
Hölder inequalities and sharp embeddings in
function spaces of Bspq and F spq type

Winfried Sickel and Hans Triebel

1 Introduction and motivation

1.1 Introduction

The classical Hölder inequality for the Lebesgue spaces on Rn is given by

Lr1 Lr2 ⊂ Lr,(1.1.1)

where

1 ≤ r1 ≤ ∞, 1 ≤ r2 ≤ ∞ and
1

r1
+

1

r2
=

1

r
≤ 1.(1.1.2)

Of course (1.1.1) is a short version of the pointwise multiplication inequality

‖fg|Lr(R
n)‖ ≤ c ‖f |Lr1(R

n)‖ · ‖g|Lr2(R
n)‖,(1.1.3)

where in that special case c = 1 may be chosen. With exception of Subsection 1.2, all

spaces in this paper are defined on Rn . This justifies to omit Rn in the sequel. One of

the main aims of the paper is to study the appropriate counterparts of (1.1.1) and (1.1.2)

for the spaces Bs
pq and F s

pq . That means for a given smoothness s we are looking for

Bs
p1q1

Bs
p2q2

⊂ Bs
pq(1.1.4)
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and

F s
p1q1

F s
p2q2

⊂ F s
pq,(1.1.5)

interpreted similarly as in (1.1.3). Recall that the spaces Bs
pq and F s

pq cover some well-

known spaces, such as the (fractional) Sobolev spaces, the classical Besov spaces, the

Hölder-Zygmund spaces and the (inhomogeneous) Hardy spaces. These spaces have been

studied systematically in [24, 26]. Our interest in inequalities of type (1.1.4) and (1.1.5)

comes from some recent work on eigenvalue distributions of degenerate elliptic differential

operators, where (1.1.1), (1.1.4) and (1.1.5) play a decisive role. We refer to [5]. In Sub-

section 1.2 we outline roughly this motivation for (1.1.4) and (1.1.5). If we plot s against

1/p, see Fig.1, then the distinguished strip
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Fig.1

1
r

= 1
r1

+ 1
r2

D : 0 < p <∞, n (
1

p
− 1)+ < s <

n

p
(1.1.6)

plays a crucial role. The lines of slope n indicate embeddings with constant differential

dimension s− n/p. One of the main results of this paper reads as follows :

Let s, p1, p2 and p be given as indicated in Fig.1 and let 0 < q1 ≤ ∞, 0 < q2 ≤ ∞ and

0 < q ≤ ∞. Then

(i) (1.1.4) holds if and only if 0 < q1 ≤ r1, 0 < q2 ≤ r2 and q ≥ max(q1, q2) and

(ii) (1.1.5) holds if and only if q ≥ max(q1, q2) .

In other words, the classical Hölder inequality (1.1.1) which corresponds to the bottom

line s = 0 of the strip D in the way indicated in Fig.1 is shifted along the lines of slope n
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to the level of smoothness s. This situation justifies to denote (1.1.4) and (1.1.5) under

the just sketched values of the involved parameters as Hölder inequalities. As a special

case of (1.1.5) we have

Hs
p1
Hs

p2
⊂ Hs

p

under the conditions indicated in Fig.1, where Hs
p = F s

p,2 are the (fractional) Sobolev-

Hardy spaces. In accordance with the limiting cases in (1.1.1), (1.1.2) we pay some

attention to related limiting cases with respect to the strip D, that means

s =
n

p1

and s = n(
1

p
− 1)+(1.1.7)

including especially the bottom line s = 0. These two limiting cases are connected with

L∞ and L1, respectively. Inevitable linked with Hölder inequalities of type (1.1.4) and

(1.1.5) are sharp embeddings with constant smoothness s of type

Bs
pu ⊂ F s

pq ⊂ Bs
pv,

and with constant differential dimension s − n/p. These embeddings correspond to the

horizontal lines and the lines of slope n in Fig.1, respectively. We give final answers in

these cases. In connection with the above sketched limiting cases (1.1.7) where L∞ and L1

make their natural appearance we complement the just mentioned two sharp embeddings

by sharp assertions under which the spaces Bs
pq and F s

pq are embedded in L∞ (which is

known) and in Lloc
1 , respectively. Of course, the latter can be rephrased as the search for

sharp conditions such that Bs
pq and F s

pq consist solely of regular distributions. Some of the

incorporated sharp embeddings are known, especially the “if”-parts. But we seal several

gaps, mostly related to the “only if”-parts.

The plan of the paper is the following. As mentioned above we provide in Subsection 1.2

motivations for inequalities of type (1.1.4) and (1.1.5). Section 2 contains the necessary

definitions and some preparations about paramultiplication. In Section 3 we present the

results about sharp embeddings : with constant smoothness, with constant differential

dimension, in L∞, and in Lloc
1 . Section 4 deals with Hölder inequalities. In Subsection

4.1 we describe the necessary conditions for s and 1/p such that we have (1.1.4) and

(1.1.5), see Fig.3a and Fig.3b. The cases of our interest correspond to the heavy lines. In

Subsection 4.2 we formulate the Hölder inequalities, whereas Subsection 4.3 deals with the
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indicated limiting cases. Finally Subsection 4.4 contains further results connected with

the shaded areas in Fig.3 covering the region of necessity for the inequalities (1.1.4) and

(1.1.5) treated in Subsection 4.1 . It comes out that this is also the region of sufficiency

with some peculiarities on the border lines. Proofs are presented in Section 5.

We wish to thank Dr. Jon Johnsen (Copenhagen). His critical remarks helped us to

improve the final version of this paper.

1.2 Motivation

Let Ω be a bounded smooth domain in Rn . Let ∆ be the Laplacian and let

Au(x) = a(x) (id−∆) a(x)u(x) in Ω, u|
∂Ω

= 0

be a degenerate elliptic differential operator with non-smooth coefficients related to the

Dirichlet problem. Assume that

Bu(x) = b(x) (id−∆)−1 b(x)u(x) with b(x) = a−1(x) ∈ Lr(Ω),

where 2 ≤ n < r ≤ ∞, makes sense as the inverse of A. In accordance with well-

known classical assertions we obtained in [5] sharp assertions for the distribution of the

eigenvalues λk of A of type λk ≈ k2/n based on two ingredients :

(i) Sharp assertions for the entropy numbers of the compact embeddings

id : Bs1
p1q1

(Ω) −→ Bs0
p0q0

(Ω), s1 − n

p1

> s0 − n

p0

, s1 > s0,

(and similarly with F s
pq (Ω) ),

(ii) Sharp embeddings of type (1.1.1), (1.1.4) and (1.1.5).

To describe the flavour of this approach we start with L2(Ω), multiplication with
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b(x) brings us to Lv(Ω), where we used (1.1.1). Then we apply (id − ∆)−1. We ar-

rive at H2
v (Ω). The embedding of H2

v (Ω) in Lw(Ω) is compact since the slope of the

corresponding line is steeper than n. Finally a second multiplication with b(x) brings us

back to L2(Ω). The compact embedding is the point where the entropy numbers come

in, whereas for the multiplications with b(x) one needs inequalities of type (1.1.1) in the

outlined case as sharp as possible. The interplay between the two ingredients is clear.

Necessary explanations and details, especially about the role played by the entropy num-

bers, may be found in [5]. It is not necessary to begin with L2(Ω) as the basic space. One

can start with other suitable spaces in Fig.2. Then the triangle in Fig.2 is shifted, say in

the distinguished strip D in Fig.1. Instead of the classical inequality (1.1.1) one has to

work with the Hölder inequalities (1.1.4) and (1.1.5).

2 Definitions and preparations

2.1 Definitions

In general all functions, spaces, etc. are defined on the Euclidean n-space Rn. So we

omit Rn in notations. Further we shall use N to denote the set of natural numbers, N0

to denote N ∪ {0}, and a+ instead of max(a, 0).

Let S be the Schwartz space of all complex-valued rapidly decreasing infinitely differen-

tiable functions. By S ′ we denote its topological dual, the space of tempered distributions.

If ϕ ∈ S then

Fϕ(x) = (2π)−n/2
∫

Rn
e−i xξ ϕ(ξ) dξ, x ∈ Rn,

denotes the Fourier transform Fϕ of ϕ. As usual, F−1ϕ means the inverse Fourier trans-

form of ϕ. Both, F ,F−1 are extended to S ′ in the standard way.

Let ψ ∈ S be a non-negative function with



ψ(x) = 1 if |x| ≤ 1,

ψ(x) = 0 if |x| ≥ 3
2
.

(2.1.1)

We define 



ϕo(x) = ψ(x),

ϕ1(x) = ψ(x
2
)− ψ(x),

ϕk(x) = ϕ1(2
−k+1x), x ∈ Rn, k = 2, 3, . . . .

(2.1.2)
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It follows
M∑

j=0

ϕj(x) = ψ(2−Mx), M = 0, 1, . . . ,

∞∑

j=0

ϕj(x) = 1, x ∈ Rn,

supp ϕj ⊂ { x : 2j−1 ≤ |x| ≤ 3 · 2j−1 }, j = 1, . . . , n,(2.1.3)

and if

3

2
· 2j−1 ≤ |x| ≤ 2j then it holds ϕk(x) = δk,j, j = 1, 2, . . . ; k = 0, 1, . . . .(2.1.4)

Lp are the usual Lebesgue spaces on Rn .

Definition 2.1.1. Let −∞ < s <∞, and 0 < q ≤ ∞.

(i) If 0 < p <∞ we put

F s
pq =




f ∈ S ′ : ‖f |F s

pq‖ = ‖


∞∑

j=0

2sjq|F−1[ϕjFf ](·)|q



1/q

|Lp‖ <∞




(usual modification if q = ∞).

(ii) If 0 < p ≤ ∞ we put

Bs
pq =




f ∈ S ′ : ‖f |Bs

pq‖ =



∞∑

j=0

2sjq‖F−1[ϕjFf ](·)|Lp‖q




1/q

<∞




(usual modification if q = ∞).

Remark 2.1.1. These types of spaces are studied systematically in [24, 26]. We always

assume that the reader is familiar with it. Recall some special cases :

F 0
p,2 = Lp, 1 < p <∞ (Lebesgue spaces),

F s
p,2 = W s

p , s non-negative integer, 1 < p <∞ (Sobolev spaces),

F s
p,2 = Hs

p , 1 < p <∞, s ∈ R (fractional Sobolev spaces),

F 0
p,2 = hp, 0 < p <∞ (inhomogeneous Hardy spaces),

Bs
pq, s > 0, 1 < p <∞, 1 ≤ q ≤ ∞ (classical Besov spaces),

Bs
∞∞ = Cs, s > 0 (Hölder-Zygmund spaces).
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2.2 Pointwise multiplication

Let ψ be the function defined in (2.1.1) and let {ϕj}∞j=0 be the corresponding system ( cf.

