AnNaLI DELLA

Scuola Normale Superiore di Pisa Classe di Scienze

BRUNO FRANCHI
ERMANNO LANCONELLI

Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4 e série, tome 10, no 4 (1983), p. 523-541
http://www.numdam.org/item?id=ASNSP_1983_4_10_4_523_0

L'accès aux archives de la revue «Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Hölder Regularity Theorem for a Class of Linear Nonuniformly Elliptic Operators with Measurable Coefficients.

BRUNO FRANCHI (*) - ERMANNO LANCONELLI

1. - The purpose of this note is to extend the classical De Giorgi's theorem ([5], see also [17] and [15]) by proving the Hölder regularity of the weak solutions of $L u=0$, where $L=\sum_{i, j=1}^{n} \partial_{i}\left(a_{i, i} \partial_{j}\right)$ is a linear degenerate
elliptic operator in divergence form.

Many authors ([14], [16], [18], [11], [6]) proved the same result for different classes of operators which are degenerate but uniformly elliptic (i.e. the ratio Λ / λ is bounded; here Λ and λ are the greatest and the lowest eigenvalue of the quadratic form associated to the operator). In this paper, even if in a particular situation, we drop such a hypothesis, if the integral curves of the vector fields $\pm \lambda_{1} \partial_{1}, \ldots, \pm \lambda_{n} \partial_{n}$ satisfy a suitable condition (here $\lambda_{j}, j, \ldots, n$, is a real continuous nonnegative function such that the quadratic form $\sum_{j=1}^{n} \lambda_{j}^{2}(x) \xi_{j}^{2}$ is equivalent to $\left.\sum_{i, j=1}^{n} a_{i, j}(x) \xi_{i} \xi_{j}\right)$. Roughly speaking, we suppose that R^{n} is $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$-connected, i.e., for every $x, y \in R^{n}$, it is possible to join x and y by a continuous curve which is " a piecewise integral curve» of $\pm \lambda_{1} \partial_{1}, \ldots, \pm \lambda_{n} \partial_{n}$. This condition enables us to construct a metric d in R^{n} which is "natural» for L as the euclidean metric is "natural» for the Laplace operator. By a similar geometrical approach, we proved in [10] the Harnack inequality for a wide class of degenerate non uniformly elliptic operators. If some additional hypotheses on the λ_{j} 's are satisfied, we get more precise information on the structure of the d-balls (see [9]) and on the constants appearing in Harnack inequality. Thus, we obtain the Hölder regularity of the weak solutions of $L u=0$, arguing as in the nondegenerate case. The main result of this paper has been announced in [8]. Moreover, in [8] (see also [10]) we showed that ($\lambda_{1}, \ldots, \lambda_{n}$)-con-
(*) Partially supported by G.N.A.F.A. of C.N.R., Italy.
Pervenuto alla Redazione il 4 Febbraio 1983.
nectedness can be viewed as a "weak extention" to the non-smooth case of the usual Hörmander condition ([12]) on the rank of the Lie algebra generated by $\lambda_{1} \partial_{1}, \ldots, \lambda_{n} \partial_{n}$.

The scheme of the proof follows Moser's [15] technique. In Section 2 we formulate our hypotheses and state some properties of the d-balls which are essential for Moser's machinery. In particular, we get a «doubling condition" implying that (R^{n}, d) is a metric space of homogeneous type with respect to Lebesgue measure in the sense of [3]. Moreover, we construct a class of homotethical transformations which are "natural" for the operator L.

In Section 3, we prove a Sobolev embedding theorem and a Poincaré inequality.

Finally, in Section 4, we prove our Hölder regularity theorem.
2. - In what follows, L will be the differential operator $\sum_{i, j=1}^{n} \partial_{i}\left(a_{i, j} \partial_{j}\right)$, where $a_{i j}=a_{j i}$ are real functions belonging to $L^{\infty}\left(R^{n}\right)$ and $\partial_{j}=\partial / \partial x_{j}$. We shall suppose that
(2.a) there exists $m \in R_{+}$such that

$$
m^{-1} \sum_{j=1}^{n} \lambda_{j}^{2}(x) \xi_{j}^{2} \leqslant \sum_{i, j=1}^{n} a_{i, j}(x) \xi_{i} \xi_{j} \leqslant m \sum_{j=1}^{n} \lambda_{j}^{2}(x) \xi_{j}^{2}
$$

$\forall x \in R^{n}, \forall \xi \in R^{n}$, where $\lambda_{j}(x)=\lambda_{j}^{(1)}\left(x_{1}\right) \ldots \lambda_{j}^{(n)}\left(x_{n}\right)$ and the $\lambda_{j}^{(k)}$, are nonnegative continuous real functions with continuous first derivatives outside the origine such that
(2.b) $\lambda_{j}^{(j)}$ is Lipschitz-continuous;

$$
\begin{array}{r}
0 \leqslant t\left(\lambda_{j}^{(k)}\right)^{\prime}(t) \leqslant \varrho_{j, k} \lambda_{j}^{(k)}(t), \quad \forall t \neq 0, \text { for suitable positive constants } \varrho_{j, k}, \\
j, k=1, \ldots, n, j \neq k ;
\end{array}
$$

$$
\begin{equation*}
\lambda_{j}^{(k)}(t)=\lambda_{j}^{(k)}(|t|), \quad \forall t \in R, j, k=1, \ldots, n, j \neq k . \tag{2.d}
\end{equation*}
$$

The meaning of hypotheses (2.b) and (2.c) is illustrated in [10] and [9].
If Ω is an open subset of R^{n}, we shall denote by $W_{\lambda}^{2}(\Omega)\left(W_{\lambda}^{2}(\Omega)\right)$ the completion of $\left\{u \in C^{\infty}(\Omega) ;\left\|u ; W_{\lambda}^{2}(\Omega)\right\|<+\infty\right\}\left(C_{0}^{\infty}(\Omega)\right)$ with respect to the norm

$$
\left\|u ; W_{\lambda}^{2}(\Omega)\right\|=\left(\left\|u ; L^{2}(\Omega)\right\|^{2}+\sum_{j=1}^{n}\left\|\lambda_{j} \partial_{j} u ; L^{2}(\Omega)\right\|^{2}\right)^{\frac{1}{2}}
$$

where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. For the sake of brevity, we shall omit the index 2 and we shall write $W_{\lambda}(\Omega)\left(\dot{W}_{\lambda}(\Omega)\right)$. Furthermore, we shall say that u belongs to $W_{\lambda}^{\text {loc }}(\Omega)$ if $\varphi u \in \dot{W}_{\lambda}(\Omega)$ for every test function φ supported in Ω.

The following assertion is straightforward.
Proposition 2.1. The bilinear form \mathcal{L} on $C^{\infty}(\Omega) \cap W_{\lambda}(\Omega)$ defined as follows

$$
\mathcal{L}(u, v)=\int_{\Omega} \sum_{i, j=1}^{n} a_{i, j} \partial_{i} u \partial_{j} v d x
$$

can be continued on all of $W_{\lambda}(\Omega)$.
Definition 2.2. Let u be a function belonging to $W_{\lambda}^{\mathrm{loc}}(\Omega)$. We shall say that $L u \geqslant 0(L u \leqslant 0)$ if $\mathcal{L}(u, \varphi) \leqslant 0(\mathcal{L}(u, \varphi) \geqslant 0)$ for every nonnegative test function φ supported in Ω. Moreover we shall say that $L u=0$ if $\mathcal{L}(u, \varphi)=0$ for every test function supported in Ω.

In order to formulate our regularity theorem, the following definition is a basic step.

Definition 2.3. An open subset Ω of R^{n} will be said λ-connected if for every $x, y \in \Omega$, there exists a continuous curve lying in Ω which is piecewise an integral curve of the vector fields $\pm \lambda_{1} \partial_{1}, \ldots, \pm \lambda_{n} \partial_{n}$ connecting x to y.

We note that, by our hypotheses, a λ-connected open subset of R^{n} is connected and locally λ-connected in the sense of Definition 2.2 in [10]. This is a straightforward consequence of the following result.

Theorem 2.4. Let Ω be a λ-connected open subset of R^{n}. Then, for every $\bar{x} \in \Omega$ there exists a neighbourhood V of \bar{x} such that, up to a reordering of the variables, the inequalities (2.a) hold in V (for a new choice of the constant m) with $\lambda_{1}(x)=1, \lambda_{j}(x)=\lambda_{j}^{(1)}\left(x_{1}\right) \ldots \lambda_{j}^{(j-1)}\left(x_{i-1}\right), j=2, \ldots, n$.

