− 1
)
‖Σ‖+ ‖Σ(x)− Σ(y)‖

]2
≤ 2
(
t2‖Σ‖2 + ‖Σx‖2|x− y|2

)
.
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Similarly, we have
√
1 + t tr

[
Σ(x)

(√
1 + tΣ(x)− Σ(y)

)T
C
]

= t tr
[
Σ(x)Σ(x)TC

]
+ tr

[
Σ(x)

(
Σ(x)−

√
1 + tΣ(y)

)T
C
]

≤ 2 t ‖Σ‖2 + ‖Σ‖ ‖Σx‖|x− y| ,

tr
[
Σ(y)

(√
1 + tΣ(x)− Σ(y)

)T
D
]
≤ t ‖Σ‖2 + ‖Σ‖ ‖Σx‖|x− y| .

We obtain then from (3.15),

(3.16)

tr
[
AtD

2Φ(x, y)
]
≤ c k

d(y)γ

{
(L+ ξβ)

|x− y|
(
t2‖Σ‖2 + |x− y|2‖Σx‖2

)
+

(
ξβ

d(x)
+

(1 + ξβ)

d(y)

)(
t‖Σ‖2 + |x− y|‖Σ‖ ‖Σx‖

)
+ ξβ+1

(
1

d(x)
+

1

d(y)

)
t ‖Σ‖2

+ ‖Σ‖2
(
ξβ+1

d(x)
+

ξβ+1

d(y)
+

(1 + ξβ)|x− y|
d(y)2

)}
.

Observe now that

(3.17)

⎧⎨⎩ξ = |x−y|
d(x) ≤ 1 ⇒ d(y) ≤ 2d(x) ,

ξ ≥ 1 ⇒ d(y) ≤ 2 |x− y|;
hence

ξβ

d(x)
≤ 2

(1 + ξβ+1)

d(y)
.

Moreover, by definition of ξ,(
ξβ+1

d(x)
+

ξβ+1

d(y)
+

(1 + ξβ)|x− y|
d(y)2

)
= |x− y|

(
ξβ

d(x)2
+

ξβ

d(y) d(x)
+

(1 + ξβ)

d(y)2

)
and by using (3.17) again we get(

ξβ+1

d(x)
+

ξβ+1

d(y)
+

(1 + ξβ)|x− y|
d(y)2

)
≤ c |x− y| (1 + ξβ+2)

d(y)2
.

Therefore (3.16) implies

tr
[
AtD

2Φ(x, y)
]

≤ c k

d(y)γ

{
(L+ ξβ)

|x− y|
(
t2‖Σ‖2 + |x− y|2‖Σx‖2

)
+ t

(1 + ξβ+2)

d(y)
‖Σ‖2

+
(1 + ξβ+1)

d(y)
|x− y|‖Σ‖ ‖Σx‖+

(1 + ξβ+2)

d(y)2
|x− y| ‖Σ‖2

}
.

From (3.11) it then follows

(3.18)

tH(x,DxΦ) ≤ −t λ u(x) +H(y,−DyΦ)−H(x,DxΦ)

+
c k

d(y)γ

{
(L+ ξβ)

|x− y|
(
t2‖Σ‖2 + |x− y|2‖Σx‖2

)
+ t

(1 + ξβ+2)

d(y)
‖Σ‖2

+
(1 + ξβ+1)

d(y)
|x− y|‖Σ‖ ‖Σx‖+

(1 + ξβ+2)

d(y)2
|x− y| ‖Σ‖2

}
.
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By the growth condition (3.3) on H we deduce

t γ0|DxΦ|p ≤ t (f(x)− λu(x)) +H(y,−DyΦ)−H(x,DxΦ)

+
c k

d(y)γ

{
(L+ ξβ)

|x− y|
(
t2‖Σ‖2 + |x− y|2‖Σx‖2

)
+ t

(1 + ξβ+2)

d(y)
‖Σ‖2

+
(1 + ξβ+1)

d(y)
|x− y|‖Σ‖ ‖Σx‖+

(1 + ξβ+2)

d(y)2
|x− y| ‖Σ‖2

}
.

Observe now that choosing γ ≥ 1
p−1 and β ≥ 2−p

p−1 gives γ + 1 ≤ γ p and β + 2 ≤
(β + 1)p; hence, by estimate (3.14),

|DxΦ|p ≥ c kp
(1 + ξβ+1)p

d(y)γ p
≥ c kp

(1 + ξβ+2)

d(y)γ+1
.

Therefore, as soon as kp−1 � 1
γ0
‖Σ‖2, we get

t
γ0
2
|DxΦ|p − c k t2‖Σ‖2 (L+ ξβ)

|x− y| d(y)γ
≤ t (f(x)− λu(x)) +H(y,−DyΦ)−H(x,DxΦ)

+c
k |x− y|
d(y)γ

[
(1 + ξβ)‖Σx‖2 +

(1 + ξβ+1)

d(y)
‖Σ‖ ‖Σx‖+

(1 + ξβ+2)

d(y)2
‖Σ‖2

]
.