(2.1.2)). For brevity we put

fj(x) = F−1[ϕj(ξ)Ff(ξ)] (x),

and

f j(x) = F−1[ψ(2−jξ)Ff(ξ)] (x), j = 0, 1, 2, . . . .(2.2.1)

It is easily checked that limj→∞ f j
=

S′
f for any f ∈ S ′. Moreover, f j is an entire analytic

function of exponential type. Hence, the product f j · gj makes sense for any j and any

f, g ∈ S ′. We define

f · g = lim
j→∞

f j · gj(2.2.2)

whenever this limit exists. Note that

f · g = lim
`→∞


∑̀

j=0

fj




(∑̀

k=0

gk

)

=
∞∑

j=2

f j−2 gj +
∞∑

k=2

fk g
k−2 +

∞∑

k=0

k+1∑

j=k−1

fk gj

=
∑′

(f, g) +
∑′′

(f, g) +
∑′′′

(f, g) (put g−1 ≡ 0).

The advantage of such a decomposition is based on

supp F (fk−2 gk) ⊂ {ξ : 3 · 2k−3 ≤ |ξ| ≤ 11 · 2k−3 }(2.2.3)

and

supp F (
k+1∑

j=k−1

fk gj) ⊂ {ξ : |ξ| ≤ 9 · 2k−1 }.(2.2.4)

Remark 2.2.1. Recall the Fatou property of the underlying spaces. Let As
pq denote

either Bs
pq or F s

pq . If {f j gj}j is a Cauchy sequence in S ′ with limit h and if

sup
j
‖f j gj|As

p,q‖ = A <∞

then it follows h ∈ As
pq and ‖h|As

pq‖ ≤ cA, where c is independent of f and g, cf. [7].

Remark 2.2.2. The operator

Πf : g −→
∞∑

j=2

f j−2 gj
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is called paramultiplication operator. Estimates for this operator are the heart of several

contributions to the problem of pointwise multiplication [24, 14, 30, 31, 32, 20, 21]. Fur-

ther they are of importance in microlocal analysis and in the theory of Calderon-Zygmund

singular integral operators [3, 16, 30, 31, 32].

The essence of the needed estimates are formulated in the following proposition, where

we make use of the abbreviation h∞ = L∞.

Proposition 2.2.1. Let 0 < p1 ≤ ∞, 0 < p2 ≤ ∞, 1/p = 1/p1 + 1/p2 and 0 < q ≤ ∞.

(i) Let 0 < p <∞. Then

‖
( ∞∑

k=0

|F−1
[
ϕkF

∑′
(f, g)

]
(·)|q

)1/q

|Lp‖ ≤ c ‖f |hp2‖ ‖
( ∞∑

k=0

|gk(·)|q
)1/q

|Lp1‖,(2.2.5)

where c is independent of f and g (usual modification if q = ∞).

(ii) Let 0 < p ≤ ∞. Then

‖F−1
[
ϕk F

∑′′′
(f, g)

]
(·)|Lp‖ ≤ c max

−1≤j≤1

∞∑

`=−2

‖fk+`|Lp1‖ ‖gk+`+j|Lp2‖(2.2.6)

if p ≥ 1 and

‖F−1
[
ϕk F

∑′′′
(f, g)

]
(·)|Lp‖ ≤ c max

−1≤j≤1




∞∑

`=−2

2`n(1−p)‖fk+`|Lp1‖p ‖gk+`+j|Lp2‖p




1/p

if p < 1, where c is independent of f, g and k ∈ N0, (put fr = gr = 0 if r < 0).

(iii) Let 0 < p <∞ and s > n (1
p
− 1)+. Then

‖ sup
k

2ks|F−1
[
ϕk F

∑′′′
(f, g)

]
(·)| |Lp‖

≤ c max
−1≤j≤1

‖ sup
k

2ks/2 |fk| |Lp1‖ ‖ sup
k

2ks/2 |gk+j| |Lp2‖,

where c is independent of f and g.

Remark 2.2.3. In the scalar case of (i), given by

‖F−1[ϕk F
∑′

(f, g)](·) |Lp‖ ≤ c ‖f |hp2‖ max
−1≤j≤1

‖gk+j|Lp1‖,

also p = ∞ is admissible. Part (iii) is taken from [30], Theorem 3.7, complemented by

the use of the Hölder inequality with respect to 1/p = 1/p1 + 1/p2. Proofs of (i) and (ii)

will be given in Subsection 5.5.
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3 Sharp embeddings

3.1 Embeddings with constant smoothness

Here “⊂” stands for continuous embedding. Recall that all spaces are defined on Rn .

Theorem 3.1.1. (i) Let s ∈ R, 0 < p <∞, 0 < q ≤ ∞, 0 < u ≤ ∞ and 0 < v ≤ ∞.

Then

Bs
pu ⊂ F s

pq ⊂ Bs
pv(3.1.1)

if and only if

0 < u ≤ min(p, q) and max(p, q) ≤ v ≤ ∞.(3.1.2)

(ii) Let 0 < u ≤ ∞ and 0 < v ≤ ∞. Then

B0
1,u ⊂ L1 ⊂ B0

1,v(3.1.3)

if and only if

0 < u ≤ 1 and v = ∞.

(iii) Let 0 < u ≤ ∞. Then

F 0
1,u ⊂ L1(3.1.4)

if and only if

0 < u ≤ 2.

Furthermore

L1 6⊂ F 0
1,∞.(3.1.5)

(iv) Let 0 < u ≤ ∞ and 0 < v ≤ ∞. Then

B0
∞,u ⊂ L∞ ⊂ B0

∞,v(3.1.6)

if and only if

0 < u ≤ 1 and v = ∞.

Remark 3.1.1. Let C be the space of all complex-valued bounded and uniformly con-

tinuous functions on Rn normed in the usual way. In (3.1.6) one can replace L∞ by C.

Remark 3.1.2. By (3.1.1) we know F 0
1,∞ ⊂ B0

1,∞. The assertion (3.1.5) shows that the
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second inequality in (3.1.3) can not improved by replacing B0
1,∞ by F 0

1,∞.

Remark 3.1.3. The “if”-parts of the theorem are known, see [24], Proposition 2.3.2/2,

p.47, Proposition 2.5.7, p.89 and Theorem 2.5.8/1, p.92. In other words, we have to com-

plement these known assertions by the “only if”-parts and the proof of (3.1.5) .

3.2 Embeddings with constant differential dimension

Recall that s − n/p is called the differential dimension both of Bs
pq and F s

pq . It is a

characteristic number which plays a crucial role in the theory of these spaces, see, for

instance, Fig.1 and the accompanying remarks.

Theorem 3.2.1. (i) Let 0 < p0 < p < p1 ≤ ∞, s ∈ R,

s0 − n

p0

= s− n

p
= s1 − n

p1

,

0 < q ≤ ∞, 0 < u ≤ ∞ and 0 < v ≤ ∞. Then

Bs0
pou ⊂ F s

pq ⊂ Bs1
p1v(3.2.1)

if and only if

0 < u ≤ p ≤ v ≤ ∞.(3.2.2)

(ii) Let 0 < p < p1 <∞, s ∈ R,

s− n

p
= s1 − n

p1

(3.2.3)

and 0 < q ≤ ∞. Then

F s
p∞ ⊂ F s1

p1q.(3.2.4)

(iii) Let 0 < p < 1 and 0 < q ≤ ∞. Then

B
n( 1

p
−1)

pq ⊂ L1(3.2.5)

if and only if

0 < q ≤ 1.
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Remark 3.2.1. The “if”-part of (i) is due to Jawerth and Franke, see [10, 7], [24], p.131

and [25], p.191. Furthermore, (ii) is mentioned here for the sake of completeness, see [24],

Theorem 2.7.1, p.129. Of course, by the monotonicity of the F s
pq -spaces, ∞ in (3.2.4)

can be replaced by any positive number. As mentioned in the introduction, embeddings

in L1 and L∞ deserve special attention. The L∞-counterpart of (3.2.5) will be described

in the next subsection.

3.3 Embeddings in L∞ and in Lloc
1

The space C has been defined in Remark 3.1.1.

Theorem 3.3.1. (i) Let s ∈ R, 0 < p <∞ and 0 < q ≤ ∞. Then the following three

assertions are equivalent :

(a) F s
pq ⊂ L∞,

(b) F s
pq ⊂ C,

(c) either s >
n

p
or s =

n

p
and 0 < p ≤ 1.

(ii) Let s ∈ R, 0 < p ≤ ∞ and 0 < q ≤ ∞. Then the following three assertions are

equivalent :

(a) Bs
pq ⊂ L∞,

(b) Bs
pq ⊂ C,

(c) either s >
n

p
or s =

n

p
and 0 < q ≤ 1.(3.3.1)

Remark 3.3.1. This theorem is known. We incorporate it both for sake of completeness

and because it will be of great service later on in this paper. A proof of (i) may be found

[7]. As far as (ii) is concerned we refer to [23], Theorem 1, p.133, see also [24], 2.8.3, p.146

and [25], 2.8.3, p.211 .

Remark 3.3.2. Let As
pq either Bs

pq or F s
pq . Then As

pq is called a multiplication algebra

if

As
pq As

pq ⊂ As
pq

where the multiplication of two distributions is given by (2.2.2). Part (i) of the theorem

can be complemented by

(d) F s
pq is a multiplication algebra.

11



A corresponding assertion for Bs
pq is only “almost” true. More precisely : Bs

pq is a

multiplication algebra if and only if

(d) either s >
n

p
with 0 < p ≤ ∞

or s =
n

p
with 0 < p <∞ and 0 < q ≤ 1.

This assertion differs from (3.3.1) by the case s = 0, p = ∞. We refer to [7] and [23], see

also [24], 2.8.3 (with the indicated correction as far as the case s = 0, p = ∞ is concerned)

and [20], p.56 . The case B0
∞q will be established in Remark 4.3.5 in the indicated way :

It is not a multiplication algebra. Although the study of multiplication algebras fits quite

well in the framework of our paper we shall not stress this point in the sequel. We are

mostly interested in multiplication with essentially unbounded function.

Of course, Lloc
1 stands for the collection of all complex-valued functions which are locally

integrable in Rn . It is interpreted here as the set of all regular distributions on Rn .