Proof. Let \bar{x} be fixed; by the λ-connectedness and by (2.b), there exists at least one of the λ_{j} 's which is different from zero in \bar{x}, and hence in a neighbourhood V of \bar{x}. Without loss of generality, we may suppose that $c_{1}^{-1} \geqslant \lambda_{1}(x) \geqslant c_{1}>0, \forall x \in V$. Analogously, there is at least one of the λ_{i} 's ($j=2, \ldots, n$) not identically vanishing on

$$
\left\{\bar{x}+t e_{1}, t \in R\right\}, \quad \text { where } e_{1}=(1,0, \ldots, 0)
$$

Without loss of generality, we may suppose $\lambda_{2}\left(\bar{x}+t^{*} e_{1}\right) \neq 0$, for a suitable
$t^{*} \in R$. But, since $\lambda_{2}\left(\bar{x}+t^{*} e_{1}\right)=\lambda_{2}^{(1)}\left(\bar{x}+t^{*}\right) \lambda_{2}^{(2)}\left(\bar{x}_{2}\right) \ldots \lambda_{2}^{(n)}\left(\bar{x}_{n}\right)$, shrinking, if necessary, V, we may suppose $c_{2}^{-1} \geqslant \lambda_{2}^{(2)}\left(x_{2}\right) \ldots \lambda_{2}^{(n)}\left(x_{n}\right) \geqslant c_{2}>0, \forall x \in V$; so $c_{2}^{-1} \geqslant \lambda_{2}(x) / \lambda_{2}^{(1)}\left(x_{1}\right) \geqslant c_{2}, \quad \forall x \in V$.

Repeating this argument, we can prove our assertion.
Since we are dealing with local properties, in what follows, we shall suppose that the λ_{j} 's have everywhere the particular structure which is locally obtained in Theorem 2.4. So, we may suppose that R^{n} is λ-connected.

Using the technique we introduced in [9], we shall denote by $P\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ the set of all continuous curves which are piecewise integral curves of the vector fields $\pm \lambda_{1} \partial_{1}, \ldots, \pm \lambda_{n} \partial_{n}$. If $\gamma:[0, T] \rightarrow R^{n}, \gamma \in P$, we shall put $l(\gamma)=T$; by the λ-connectedness, we can give the following definition.

Definition 2.5. If $x, y \in R^{n}$, put

$$
d(x, y)=\inf \{l(\gamma), \gamma \in P, \gamma \text { connecting } x \text { and } y\} .
$$

Obviously, d is a metric in R^{n}.
Definition 2.6. If $x \in R^{n}, t \in R$, put $H_{0}(x, t)=x, H_{k+1}(x, t)=H_{k}(x, t)$ $+t \lambda_{k+1}\left(H_{k}(x, t)\right) e_{k+1}, k=0, \ldots, n-1$. Here $e_{k}=\left(0, \ldots, \frac{1}{k}, \ldots, n_{n}^{0}\right)$. Denoting by R_{j}^{n} the set of the points $x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$ such that $x_{k} \geqslant 0, k=1, \ldots$ $\ldots, j-1$, if $x \in R_{i}^{n}$, the function $s \rightarrow F_{j}(x, s)=s \lambda_{j}\left(H_{j_{-1}}(x, s)\right)$ is strictly increasing on $] 0,+\infty\left[\right.$ thus, we can put $\varphi_{j}(x, \cdot)=\left(F_{j}(x, \cdot)\right)^{-1}, j=1, \ldots, n$.

If $x \in R^{n}$, we shall denote by x^{*} the point $\left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)$ and, if $y \in R^{n}$, we shall put

$$
\varrho(x, y)=\sum_{j=1}^{n} \varphi_{j}\left(x^{*},\left|x_{j}-y_{j}\right|\right) .
$$

In [9] we proved the following estimates.
Theorem 2.7 ([9], Theorems 2.6 and 2.7). There exists $a \in R_{+}$(depending only on the $\varrho_{i, k}$'s) such that

$$
\begin{aligned}
a^{-1} \leqslant d(x, y) / \varrho(x, y) \leqslant a, & \forall x, y \in R^{n} ; \\
a^{-1} \leqslant \mu\left(S_{a}(x, r)\right) / \prod_{j=1}^{n} F_{j}\left(x^{*}, r\right) \leqslant a, & \forall x \in R^{n}, \forall r>0,
\end{aligned}
$$

where $S_{d}(x, r)$ is the d-ball $\left\{y \in R^{n} ; d(x, y)<r\right\}$.

Theorem 2.8 ([10], Proposition 4.3). Put $G_{1}=1, G_{k}=1+\sum_{l=1}^{K-1} G_{\imath} \varrho_{k, l}$, $k=2, \ldots, n$ and $\varepsilon_{k}=\left(G_{k}\right)^{-1}, k=1, \ldots, n$. Then, $\left.\forall x \in R^{n}, \forall s>0, \forall \theta \in\right] 0,1[$

$$
\begin{align*}
& \theta^{\sigma_{j}} \leqslant F_{j}\left(x^{*}, \theta s\right) / F_{j}\left(x^{*}, s\right) \leqslant \theta \tag{2.8.a}\\
& \theta \leqslant \varphi_{i}\left(x^{*}, \theta s\right) / \varphi_{j}\left(x^{*}, s\right) \leqslant \theta^{\varepsilon_{j}} \tag{2.8.b}
\end{align*}
$$

A first consequence of Theorems 2.7 and 2.8 is the following estimate for the metric d.

Proposition 2.9. For every compact subset K of R^{n}, there exists $C_{k}>0$ such that

$$
\begin{equation*}
C_{K}^{-1}|x-y| \leqslant d(x, y) \leqslant C_{K}|x-y|^{\varepsilon_{0}} \tag{2.9.a}
\end{equation*}
$$

where $\varepsilon_{0}=\min \left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$ (see also [7]).
Moreover, the metric space ($R^{n} ; d$) is a space of homogeneous type in the sense of [3], since the following "doubling condition" holds:

$$
\begin{equation*}
\mu\left(S_{d}(x, 2 r)\right) \leqslant A \mu\left(S_{a}(x, r)\right) \tag{2.9.b}
\end{equation*}
$$

$\forall x \in R^{n}, \forall r>0$, where μ is Lebesgue measure in R^{n} and $A=a^{2} 2^{\frac{\Sigma \sigma_{r}}{j}}$.
The following technical estimate will be used in the sequel.
Proposimion 2.10. There exists $b \in R_{+}$depending only on the constants $\varrho_{j, k}$ such that $\forall x \in R^{n}, \forall r, R>0, r \leqslant 2 R, \forall y \in \mathbb{S}_{a}(x, R)$, we have

$$
\begin{equation*}
b^{-1} \leqslant \mu\left(S_{d}(x, R) \cap S_{d}(y, r)\right) / \mu\left(S_{d}(y, r)\right) \leqslant b \tag{2.10.a}
\end{equation*}
$$

Proof. The first step is to prove that there exists $z \in R^{n}$ such that
(2.10.b) $\quad d(x, z)+d(y, z)=d(x, y) \quad$ and $\quad d(y, z)=\min \left\{d(x, y), \frac{r}{2}\right\}$.

In fact, by (2.9.a), ($\left.R^{n}, d\right)$ is locally compact; so that, by the λ-connectedness of $R^{n}, \forall x, y \in R^{n}$ there exists a continuous curve γ such that, $\forall \xi \in \gamma, d(x, \xi)+d(\xi, y)=d(x, y)$ (see, e.g., [2] 5.18). Then (2.10.b) follows straightforwardly. Now, from (2.10.b) we get

$$
\begin{equation*}
S_{d}(z, r / 2) \subseteq S_{d}(x, R) \cap S_{d}(y, r) \tag{2.10.c}
\end{equation*}
$$

To prove (2.10.a), by (2.9.b) we need only to prove that $\mu\left(\mathcal{S}_{a}(z, r)\right)$ is equivalent to $\mu\left(S_{a}(y, r)\right)$, with equivalence constants depending only on the $\varrho_{j, k}$'s. But, since $d(y, z)<r$, by (2.9.b), we have:

$$
\mu\left(S_{d}(z, r)\right) \leqslant \mu\left(S_{d}(y, 2 r)\right) \leqslant A \mu\left(\mathcal{S}_{d}(y, r)\right) \leqslant\left(A \mu\left(S_{d}(z, 2 r)\right) \leqslant A^{2} \mu\left(S_{d}(z, r)\right)\right.
$$

So, the assertion is proved.
In particular, from Proposition 2.10, it follows that every fixed d-ball is a space of homogeneous type.

The particular structure of the metric d appearing in Theorem 2.7 suggests the construction of a suitable set of homotethical transformations T_{α} which are "good transformations» for our operators, i.e. the class of the differential operators satisfying (2.a)-(2.b) is, in a suitable sense, invariant under T_{α}.

