
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA

Classe di Scienze

BRUNO FRANCHI

ERMANNO LANCONELLI

Hölder regularity theorem for a class of linear nonuniformly

elliptic operators with measurable coefficients

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 10,
no 4 (1983), p. 523-541

<http://www.numdam.org/item?id=ASNSP_1983_4_10_4_523_0>

© Scuola Normale Superiore, Pisa, 1983, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe

di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec

les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-

tion commerciale ou impression systématique est constitutive d’une infraction pénale.

Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme

Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1983_4_10_4_523_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Hölder Regularity Theorem
for a Class of Linear Nonuniformly Elliptic Operators

with Measurable Coefficients.

BRUNO FRANCHI (*) - ERMANNO LANCONELLI

1. - The purpose of this note is to extend the classical De Giorgi’s
theorem ([5], see also [17] and [15]) by proving the Holder regularity of

n

the weak solutions of Lu = 0, where .L = ~ ôi(ai,1ô;) is a linear degenerate
elliptic operator in divergence form. 

Many authors ([14], [16], [18], [11], [6]) proved the same result for dif-
ferent classes of operators which are degenerate but uniformly elliptic (i.e.
the ratio is bounded; here 11 and A are the greatest and the lowest
eigenvalue of the quadratic form associated to the operator). In this paper,
even if in a particular situation, we drop such a hypothesis, if the integral
curves of the vector fields ~ ~,1 a~, ... , satisfy a suitable condition

(here j,..., n, is a real continuous nonnegative function such that the

quadratic form is equivalent to Roughly speaking

we suppose that B- is (Â1,..., Ân)-connected, i.e., for every x, it is

possible to join x and y by a continuous curve which is « a piecewise integral
curve » + 1~8~. This condition enables us to construct a

metric d in R" which is « natural » for L as the euclidean metric is « natural »
for the Laplace operator. By a similar geometrical approach, we proved
in [10] the Harnack inequality for a wide class of degenerate non uniformly
elliptic operators. If some additional hypotheses on the are satisfied,
we get more precise information on the structure of the d-balls (see [9])
and on the constants appearing in Harnack inequality. Thus, we obtain
the Holder regularity of the weak solutions of Lu = 0, arguing as in the
nondegenerate case. The main result of this paper has been announced
in [8]. Moreover, in [8] (see also [10]) we showed that (Â1,..., 9 1,,) -con-

(*) Partially supported by G.N.A.F.A. of C.N.R., Italy.
Pervenuto alla Redazione il 4 Febbraio 1983.
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nectedness can be viewed as a « weak extention » to the non-smooth case

of the usual H6rmander condition ([12]) on the rank of the Lie algebra
generated by Â1 01, ..., Ân an .

The scheme of the proof follows Moser’s [15] technique. In Section 2

we formulate our hypotheses and state some properties of the d-balls which
are essential for Moser’s machinery. In particular, we get a « doubling con-
dition » implying that (.Rn, d) is a metric space of homogeneous type with
respect to Lebesgue measure in the sense of [3]. Moreover, y we construct
a class of homotethical transformations which are « natural » for the oper-
ator L.

In Section 3, we prove a Sobolev embedding theorem and a Poincaré

inequality.
Finally, in Section 4, we prove our Holder regularity theorem.

n

2. - In what follows, . will be the differential 
=1

where aij = au are real functions belonging to and 3y = alaxj. We
shall suppose that

(2.a) there exists m E .R+ such that

, where and the are nonnega-
tive continuous real functions with continuous first derivatives outside the

origine such that

( 2. b ) is Lipschitz- continuous;

suitable positive constants

The meaning of hypotheses (2.b) and (2.c) is illustrated in [10] and [9].
If Q is an open subset of .Rn, we shall denote by (W¡(Q)) the

completion of with respect to the
norm
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where A == ..., For the sake of brevity, we shall omit the index
2 and we shall write Furthermore, we shall say that u

belongs to if E for every test function 99 supported in S2.
The following assertion is straightforward.

PROPOSITION 2.1. The bilinear f orm L on n yVa,(,S2) defined acs

follows
 -

can be continued on all o f 

DEFINITION 2.2. Let u be a function belonging to We shall say
that i f E (u, (E (u, for every nonnegative test 
tion 99 supported in Q. Moreover we shall say that = 0 if 99) = 0
for every test function supported in Q.

In order to formulate our regularity theorem, the following definition
is a basic step. 

’

DEFINITION 2.3. An open subset Q of Rn will be said A-connected if for
every x, y E Q, there exists a continuous curve lying in Q which is piece2vise
an integral curve of the vector fields + Â1 01, ..., 7 :t An an connecting x to y.