Theorem 3.3.2. (i) Let s ∈ R, 0 < p < ∞ and 0 < q ≤ ∞. Then the following two

assertions (i1) and (i2) are equivalent :

(i1) F s
pq ⊂ Lloc

1

(i2) either 0 < p < 1, s ≥ n (
1

p
− 1), 0 < q ≤ ∞,(3.3.2)

or 1 ≤ p <∞, s > 0, 0 < q ≤ ∞,

or 1 ≤ p <∞, s = 0, 0 < q ≤ 2.(3.3.3)

(ii) Let s ∈ R, 0 < p ≤ ∞ and 0 < q ≤ ∞. Then the following two assertions (ii1) and

(ii2) are equivalent :

(ii1) Bs
pq ⊂ Lloc

1

(ii2) either 0 < p ≤ ∞, s > n (
1

p
− 1)+, 0 < q ≤ ∞,

or 0 < p ≤ 1, s = n(
1

p
− 1), 0 < q ≤ 1,

or 1 < p ≤ ∞, s = 0, 0 < q ≤ min(p, 2).(3.3.4)

12



Remark 3.3.3. If s > n(1
p
−1)+ then it is well-known that Bs

pq and F s
pq consist of regular

distributions. In other words, the interesting part of the theorem is the final classification

what happens in the limiting case s = n(1
p
− 1)+.

We compare the above theorem with the sharp embeddings described in Subsections 3.1

and 3.2. The case p = ∞ plays a special role. Without going in details we mention

B0
∞,2 ⊂ F 0

∞,2 = bmo,(3.3.5)

see [24], pp.37, 50, 93 for definitions and explanations. As far as the spaces F 0
∞,q are

concerned we refer also to [14, 8].

Corollary 3.3.1. (i) Let s ∈ R, 0 < p <∞ and 0 < q ≤ ∞. Let As
pq be either Bs

pq

or F s
pq . Then the following two assertions (i1) and (i2) are equivalent :

(i1) As
pq ⊂ Lloc

1

(i2) As
pq ⊂ Lp̄ with p̄ = max(1, p).(3.3.6)

(ii) Let s ∈ R and 0 < q ≤ ∞. Then the following two assertions (ii1) and (ii2) are

equivalent :

(ii1) Bs
∞q ⊂ Lloc

1

(ii2) Bs
∞q ⊂ bmo.(3.3.7)

Proof. Part (ii) is covered by (3.3.5) and the above theorem, especially (3.3.4). The

F-case of part (i) related to (3.3.2) follows from (3.2.4), (3.2.3) and (3.1.3) :

F
n ( 1

p
−1)

pq ⊂ B0
1,1 ⊂ L1 (p < 1).

The F-case related to (3.3.3) is clear since F 0
p,2 = Lp, 1 < p <∞ and

F 0
1,2 = h1 ⊂ L1.(3.3.8)

The B-case of part (i) follows immediately from the above theorem, (3.2.5), (3.1.1) and

(3.3.8).
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Remark 3.3.4. Let again As
pq be either Bs

pq or F s
pq and let

As
pq ⊂ L1.(3.3.9)

Let ψ be a C∞-function with ψ(x) = 0 near the origin and ψ(y) = 1 if, say, |y| ≥ 1. Let

rj : f −→ F−1

[
ψ(ξ)

ξj
|ξ| Ff(ξ)

]
(·)

be the inhomogeneous Riesz transforms, j = 1, . . . , n. Recall that the (inhomogeneous)

Hardy spaces h1 = F 0
1,2 can also be characterized as the collection of all f ∈ L1 with

rj f ∈ L1 if j = 1, . . . , n, see [24], pp.93/94. Since rjA
s
pq ⊂ As

pq we can improve (3.3.9) by

As
pq ⊂ h1.

In other words, if p = 1 then (3.3.6) can be strengthened by

As
1,q ⊂ h1.

Now (3.3.7) looks a little bit more natural since bmo = h′1.

Remark 3.3.5. For better reference we formulate one consequence of Theorem 3.1.1,

Theorem 3.2.1, Theorem 3.3.2, Remark 2.1.1 (first item) and (3.3.8) once again. Let

s > 0, 0 < p <∞ and 0 < q ≤ ∞. If

1 ≥ 1

r
=

1

p
− s

n
> 0.

then holds

Bs
pq ⊂ Lr

if and only if

0 < q ≤ r.

A corresponding assertion for F s
pq holds without restrictions on q.

4 Hölder inequalities

4.1 Necessary conditions for s and p

Let s ∈ R, 0 < p1 ≤ ∞, 0 < p2 ≤ ∞, 0 < p ≤ ∞, 0 < q1 ≤ ∞, 0 < q2 ≤ ∞ and

0 < q ≤ ∞. We ask under which conditions

Bs
p1q1

Bs
p2q2

⊂ Bs
pq(4.1.1)

14



and

F s
p1q1

F s
p2q2

⊂ F s
pq,(4.1.2)

hold, where in case of (4.1.2) we assume, in addition, p1 6= ∞, p2 6= ∞ and p 6= ∞.

Theorem 4.1.1. If either (4.1.1) or (4.1.2) hold under the indicated general conditions

for the parameters then

max(
1

p1

,
1

p2

) ≤ 1

p
≤ 1

p1

+
1

p2

,(4.1.3)

2s ≥ n (
1

p1

+
1

p2

− 1)+,(4.1.4)

and

s ≥ n (
1

p1

+
1

p2

− 1

p
).(4.1.5)

Remark 4.1.1. Of course, (4.1.5) can be rewritten as

s− n

p
≤ s− n

p1

+ s− n

p2

.(4.1.6)

Recall that s− n
p

is the differential dimension both of Bs
pq and F s

pq . In other words, the

differential dimension of the target spaces in (4.1.1) or (4.1.2) has to be less than or equal

to the sum of the differential dimension of the spaces on the left-hand sides of (4.1.1) and

(4.1.2). In the Figures 3a and 3b we summarized the above restrictions in dependence on

whether 1
p1

+ 1
p2
≤ 1 or 1

p1
+ 1

p2
> 1. If one compares Figures 1,
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Fig. 3b

3a and 3b then we are mainly interested in those cases, where we have equality in (4.1.5)

and (4.1.6). This corresponds to the heavy lines in Figures 3a and 3b and in that case
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(4.1.6) is identical with 1
r

= 1
r1

+ 1
r2

in Fig.1 . The limiting cases (1.1.7) correspond to the

points A and B in Figures 3a and 3b, respectively. However in the final Subsection 4.4

we sketch briefly what happens inside of the shaded regions.

4.2 The main results

Recall that all the spaces are defined on Rn . Furthermore, the Hölder inequalities we

are looking for are characterized by the situation sketched in Fig.1 and indicated by the

heavy lines in Figures 3a and 3b. There is a significant difference between B-spaces and

F-spaces acting as pointwise multiplier spaces which can be clearly seen by the theorem

below and which will be prepared by the following proposition.

Proposition 4.2.1. Let s ∈ R, 0 < p1 < ∞, 0 < p2 < ∞, 0 < p < ∞, 0 < q1 ≤
∞, 0 < q2 ≤ ∞ and 0 < q ≤ ∞. Let

1

r1
=

1

p1

− s

n
> 0, and

1

p2

+
1

r1
=

1

p
.(4.2.1)

Let independently

As
p2q2

be either Bs
p2q2

or F s
p2q2

and

As
pq be either Bs

pq or F s
pq.

If

Bs
p1q1

As
p2q2

⊂ As
pq(4.2.2)

then

q1 ≤ r1.(4.2.3)

Remark 4.2.1. If one replaces the pointwise multiplier space Bs
p1q1

by F s
p1q1

then the

restriction of type (4.2.3) simply does not occur, see the theorem below. As far as r1 is

concerned we refer to Fig.1. If r2 and r are defined in a similar way, then the second part

of (4.2.1) can be reformulated as

1

r
=

1

r1
+

1

r2
,

which coincides with Figures 1, 3a and 3b. However it is not assumed that the involved

spaces are characterized by the points within D, where D is given by (1.1.6).
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Theorem 4.2.1. Let s > 0, 0 < p1 < ∞, 0 < p2 < ∞, 0 < p < ∞, 0 < q1 ≤ ∞, 0 <

q2 ≤ ∞ and 0 < q ≤ ∞. Let

1

r1
=

1

p1

− s

n
> 0,

1

r2
=

1

p2

− s

n
> 0 and

1

r1
+

1

r2
=

1

r
=

1

p
− s

n
< 1.(4.2.4)

(i) Then holds

Bs
p1q1

Bs
p2q2

⊂ Bs
pq(4.2.5)

if and only if

0 < q1 ≤ r1, 0 < q2 ≤ r2 and ∞ ≥ q ≥ max(q1, q2).(4.2.6)

(ii) Then holds

F s
p1q1

F s
p2q2

⊂ F s
pq(4.2.7)

if and only if

∞ ≥ q ≥ max(q1, q2).(4.2.8)

Remark 4.2.2. Both (4.2.5) and (4.2.7) are the Hölder inequalities in the distinguished

strip D in (1.1.6) we are looking for. The situation described in Fig.1 is the same as in

(4.2.4). Compared with Figures 3a and 3b condition (4.2.4) corresponds to the heavy

lines where the endpoints A and B are excluded. Furthermore, (4.2.4) is connected with

embeddings with constant differential dimensions, see Theorem 3.2.1 and the broken lines

in the Figures 3a and 3b ending at 1/r1, 1/r2, and 1/r.

Remark 4.2.3. One can try to mix B-spaces and F-spaces in (4.2.5) and (4.2.7). We

do not go into detail. By the above proposition it is quite clear what can be expected.

4.3 Two limiting cases

We discuss two limiting cases connected with the point A, Figures 3a and 3b and point

B in Fig.3a.

First we assume s = n/p1. In agreement with (4.2.1) we have

r1 = ∞ and p2 = p.