Let $\bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right) \in R^{n}$ be fixed; for $\alpha>0$, put

$$
\begin{equation*}
T_{\alpha}(x)=\bar{x}+\sum_{j=1}^{n}\left(x_{j}-\bar{x}_{j}\right) F_{j}\left(\bar{x}^{*}, \alpha\right) e_{j}=\left(T_{\alpha}^{1}, \ldots, T_{\alpha}^{n}\right) \tag{2.e}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{(\alpha) j}^{(k)}=\left(\alpha / F_{j}\left(\bar{x}^{*}, \alpha\right)\right) \lambda_{j}^{(k)} \circ T_{\alpha}^{k} \tag{2.f}
\end{equation*}
$$

Moreover if $\omega=T_{\alpha}^{-1}(0)$, put

$$
\begin{align*}
& \pi_{\omega}=\left\{x \in \mathbb{R}^{n} ; \prod_{j=1}^{n}\left(x_{j}-\omega_{j}\right)=0\right\} \tag{2.g}\\
& x_{\omega}^{*}=\omega+(x-\omega)^{*}, \quad \forall x \in \mathbf{R}^{n} \tag{2.h}
\end{align*}
$$

Denote by L_{α} the differential operator $\sum_{i, j=1}^{n} \partial_{i}\left(a_{i, j}^{(\alpha)} \partial_{j}\right)$, where

$$
a_{i, j}^{(\alpha)}=\left(\alpha^{2} / F_{i}\left(\bar{x}^{*}, \alpha\right) F_{j}\left(\bar{x}^{*}, \alpha\right)\right) a_{i, j} \circ T_{\alpha}, \quad i, j=1, \ldots, n
$$

It is straightforward matter to prove (with an obvious meaning of the notations) that

$$
m^{-1} \sum_{j=1}^{n} \lambda_{(\alpha) j}^{2} \xi_{j}^{2} \leqslant \sum_{i, j=1}^{n} a_{i, j}^{(\alpha)}(x) \xi_{i} \xi_{j} \leqslant m \sum_{j=1}^{n} \lambda_{(\alpha) j}^{2}(x) \xi_{j}^{2}
$$

(2.c $\boldsymbol{c}^{\prime} \quad 0 \leqslant\left(t-\omega_{j}\right)\left(\lambda_{(\alpha) j}^{(k)}\right)^{\prime}(t) \leqslant \varrho_{i, k} \lambda_{(\alpha) j}^{(k)}(t), \quad \forall t \in \mathbb{R} \backslash\left\{\omega_{j}\right\}, j, k=1, \ldots, n, k<j ;$

$$
\lambda_{(\alpha) j}^{(k)}(t)=\lambda_{(\alpha) j}^{(k)}\left(\omega_{k}+\left|t-\omega_{k}\right|\right), \quad \forall t \in \mathbb{R}, i, k=1, \ldots, n, k<j
$$

so that $\lambda_{(\alpha) j}(x)=\lambda_{(\alpha) j}\left(x_{\omega}^{*}\right)$.

If we denote by $F_{j}^{(\alpha)}$ the function we obtain from the $\lambda_{(\alpha) j}$'s as we obtained the F_{j} 's from the λ_{j} 's, we get the following identity.

$$
\begin{equation*}
F_{j}^{(\alpha)}\left(\bar{x}_{\omega}^{*}, \sigma\right)=F_{j}\left(\bar{x}^{*}, \alpha \sigma\right) / F_{j}\left(x^{*}, \alpha\right), \quad \forall \sigma>0, j=1, \ldots, n \tag{2.i}
\end{equation*}
$$

The assertion is obvious if $j=1$. By induction, let us suppose that (2.i) holds for $k \leqslant j$ and let us prove it for $j+1$. We note that, if $k \leqslant n$,

$$
\bar{x}_{k}+\left(\bar{x}_{\omega}^{*}\right)_{k} F_{k}\left(\bar{x}^{*}, \alpha\right)-\bar{x}_{k} F_{k}\left(\bar{x}^{*}, \alpha\right)=\left(\bar{x}^{*}\right)_{k}
$$

then, by the inductive hypothesis, we have:

$$
\begin{aligned}
& F_{j+1}^{(\alpha)}\left(\bar{x}_{\omega}^{*}, \sigma\right)=\sigma \lambda_{(\alpha) j+1}\left(\left(\bar{x}_{\omega}^{*}\right)_{1}+F_{1}^{(\alpha)}\left(\bar{x}_{\omega}^{*}, \sigma\right), \ldots,\left(\bar{x}_{\omega}^{*}\right)_{j}+F_{j}^{(\alpha)}\left(\bar{x}_{\omega}^{*}, \sigma\right)\right) \\
& \quad=\left(\alpha \sigma / F_{j+1}\left(\bar{x}^{*}, \alpha\right)\right) \lambda_{j+1}\left(\bar{x}_{1}+\left(\left(\left(_{\omega}^{*}\right)_{1}+F_{1}^{(\alpha)}\left(\bar{x}_{\omega}^{*}, \sigma\right)-\bar{x}_{1}\right) F_{1}\left(\bar{x}^{*}, \alpha\right), \ldots\right)\right. \\
& \quad=\left(\alpha \sigma / F_{j+1}\left(\bar{x}^{*}, \alpha\right)\right) \lambda_{j+1}\left(\bar{x}_{1}+\left(\left(\bar{x}_{\omega}^{*}\right)_{1}+F_{1}\left(\bar{x}^{*}, \alpha \sigma\right) / F_{1}\left(\bar{x}^{*}, \alpha\right)-\bar{x}_{1}\right) F_{1}\left(\bar{x}^{*}, \alpha\right), \ldots\right) \\
& \quad=\left(\alpha \sigma / F_{j+1}\left(\bar{x}^{*}, \alpha\right)\right) \lambda_{j+1}\left(\left(\bar{x}^{*}\right)_{1}+F_{1}\left(\bar{x}^{*}, \alpha \sigma\right), \ldots\right)=F_{j+1}\left(\bar{x}^{*}, \alpha \sigma\right) / F_{j+1}\left(\bar{x}^{*}, \alpha\right) .
\end{aligned}
$$

So, (2.i) is proved.
We note that, by (2.i), we have

$$
\begin{equation*}
\varphi_{j}^{(\alpha)}\left(\bar{x}_{\omega}^{*}, s\right)=\left(F_{j}^{(\alpha)}\left(\bar{x}_{\omega}^{*}, \cdot\right)\right)^{-1}(s)=\alpha^{-1} \varphi_{j}\left(\bar{x}^{*}, s F^{\prime}\left(\bar{x}^{*}, \alpha\right)\right) \tag{2.j}
\end{equation*}
$$

so that $\varphi_{j}^{(\alpha)}\left(\bar{x}_{*}^{\omega}, 1\right)=1, \forall \alpha>0, j=1, \ldots, n$.
Moreover, if we put

$$
S_{e}(\bar{x}, r)=\left\{x \in R^{n} ;\left|x_{j}-\bar{x}_{j}\right|<F_{j}\left(\bar{x}^{*}, r\right), j=1, \ldots, n\right\}
$$

and, analogously,

$$
S_{Q}^{(\alpha)}(\bar{x}, r)=\left\{x \in R^{n} ;\left|x_{j}-\bar{x}_{j}\right|<F_{j}^{(\alpha)}\left(\bar{x}_{\omega}^{*}, r\right), j=1, \ldots, n\right\}
$$

by (2.i), we have

$$
\begin{equation*}
T_{\alpha}\left(S_{\varrho}^{(\alpha)}(\bar{x}, r)\right)=S_{\varrho}(\bar{x}, \alpha r) \quad \forall \alpha, r>0 \tag{2.k}
\end{equation*}
$$

Finally we note that, if $u \in W_{\lambda}^{\text {loc }}(\Omega)$ and $L u \geqslant 0(L u \leqslant 0)$ in the open set Ω, then $u_{\alpha} \in W_{\lambda(\alpha)}^{\mathrm{log}}\left(T_{\alpha}^{-1}(\Omega)\right)$ and $L_{\alpha} u \geqslant 0\left(L_{\alpha} u \leqslant 0\right)$ in $T^{-1}(\Omega)$, where $u_{\alpha}=u \circ T_{\alpha}$.
3. - In this Section, we shall prove some fundamental results allowing us to adapt Moser's machinery to prove the Hölder regularity of our solutions.

Analogously to Remark 2.7 in [10], we can prove the following embedding theorem.