Here we make the (optimal) choice of t in order to maximize the left hand side.
This yields

(3.19) t = c
|DxΦ|p

k‖Σ‖2 (L+ξβ)
|x−y| d(y)γ

= c
|DxΦ|p
k‖Σ‖2

|x− y|
ϕ

by recalling the definition of the cutoff function ϕ in (3.5). We then obtain

|DxΦ|2p
k‖Σ‖2

|x− y|
ϕ

≤ c

{
|DxΦ|p
k‖Σ‖2

|x− y|
ϕ

‖(f − λu)+‖+H(y,−DyΦ)−H(x,DxΦ)

+k |x− y|
[
ϕ ‖Σx‖2 +

(1 + ξβ+1)

d(y)γ+1
‖Σ‖ ‖Σx‖+

(1 + ξβ+2)

d(y)γ+2
‖Σ‖2

]}
;

hence
(3.20)

|DxΦ|2p ≤ c

{
|DxΦ|p‖(f − λu)+‖+ k‖Σ‖2 ϕ

|x− y| [H(y,−DyΦ)−H(x,DxΦ)]

+k2 ϕ ‖Σ‖2
[
ϕ ‖Σx‖2 +

(1 + ξβ+2)

d(y)γ+2

(
‖Σ‖2 + ‖Σx‖2

)]}
.

Moreover, by assumption (3.3) on H, it follows that

H(y,−DyΦ)−H(x,DxΦ) ≤ γ1
(
|DxΦ|p−1 + |DyΦ|p−1

)
|DxΦ+DyΦ|

+γ2|x− y| (‖g1‖+ ‖g2‖ |DxΦ|p) .
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By recalling (3.12) and (3.13) and by again using (3.17), we have(
|DxΦ|p−1 + |DyΦ|p−1

)
|DxΦ+DyΦ|

≤ c kp
(1 + ξβ)p

d(y)γ p

(
1 +

|x− y|
d(x)

∨ |x− y|
d(y)

)p−1 |x− y|
d(x)

∨ |x− y|
d(y)

≤ c kp
(1 + ξβ+1)p

d(y)γ p+p
|x− y| ,

so that

|DxΦ|2p ≤ c

{
|DxΦ|p‖(f − λu)+‖+ k‖Σ‖2ϕ (‖g1‖+ ‖g2‖ |DxΦ|p)

+ kp+1‖Σ‖2ϕ (1 + ξβ+1)p

d(y)γ p+p

+k2 ϕ ‖Σ‖2
[
ϕ ‖Σx‖2 +

(1 + ξβ+2)

d(y)γ+2

(
‖Σ‖2 + ‖Σx‖2

)]}
.

Now we choose γ = p
p−1 and from (3.14) it follows that

kp+1ϕ
(1 + ξβ+1)p

d(y)γ p+p
≤ c k

ϕ

d(y)p
|DxΦ|p ≤ c k ϕp|DxΦ|p ≤ c

kp−1
|DxΦ|2p.

Furthermore, since 2(γ + 1) ≤ 2γ p and β + 2 ≤ (β + 1) p, we also have

k2ϕ
(1 + ξβ+2)

d(y)γ+2
≤ c k2

(1 + ξβ)

d(y)γ
(1 + ξβ+1)p

d(y)γ+2
≤ c k2

(1 + ξβ+1)2p

d(y)2γ p
≤ c

k2(p−1)
|DxΦ|2p.

Then, we deduce that

|DxΦ|2p ≤ c

{
|DxΦ|p‖(f − λu)+‖+ ‖Σ‖2 [|DxΦ| (‖g1‖+ ‖g2‖ |DxΦ|p)

+
|DxΦ|2p
kp−1

+‖Σx‖2 |DxΦ|2 +
(
‖Σ‖2 + ‖Σx‖2

)
k2(p−1)

|DxΦ|2p
]}

.

Since p > 1, for k large we get a contradiction.
The above argument shows that there exists a positive constant M depending

on p, ‖Σ‖L∞(B), ‖Σx‖L∞(B), ‖(f − λu)+‖L∞(B), ‖g1‖L∞(B), ‖g2‖L∞(B), γ0, γ1, γ2
such that

u(x)− u(y) ≤ M
|x− y|
d∂B(y)γ

[
1 +

(
|x− y|
d∂B(x)

)β
]

∀x, y ∈ B .