However it comes out that (4.2.3) is no longer the natural condition. In contrast to

Proposition 4.2.1 we have now to handle the B-spaces and the F-spaces separately.
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Proposition 4.3.1. (i) Let 0 < p1 ≤ ∞, 0 < p ≤ ∞, 0 < q1 ≤ ∞, 0 < q2 ≤ ∞ and

0 < q ≤ ∞. Let

s =
n

p1

.(4.3.1)

If

Bs
p1q1

Bs
pq2
⊂ Bs

pq(4.3.2)

then

q1 ≤ 1.(4.3.3)

(ii) Let 0 < p1 < ∞, 0 < p < ∞, 0 < q1 ≤ ∞, 0 < q2 ≤ ∞ and 0 < q ≤ ∞. Let s be

given by (4.3.1). If

F s
p1q1

F s
pq2
⊂ F s

pq(4.3.4)

then

p1 ≤ 1.(4.3.5)

Proof. If (4.3.2) holds then it follows by the same arguments as in [7], pp.38/39,

Bs
p1q1

⊂ L∞. Similarly if (4.3.4) holds then we have necessarily F s
p1q1

⊂ L∞. Now (4.3.3),

respectively (4.3.5) follow immediately from Theorem 3.3.1.

Theorem 4.3.1. Let 0 < p1 < ∞, 0 < p < ∞, 0 < q1 ≤ ∞, 0 < q2 ≤ ∞ and

0 < q ≤ ∞. Let

s =
n

p1

and 0 <
1

p
− s

n
=

1

r
< 1.

(i) Then holds

Bs
p1q1

Bs
pq2
⊂ Bs

pq

if and only if

0 < q1 ≤ 1, 0 < q2 ≤ r and ∞ ≥ q ≥ max(q1, q2).

(ii) Then holds

F s
p1q1

F s
pq2
⊂ F s

pq

if and only if

0 < p1 ≤ 1 and ∞ ≥ q ≥ max(q1, q2).
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Remark 4.3.1. This theorem is connected with the points A in the Figures 3a and

3b. The formulation is chosen in such a way that it can be compared immediately with

Theorem 4.2.1. Instead of (4.2.6) with the expected 0 < q1 ≤ ∞ we have now 0 < q1 ≤ 1,

and (4.2.8) must now be complemented by 0 < p1 ≤ 1.

The second limiting case is connected with the point B in Fig.3a, that means with

s = 0 and
1

p
=

1

p1

+
1

p2

≤ 1.

Theorem 4.3.2. Let 0 < q1 ≤ ∞, 0 < q2 ≤ ∞ and 0 < q ≤ ∞. Let

1 ≤ p1 ≤ ∞, 1 ≤ p2 <∞, and
1

p
=

1

p1

+
1

p2

≤ 1.

Let independently

A0
p1q1

be either B0
p1q1

or F 0
p1q1

,

A0
p2q2

be either B0
p2q2

or F 0
p2q2

and

A0
pq be either B0

pq or F 0
pq

(we assume A0
p1q1

= B0
p1q1

if p1 = ∞). Then holds

A0
p1q1

A0
p2q2

⊂ A0
pq(4.3.6)

if and only if

A0
p1q1

⊂ Lp1 , A0
p2q2

⊂ Lp2 and Lp ⊂ A0
pq.(4.3.7)

Remark 4.3.2. We compare the above assertion with the classical Hölder inequality

Lp1 Lp2 ⊂ Lp.

Then the Theorem 4.3.1 states that, within the scales Bs
pq and F s

pq with s = 0, the classical

Hölder inequality is not improvable.

As a consequence of Theorem 4.3.2, Theorem 3.1.1 and F 0
p,2 = Lp, 1 < p <∞, we obtain

the following corollary.
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Corollary 4.3.1. Let 0 < q1 ≤ ∞, 0 < q2 ≤ ∞ and 0 < q ≤ ∞.

Let

1 < p1 <∞, 1 < p2 <∞, and
1

p
=

1

p1

+
1

p2

< 1.

(i) Then holds

B0
p1q1

B0
p2q2

⊂ B0
pq

if and only if

q1 ≤ min(p1, 2), q2 ≤ min(p2, 2) and q ≥ max(p, 2).

(ii) Then holds

F 0
p1q1

F 0
p2q2

⊂ F 0
pq(4.3.8)

if and only if

q1 ≤ 2, q2 ≤ 2 and q ≥ 2.

Remark 4.3.3. In case 1 ≤ p1 <∞, 1 ≤ p2 <∞ and 1/p = 1/p1 + 1/p2 = 1 Theorem

4.3.2 yields : there do not exist q1, q2 and q such that (4.3.8) holds. This follows from

(3.1.5).

Remark 4.3.4. Of special interest is also the situation in case p1 = ∞. Let 1 ≤ p <

∞, 0 < q1 ≤ ∞ and 0 < q ≤ ∞. By (4.3.7) and Theorem 3.1.1 we have

B0
∞q1

B0
pq ⊂ B0

pq(4.3.9)

if and only if

0 < q1 ≤ 1 and p = q = 2 (that means B0
2,2 = L2.)

and

B0
∞q1

F 0
pq ⊂ F 0

pq

if and only if

0 < q1 ≤ 1, 1 < p <∞ and q = 2 (that means F 0
p,2 = Lp).

Hence, with the obvious exception of Lp the space L∞ is not contained in the set of point-

wise multipliers of these spaces, which was proved earlier by [8]. (4.3.9) improves also
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some results of Bourdaud [4].

Not as a consequence of Theorem 4.3.2 but as a consequence of the proof of this theorem

one obtains the following corollary. Here bspq denotes the closure of S in Bs
pq , equipped

with the same quasi-norm as Bs
pq .

Corollary 4.3.2. Let 0 < q1 ≤ ∞, 0 < q2 ≤ ∞ and 0 < q ≤ ∞. Then holds

b0∞q1
b0∞q2

⊂ b0∞q

if and only if

b0∞q1
⊂ L∞, b0∞q2

⊂ L∞ and L∞ ⊂ b0∞q.

Remark 4.3.5. Because of b0∞q 6= L∞ one consequence of the corollary is the fact that

b0∞q is not a multiplication algebra, cf. Remark 3.3.2. But this implies that also B0
∞q can

not be an algebra with respect to pointwise multiplication.

4.4 Further results

We complement our previous considerations by collecting some further results, mostly

connected with the shaded areas in the Figures 3a and 3b. We refer also to Subsections 3.3

and 4.3, where we characterized the conditions under which Bs
pq or F s

pq are multiplication

algebras.

Theorem 4.4.1. Let 0 < p1 < ∞, 0 < p2 < ∞, 0 < q1 ≤ ∞, 0 < q2 ≤ ∞ and

0 < q ≤ ∞. Let (s, 1
p
) be a point in the interior of the shaded areas in Figures 3a and 3b,

that means

max(
1

p1

,
1

p2

) <
1

p
<

1

p1

+
1

p2

,(4.4.1)

2s > n (
1

p1

+
1

p2

− 1)+,(4.4.2)

and

s > n (
1

p1

+
1

p2

− 1

p
).(4.4.3)

Then holds

Bs
p1q1

Bs
p2q2

⊂ Bs
pq(4.4.4)
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if and only if

q ≥ max(q1, q2)(4.4.5)

and

F s
p1q1

F s
p2q2

⊂ F s
pq(4.4.6)

if and only if

q ≥ max(q1, q2).(4.4.7)

In case of the B-spaces p1 = ∞ and p2 = ∞ are admitted in (4.4.4).

Remark 4.4.1. We used the same notations as in Theorem 4.2.1 and it is immediately

clear that the above assertion complements that theorem, where we are now not restricted

to the strip D. The necessity of (4.4.5), resp. (4.4.7), is proved in [7].

Remark 4.4.2. The above theorem has a lot of forerunners. Without going into detail

we refer to [1], [2], [7], [9], [12], [13], [14], [15], [17], [20], [21], [22], [23], [24], [29], [30],

[31], [32], [33], [34].

Remark 4.4.3. Again let us cast a look on the Figures 3a and 3b. The results given

so far answer the question of the existence of inequalities of type (4.4.4) and (4.4.6) in

the interior of the shaded area (yes) and partly also on the boundary. Whereas on the

vertical lines the answer is again yes in any case, except maybe the points A and B itself

(these claims can be proved by suitable modifications of the proof of the above theorem

given in 5.7, cf. Remark 5.7.1) the answer on the horizontal line 2s = n( 1
p1

+ 1
p2
− 1) may

be yes or no. A partly positive answer for the existence of (4.4.6) on this line is given by

[7]. A negative answer for the existence of (4.4.4) one obtains in case 1/q1 + 1/q2 < 1 by

replacing the simple counterexample used in proof of (4.1.4) by a more sophisticated one,

cf. [11] or [18, Lemma 4.3.1/3].

5 Proofs

5.1 Proofs of the assertions in Subsection 3.1

Proof of Theorem 3.1.1. Step 1. Proofs of the “if”-parts of (i), (ii) and (iv) may be

found in [24], Proposition 2.3.2/2, p.46 and Proposition 2.5.7, p.89. The “if”-part of (iii)

is an immediate consequence of the identity F 0
1,2 = h1, cf. [24], Theorem 1, p.92. So in
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what follows we restrict ourselves to the “only if”-parts and to the proof of (3.1.5).

Step 2. (Proof of (3.1.1)). First note that it will be sufficient to prove (3.1.1) in case

of a fixed s. By well-known lifting properties (cf. [24], Theorem 2.3.8, p.58) it can be

extended to arbitrary s afterwards.

Substep 2.1 . Let ψ ∈ S such that

supp Fψ ⊂ { ξ : ξ1 ≤ 0,
7

4
≤ |ξ| ≤ 2 }.(5.1.1)

For given complex numbers aj and e = (1, 0, . . . , 0) we put

f(x) =
∞∑

j=3

aje
i λj<e,x> ψ(x).

Then

Ff(ξ) =
∞∑

j=3

aj (Fψ)(ξ − λje).

Choose λj = 2j − 2, j = 3, 4, . . ., we arrive at

F−1[ϕj Ff ](x) = aj e
i λj<e,x> ψ(x),

where we have used (2.1.3), (2.1.4) and (5.1.1). Consequently we have

‖f |F 0
pq‖ = c



∞∑

j=3

|aj|q



1/q

and

‖f |B0
pu‖ = c



∞∑

j=3

|aj|u



1/u

.

The monotonicity of the lq-norms gives

u ≤ q ≤ v.(5.1.2)

Substep 2.2 . We wish to prove the counterpart of (5.1.2) with p instead of q. For this

purpose we use local means, cf. [26], 1.8.4 and 2.5.3. Let k0, k
0 ∈ S such that

supp k0 ⊂ {y : |y| ≤ 1}, supp k0 ⊂ {y : |y| ≤ 1}, Fk0(0) 6= 0, Fk0(0) 6= 0.