THEOREM 3.1. There exist $q \in] 2,+\infty\left[\right.$ and $C \in R_{+}$such that, $\forall \bar{x} \in R^{n}$, $\forall u \in C_{0}^{\infty}\left(S_{d}(\bar{x}, 1)\right)$,

$$
\left\|u ; L^{\alpha}\left(\mathbb{R}^{n}\right)\right\| \leqslant C\left(1+\sum_{j=1}^{n} \varphi_{j}\left(\bar{x}^{*}, 1\right)\right)\left\|u ; W_{\lambda}\left(\mathbb{R}^{n}\right)\right\|
$$

where q and C depend only on the $\varrho_{j, k}$'s.
Proof. By classical Sobolev theorem, without loss of generality, we need only to prove that, if $0<\varepsilon<\min \left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$, then

$$
I=\int_{0}^{1} h^{-1-2 \varepsilon} \int_{\mathbf{R}_{j}^{n}}\left|u\left(x+h e_{j}\right)-u(x)\right|^{2} d x d h \leqslant C_{\varepsilon}\left(1+\sum_{j=1}^{n} \varphi_{j}\left(\bar{x}^{*}, 1\right)\right)\left\|u ; W_{\lambda}\left(\mathbb{R}^{n}\right)\right\|^{2}
$$

where G_{ε} depends only on ε and the $\varrho_{j, 2}$'s. Obviously, the integral with respect to the x-variable in I is computed in $R_{j}^{n} \cap K$, where

$$
K=\bigcup_{0 \leqslant h \leqslant 1}\left(S_{d}(\bar{x}, 1)-h e_{j}\right)
$$

Now, since $\forall x \in K$

$$
\begin{align*}
& \left|x_{k}-\bar{x}_{k}\right| \leqslant\left|x_{k}+h \delta_{i, k}-\bar{x}_{k}\right|+1<F_{k}\left(\bar{x}^{*}, a\right)+1 \\
& =F_{k}\left(\bar{x}^{*}, a\right)+F_{k}\left(\bar{x}^{*}, \varphi_{k}\left(\bar{x}^{*}, 1\right)\right) \leqslant 2 F_{k}\left(\bar{x}^{*}, \max \left\{a, \varphi_{k}\left(\bar{x}^{*}, 1\right)\right\}\right) \leqslant \tag{2.8.a}\\
& \leqslant F_{k}\left(\bar{x}^{*}, 2 \max \left\{a, \varphi_{k}\left(\bar{x}^{*}, 1\right)\right\}\right)
\end{align*}
$$

then $K \subseteq \mathbb{S}_{a}(\bar{x}, \operatorname{ar}(\bar{x}))$, where

$$
r(\bar{x})=2 \max \left\{a, \varphi_{1}\left(\bar{x}^{*}, 1\right), \ldots, \varphi_{n}\left(\bar{x}^{*}, 1\right)\right\}
$$

Now, if $x \in S_{a}(\bar{x}, r(\bar{x})) \cap R_{j}^{n}$,
$\varphi(x, 1) \leqslant \quad$ (by Theorem 2.7)
$\leqslant a d\left(x, x+e_{j}\right) \leqslant a\left(d(x, \bar{x})+d\left(\bar{x}, x+e_{j}\right)\right) \leqslant a\left(r(\bar{x})+a \sum_{l=1}^{n} \varphi_{l}\left(\bar{x}^{*},\left|\bar{x}_{l}-x_{l}\right|+1\right)\right) ;$
but since

$$
\begin{gathered}
1=F_{l}\left(x^{*}, \varphi_{l}(x, 1)\right) \leqslant F_{l}\left(\bar{x}^{*}, r(\bar{x})\right) \\
\left|\bar{x}_{l}-x_{l}\right|+1<2 F_{l}\left(\bar{x}^{*}, r(\bar{x})\right) \leqslant F_{l}\left(\bar{x}^{*}, 2 r(\bar{x})\right),
\end{gathered}
$$

so that $\varphi_{j}(x, 1) \leqslant a(1+2 n a) r(\bar{x})=C(\bar{x})$, and then, by (2.8.b), $\forall x \in R_{j}^{n} \cap K$, $\forall h \in] 0,1\left[, \varphi_{i}(x, h) \leqslant C(\bar{x}) h^{\varepsilon_{j}}\right.$.

Arguing as in Section 3 of [10] I can be estimated by a sum of $2 j-1$ integrals such as

$$
\begin{aligned}
& \int_{0}^{1} d h h^{-1-2 \varepsilon} \int_{\mathbf{R}_{j}^{n} \cap K} d x\left(\int_{0}^{\varphi_{j}(x, h) \hat{\lambda}_{k}\left(H_{k_{-1}}\left(x, \varphi_{j}(x, h)\right)\right)}\left|\partial_{k} u\left(H_{k-1}\left(x, \varphi_{j}(x, h)\right)+s e_{k}\right)\right| d s\right)^{2} \\
& \leqslant \int_{0}^{1} d h h^{-1-2 \varepsilon} \int_{\mathbf{R}_{j}^{n}} d x\left(\int_{0}^{\left.C(\bar{x}) h^{\varepsilon_{j_{\lambda_{k}}\left(H_{k-1}\left(x, \varphi_{j}(x, h)\right)\right)}}\left|\partial_{k} u\left(H_{k-1}\left(x, \varphi_{j}(x, h)\right)+s e_{k}\right)\right| d s\right)^{2}}\right. \\
& \leqslant C(\bar{x}) \int_{0}^{1} d h h^{-1-2 \varepsilon} \int_{\mathbf{R}_{j}^{n}}^{C(\bar{x}) h^{\varepsilon_{j}} \lambda_{k}\left(H_{k_{-1}}\left(x, \varphi_{j}(x, h)\right)\right)} d x \int_{0}\left|\left(X_{k} u\right)\left(H_{k-1}\left(x, \varphi_{j}(x, h)\right)+s e_{k}\right)\right|^{2} h^{\xi_{j}}\left(\lambda_{k}(\ldots)\right)^{-1} d s
\end{aligned}
$$

$$
\leqslant\left(\text { putting } y=\boldsymbol{H}_{k-1}\left(x, \varphi_{j}(x, h)\right)+s e_{k}\right. \text { and keeping in mind that }
$$

$$
\leqslant G_{j} C^{2}(\bar{x}) \int_{0}^{1} d h h^{-1-2\left(\varepsilon-\varepsilon_{j}\right)} \int_{\mathbf{R}_{j}^{n}}\left|X_{k} u(y)\right|^{2} d y
$$

$$
\left.|d x / d y| \leqslant G_{j}, \text { by }[10],(4.3 . g)\right)
$$

So, the assertion is proved.
An analogous technique can be used to prove the following Poincaré inequality.

Theorem 3.2. There exist $c, C \in R_{+}$such that, $\forall u \in C^{\infty}\left(R^{n}\right)$,

$$
\begin{equation*}
\left(\int_{S_{d}(\bar{x}, r)}\left|u-u_{r}\right| d x\right)^{2} \leqslant C r^{2} \mu\left(S_{d}(\bar{x}, r)\right) \int_{S_{d}(\bar{x}, c r)}\left|\nabla_{\lambda} u\right|^{2} d x \tag{3.2.a}
\end{equation*}
$$

$\forall \bar{x} \in R^{n}, \forall r>0$, where μ is Lebesgue measure in $R^{n},\left|\nabla_{\lambda} u\right|^{2}=\sum_{j=1}^{n} \lambda_{j}^{2}\left|\partial_{j} u\right|^{2}$ and

$$
u_{r}=\mu\left(S_{a}(\bar{x}, r)\right)_{S_{a}(\bar{x}, r)}^{-1} u(y) d y
$$

We note explicitly that e and C depend only on the constants $\varrho_{i, k}$,s.
Proof. In the sequel all constants appearing in the estimates will depend
only on $\varrho_{j, k}$. By Theorem 2.7, $\oiint_{d}(\bar{x}, r) \subseteq S_{\varrho}(\bar{x}$, ar $)$, so that

$$
\begin{aligned}
& \left(\int_{S_{a}(\bar{x}, r)}\left|u-u_{r}\right| d x\right)^{2} \leqslant \int_{\left(S_{d}(\overline{\bar{x}}, r)\right)^{2}}|u(y)-u(z)|^{2} d y d z \leqslant \int_{\left(S_{\ell}(\bar{x}, a r)\right)^{2}}|u(y)-u(z)|^{2} d y d z \\
& \leqslant C_{1} \sum_{j=1}^{n} \int_{\left(S_{e}(\bar{x}, a r)\right)^{2}}\left|u\left(z_{1}, \ldots, z_{j-1}, y_{j}, \ldots, y_{n}\right)-u\left(z_{1}, \ldots, z_{j}, y_{j+1}, \ldots, y_{n}\right)\right|^{2} d y d z=C_{1} \sum_{j=1}^{n} I_{j}
\end{aligned}
$$

Now,

$$
\begin{array}{r}
I_{j}=\int_{S_{e}(\overline{\bar{x}}, a r)}\left(\int_{S_{\ell}(\overline{\bar{x}}, a r)}\left|u(x)-u\left(x+\left(z_{j}-x_{j}\right) e_{j}\right)\right|^{2} d x\right) d y_{1} \ldots d y_{j-1} d z_{j} \ldots d z_{n} \\
\leqslant C_{2} \prod_{k \neq j} F_{k}\left(\bar{x}^{*}, a r\right) \int_{-2 F_{j}\left(\bar{x}^{*}, a r\right)}^{2 F_{j}\left(\bar{x}^{*}, a r\right)} d h \int_{S_{e}(x, a r)}\left|u\left(x+h e_{j}\right)-u(x)\right|^{2} d x \\
=C_{2} \prod_{k \neq j} F_{k}\left(\bar{x}^{*}, a r\right) \int_{-2 F_{j}\left(\bar{x}^{*}, a r\right)}^{2 F_{j}\left(\bar{w}^{*}, a r\right)} d h\left(\sum_{a \in \mathcal{A}_{j}} \int_{S_{\alpha}(a r)}\left|u\left(x+h e_{j}\right)-u(x)\right|^{2} d x\right),
\end{array}
$$

where

$$
\boldsymbol{A}_{j}=\left\{\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) ; \alpha_{k}= \pm 1, k<j, \alpha_{j}=\ldots=\alpha_{n}=0\right\}
$$

and

$$
S_{\alpha}(a r)=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in S_{e}(\bar{x}, a r) ; \alpha_{k} x_{k} \geqslant 0, k=1, \ldots, n\right\}
$$