We note that, by our hypotheses, a A-connected open subset of Rn is
connected and locally 2-connected in the sense of Definition 2.2 in [10].
This is a straightforward consequence of the following result.

THEOREM 2.4. Let Q be a A-connected open subset of .Rn. Then, for every
x E Q there exists a neighbourhood V of x such that, up to a reordering of the

variables, the inequalities (2.a) hold in TT (for a new choice of the constant m)
with Â1(x) = 1, Ai(x) = ~,~1~(xl) ... 2 j = 2, ..., n.

PROOF. Let x be fixed; by the Â-connectedness and by (2.b), there

exists at least one of the Â/s which is different from zero in x, and hence
in a neighbourhood V’ of x. Without loss of generality, we may suppose
that c~ 1 ~ C1 &#x3E; 0, Vx EV. Analogously, there is at least one of the Â/s
( j = 2, 7 ..., n) not identically vanishing on

Without loss of generality, y we may suppose + t* e1) =1= 0, for a suitable
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t* E R. But, since Â2(x + t* e1) == ~,21~(x + t*) 1£"~(ili~), shrinking, if

necessary, V, we may suppose ~~&#x3E;~(~)...~(~)&#x3E;~&#x3E;0, dx E V; so

Repeating this argument, we can prove our assertion.
Since we are dealing with local properties, in what follows, we shall

suppose that the Ajls have everywhere the particular structure which is

locally obtained in Theorem 2.4. So, we may suppose that Rn is A-con-

nected.

Using the technique we introduced in [9], we shall denote by P(Â1, ..., Ân)
the set of all continuous curves which are piecewise integral curves of the
vector fields ~ ~,1 a1, ... , + ln 8~ . If y : y E P, we shall put

Z(y) = T ; by the Ä-connectedness, we can give the following definition.

DEFINITION 2.5. put

Obviously, d is a metric in Rn.

DEFINITION 2.6. I f x E Rra, t E R, put go(x, t) = x, Hk+l(X, t) = Hk(x, t)
+ t)) k = 0,..., n -1. Here 6k = (0, ..., 1, ..., 0 ) . DenotingI k n

by R; the set of the points x = (x1, ... , xn) E .Rn such that k = 1, ...

..., j - 1, if x E the function s --~ s) = s)) is strictly in-
creasing on ]0, + 00[; thus, we can put lpj(x, .) = = 1, ..., n.

If x E we shall denote by x* the point and, if y E 
we shall put

In [9] we proved the following estimates.

THEOREM 2.7 ([9], Theorems 2.6 and 2.7). There exists a E .R+ (depending
only on the such that

2uhere r) is the d-ball
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THEOREM 2.8 ( [10], Proposition 4.3). Put I

and BA Then,

A first consequence of Theorems 2.7 and 2.8 is the following estimate
for the metric d.

PROPOSITION 2.9. For every compact subset K of Rn, there exists C, &#x3E; 0

such that

where Eo = min ..., (see also [7]).

Moreover, y the metric space (Rn; d) is a space of homogeneous type in
the sense of [3], since the following « doubling condition» holds :

}:G
7 Vr &#x3E; 0, , where is Lebesgue measure in Rn and A = a22; I.

The following technical estimate will be used in the sequel.

PROPOSITION 2.10. There, exists b E R+ depending only on the constants

Loj,, such that Vx ERn, Vr, .R &#x3E; 0, r c2.R, Vy E R), we have

PROOF. The first step is to prove that there exists z e R" such that

In fact, by (2.9.a), (.R», d) is locally compact; so that, by the A-con-
nectedness of Rn, dx, y there exists a continuous curve y such that,

d(x, ~) + d($, y) = d(x, y) (see, e.g., [2] 5.18). Then (2.10.b) follows

straightforwardly. Now, from (2.10.b) we get
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To prove (2.10.a), by (2.9.b) we need only to prove that r)) is

equivalent to r)), with equivalence constants depending only on the
But, since d(y, z)  r, by (2.9.b), we have:

So, the assertion is proved.
In particular, from Proposition 2.10, it follows that every fixed d-ball

is a space of homogeneous type.
The particular structure of the metric d appearing in Theorem 2.7 sug-

gests the construction of a suitable set of homotethical transformations Ta
which are « good transformations » for our operators, i.e. the class of the

differential operators satisfying (2.a)-(2.b) is, in a suitable sense, invariant
under Ta .

Let ...,xn)ERn be fixed; for 0153&#x3E;O, put

Moreover if Q) = put

Denote by the differential operator where

It is straightforward matter to prove (with an obvious meaning of the nota-

tions) that
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If we denote by .F’’"~ the function we obtain from the )(")j Is as we

obtained the .F’~’s from the 2j’s, we get the following identity.