Define

k(y) = ∆Nk0(y) =




n∑

j=1

∂2

∂x2
j




N

k0(y)

23



with N ∈ N. We introduce the local means by

k(t, f)(x) =
∫
k(y) f(x+ ty) dy, t > 0,(5.1.3)

and similarly k0(t, f). Recall, for N large enough we have

‖f |Bs
pu‖ ≈ ‖k0(1, f)(·)|Lp‖+

( ∞∑

m=1

2msu‖k(2−m, f)(·)|Lp‖u

)1/u

.(5.1.4)

Let ϕ ∈ S be non-trivial with a compact support near the origin. Let ` be an integer,

then we have

k(2`,∆Nϕ)(x) =
∫

∆Nk0(y) (∆Nϕ)(x+ 2`y) dy

= 22`N
∫
k0(y) (∆2Nϕ)(x+ 2`y) dy = 2−2`N

∫
∆2Nk0(y)ϕ(x+ 2`y) dy.

In other words, we have

|k(2`,∆Nϕ)(x)| ≤ cN 2−2|`|N , ` ∈ Z, N ∈ N(5.1.5)

and similarly

|k0(2
`,∆Nϕ)(x)| ≤ cN 2−2`N , ` ∈ N0, N ∈ N.(5.1.6)

Now we put

f =
∞∑

j=0

aj (∆Nϕ)(2j(x− xj)),(5.1.7)

with aj ∈ C and, say, xj = c (j, 0, . . . , 0) where c > 0 is a suitable positive number. We

insert f in (5.1.3) and calculate

‖k(2−m, f)(·)|Lp‖p =
∞∑

j=0

|aj|p‖k(2−m, (∆Nϕ)(2j(· − xj)))|Lp‖p,(5.1.8)

where we used the construction of the local means and the fact, that the supports of the

terms of f have a sufficiently large distance from each other. For the term with j = m ∈ N

we have

‖k(2−m, (∆Nϕ)(2m · −2mxm))|Lp‖p = 2−mn ‖k(1,∆ϕ)|Lp‖p,(5.1.9)

where we may assume that the last factor on the right-hand side is positive. Of course

we have an obvious counterpart of (5.1.8) with k0(1, f) instead of k(2−m, f) and of (5.1.9)

for the term j = m = 0. Hence, by (5.1.4) we have

‖f |Bs
pu‖u ≥ c

∞∑

m=0

2msu |2−mn
p am|u(5.1.10)
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for some c > 0. To prove the converse estimate we apply (5.1.5) with ` = j −m to the

corresponding term in (5.1.8), and (5.1.6) with ` = j to the k0-counterpart of (5.1.8). For

sake of convinience we put aj = 0, for −j ∈ N . Then (5.1.5) and (5.1.8) yield

‖k(2−m, f)(·)|Lp‖p ≤ c
∑

j

|2− jn
p aj|p 2−2N |j−m| p

≤ c′ sup
j
|2− jn

p aj|p 2−α |j−m| p ≤ c′
∑

j

(
|2− jn

p aj|u 2−α |j−m|u
)p/u

for 0 < α < 2N and appropriate c > 0 and c′ > 0. We choose N and afterwards α

sufficiently large such that

2msu ‖k(2−m, f)(·)|Lp‖u ≤ c
∑

j

2jsu |2− jn
p aj|u 2−β |j−m|u(5.1.11)

with β = α−|s| > 0. Now we insert (5.1.11) and its k0-counterpart in (5.1.4), change the

order of summation and arrive at the converse of (5.1.10). Hence we have

‖f |Bs
pu‖u ≈

∞∑

m=0

2msu |2−mn
p am|u.(5.1.12)

On the other hand, by the localization property of F s
pq (cf. [26], 2.4.7) we have

‖f |F s
pq‖p ≈

∞∑

j=0

|aj|p ‖(∆Nϕ)(2j · −2jxj)|F s
pq‖p.(5.1.13)

To estimate the last factors we use the counterpart of (5.1.4) for the F s
pq -space, see again

[26], 2.4.6 . By (5.1.5), (5.1.6) and the same technique as above we have

‖(∆Nϕ)(2j · −2jxj)|F s
pq‖ ≈ 2j(s−n

p
).

We insert this result in (5.1.13) and arrive at

‖f |F s
pq‖p ≈

∞∑

m=0

2msp |2−mn
p am|p.(5.1.14)

Now (3.1.1), (5.1.12) and (5.1.14) yield

u ≤ p ≤ v.

Together with (5.1.2) this proves (3.1.2).

Step 3. (Proof of (3.1.6)). Taking the characteristic function χQ of the cube Q = {x :

|x`| ≤ 1, ` = 1, . . . , n } it is well-known that

χQ ∈ B0
∞q ⇐⇒ q = ∞, cf. [23], pp. 142-145.(5.1.15)

25



There the one-dimensional case is treated only but the general result can be deduced by

using some tensorproduct arguments. From the equivalence (5.1.15) it follows v = ∞.

The remaining implication

B0
∞u ⊂ L∞ =⇒ u ≤ 1

can be derived from the existence of essentially unbounded functions in B0
∞u, u > 1 (cf.

[23], pp. 134/135). This proves (3.1.6).

Step 4. (Proof of (3.1.3)). The proof of (3.1.3) (“only if”-part) can be reduced to (3.1.6)

by using duality arguments. Suppose

B0
1,u ⊂ L1 ⊂ B0

1,v for some 1 < u <∞ and/or v <∞

then this would imply (cf. [24], 2.11.2, p.178)

B0
∞v′ ⊂ L∞ ⊂ B0

∞u′ ,
1

u
+

1

u′
=

1

v
+

1

v′
= 1.

This contradicts (3.1.6). Hence, (3.1.3) is proved.

Step 5. (Proof of (3.1.4)). The proof of F 0
1,q 6⊂ L1, q > 1 we postpone to the proof of the

stronger implication

F 0
1,q ⊂ Lloc

1 =⇒ q ≤ 2,

cf. Subsection 5.3.

Step 6. (Proof of (3.1.5)). To prove (3.1.5) we apply again duality arguments. Let f 0
1,∞

be the closure of S in F 0
1,∞. Assume L1 ⊂ F 0

1,∞ we conclude L1 ⊂ f 0
1,∞ using the density

of S in L1. This yields

(f 0
1,∞)′ = F 0

∞,1 ⊂ L∞,(5.1.16)

cf. [14]. But this is false since F 0
∞,1 contains essentially unbounded functions. This can

be derived from the embedding

Bn/p
p∞ ⊂ F 0

∞,1, 0 < p <∞,(5.1.17)

cf. again [14] and Theorem 3.3.1.

Remark 5.1.1. To avoid the technical difficulties occurring in Substep 2.2 one can use

the following elegant argumentation. Let n ≥ 2. If s is large enough then the trace on
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Rn−1 (≈ xn = 0) makes sense. Suppose (3.1.1) then it follows

B
s− 1

p
pu (Rn−1) ⊂ B

s− 1
p

pp (Rn−1) ⊂ B
s− 1

p
pv (Rn−1),

cf. [24], Theorem 2.7.2, p.132 . This proves u ≤ p ≤ v, unfortunately in case n ≥ 2 only.

5.2 Proofs of the assertions in Subsection 3.2

Proof of Theorem 3.2.1. Step 1. The proof of (3.2.5) (“only if”-part) will be

postponed to the proof of the stronger implication

B
n ( 1

p
−1)

pq ⊂ Lloc
1 =⇒ q ≤ 1,

given in Subsection 5.3. The “if”-part of (3.2.5) follows from

B
n( 1

p
−1)

pq ⊂ B0
1,q,

see [24], Theorem 2.7.1, and (3.1.3). Furthermore as pointed out in Remark 3.2.1 both

(ii) and the “if”-part of (i) are known.

Step 2. (Proof of the “only if”-part of (3.2.1)). Let f be given by (5.1.7). We put

bj = 2j(s−n
p
)aj. Since s− n/p = s0 − n/p0 = s1 − n/p1 we find by (5.1.12) and (5.1.14)

‖f |Bs0
p0u‖u ≈

∞∑

j=0

|bj|u, ‖f |Bs1
p1v‖v ≈

∞∑

j=0

|bj|v

and

‖f |F s
pq‖p ≈

∞∑

j=0

|bj|p.

Then (3.2.1) implies u ≤ p and p ≤ v.

5.3 Proofs of the assertions in Subsection 3.3

Proof of Theorem 3.3.2. Step 1. The implications (i2) → (i1) and (ii2) → (ii1) are

known and follow directly from the sharper embedding

Bs
pq ⊂ Lp̄, F s

pq ⊂ Lp̄, p̄ = max(1, p),
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(Theorem 3.1.1, Theorem 3.2.1, Remark 2.1.1 and the proof of Corollary 3.3.1).

Step 2. Let p ≤ 1 and s = n(1/p− 1). We shall prove

B
n( 1

p
−1)

pq ⊂ Lloc
1 =⇒ q ≤ 1.(5.3.1)

Let ϕ be a non-vanishing C∞ function with support near to origin and Fϕ(0) = 0. Let

f =
∞∑

j=0

λj 2jn ϕ(2jx− xj), xj ∈ Rn, |xj| ≤ 1,(5.3.2)

where we assumed that the functions ϕ(2jx− xj) have disjoints supports. Then (5.3.2) is

an atomic representation of f with

‖ f |Bn( 1
p
−1)

pq ‖ ≤ c



∞∑

j=0

|λj|q



1/q

<∞,(5.3.3)

see [8] or [26], 1.9.2 . On the other hand we have

‖
M∑

j=0

λj 2jn ϕ(2j · −xj) |L1‖ = c
M∑

j=0

|λj|, c 6= 0.(5.3.4)

If 1 < q < ∞, then we find numbers λj with (5.3.3) such that (5.3.4) diverges. Hence f

does not belong to L1. This proves (5.3.1).

Step 3. Let 1 ≤ p <∞. We shall prove

F 0
pq ⊂ Lloc

1 =⇒ q ≤ 2.

Assume q > 2. For technical reasons we switch temporarily to the one-dimensional

periodic case. Let T1 be the 1-torus. Let {ak}k 6∈ l2. Immediately it follows:

(i) The lacunary series
∑

k ak e
i2kt belongs to F 0

pq(T
1) if and only if {ak}k ∈ lq (cf. [19],

3.5.1, 6.4.2).

(ii) f 6∈ L1(T
1), hence is not a regular distribution on the 1-torus (cf. [6], 15.3.1 and

15.3.2).

This yields the result in the one-dimensional periodic case. The same argumentation

works in the general non-periodic case if we start with

g(x) = f(x1) · χ(x), x = (x1, . . . , xn).