Let us now estimate

$$
I_{\alpha}=\int_{S_{\alpha}(a r)}\left|u\left(x+h e_{j}\right)-u(x)\right|^{2} d x
$$

Without loss of generality, we may suppose that $\alpha=(1, \ldots, 1,0, \ldots, 0)$ and $h>0$; thus

$$
\begin{aligned}
I_{\alpha} \leqslant C_{3} & \left(\sum_{k=1}^{j-1} \int_{S_{\alpha}(a r)}\left|u\left(H_{k-1}(x, \varphi)+h e_{j}\right)-u\left(H_{k}(x, \varphi)+h e_{j}\right)\right|^{2} d x\right. \\
& +\int_{S_{\alpha}(a r)}\left|u\left(H_{j}(x, \varphi)\right)-u\left(H_{j-1}(x, \varphi)\right)\right|^{2} d x \\
& \left.+\sum_{i=1}^{j-1} \int_{S_{\alpha}(a r)}\left|u\left(H_{k-1}(x, \varphi)\right)-u\left(H_{k}(x, \varphi)\right)\right|^{2} d x\right)=C_{3}\left(\sum_{k=1}^{j-1} J_{k}^{\prime}+J_{0}+\sum_{k=1}^{j-1} J_{k}\right)
\end{aligned}
$$

where $\varphi=\varphi_{j}(x, h)$. We have (by the very definition of φ)

$$
\begin{aligned}
J_{0}=\int_{S_{\alpha}(a r)} d x & \left|\int_{0}^{h}\left(\partial_{j} u\right)\left(H_{j-1}(x, \varphi)+s e_{j}\right) d s\right|^{2} \\
& \leqslant \int_{S_{\alpha}(a r)} h^{-1}\left(h / \lambda_{j}\left(H_{j-1}(x, \varphi)\right)^{2}\left(\int_{0}^{h}\left|X_{j} u\left(H_{j-1}(x, \varphi)+s e_{j}\right)\right|^{2} d s\right) d x\right. \\
& =\int_{S_{\alpha}(a r)} h^{-1} \varphi^{2}\left(\int_{0}^{h} \mid X_{j} u\left(H_{j-1}(x, \varphi)+s e_{j} \mid\right)^{2} d s\right) d x .
\end{aligned}
$$

Now, by Theorem 2.7, for every $x \in S_{\alpha}(r a)$, we get

$$
\begin{align*}
\varphi_{j}(x, h) \leqslant a d(x, x+ & \left.h e_{j}\right) \leqslant a\left(d(x, \bar{x})+d\left(\bar{x}, x+h e_{j}\right)\right) \tag{3.2.b}\\
& \leqslant a^{2}\left(\varrho(\bar{x}, x)+\varrho\left(\bar{x}, x+h e_{j}\right)\right) \leqslant(n+3) a^{3} r=C_{3} r,
\end{align*}
$$

since $\left|\bar{x}_{k}-\left(x+h e_{j}\right)_{k}\right|=\left|\bar{x}_{k}-x_{k}\right|<F_{k}\left(\bar{x}^{*}\right.$, ar $)$, for every $k \neq j$ and

$$
\left|\bar{x}_{j}-\left(x+h e_{j}\right)_{j}\right| \leqslant\left|\bar{x}_{j}-x_{j}\right|+h \leqslant F_{j}\left(\vec{x}^{*}, a r\right)+2 F_{j}\left(\bar{x}^{*}, a r\right) \leqslant F_{j}\left(\bar{x}^{*}, 3 a r\right),
$$

so that $\varrho\left(\bar{x}, x+h e_{j}\right) \leqslant(n+2) a r$.
Then

\leqslant (putting $y=H_{j-1}(x, \varphi)+s e_{j}$ and keeping in mind that, by [10] (4.3.g).
$\left.|d x| d y \mid \leqslant G_{j}\right) \leqslant C_{4} r^{2} \int_{S_{x}\left(G_{s}\right)}\left|X_{j} u(y)\right|^{2} d y$.
In fact, for every fixed $x \in S_{\alpha}(a r)$, if we denote by γ the polygonal

$$
\begin{aligned}
& {\left[x, x+F_{1}(x, \varphi) e_{1}\right] \cup\left[x+F_{1}(x, \varphi) e_{1}, x+F_{1}(x, \varphi) e_{1}+F_{2}(x, \varphi) e_{2}\right]} \\
& \ldots \cup\left[x+F_{1}(x, \varphi) e_{1}+\ldots+F_{j-1}(x, \varphi) e_{j-1}, y\right]
\end{aligned}
$$

we have $d(x, y) \leqslant l(\gamma)=j \varphi_{j}(x, h) \leqslant C_{3} j r$, so that

$$
d(y, \bar{x}) \leqslant d(x, \bar{x})+d(x, y) \leqslant a^{2} r+C_{3} n r=C_{5} a^{-1} r,
$$

and hence $\varrho(y, x) \leqslant O_{5} r$.

So, J_{0} is estimated.
Let us now estimate $J_{k}, 1 \leqslant k \leqslant j-1$. Analogously as above, we have:

$$
\begin{aligned}
& J_{k}=\int_{s_{\alpha}(a r)} d x\left|\int_{0}^{\phi \lambda_{k}\left(H_{k-1}(x, \varphi)\right)}\left(\partial_{k} u\right)\left(H_{k-1}(x, \varphi)+s e_{k}\right) d s\right|^{2} \leqslant(\text { by } \quad(3.2 . b)) \\
& \leqslant \int_{S_{k}(a r)} d x\left(\int_{0}^{\sigma_{\mathrm{s}}+\lambda_{k}\left(H_{k-1}(x, \varphi)\right)}\left|\left(\partial_{k} u\right)\left(H_{k-1}(x, \varphi)+s e_{k}\right)\right| d s\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (putting } \left.y=H_{k-1}(x, \varphi)+s e_{k}\right) \leqslant\left. C_{6} r_{S_{\alpha}\left(e_{e_{r}}\right)} \int_{k} X_{k} u(y)\right|^{2} d y .
\end{aligned}
$$

The terms $J_{k}^{\prime}, 1 \leqslant k \leqslant j-1$ can be handled analogously. Then, if we put $e=a C_{5}$, we get

$$
\begin{gathered}
I_{\alpha} \leqslant C_{7} r^{2} \int_{S_{d}(\bar{x}, e r)}\left|\nabla_{\lambda} u\right|^{2} d x, \quad \text { so that } I_{j} \leqslant C_{8} r^{2} \prod_{k=1}^{n} F_{k}\left(\bar{x}^{*}, a r\right) \int\left|\nabla_{\lambda} u\right|^{2} d x \\
\qquad \leqslant C_{9} r^{2} \prod_{k=1}^{n} F_{k}\left(\bar{x}^{*}, r\right) \int_{S_{d}(\overline{\bar{x}}, c r)}\left|\nabla_{\lambda} u\right|^{2} d x \leqslant \quad \text { (by Theorem 2.7) } \\
\leqslant C_{10} r^{2} \mu\left(S_{d}(\bar{x}, r)\right) \int_{S_{d}(\overline{\bar{x}}, r)}\left|\nabla_{\lambda} u\right|^{2} d x .
\end{gathered}
$$

So, the assertion is proved.
Remark 3.3. Let $x_{0} \in R^{n}$ and $r, R \in R_{+}$be fixed, $r \leqslant 2 R$; if $\bar{x} \in S_{d}\left(x_{0}, R\right)$, we shall denote by u_{r}^{*} the mean value of u on the relative ball $S_{d}^{*}(\bar{x}, r)$ $=S_{d}\left(x_{0}, R\right) \cap S_{d}(\bar{x}, r)$. Then, we have

$$
\begin{gathered}
\left(\int_{S_{d}^{*}(\bar{x}, r)}\left|u-u_{r}^{*}\right| d x\right)_{\left(S_{d}^{*}(\bar{x}, r)\right)^{2}}^{2} \leqslant \int^{|u(y)-u(z)|^{2} d y d z \leqslant(\text { by Theorem 3.2) }} \\
\leqslant \operatorname{Cr} r^{2} \mu\left(S_{d}(\bar{x}, r)\right) \int_{S_{d}(\bar{x}, c r)}\left|\nabla_{\lambda} u\right|^{2} d x \leqslant \quad \text { (by Proposition 2.10) } \\
\leqslant C b r^{2} \mu\left(S_{d}^{*}(\bar{x}, r)\right) \int_{S_{d}(\bar{x}, c r)}\left|\nabla_{\lambda} u\right|^{2} d x .
\end{gathered}
$$

4. - In this Section, we shall prove the Hölder regularity of the weak solutions of $L u=0$ via Moser's technique ([15]; see also [11], Section 8.6).