The assertion is obvious if j = 1. By induction, let us suppose that
( 2. i ) holds for and let us prove it for j + 1. We note that, if k n,

then, by the inductive hypothesis, we have:

So, (2.i) is proved.
We note that, by (2.i), we have

so that

Moreover, if we put

and, analogously,

by (2.i), we have

Finally we note that, if u e and in the open set Q,
then and in where ua = uoTa.

3. - In this Section, y we shall prove some fundamental results allowing
us to adapt Moser’s machinery to prove the Holder regularity of our solu-
tions.
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Analogously to Remark 2.7 in [10], we can prove the following embedding
theorem.

THEOREM 3.1. T here exist and e E R+ such that,

where q and C depend only on the

PROOF. By classical Sobolev theorem, without loss of generality, we
need only to prove that, if 0  e  min 9 - -- - 7 Snl 7 then

where C. depends only on E and the ej,,Is. Obviously, y the integral with

respect to the x-variable in I is computed in Rl r1 K, where

Now, since

then where

Now, if

but since
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so that , and then, by I

Arguing as in Section 3 of [10] .I can be estimated by a sum of 2j -1
integrals such as

So, the assertion is proved.
An analogous technique can be used to prove the following Poinear6

inequality.

THEOREM 3.2. There exist c, C E B+ such that,

where ft is Lebesgue measure in i and

We note explicitly that c and C depend only on the constants eik’S-

PROOF. In the sequel all constants appearing in the estimates will depend
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only on (2j,k. By Theorem 2.7, so that

Now,

where

and

Let us now estimate

Without loss of generality, y we may suppose that
and h &#x3E; 0 ; thus
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where We have (by the very definition of cp)

Now, by Theorem 2.7, for every x E S,,,(ra), we get

since for every and

so that E
Then

and keeping in mind that, by [10] (4.3.g).

In fact, for every fixed x E Sa(ar), if we denote by y the polygonal

we have so that

and hence
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So, Jo is estimated.
Let us now estimate Analogously as above, we have:

The terms Jk, can be handled analogously. Then, if we

put c = we get

So, the assertion is proved.

REMARK 3.3. Let x, and r, .R E R+ be fixed, r ~ 2.R; if x E Sä(XO, R),
we shall denote the mean value of u on the relative ball r)
= 8ä(XO’ .R) n 8äCX, r). Then, we have

4. - In this Section, we shall prove the Holder regularity of the weak
solutions of Lu = 0 via Moser’s technique ([15]; see also [11], Section 8.6).
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To this end, preliminarily, we note that if f : is a continuous func-

tion with piecewise continuous first derivative f’ e then f ou belongs
to for every ’U e Moreover, if Q is -connected and if

then where

so that

belongs to -L’ (92), Vu, v E In the sequel, we shall put q(u, u)..
The first step is to prove the local boundedness of the solutions.

THEOREM 4.1. Let Q be a A-connected open subset of .R~ and let u E 
be that Then, VXEQ ~.Ro &#x3E; 0 such that, VR&#x3E;O, .R ~ Ro , we have :.

where is the usual euclidean ball,

and C. are independent of u.

PROOF. First, let us suppose Analogously to the elliptic case

(see, e.g., [11], Section 8.5), with a suitable choice of the test function in
the inequality ~(u, v)  0, we get:

where y E and, for fixed and N &#x3E; 0, H(t) = tfJ for t E [0, Nj
and H(t) = Nfl + (t - for t ~ N. The constant C1 is independent
of u, fl, N. Let .R+ be fixed in such a way that 3Ro) C S~. Then,
by Theorem 3.1 and (2.a), there exist q &#x3E; 2, O2 = °2(Ro) independent of j§
and N such that, if r  Rand r) =- 1,
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hence

Now, since it is possible to choice such that for

where C4 is independent of u and ~.
Now, (4.1.a) follows via Moser’s iteration technique (see [15] and [11], y

Section 8.5) 
Finally, y we can handle the general case in the following way. Let

(fk)kEN be a sequence of C2-fUnctions such that: i) /&#x26;: .R - .R; ii) f k is an

increasing, nonnegative convex function which is linear outside of a com-
pact set; iii) f k(t) c 2(1 -f- ~t~~, iv) - max {0, t} as 1~ - + oo.
Then E and .L( f k(u)~ ~ 0 (see [15]). Thus, since f k(u) ~ 0, we get

So, if k - + 00, (4.1.a) follows.