Here χ denotes a compactly supported C∞ function in Rn which is identically 1 in the

cube [−π, π]n. One can prove this claim by using the characterization of F s
pq spaces via
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local means with kernels having a product structure, cf. [26], 1.8.4.

Step 4. Let 1 ≤ p ≤ ∞. The same machinery as in the preceding step can be applied to

prove

B0
pq ⊂ Lloc

1 =⇒ q ≤ 2.

Step 5. Let 1 ≤ p ≤ ∞. It remains to check

B0
pq ⊂ Lloc

1 =⇒ 0 < q ≤ p.(5.3.5)

We shall prove the existence of a singular distribution in B0
pq, 1 ≤ p < q ≤ ∞.

Substep 5.1. Preparations. Let f be a smooth function, non-trivial, supported around

the origin and |f(x)| ≤ 1,
∫
f(x) dx = 0. Let σ > 1. Define

κ0 = 0, κj =
j∑

`=1

`−1(log(`+ 1))−σ.

Since σ > 1 there exists a real number κ with κj −→ κ if j −→∞. Further we put

Rj = {x = (x1, . . . , xn) : κj−1 < x1 ≤ κj, 0 < x` < 1, ` = 2, . . . , n},

j = 1, 2, . . . .

Next we subdivide Rj in Nj = 2j(n−1) [2jj−1 (log(j + 1))−σ ] ([ ] denotes the integer part)

cubes of side-length 2−j, centered at xj,r.

Substep 5.2. The announced singular distribution is given by

g =
∞∑

j=1

Nj∑

r=1

( log(j + 1))σ f(2j+1 (x− xj,r)).

To see this, first note, that 2jn/p f(2j+1(x − xj,r)) is an atom. More exactly, it is an

(Qj,r, 0, p)-atom (cf. [26], p.62), where Qj,r is an appropriate cube with volume ≈ 2−jn

and located around xj,r. Using the characterization of Besov spaces via atoms, due to

Frazier and Jawerth (cf. [26], Theorem 1.9.2, p.63) we obtain

‖g|B0
pq‖q ≤ c

∞∑

j=1

2−j n
p

q ( log(j + 1))σq




Nj∑

r=1

1




q/p

≤ c
∞∑

j=1

j−q/p ( log(j + 1))σq(1− 1
p
) <∞

since q > p. Hence,

g ∈ B0
pq if 1 ≤ p < q <∞.(5.3.6)
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By construction g has compact support. Furthermore

∫
|g(x)| dx =

∞∑

j=1

∫

Rj

|g(x)| dx ≈
∞∑

j=1

( log(j + 1))σ |Rj| =
∞∑

j=1

j−1 = ∞.

Hence,

g 6∈ Lloc
1 .(5.3.7)

The formulas (5.3.6) and (5.3.7) prove that g has the required properties, which gives

(5.3.5).

5.4 Proofs of the assertions in Subsection 4.1

Proof of Theorem 4.1.1. Step 1. (Proof of (4.1.3). The right-hand side of this

inequality was proved in [20], p.51. We prove the left-hand side and assume that (4.1.1)

holds. Then we have

‖f |Bs
pq‖ ≤ c ‖f |Bs

p1q1
‖(5.4.1)

for all f ∈ Bs
p1q1

with a compact support, say, in the unit cube. Assume that f is non-

trivial and smooth and that

∫
xβ f(x) dx = 0 for |β| ≤ L.

If L is sufficiently large then 2j(n
p
−s) f(2jx) are atoms in Bs

pq , see [26], 1.9.2. Then we

have

‖f(2j·)|Bs
pq‖ ≈ 2j(s−n

p
).

Similarly for Bs
p1q1

. Then (5.4.1) yields 1/p1 ≤ 1/p. By (3.1.1) the assumption that (4.1.2)

holds yields a corresponding assertion of type (4.1.1). Hence we have again 1/p1 ≤ 1/p.

Step 2. (Proof of 4.1.4). The necessity of s ≥ 0 is proved in [7]. So it remains to check

2s ≥ n/p1 + n/p2 − n. Let ϕj be the functions defined in (2.1.2). Consider the sequences

Hj(x) = 2−jα1 F−1ϕj(x), Gj(x) = 2−jα2 F−1ϕj(x), j = 1, . . . .(5.4.2)

Obviously,

‖Hj|Bs
p1q1

‖ ‖Gj|Bs
p2q2

‖ ≈ 2
j(2s−(α1+α2)+2n− n

p1
− n

p2
)
.(5.4.3)
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Let us assume 2s < n/p1 + n/p2 − n. Then we may choose α1 + α2 < n such that

2s− (α1 + α2) + 2n− n

p1

− n

p2

= 0.(5.4.4)

Next we consider the sequence (Gj ·Hj)(ϕ), where ϕ is taken from S. We find

(Gj ·Hj)(ϕ) =
∫
Gj(x)Hj(x)ϕ(x) dx

= 2−j(α1+α2) 22jn
∫ ∫

ϕ1(τ)ϕ1(ξ − τ) dτ Fϕ(2jξ) dξ.

We choose ϕ such that Fϕ ≥ 0, ξ ∈ Rn and Fϕ(ξ) = 1, |ξ| ≤ 1. Then it follows

|(Gj ·Hj)(ϕ)| ≥ c 2j(n−(α1+α2))

for some appropriate positive constant c. From the continuous embedding Bs
pq ⊂ S ′ (cf.

[24], Theorem 2.3.2, p.48) and (5.4.3), (5.4.4) we obtain a contradiction to (4.1.1). Since

(5.4.3) remains true if we replace the B-spaces by the F-spaces the same argumentation

works also in this case.

Step 3. (Proof of (4.1.5)). Again we can make use of the sequences defined in (5.4.2).

Now it will be sufficient to take α1 = α2 = 0. Observe that

‖Gj ·Hj|Bs
p∞‖ ≥ 2js ‖F−1[ϕjF(F−1ϕj · F−1ϕj)](x)|Lp‖(5.4.5)

≥ 2js 22jn 2−jn/p ‖F−1[ϕ1(ϕ1 ∗ ϕ1)](x)|Lp‖.

Comparing (5.4.5) with (5.4.3) the necessity of (4.1.5) in case (4.1.1) follows. As in the

preceding step the same proof can be taken over to the case of the F-spaces.

Remark 5.4.1. Let As
p1q1

denote either Bs
p1q1

or F s
p1q1

and similar As
p2q2

and As
pq. Without

any changes the above proof can be taken over to the more general problem whether

As
p1q1

As
p2q2

⊂ As
pq(5.4.6)

holds or not. Then as above from (5.4.6) the necessity of (4.1.3)-(4.1.5) will follow.

Remark 5.4.2. There is a difference between (4.1.4) and (4.1.5). Whereas (4.1.5) is

necessary to keep the product in Bs
p∞, (4.1.4) saves the membership of the product to S ′.
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5.5 Proofs of the assertions in Subsection 4.2

Proof of Proposition 4.2.1. For sake of simplicity we always assume n = 1. Otherwise

one has to modify the following in an obvious way.

Step 1. Preparations. We construct a smooth counterpart of Rademacher functions. To

this end, let %0 be a C∞ function supported near 1 and identical 1 in a certain neighbour-

hood of 1. Then we put %1(x) = %0(x) − %0(x − 1). Consequently
∫
%1(x) dx = 0. Next

we define %2(x) = %1(x)− %1(x− 2). This function %2 has now two vanishing moments

∫
%2(x) dx = 0,

∫
x%2(x) dx =

∫
x%1(x) dx−

∫
(x− 2) %1(x− 2) dx = 0.

Iteration of this construction yields a family of functions %k having the following proper-

ties:

supp %k ⊂ [0, 2k + 1],

|F%k(ξ)| ≤ ck |ξ|k, if |ξ| ≤ 1(5.5.1)

and

|F%k(ξ)| ≤ ck,K |ξ|−K , if 1 ≤ |ξ|(5.5.2)

for arbitrary K and suitable constants ck, ck,K . Both k and K are at our disposal.

Step 2. We fix some k and denote the corresponding function %k simply by %. In what

follows we investigate linear combinations of some scaled versions of this function.

Let %`(x) = %(2`x), ` ∈ N. Recall {ϕk }k denotes the decomposition of unity defined in

(2.1.2) and ψ the function from (2.1.1). Let Φ ∈ S be a function with

supp Φ ⊂ [−4,−1/2] ∪ [1/2, 4] and Φ(x) = 1 on supp ϕ1.

From (5.5.1) and (5.5.2) one derives

‖Φ(·) (F%)(2j−`·)|Wm
2 ‖ ≤ cm 2−a |j−`|(5.5.3)

and

‖ψ(·) (F%)(2−`·)|Wm
2 ‖ ≤ cm 2−a `(5.5.4)

for any m ≥ 0 and cm does not depend on j ∈ N0 and ` ∈ N0. Here a > 0 is at our

disposal. The Fourier multiplier theorem [24], 1.5.2 and (5.5.3) yield in case j > 0

‖F−1[ϕj F%`](·)|Lp‖ = 2−`+j (1− 1
p
)‖F−1[ϕ1(ξ) Φ(ξ)F%(2j−`ξ)](·)|Lp‖(5.5.5)
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≤ c 2−`+j (1− 1
p
)‖Φ(·) (F%)(2j−`·)|Wm

2 ‖ ‖F−1ϕ1|Lp‖ ≤ c′ 2−
j
p 2−a |j−`|,

where m has to be suffiently large. In case j = 0 one has to apply (5.5.4) instead of (5.5.3)

and obtains

‖F−1[ϕ0F%`](·)|Lp‖ ≤ c 2−a `.(5.5.6)

Both (5.5.5) and (5.5.6) lead to

2js ‖F−1[ϕj F%`](·)|Lp‖ ≤ c 2j(s− 1
p
) 2−a |j−`|(5.5.7)

which may be assumed to be an equivalence if j = `. We introduce

λL(x) =
L∑

`=0

a` %
`(x− x`),(5.5.8)

where the points x` are chosen such that %`(· − x`) have disjoint supports (that is not

important in this step but it will be used later on). Next we wish to calculate ‖λL|Bs
pq‖.