To this end, preliminarily, we note that if $f: R \rightarrow R$ is a continuous function with piecewise continuous first derivative $f^{\prime} \in L^{\infty}(R)$, then $f \circ u$ belongs to $W_{\lambda}(\Omega)$ for every $u \in W_{\lambda}(\Omega)$. Moreover, if Ω is λ-connected and if $u \in W_{\lambda}(\Omega)$, then $\partial_{j} u \in L_{\text {loc }}^{2}(\Omega \backslash I)$, where

$$
\Pi=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}, \prod_{j=1}^{n} x_{j}=0\right\}
$$

so that

$$
x \rightarrow q(u, v)=\sum_{i, j=1}^{n} a_{i, j}(x) \partial_{i} u(x) \partial_{j} u(x)
$$

belongs to $L^{1}(\Omega), \forall u, v \in W_{\lambda}(\Omega)$. In the sequel, we shall put $\left|\nabla_{A} u\right|^{2}=q(u, u)$.
The first step is to prove the local boundedness of the solutions.
Theorem 4.1. Let Ω be a λ-connected open subset of R^{n} and let $u \in W_{\text {loc }}^{\lambda}(\Omega)$ be such that $L u \geqslant 0$. Then, $\forall \bar{x} \in \Omega \exists R_{0}>0$ such that, $\forall R>0, R \leqslant R_{0}$, we have:

$$
\begin{equation*}
\sup _{B(\bar{x}, R)} u \leqslant C_{R}\left\|u^{+} ; L^{2}(B(\bar{x}, 2 R))\right\|, \tag{4.1.a}
\end{equation*}
$$

where $B(\bar{x}, R)=\left\{x \in R^{n} ;|x-\bar{x}|<R\right\}$ is the usual euclidean ball,

$$
u_{+}=\max \{0, u\}
$$

and R_{0}, C_{R} are independent of u.
Proof. First, let us suppose $u \geqslant 0$. Analogously to the elliptic case (see, e.g., [11], Section 8.5), with a suitable choice of the test function in the inequality $\mathcal{L}(u, v) \leqslant 0$, we get:

$$
\begin{equation*}
\int_{\Omega}\left|\nabla_{A}(\psi H(u))\right|^{2} d x \leqslant C_{1}^{2} \int_{\Omega}\left|H^{\prime}(u) u\right|^{2}\left|\nabla_{A} \psi\right|^{2} d x \tag{4.1.b}
\end{equation*}
$$

where $\psi \in C_{0}^{\infty}(B(\bar{x}, R))$ and, for fixed $\beta \geqslant 1$ and $N>0, H(t)=t^{\beta}$ for $t \in[0, N]$ and $H(t)=N^{\beta}+(t-N) \beta N^{\beta-1}$ for $t \geqslant N$. The constant C_{1} is independent of u, β, N. Let $R_{0} \in R_{+}$be fixed in such a way that $B\left(\vec{x}, 3 R_{0}\right) \subseteq \Omega$. Then, by Theorem 3.1 and (2.a), there exist $q>2, C_{2}=C_{2}\left(R_{0}\right)$ independent of β and N such that, if $R \leqslant R_{\mathbf{0}}, r<R$ and $\psi / B(\bar{x}, r) \equiv 1$,

$$
\left(\int_{\mathbf{R}^{n}}|\psi H(u)|^{q} d x\right)^{1 / q} \leqslant C_{2}\left(\left\|\psi H(u) ; L^{2}\left(\mathbb{R}^{n}\right)\right\|+\left\|\left|\nabla_{A}(\psi H(u))\right| ; L^{2}\left(\mathbb{R}^{n}\right)\right\|\right)
$$

hence

$$
\begin{aligned}
& \left\|H(u) ; L^{q}(B(\bar{x}, r))\right\| \leqslant\left\|\psi H(u) ; L^{q}(B(\bar{x}, R))\right\| \\
& \quad \leqslant C_{2}\left(\left\|\psi H(u) ; L^{2}\left(\mathbf{R}^{n}\right)\right\|+\left\|\left|\nabla_{A}(\psi H(u))\right| ; L^{2}\left(\mathbb{R}^{n}\right)\right\|\right) \leqslant \quad(\text { by }(4.1 . b) \text { and }(2 . a)) \\
& \quad \leqslant C_{2}\left(\left\|\psi H(u) ; L^{2}\left(\mathbb{R}^{n}\right)\right\|+C_{1} m\left\|H^{\prime}(u) u\left|\nabla_{\lambda} \psi\right| ; L^{2}\left(\mathbb{R}^{n}\right)\right\|\right) .
\end{aligned}
$$

Now, since it is possible to choice ψ such that $\left|\nabla_{\lambda} \psi\right| \leqslant 2(R-r)^{-1}$, for $N \rightarrow+\infty$, we get:

$$
\left\|u ; L^{\beta \alpha}(B(\bar{x}, r))\right\| \leqslant\left(C_{4} \beta /(R-r)\right)^{1 / \beta}\left\|u ; L^{2 \beta}(B(\bar{x}, R))\right\|
$$

where C_{4} is independent of u and β.
Now, (4.1.a) follows via Moser's iteration technique (see [15] and [11], Section 8.5) if $u \geqslant 0$.

Finally, we can handle the general case in the following way. Let $\left(f_{k}\right)_{k \in N}$ be a sequence of C^{2}-functions such that: i) $f_{k}: R \rightarrow R$; ii) f_{k} is an increasing, nonnegative convex function which is linear outside of a compact set; iii) $f_{k}(t) \leqslant 2(1+|t|), \forall t \in R$; iv) $f_{k}(t) \rightarrow \max \{0, t\}$ as $k \rightarrow+\infty$. Then $f_{k}(u) \in W_{\lambda}^{\text {loc }}(\Omega)$ and $L\left(f_{k}(u)\right) \geqslant 0$ (see [15]). Thus, since $f_{k}(u) \geqslant 0$, we get

$$
\sup _{B(\bar{x}, R)} f_{k}(u) \leqslant C_{\mathbf{R}}\left\|f_{k}(u) ; L^{2}(B(\bar{x}, 2 R))\right\|, \quad \forall k \in N
$$

So, if $k \rightarrow+\infty$, (4.1.a) follows.
Lemma 4.2. Let Ω be an open λ-connected subset of R^{n} and let u be a nonnegative solution of $L u=0$ belonging to $W_{\lambda}^{\mathrm{loc}}(\Omega)$. Moreover, let \bar{x} be a fixed point of Ω such that $\overline{S_{e}\left(\bar{x}, 3 a^{2} c\right)} \subseteq \Omega$, where c is the constant appearing in Theorem 3.2. Then
i) $\forall p>1, \sup _{S(\bar{x}, \underline{z})} u \leqslant M_{\boldsymbol{p}}^{\prime}\left\|u ; L^{p}\left(S_{e}(\bar{x}, 1)\right)\right\|$;
ii) $\exists \sigma>1$ such that, $\forall p \in\left[1, \sigma\left[, \inf _{S_{e}(\bar{x}, \xi)} u \geqslant M_{\mathfrak{p}}^{\mu}\left\|u ; L^{p}\left(S^{p}(\bar{x}, 1)\right)\right\|\right.\right.$,
where $\sigma, M_{p}^{\prime}, M_{v}^{\prime \prime}$ depend only on the constant m of (2.a), on $\varrho_{j, k}$ and on $\varphi_{j}\left(\bar{x}^{*}, 1\right), F_{j}\left(\bar{x}^{*}, 1\right), j=1, \ldots, n$.

Proof. Obviously, we need only to prove the assertion if $u \geqslant k>0$. In this case, by the local boundedness of u (Theorem 4.1), $\forall \beta \in R$ and $\forall \eta \in C_{0}^{\infty}(\Omega)$, the function $v=\eta u^{\beta}$ belongs to $\dot{W}_{\lambda}(\Omega)$; so that $\mathcal{L}(u, v)=0$.