LEMMA 4.2. Let Q be an open A-connected subset of .Rn and let u be a

nonnegative solution of .~u = 0 belonging to Moreover, let x be a

fixed point of Q such that 3a2c) ç Q, where c is the constant appearing
in Theorem 3.2. Then

where (J, depend only on the constant m of (2.a), on ~~,k and on

~(~1), ~-(~1), ~’=1,...,~

PROOF. Obviously, we need only to prove the assertion 
In this case, by the local boundedness of « (Theorem 4.1), Yfl e R and

the function v = ’YJ’Uf1 belongs to so that v) = 0.
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Then, arguing as in [11], Section 8.6, if fJ =1= 0, we get

where 01 depends only on the constant m and

Let now r1 and r2 be fixed real positive numbers such that r1 C r2  3a2 c.

Preliminarily, y let us prove that it is possible to choice q = q(3i, r1, r2, .)
E r2)) in such a way that ?7 = I on ri) and  2 (r2 - r1)-1.
Let 1p E 0-(R, R) be such that : i) 0 : 11’  1; ii) = 11’( - t), Vt E .R; iii) 1p == 1

outside of

We put obviously, 77 is a smooth func-

tion supported in Moreover, since

if x c- Se r1), then q (x) = 1. Finally, and

Then, the assertion follows if we note that

Now, by Theorem 3.1 (with the constants q and Ca appearing therein),
we get:
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So, by (4.2.a) and (4.2.b), if # &#x3E; 0, we have

where p = fl + 1 and or = ql2.
From (4.2.c), by Moser’s iteration technique, we get i). Moreover, by

(4.2.a) and (4.2.b) with fl e ]-1, 0[ and fl E]- 00, 2013 1[, we obtain, respec-
tively VP7 PO 0  PO  p  a,

where C2, 03 depend only on p, po, m, fli,k’ 1), j, k = 1, ..., n.
Now, the proof of ii) will be accomplished if we show that there exists

po E ]0, 1[ such that

where po , C, depend only on m, ej,, and 1 ), j = I, ..., n. Indeed,
if we put 2~ = log a, we have:

where is the mean value of w in Sà(x,3a/2) (see Theorem 3.2) and
== 3a/2); lw(x) - wsa/21 &#x3E; 8})’
Now, the function v can be estimated as follows:

where CS and 0, depend only on (!i,k and m. In order to prove (4.2.g), we
note preliminarily that w is a bounded mean oscillation (BMO) function
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with respect to the d-balls in the space of homogeneous type 3a/2).
Let y belong to S:(x,3a/2); first, let us suppose r&#x3E;3a; then, obviously,
S;(y, r) = r) r1 Sd(.T, 3a/2) = Sd(X, 3a/2). Then, by Theorem 3.1, (4.2.a)
and (4.2.b) with q = 3a2 c/2, 3a2 c, ~ ), we have (wr is the mean value

of a on S*(y, r)) :

here 0. depends only on m and e;,k.
On the other hand, if r  3a, by Remark 3.3, (4.2.a) and (4.2.b) with

,q =,q(y, acr, 2acr, ~ ),

where C1~ depends only on m and 

So, we proved that w is a BMO-function. Then, (4.2.g) follows by John-
Nirenberg’s theorem which holds in a metric space of homogeneous type,
too ([4], p.594; see also [1]). Now, (4.4. f ) follows by (4.2.g) and Theorem 2.7.
Thus ii) is proved.

The careful estimate of the constants in Lemma 4.2 enables us to prove
the following crucial result.

THEOREM 4.3. Let Q be a Â-connected open subset of .Rn and let ’U be

a nonnegative solution of Lu = 0 belonging to Then, there exist

~~, M; e R+ such that, Vx e Q, 0 such that have

PROOF. The proof will be carried out by using the homotethical trans-
formations centred in x defined in Section 2 ; in the sequel we shall use the
notations introduced therein. We have: ~R E W~~~) ( T- I ( S~) ), in

and, obviously, Moreover, if we put C1 === 3a2c, 
= 1), = 3~c)cT"~(~); so, we can apply the
results of Lemma 4.2.
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The essential point is that the constants .M~~, M; depend only on the
constant m, on (!i,k (see (2.a’) and (2.c’)) and on 1), 1),
j = 1, ..., n; but the last constants are identically equal to 1, by (2.i)
and (2.j) ; thus (1, .lVlp, lVh are independent of .R. The proof of the Theorem
can be accomplished by the change of variables y = 

N’ow, we can prove the following extention of De Giorgi Theorem.

THEOREM 4.4. Let Q open subset of Rn. I f u e 
and Lu = 0 in Q, then ’U is locally Hölder-continuou8 in 2.

PROOF. Exactly as in the elliptic case (see, e.g., [11]~ Section 8.9), by
Theorem 4.3 we have:

for a suitable C, a &#x3E; 0, that can be chosen independent on y if y belongs
to a fixed compact subset K of S~. Then, the assertion follows by (2.9.a).
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