We have

‖F−1[ϕj FλL](·)|Lp‖min(1,p)

≥ |aj|min(1,p) ‖F−1[ϕj F%j](·)|Lp‖min(1,p) −∑

l 6=j

|a`|min(1,p)‖F−1[ϕj F%l](·)|Lp‖min(1,p)

if L ≥ j. Using (5.5.7) this leads to

2js min(1,p) ‖F−1[ϕj FλL](·)|Lp‖min(1,p)

≥ c1|aj|min(1,p) 2j(s− 1
p
) min(1,p) − c2

∑

l 6=j

|a`|min(1,p)2`(s− 1
p
) min(1,p) 2−a |j−`| min(1,p),

where c1 and c2 are positive constants independent of j and `. This implies

‖λL|Bs
pq‖min(1,p,q) ≥ c′1




L∑

j=0

2j(s− 1
p
) q |aj|q




1
q

min(1,p,q)

−c′2



∞∑

j=0

∣∣∣∣∣∣
∑

` 6=j

|a`|min(1,p) 2`(s− 1
p
) min(1,p) 2−a |`−j| min(1,p)

∣∣∣∣∣∣

q/ min(1,p)



1
q

min(1,p,q)

Choosing a large we may assume that the second term on the right-hand side can be

estimated from above by, say,

c′1
2


∑

j

2j(s− 1
p
) q|aj|q




1
q

min(1,p,q)

.
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Then we obtain

‖λL|Bs
pq‖ ≥ c




L∑

j=0

2j(s− 1
p
) q |aj|q




1/q

(5.5.9)

for an appropriate positive constant c. The reverse inequality to (5.5.9) can be derived in

a similar way, again based on (5.5.7). Hence we have

‖λL|Bs
pq‖ ≈




L∑

j=0

2j(s− 1
p
) q |aj|q




1/q

(5.5.10)

and the corresponding constants do not depend on L and the sequences {aj}j and {x`}`.

Step 3. Let ` = 0, . . . , L and let j > L. Then we can choose points tr, r = 1, . . . c 2j−` such

that supp %j(·− tr) ⊂ {t : %`(t) = 1 } and the supports of %j(·− tr) and %j(·− tm), r 6= m

have a mutual distance of at least c′2−j for some positive numbers c and c′. We put

µj
`(x) =

c2j−l∑

r=1

%j(x− tr).

Such functions are studied in [28], for partial results see also [27]. By the Theorem on

p.183 in [28] it follows

‖µj
`|F s

p2q2
‖ ≈ ‖µj

`|Bs
p2q2

‖ ≈ 2
js− `

p2 .

Step 4. Of course, the results of Step 3 remains unchanged replacing %` by %`(· − x`). We

put

µj(x) =
L∑

`=0

b` µ
j
`(x− x`).(5.5.11)

Then all the ingredients have mutually disjoint supports. Moreover, from [28] we know

‖µj|F s
p2q2

‖ ≈ ‖µj|Bs
p2q2

‖ ≈ 2js

(
L∑

`=0

|2− `
p2 b`|p2

)1/p2

.(5.5.12)

Step 5. We multiply λL from (5.5.8) with µj from (5.5.11). By construction

µj(x)λL(x) =
L∑

`=0

b` a` µ
j
`(x− x`).

By (5.5.12) it follows

‖µj λL|F s
pq‖ ≈ ‖µj λL|Bs

pq‖ ≈ 2js

(
L∑

`=0

|2− `
p b` a`|p

)1/p

.(5.5.13)

Step 6. Assume (4.2.2) holds, then by (5.5.13), (5.5.12) and (5.5.10) (with p1 instead of

p and q1 instead of q)

(
L∑

`=0

|2− `
p b` a`|p

)1/p

≤ c

(
L∑

`=0

|2− `
p2 b`|p2

)1/p2 (
L∑

`=0

2
`(s− 1

p1
) q1 |a`|q1

)1/q1

(5.5.14)
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with c independent of L and a`, b`. Let

β` = 2
− `

p2 b` and α` = 2
− `

r1 a`, see (4.2.1).

Applying (4.2.1) then (5.5.14) yields

(
L∑

`=0

|β` α`|p
)1/p

≤ c

(
L∑

`=0

|β`|p2

)1/p2 (
L∑

`=0

|α`|q1

)1/q1

.

Let β` = α` = 1, then

L
1
p ≤ c L

1
p2

+ 1
q1

and hence
1

p2

+
1

r1
=

1

p
≤ 1

p2

+
1

q1
,

from which (4.2.3) follows.

To prove Theorem 4.2.1. we need Proposition 2.2.1. Therefore we start to prove Propo-

sition 2.2.1 first.

Proof of Proposition 2.2.1. Step 1. (Proof of (i)). We shall use (2.2.3), (2.1.1),

(2.1.3) together with a Fourier multiplier assertion (cf. [24], Theorem 1.6.3, p.31). This

gives

‖
( ∞∑

k=0

|F−1
[
ϕk F

∑′
(f, g)

]
(·)|q

)1/q

|Lp‖ ≤ c ‖
( ∞∑

k=2

|fk−2 gk|q
)1/q

|Lp‖.

Applying Hölder’s inequality and

‖ sup
k
|fk(x)| |Lp2‖ ≤ c ‖f |hp2‖,

(cf. [24], p.37) we arrive at (2.2.5).

Step 2. (Proof of (ii)). We shall apply the following identity

F−1[ϕkF(
∑′′′

(f, g))](x) =
∞∑

`=−2

1∑

j=−1

F−1[ϕkF(fk+` · gk+`+j)](x).(5.5.15)

Here we have used (2.2.4), (2.1.1) and (2.1.3). First, let p ≥ 1. By the Michlin-Hörmander

Fourier multiplier theorem, the triangle inequality and Hölder’s inequality we get

‖F−1
[
ϕk F

∑′′′
(f, g)

]
(·)|Lp‖ ≤ c ‖

∞∑

`=−2

1∑

j=−1

F−1[ϕkF(fk+` · gk+`+j)](·)|Lp‖
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≤ c max
−1≤j≤1

∞∑

`=−2

‖fk+`|Lp1‖ ‖gk+`+j|Lp2‖

This proves (2.2.6).

Let p < 1. Let ` ≥ −2. Proposition 1.5.1 and Remark 1.5.2/3 in [24], p.25/28 give

‖F−1[ϕkF(fk+` · gk+`)](·) |Lp‖ ≤ c 2`n( 1
p
−1) ‖fk+` · gk+`|Lp‖.

Again we use (5.5.15). Hence

‖F−1
[
ϕk F

∑′′′
(f, g)

]
(·)|Lp‖p ≤ c max

−1≤j≤1

∞∑

`=−2

‖F−1[ϕkF(fk+` · gk+`+j)](·)|Lp‖p

≤ c max
−1≤j≤1

∞∑

`=−2

2`n( 1
p
−1)p ‖fk+`|Lp1‖p ‖gk+`+j|Lp2‖p.

This completes the proof of Proposition 2.2.1.

Proof of Theorem 4.2.1. Step 1 (necessity part). After application of Proposition

4.2.1 it remains to prove q ≥ max(q1, q2). But this is stated in a more general context in

[7].

Sufficiency part. Step 2 (proof of 4.2.5). Therefore we use the preparations made in

Subsection 2.2.

Substep 2.1 . Estimate of
∑′,

∑′′. Our assumptions in (4.2.4) and (4.2.6) imply the em-

beddings Bs
p1q1

⊂ Lr1 and Bs
p2q2

⊂ Lr2 , cf. Remark 3.3.5. Hence, we may use Proposition

2.2.1 (i) to obtain

‖2jsF−1[ϕjF(
∑′

(f, g)](·)|Lp‖ ≤ c
(
2js ‖gj|Lp2‖

)
‖f |hr1‖(5.5.16)

and

‖2jsF−1[ϕjF(
∑′′

(f, g)](·)|Lp‖ ≤ c
(
2js ‖fj|Lp1‖

)
‖g|hr2‖.(5.5.17)

Taking the q-th power and summing up the desired estimates of
∑′ and

∑′′ follow, where

we used hr1 = Lr1 ⊃ Bs
p1q1

and hr2 = Lr2 ⊃ Bs
p2q2

.

Substep 2.2 . Estimate of
∑′′′. Let 1/t = 1/p1 + 1/p2. We assume 0 < q ≤ min(1, t) = u.

Using Proposition 2.2.1 (ii) we derive

‖∑′′′
(f, g)|B2s

tq ‖q(5.5.18)

≤ c max
−1≤j≤1

∞∑

k=0

22ksq




∞∑

`=−2

2`n( 1
u
−1)u ‖fk+` · gk+`+j|Lt‖u




q/u
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≤ c max
−1≤j≤1

∞∑

l=−2

2`( n( 1
u
−1)−2s)q

∞∑

k=0

22(k+`)sq ‖fk+`|Lp1‖q ‖gk+`+j|Lp2‖q.

Because of

n (
1

t
− 1) = n (

1

p1

+
1

p2

− 1) = n (
1

p
+
s

n
− 1) (cf. (4.2.4))(5.5.19)

and s > 0 we have 2s > n ( 1
u
− 1) and hence the right-hand side can be estimated from

above by c ‖f |Bs
p1q1

‖q ‖g|Bs
p2q2

‖q. In addition we have the embedding B2s
tq ⊂ Bs

pq. This

follows from Theorem 3.2.1 and (4.2.4), see also (5.5.19). This proves (4.2.5) in case

0 < q ≤ min(1, t). If q > min(1, t) one has to modify the above estimate by using the

triangle inequality in lq/u. (5.5.16)-(5.5.18) together with (2.2.2) prove (4.2.5).

Step 3 (proof of (4.2.7)). Substep 3.1. Estimate of
∑′,

∑′′. Because of F s
p1q1

⊂ Lr1 = hr1

and F s
p2q2

⊂ Lr2 = hr2 without restrictions on q1, q2, cf. Theorem 3.2.1 (ii) and Remark

2.1.1 (first item) we may apply Proposition 2.2.1 (i) to obtain

‖∑′
(f, g)|F s

pq‖ ≤ c ‖g|F s
p2q‖ ‖f |hr1‖ ≤ c′ ‖g|F s

p2q2
‖ ‖f |F s

p1q1
‖.(5.5.20)

Here we have used in addition q ≥ q2. Similar one derives

‖∑′′
(f, g)|F s

pq‖ ≤ c ‖g|F s
p2q2

‖ ‖f |F s
p1q1

‖.(5.5.21)

Substep 3.2. Estimate of
∑′′′. Again we put 1/t = 1/p1 + 1/p2. As in Substep 2.2 we

know 2s > n (1
t
−1), cf. (4.2.4) and (5.5.19). This ensures the applicability of Proposition

2.2.1 (iii), we arrive at

‖∑′′′
(f, g)|F 2s

t∞‖ ≤ c ‖f |F s
p1q1

‖ ‖g|F s
p2q2

‖.(5.5.22)

The embedding F 2s
t∞ ⊂ F s

pq (cf. Theorem 3.2.1 (ii) and (4.2.4)) complements the estimate

of
∑′′′. Now (4.2.7) follows from (5.5.20)-(5.5.22).