Then, arguing as in [11], Section 8.6 , if $\beta \neq 0$, we get

$$
\int_{\mathbf{R}^{n}}\left|\eta \nabla_{\lambda} w\right|^{2} d x \leqslant \begin{cases}C_{1}((\beta+1) \mid \beta)^{2} \int_{\mathbf{R}^{n}}\left|\nabla_{\lambda} \eta\right|^{2} w^{2} d x, & \text { if } \beta \neq-1 \tag{4.2.a}\\ C_{1} \int_{\mathbf{R}^{n}}\left|\nabla_{\lambda} \eta\right|^{2} d x, & \text { if } \beta=-1\end{cases}
$$

where C_{1} depends onsy on the constant m and

$$
w= \begin{cases}u^{(\beta+1) / 2}, & \text { if } \beta \neq-1 \tag{4.2.b}\\ \log u, & \text { if } \beta=-1\end{cases}
$$

Let now r_{1} and r_{2} be fixed real positive numbers such that $r_{1}<r_{2}<3 a^{2} c$. Preliminarily, let us prove that it is possible to choice $\eta=\eta\left(\bar{x}, r_{1}, r_{2}, \cdot\right)$ $\in C_{0}^{\infty}\left(S_{e}\left(\bar{x}, r_{2}\right)\right)$ in such a way that $\eta=1$ on $S_{e}\left(\bar{x}, r_{1}\right)$ and $\left|\nabla_{\lambda} \eta\right| \leqslant 2\left(r_{2}-r_{1}\right)^{-1}$. Let $\psi \in C_{0}^{\infty}(R, R)$ be such that: i) $0 \leqslant \psi \leqslant 1$; ii) $\psi(t)=\psi(-t), \forall t \in R$; iii) $\psi \equiv 1$ on $\left[-r_{1} / r_{2}, r_{1} / r_{2}\right] ;$ iv) $\psi=0$ outside of $]-1,1[; \mathrm{v})\left|\psi^{\prime}(t)\right| \leqslant 2\left(1-r_{1} / r_{2}\right)^{-1}$, $\forall t \in R$.

We put $\eta(x)=\prod_{j=1}^{n} \psi\left(\left|x_{j}-\bar{x}_{j}\right| / F_{j}\left(\bar{x}^{*}, r_{2}\right)\right)$; obviously, η is a smooth function supported in $S_{e}\left(\bar{x}, r_{2}\right)$. Moreover, since

$$
F_{j}^{\prime}\left(\bar{x}^{*}, r_{1}\right) \leqslant\left(r_{1} / r_{2}\right) F_{j}\left(\bar{x}^{*}, r_{2}\right), \quad j=1, \ldots, n(\operatorname{see}(2.8 . a))
$$

if $x \in S_{e}\left(\bar{x}, r_{1}\right)$, then $\eta(x)=1$. Finally, if $1 \leqslant j \leqslant n$ and $x \in \mathcal{S}_{\varrho}\left(\bar{x}, r_{2}\right)$,

$$
\begin{array}{r}
\left|\lambda_{j}(x) \partial_{j} \eta(x)\right|=\prod_{r \neq j} \psi\left(\left|x_{k}-\bar{x}_{k}\right| / F_{k}\left(\bar{x}^{*}, r_{2}\right)\right) \lambda_{j}(x) \mid \psi^{\prime}\left(\left|x_{j}-\bar{x}_{j}\right| / F_{j}\left(\bar{x}^{*}, r_{2}\right)\right)\left(F_{j}\left(\bar{x}^{*}, r_{2}\right)\right)^{-1} \\
\leqslant 2 r_{2}\left(r_{2}-r_{1}\right)^{-1} \lambda_{j}(x)\left(F_{j}\left(\bar{x}^{*}, r_{2}\right)\right)^{-1}
\end{array}
$$

Then, the assertion follows if we note that

$$
\begin{aligned}
r_{2} \lambda_{j}(x)=r_{2} \lambda_{j}\left(\left|x_{1}\right|\right. & \left., \ldots,\left|x_{j_{-1}}\right|\right) \\
& \leqslant r_{2} \hat{\lambda}_{j}\left(\left|\bar{x}_{1}\right|+F_{1}\left(\bar{x}^{*}, r_{2}\right), \ldots,\left|\bar{x}_{j_{-1}}\right|+F_{j_{-1}}\left(x^{*}, r_{2}\right)\right)=F_{j}\left(\bar{x}^{*}, r_{2}\right)
\end{aligned}
$$

Now, by Theorem 3.1 (with the constants q and C_{q} appearing therein), we get:

$$
\left\|\eta w ; L^{q}\left(\mathbf{R}^{n}\right)\right\| \leqslant C_{q}\left(1+\sum_{j=1}^{n} \varphi_{j}\left(\bar{x}^{*}, 1\right)\right) \cdot\left(\left\|\eta w ; L^{2}\left(\mathbb{R}^{n}\right)\right\|+\left\|\left|\nabla_{\lambda}(\eta w)\right| ; L^{2}\left(\mathbf{R}^{n}\right)\right\|\right)
$$

So, by (4.2.a) and (4.2.b), if $\beta>0$, we have
(4.2.c) $\quad\left\|u ; I^{\sigma_{p}}\left(S_{Q}\left(\bar{x}, r_{1}\right)\right)\right\|$

$$
\leqslant\left[O_{a}^{\prime}\left(1+\sum_{j=1}^{n} q_{j}\left(\bar{x}^{*}, 1\right)\right)\left(1+p /(p-1)\left(r_{2}-r_{1}\right)\right)\right]^{2 / p}\left\|u ; L^{p}\left(S_{\rho}\left(\bar{x}, r_{2}\right)\right)\right\|,
$$

where $p=\beta+1$ and $\sigma=q / 2$.
From (4.2.c), by Moser's iteration technique, we get i). Moreover, by (4.2.a) and (4.2.b) with $\beta \in]-1,0[$ and $\beta \in]-\infty,-1[$, we obtain, respectively $\forall p, p_{0}, 0<p_{0}<p<\sigma$,

$$
\begin{align*}
& \left(\int_{S_{e}(\bar{x}, 1)} u^{p} d x\right)^{1 / p} \leqslant C_{2}\left(\int_{S_{e}\left(\bar{x}, \frac{2}{2}\right)} u^{p_{0}}\right)^{1 / p_{0}} ; \tag{4.2.d}\\
& \inf _{S_{e}(\overline{\bar{x}}, \underline{z})} u \geqslant C_{3}\left(\int_{S_{e}(\bar{x}, 1)} u^{-p_{0}} d x\right)^{-1 / p_{0}}, \tag{4.2.e}
\end{align*}
$$

where C_{2}, C_{3} depend only on $p, p_{0}, m, \varrho_{j, k}, \varphi_{j}\left(\bar{x}^{*}, 1\right), j, k=1, \ldots, n$.
Now, the proof of ii) will be accomplished if we show that there exists $\left.p_{0} \in\right] 0,1[$ such that

$$
\begin{equation*}
\left(\int_{S_{e}\left(\bar{x}, \frac{z}{2}\right)} u^{\nu_{0}} d x\right)\left(\int_{S_{e}\left(\bar{x}, \frac{z}{z}\right)} u^{-p_{0}} d x\right) \leqslant C_{4}, \tag{4.2f}
\end{equation*}
$$

where p_{0}, C_{4} depend only on $m, \varrho_{j, k}$ and $F_{j}\left(\bar{x}^{*}, 1\right), j=1, \ldots, n$. Indeed, if we put $w=\log u$, we have:

$$
\begin{aligned}
& \left(\int_{S_{0}\left(\bar{x}, \frac{1}{2}\right)} u^{\nu_{0}} d x\right)^{\ddagger}\left(\int_{S_{e}\left(\bar{x}, \frac{1}{2}\right)} u^{-v_{0}} d x\right)^{\ddagger} \\
& \quad \leqslant \int_{S_{d}(\bar{x}, 3 a / 2)}^{\exp \left(p_{0}\left|w-w_{3 a / 2}\right|\right) d x=p_{0} \int_{0}^{+\infty} v(s) \exp \left(p_{0} s\right) d s+\mu\left(S_{d}(\bar{x}, 3 a / 2)\right),} \text {, }
\end{aligned}
$$

where $w_{3 a / 2}$ is the mean value of w in $S_{d}(\bar{x}, 3 a / 2)$ (see Theorem 3.2) and $\nu(s)=\mu\left(\left\{x \in \mathbb{S}_{a}(\bar{x}, 3 a / 2) ;\left|w(x)-w_{3 a / 2}\right|>s\right\}\right)$.