By reversing the role of x and y we get

|u(x)− u(y)| ≤ M
|x− y|

(d∂B(x) ∧ d∂B(y))γ

[
1 +

(
|x− y|

d∂B(x) ∧ d∂B(y)

)β
]

∀x, y ∈ B ,

so that u is locally Lipschitz continuous in B and satisfies |Du(x)| ≤ M
d∂B(x)γ for

almost every x ∈ B. On the other hand, the exponent γ = p
p−1 found in the
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previous proof is not optimal: in order to recover the right exponent it is enough
to make a suitable rescaling.

To this purpose, let x0 ∈ Ω be a differentiability point for u and let r = d∂Ω(x0)
2 .

Consider the rescaled function

v(x) = r
2−p
p−1 u(x0 + rx)

defined for x ∈ B = B1(0). An easy computation shows that v is a viscosity solution
of the equation

−tr
(
Ar(x)D

2v
)
+ r2 λv +Hr(x,Dv) = 0 , x ∈ B ,

where Ar(x) = A(x0 + rx) and Hr(x, ξ) = r
p

p−1H(x0 + rx, r−
1

p−1 ξ). Note that Hr

satisfies (3.3) with the same constants but replacing f with fr(x) = r
p

p−1 f(x0+rx)

and g1, g2 with g1,r(x) = r
2p−1
p−1 g1(x0+ rx) and g2,r(x) = rg2(x0+ rx), respectively.

Now, since r = d∂Ω(x0)
2 , we have

r ≤ d∂Ω(x0 + rx) ≤ 3r;

hence

‖
(
fr − λ r2v

)+ ‖L∞(B) = ‖r
p

p−1 (f(x0 + rx)− λu(x0 + rx))+‖L∞(B)

≤ ‖d
p

p−1

∂Ω (f − λu)+‖L∞(Ω) .

Similarly we have

‖g1,r‖L∞(B) ≤ ‖d
2p−1
p−1

∂Ω g1‖L∞(Ω) , ‖g2,r‖L∞(B) ≤ ‖d∂Ω g2‖L∞(Ω) .

By the result obtained in the ball we have (note that 0 is a differentiability point
for v)

|Dv(0)| ≤ M ,

with a constant M > 0 depending on p, ‖Σ‖L∞ , ‖Σx‖L∞ , ‖d
p

p−1

∂Ω (f − λu)+ ‖L∞ ,

‖d
2p−1
p−1

∂Ω g1‖L∞(Ω), ‖d∂Ω g2‖L∞(Ω), and on the constants γ0, γ1 and γ2.
Hence we conclude that

|Du(x0)| ≤ M r−
1

p−1 =
K

d∂Ω(x0)
1

p−1

. �

Remark 3.2. The above method can be applied to different Hamiltonians H(x, ξ)
and, correspondingly, different adapted choices of cutoff functions ϕ. Anyway,
this approach requires the coercivity of the Hamiltonian (a somehow necessary
ingredient for having estimates in the case of degenerate ellipticity; see also [14]).
Indeed, if we rephrase our proof for general functions H, the optimal choice of the
parameter t in (3.19) would read as

t = c
H(x,Dx(Φ))

k‖Σ‖2
|x− y|

ϕ
,

where ϕ is the cutoff function. Observe that by construction we have |DxΦ| → ∞;
hence we need H(x, p) to be positive as |p| → ∞ in order that t > 0. Moreover,
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recalling in the previous proof the definition of ϕ = (L+ξ)β

d(y)γ and estimate (3.14), the

inequality (3.20) could have been rephrased in the more abstract form

H2(x,DxΦ) ≤ c ‖λu−‖L∞(Ω) + c‖Σ‖2
{

|DxΦ|
|x− y| [H(y,−DyΦ)−H(x,DxΦ)]

+‖Σx‖2 |DxΦ|2 +
(
‖Σ‖2 + ‖Σx‖2

)
|DxΦ|2 ϕq

}
,

where q = max( 1β ,
1
γ ).

From a similar estimate, one can conclude the proof provided some suitable
coercivity condition on H(x, p) holds as |p| → ∞. In particular, let us note that if
we disregard the localization function and take ϕ = 1, then DxΦ = −DyΦ and it
would be enough to assume, for some constant c0:

lim inf
|p|→∞

c0H
2(x, p)− ‖Σ‖2 |p| [H(y,p)−H(x,p)]

|x−y|
|p|2 > 2‖Σ‖2(‖Σ‖2 + ‖Σx‖2).

This assumption (which, if one really takes ϕ = 1, could be further refined with
only ‖Σ‖2‖Σx‖2 in the right hand side) is analogous to the one used in [14] to
get global Lipschitz estimates for solutions in the whole space. This shows that
our approach can replace, in some situations, the classical Bernstein method of
differentiating the equation. On the other hand, the explicit superlinear character
asked in assumption (3.3) was needed to handle the difficulties of the localization
argument through the explicit construction of the cutoff function ϕ.
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