5.6 Proofs of the assertions in Subsection 4.3

Proof of Theorem 4.3.1. Concerning the sufficiency part one can follow the same

arguments as in proof of Theorem 4.2.1, where one has to use now Theorem 3.3.1. The

necessity part is covered by Proposition 4.3.1 and [7], where the last reference is used to

prove q ≥ max(q1, q2).
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Proof of Theorem 4.3.2. We have to prove the “only if”-part only, cf. Remark 4.3.2.

Step 1. Let f ∈ A0
p1q1

and assume we have (4.3.6). Then the operator

Tf : g −→ f · g

is bounded from A0
p2q2

into A0
pq. Using Fourier multiplier assertions, cf. [24], Theorem

2.3.7, p.57 one derives that Tfj yields a uniformly bounded family of those operators,

where f j is given by (2.2.1).

Let g ∈ Lp2 , then gk ∈ Lp2 and ‖gk|Lp2‖ ≤ c‖g|Lp2‖ with c independent of g and k. Note,

that the Fourier image of gk eic2kx1 is concentrated near |ξ| ≈ 2k if c is large enough, cf.

(2.2.1) and (2.1.3). Let k > j, then the same is true in case of f j gk eic2kx1 . Hence

‖f j gk|Lp‖ = ‖f j gk eic2kx1|Lp‖ ≈ ‖f j gk eic2kx1|A0
pq‖(5.6.1)

≤ c ‖f j|A0
p1q1

‖ ‖gk eic2kx1|A0
p2q2

‖ ≤ c ‖f |A0
p1q1

‖ ‖gk eic2kx1|Lp2‖.

Consequently we have

‖f j gk|Lp‖ ≤ c(f) ‖g|Lp2‖

for all g ∈ Lp2 . Let j be fixed, then for k tends to ∞ we get

‖f j g|Lp‖ ≤ c(f) ‖g|Lp2‖

using the Fatou lemma. By standard arguments we conclude f j ∈ Lp1 and moreover, by

(5.6.1)

‖f j|Lp1‖ ≤ c(f) ≤ c ‖f |A0
p1q1

‖.

Let 1 < p1 < ∞, then using again Fatou’s lemma we obtain f ∈ Lp1 . The case p1 = ∞
can be covered by a Lebesgue point argument. If p1 = 1, then ‖ f j |L1‖ in the above

inequality can be replaced by ‖ f j |h1‖, cf. Remark 3.3.4. Then again by Fatou’s lemma

we obtain f ∈ h1 ⊂ L1. Hence

A0
p1q1

⊂ Lp1 .(5.6.2)

Step 2. It remains to check

Lp ⊂ A0
pq.(5.6.3)
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We may assume q < ∞. In case q = ∞ nothing more is to prove with the exception of

A0
pq = F 0

1,∞. The latter case will be considered in Substep 2.5. Further, observe that Step

1 implies q2 <∞.

Substep 2.1. Let A0
p2q2

= B0
p2q2

and A0
pq = B0

pq. By duality (cf. [24], Theorem 2.11.2,

p.178) (4.3.6) leads to

A0
p1q1

B0
p′q′ ⊂ B0

p′2q′2

(we put q′ = ∞ if q ≤ 1). As in Step 1 this yields

B0
p′q′ ⊂ Lp′ .(5.6.4)

Using either B0
p′q′ ⊂ Lp′ if and only if q′ ≤ min(p′, 2), p 6= 1 or B0

∞q′ ⊂ L∞ if and only if

q′ ≤ 1, (5.6.4) gives

Lp ⊂ B0
pq (cf. Theorem 3.1.1 and Theorem 3.3.2)

which is (5.6.3) in our case here.

Substep 2.2. Let A0
p2q2

= F 0
p2q2

and A0
pq = F 0

pq and assume p > 1 and p2 > 1. To use the

duality argument is a little bit more complicated than in Substep 2.1. Temporarily we

restrict us to 1 < q2 < ∞ and 1 < q < ∞. Under these conditions the duality argument

works, cf. again [24], Theorem 2.11.2, p.178 and we arrive at

A0
p1q1

F 0
p′q′ ⊂ F 0

p′2q′2
.

By Step 1 this implies

F 0
p′q′ ⊂ Lp′

which gives (5.6.3) by using again duality . If q2 ≤ 1 and/or q ≤ 1 then (4.3.6) yields

A0
p1q1

B0
p2q2

⊂ F 0
pq,

cf. Theorem 3.1.1. By duality we find

F 0
p1q1

(F 0
pq)

′ ⊂ B0
p′2q′2

.

Step 1 gives

(F 0
pq)

′ ⊂ Lp′ .
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Using the monotonicity of the F-spaces with respect to q (5.6.3) follows.

Substep 2.3. Let A0
p2q2

= F 0
p2q2

and A0
pq = F 0

1,q. The proof runs the same way as in Step 1

and Substep 2.2 if one takes into account

(F 0
1,q)

′ = F 0
∞,q′ , (1 ≤ q <∞),

and

(F 0
1,q)

′ = B0
∞∞ , (0 < q ≤ 1),

cf. [14, 8] and [24], p.180. Furthermore

‖gk ei c2kx1|F 0
∞,q′‖ ≈ ‖gk|B0

∞∞‖ ≈ ‖gk|L∞‖,

where the latter one follows from B0
∞q′ ⊂ F 0

∞q′ ⊂ B0
∞∞.

Substep 2.4. Let A0
p2q2

= F 0
1,q2

and A0
pq = F 0

1,q with q < ∞. Then necessarily we have

A0
p1q1

= B0
∞,q1

. We use that (4.3.6) implies

B0
∞q1

B0
1,min(1,q2) ⊂ F 0

1,q.(5.6.5)

Now we can argue as in Substep 2.3.

Substep 2.5. It remains (5.6.5) with q = ∞. Restricting to completions of S in the in-

volved spaces we may replace F 0
1,∞ by f 0

1,∞, see the end of Section 5.1. Then we can use

the arguments in (5.1.16) and (5.1.17) which disprove this possibility.

Proof of Corollary 4.3.1. Theorem 3.1.1 and Corollary 3.3.1 imply

B0
pq ⊂ Lp ⇐⇒ q ≤ min(p, 2) (1 ≤ p <∞)

and

F 0
pq ⊂ Lp ⇐⇒ q ≤ 2 (1 ≤ p <∞).

In view of these equivalences the corollary is a reformulation of Theorem 4.3.2.

Proof of Corollary 4.3.2. Our method in proving Theorem 4.3.2 depends on the

duality procedure. If we switch from B0
pq to b0pq, the closure of S in B0

pq then the restriction

p2 <∞ becomes superflous, cf. [24], Remark 2.11.2/2, p.180. The result is formulated as

a consequence of (5.6.2) and (5.6.3).
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5.7 Proofs of the assertions in Subsection 4.4

Proof of Theorem 4.4.1. Step 1 (Proof of (4.4.4), sufficiency part). Substep 2.1 .

Estimate of
∑′(f, g) and

∑′′(f, g). Thanks to Proposition 2.2.1 we know

‖2jsF−1[ϕjF(
∑′

(f, g)](·)|Lp‖ ≤ c
(
2js ‖gj|Lp2‖

)
‖f |hr1‖,(5.7.1)

where 1/p = 1/p2 +1/r1. Theorem 3.1.1, Theorem 3.2.1 tell us that we may apply (5.7.1)

with
1

n

(
n

p1

− s

)

+

<
1

r1
<

1

p1

(5.7.2)

in the same way as in proof of Theorem 4.2.1 given in Subsection 5.5. Similar we obtain

‖2jsF−1[ϕjF(
∑′′

(f, g)](·)|Lp‖ ≤ c
(
2js ‖fj|Lp1‖

)
‖g|hr2‖,(5.7.3)

and now 1/p = 1/p1 + 1/r2 holds. As above we derive the restrictions for 1/r2

1

n

(
n

p2

− s

)

+

<
1

r2
<

1

p2

.(5.7.4)

(5.7.2) and (5.7.4) yield that (5.7.1) and (5.7.3) are applicable simultaneously if

max
i6=j

(
1

n

(
n

pi

− s

)

+

+
1

pj

)
<

1

p
<

1

p1

+
1

p2

.(5.7.5)

But this is ensured by (4.4.1) and (4.4.3).

Substep 2.2. Estimate of
∑′′′(f, g). Let 1/t = 1/p1 + 1/p2. We put min(1, t) = u. Since

2s > n( 1
u
− 1) (cf. (4.4.2)) we derive as in (5.5.18)

‖∑′′′
(f, g)|B2s

tq ‖ ≤ c ‖f |Bs
p1q1

‖ ‖g|Bs
p2q2

‖.

Because of B2s
tq ⊂ Bs

pq (cf. Theorem 3.2.1 and (4.4.3), see also (5.5.19)) this proves the

desired estimate in case of
∑′′′(f, g). This completes the proof of (4.4.4).

Step 2 (Proof of (4.4.6), sufficiency part). The proof is similar to that given in Step

1, cf. also the proof of Theorem 4.2.1 (ii) in Subsection 5.5. Proposition 2.2.1 (i) and

q ≥ max(q1, q2) yield

‖∑′
(f, g)|F s

pq‖ ≤ c ‖g|F s
p2q2

‖ ‖f |hr1‖ ≤ c ‖g|F s
p2q2

‖ ‖f |F s
p1q1

‖

and

‖∑′′
(f, g)|F s

pq‖ ≤ c ‖f |F s
p1q1

‖ ‖g|hr2‖ ≤ c ‖f |F s
p1q1

‖ ‖g|F s
p2q2

‖
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if (5.7.5) holds, which is guaranteed by (4.4.1) and (4.4.3). To estimate
∑′′′ we may apply

(5.5.22) once again.

Remark 5.7.1. The proof shows that (4.4.4) and (4.4.6) remain valid not only in the

interior of the shaded area in Figures 3a and 3b, they are true also on the vertical lines

of the boundary, may be with exception of the endpoints (note that (4.4.1) is used only

to establish (5.7.5)). With the help of Theorem 3.1.1 and Theorem 3.2.1 one has to check

under which conditions < in (5.7.2), (5.7.4) and (5.7.5) can be replaced by ≤, cf. [11] and

[18] for a more detailed explanation.
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