Now, the function v can be estimated as follows:

$$
\begin{equation*}
\nu(s) \leqslant C_{5} \exp \left(-C_{6} s\right) \mu\left(S_{a}(\bar{x}, 3 a / 2)\right), \tag{4.2.g}
\end{equation*}
$$

where C_{5} and C_{6} depend only on $\varrho_{j, k}$ and m. In order to prove (4.2.g), we note preliminarily that w is a bounded mean oscillation (BMO) function
with respect to the d-balls in the space of homogeneous type $S_{a}(\bar{x}, 3 a / 2)$. Let y belong to $S_{d}^{*}(\bar{x}, 3 a / 2)$; first, let us suppose $r \geqslant 3 a$; then, obviously, $S_{d}^{*}(y, r)=S_{a}(y, r) \cap S_{a}(\bar{x}, 3 a / 2)=S_{a}(\bar{x}, 3 a / 2)$. Then, by Theorem 3.1, (4.2.a) and (4.2.b) with $\eta=\eta\left(\bar{x}, 3 a^{2} c / 2,3 a^{2} c, \cdot\right)$, we have (w_{r}^{*} is the mean value of u on $\left.S_{d}^{*}(y, r)\right)$:

$$
\begin{aligned}
\left(\int_{S_{d}^{*}(v, r)}\left|w-w_{r}^{*}\right|\right. & d x)^{2}=\left(\int_{S_{d}(\bar{x}, 3 a / 2)}\left|w-w_{3 a / 2}\right| d x\right)^{2} \leqslant\left(9 C a^{2} / 4\right) \mu\left(S_{a}(\bar{x}, 3 a / 2)\right) \int_{S_{d}(\bar{x}, 3 a \sigma / 2)}\left|\nabla_{\lambda} w\right|^{2} d x \\
& \leqslant C_{7} \mu\left(S_{d}^{*}(y, r)\right) \mu\left(S_{d}\left(\bar{x}, 3 a^{3} c\right)\right) \quad \leqslant \text { by the doubling condition) } \\
& \leqslant C_{8} \mu^{2}\left(S_{d}^{*}(y, r)\right),
\end{aligned}
$$

here C_{8} depends only on m and $\varrho_{i, k}$.
On the other hand, if $r<3 a$, by Remark 3.3, (4.2.a) and (4.2.b) with $\eta=\eta(y$, aer, 2acr, •),

$$
\begin{aligned}
&\left(\int_{S_{d}^{*}(v, r)}\left|w-w_{r}^{*}\right| d x\right)^{2} \leqslant C_{\mathrm{g}} \mu\left(S_{d}^{*}(y, r)\right) \mu\left(S_{d}\left(y, 2 a^{2} c r\right)\right) \leqslant \text { (by Proposition 2.10) } \\
& \leqslant C_{10} \mu^{2}\left(S_{d}^{*}\left(y, 2 a^{2} c r\right)\right) \leqslant C_{11} \mu^{2}\left(S_{d}^{*}(y, r)\right),
\end{aligned}
$$

where C_{11} depends only on m and $\varrho_{j, k}$.
So, we proved that w is a BMO-function. Then, (4.2.g) follows by JohnNirenberg's theorem which holds in a metric space of homogeneous type, too ([4], p.594; see also [1]). Now, (4.4.f) follows by (4.2.g) and Theorem 2.7. Thus ii) is proved.

The careful estimate of the constants in Lemma 4.2 enables us to prove the following crucial result.

Theorem 4.3. Let Ω be a λ-connected open subset of R^{n} and let u be a nonnegative solution of $L u=0$ belonging to $W_{\lambda}^{\text {loc }}(\Omega)$. Then, there exist $c_{1}, M_{p}^{\prime}, M_{p}^{u} \in R_{+}$such that, $\forall \bar{x} \in \Omega, \forall R>0$ such that $S_{\varrho}\left(\bar{x}, c_{1} R\right) \subseteq \Omega$, we have
i) $\forall p>1, \sup _{S_{e}(\bar{x}, R / 2)} u \leqslant M_{v}^{\prime}\left(\mu\left(S_{e}(\bar{x}, R)\right)\right)^{-1 / p}\left\|u ; L^{p}\left(S_{e}(\bar{x}, R)\right)\right\|$;
ii) $\forall p \in\left[1, \sigma\left[, \inf _{S_{e}(\bar{x}, R / 2)} u \geqslant M_{\nu}^{\eta}\left(\mu\left(S_{e}(\bar{x}, R)\right)\right)^{-1 / p} \| u ; L^{p}\left(S_{e}(\bar{x}, R) \|\right.\right.\right.$.

Proof. The proof will be carried out by using the homotethical transformations centred in \bar{x} defined in Section 2; in the sequel we shall use the notations introduced therein. We have: $u_{R} \in W_{\lambda(R)}^{10 c}\left(T^{-1}(\Omega)\right), L_{R} u_{R}=0$ in $T_{R}^{-1}(\Omega)$, and, obviously, $u_{R} \geqslant 0$. Moreover, if we put $c_{1}=3 a^{2} c, T_{B}^{-1}\left(S_{\rho}(\bar{x}, R)\right)$ $=S_{e}^{(R)}(\bar{x}, 1), T_{R}^{-1}\left(S_{e}\left(\bar{x}, c_{1} R\right)\right)=S_{e}^{(R)}\left(\bar{x}, 3 a^{2} c\right) \subseteq T^{-1}(\Omega)$; so, we can apply the results of Lemma 4.2.

The essential point is that the constants $M_{p}^{\prime}, M_{p}^{\prime \prime}$ depend only on the constant m, on $\varrho_{j, k}$ (see (2.a') and (2.c)) and on $\varphi_{j}^{(R)}\left(\vec{x}_{\omega}^{*}, 1\right), F_{j}^{(R)}\left(\bar{x}_{\omega}^{*}, 1\right)$, $j=1, \ldots, n$; but the last constants are identically equal to 1 , by (2.i) and (2.j); thus $\sigma, M_{p}^{\prime}, M_{p}^{\prime \prime}$ are independent of R. The proof of the Theorem can be accomplished by the change of variables $y=T_{R}(x)$.

Now, we can prove the following extention of De Giorgi Theorem.
Theorem 4.4. Let Ω be a λ-connected open subset of R^{n}. If $u \in W_{\lambda}^{\mathrm{loc}}(\Omega)$ and $L u=0$ in Ω, then u is locally Hölder-continuous in Ω.

Proof. Exactly as in the elliptic case (see, e.g., [11], Section 8.9), by Theorem 4.3 we have:

$$
\begin{equation*}
\underset{S_{a}(v, R)}{\text { ose } u \leqslant C R^{\alpha}, \quad \forall R \leqslant R_{0}, \quad \text { }} \tag{4.4.a}
\end{equation*}
$$

for a suitable $R_{0}, C, \alpha>0$, that can be chosen independent on y if y belongs to a fixed compact subset K of Ω. Then, the assertion follows by (2.9.a).

REFERENCES

[1] N. Burger, Espace des fonctions à variation moyenne bornée sur un espace de nature homogène, C. R. Acad. Sci. Paris Sér. A, 236 (1978), pp. 139-142.
[2] H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955.
[3] R. R. Coifman - G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Springer, Berlin-Heidelberg - New York, 1971.
[4] R. R. Cotfman - G. Weiss, Extensions of Hardy Spaces and Their Use in Analysis, Bull. Amer. Math. Soc., 83 (1977), pp. 569-645.
[5] E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 3 (3) (1957), pp. 25-43.
[6] E. B. Fabes - C. E. Kenig - R. P. Serapioni, The Local Regularity of Solutions of Degenerate Elliptic Equations, Comm. Partial Differential Equations 7 (1) (1982), pp. 77-116.
[7] C. Fiffferman - D. Phong, Subelliptic Eigenvalue Problems, Preprint 1981.
[8] B. Franchi - E. Lanconelli, De Giorgi's Theorem for a Class of Strongly Degenerate Elliptic Equations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 72 (8) (1982), pp. 273-277.
[9] B. Franchi - E. Lanconelli, Une métrique associée à une classe d'opérateurs elliptiques dégénérés, Proceedings of the meeting "Linear Partial and Pseudo Differential Operators", Torino (1982), Rend. Sem. Mat. Univ. e Politec. Torino, to appear.
[10] B. Franchi - E. Lanconelli, An Embedding Theorem for Sobolev Spaces Related to Non-Smooth Vector Fields and Harnack Inequality, to appear.
[11] Gilbarg - N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin - Heidelberg - New York, 1977.
[12] L. Hörmander, Hypoelliptic Second-Order Differential Equations, Acta Math. 119 (1967), pp. 147-171.
[13] I. M. Kolodir, Qualitative Properties of the Generalized Solutions of Degenerate Elliptic Equations, Ukrain. Math. Z., 27 (1975), pp. 320-328 = Ukrainian Math. J., 27 (1975), pp. 256-263.
[14] S. N. Kruzkov, Certain Properties of Solutions to Elliptic Equations, Dokl. Akad. Nauk SSSR, 150 (1963), pp. $470-473=$ Soviet Math. Dokl., 4 (1963), pp. 686-690.
[15] J. Moser, A New Proof of De Giorgi's Theorem Concerning the Regularity Probem for Elliptic Differential Equations, Comm. Pure Appl. Math., 13 (1960), pp. 457-468.
[16] M. K. V. Murthy - G. Stampacchia, Boundary Value Problems for Some Degenerate-Elliptic Operators, Ann. Mat. Pura Appl., 80 (4) (1968), pp. 1-122.
[17] J. Nash, Continuity of Solutions of Parabolic and Elliptic Equations, Amer. J. Math., 80 (1958), pp. 931-954.
[18] N. S. Trudinger, Linear Elliptic Operators with Measurable Coefficients, Ann. Scuola Norm. Sup. Pisa, (3) 27 (1973), pp. 265-308.

Istituto Matematico "S. Pincherle * Piazza di Porta S. Donato, 5 40127 Bologna

