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HÖLDERIAN REGULARITY-BASED IMAGE INTERPOLATION

Jacques Levy-Vehel Pierrick Legrand

COMPLEX Team, INRIA Rocquencourt, 78153 Le Chesnay Cedex, France

ABSTRACT

We consider the problem of interpolating a signal in IRd

known at a given resolution. In our approach, the signal is as-

sumed to belong to a given (large) class of signals. This class

is characterized by local regularity constraints, that can be

described by a certain inter-scale behaviour of their wavelet

coefficients. These constraints allow to predict the scale n co-

efficients from the ones at lower scales. We investigate some

properties of this interpolation scheme. In particular, we give

the Hölder regularity of the refined signal, and present some

asymptotic properties of the method. Finally, numerical ex-

periments are presented. Both the theoretical and numerical

results show that our regularity-based scheme allows to obtain

good quality interpolated images.

1. INTRODUCTION AND BACKGROUND

A ubiquitous problem in signal and image processing is to

obtain data sampled with the best possible resolution. At the

acquisition step, the resolution is limited by various factors

such as the physical properties of the captors or the cost. It

is therefore desirable to seek methods which would allow to

increase the resolution after acquisition. This is useful for

instance in medical imaging or target recognition. At first

sight, this might appear hopeless, since one cannot ”invent”

information which has not been recorded. However, there are

a number of situations of practical interest where this can be

done. A first class of such situations is when several low reso-

lution overlapping signals are available. This occurs in video

sequences, radar imaging or MRI. Interpolation (also called

superresolution in this context) is then the process of combin-

ing these multiple low resolution signals into a high resolution

one. This is not the frame we shall consider here.

In more general situations, a single signal is available for

interpolation. Compared with the case above, one needs to

supplement the data brought by the low resolution signal by

a richer a priori information. Several methods have been ex-

plored, which may be roughly split into two types: In the first,

”class-based” one, the signal is assumed to belong to some

class, with conditions expressed mainly in the time or fre-

quency domain. Such classes include band-limited or time-

limited signals, positive and/or sparse signals, and smooth-

ness classes such as Cn or Besov spaces Bs
p,q . This puts

constraints on the interpolation, which is usually obtained as

the minimum of a two-terms cost-function: The first term en-

sures that the reconstructed high resolution image is compat-

ible with the observed low resolution one. The second term

corresponds to the a priori smoothness information. Works

following this approach include [1, 2, 3, 4, 5, 6, 7].

The second type of approach, which could be called ”con-

textual”, has been proposed in recent papers originating from

several communities (computer vision, computer graphics, AI)

[8, 9, 10]. It originates from the observation that most class-

based methods results in overly smooth images at higher in-

terpolation rates (i.e. larger than 4). Contextual methods try

to overcome this problem by using a ”local learning” tech-

nique: Basically, the system is given some information about

the local features in a given class of signals (a database). It

then uses this information to compute a high resolution signal

by comparing the local features of the signal to be processed

with the ones of the signals in the database. The assumption

is that neighbourhoods in the images of the database that are

similar at resolutions n, n − 1, . . . , n − i, should remain so

at the ”superresolution” n+ 1. The methods then proceed by

finding, for any neighbourhood in the image to be processed,

similar neighbourhoods in the database, and then interpolat-

ing on the basis on the known high resolution versions of the

database neighbourhoods.

A number of problems remain with most techniques de-

veloped so far: While the interpolated image is usually too

smooth, it also occur sometimes that on the contrary too many

details are added, in particular in smooth regions. In addition,

the creation of details is not well controlled, so that one can

neither predict how the high resolution image will look like,

nor the theoretical properties of the interpolation scheme.

Let us now explain in informal terms how our method

works. Broadly speaking, our main motivation is to find a

way to interpolate in such a way that smooth regions as well

as irregular ones (i.e. sharp edges or textures) remain so af-

ter zooming. We interpret this as a constraint on the the local

regularity: The interpolation method should preserve the lo-

cal regularity. The next step is to define an index of local reg-

ularity which is both a reasonable measure of the perceived

regularity and mathematically/computationally tractable. In

that view, we use a notion of Hölder exponent. Hölder ex-

ponents have been shown to correspond to an intuitive notion



of regularity in both images and 1D signals [11]. In order to

control the interpolation and to obtain a simple implementa-

tion, we need to make some assumptions on the signal, to the

effect that (a) this Hölder exponent can be easily estimated

from wavelet coefficients (b) the Hölder exponent allows to

predict the finer scales coefficients. Technically, this requires

that the signal is not oscillatory (see section 2). This scheme

allows to control both the reconstruction error and the regular-

ity of the interpolated signal (this regularity does not depend

on assumptions on the original signal). This regularity in turn

controls the visual appearance of the added information, i.e.

the (local) high frequency content.

To get an intuitive understanding of the method, it is use-

ful to recast this in terms of wavelet coefficients: Let X de-

noted the input signal and let dj,k be its wavelet coefficients,

where, as usual, j corresponds to scale and k to location.

Roughly speaking, if a signal has regularity α at point t, then

its wavelet coefficient dj,k(j,t) ”above” t are bounded byC2−jα

for some constant C: ∀j = 1 . . . n, |dj,k(j,t)| ≤ C2−jα. As

said above, α correspond to an intuitive notion of regular-

ity: A large α translates in a smooth signal, while α ∈ (0, 1)
means that the signal is continuous and non differentiable at

t. If the signal is discontinuous at t but bounded, then α = 0.

Now if we are willing to preserve the regularity, we should

prescribe the wavelet coefficient above t at the superresolved

scale n+ 1 in such a way that |dn+1,k(n+1,t)| ≤ C2−(n+1)α.

For concreteness, let us explain schematically how our

method would act in two simple situations: On a uniform re-

gion, all the wavelet coefficients are close to zero. The bound

on the wavelet coefficients then holds with arbitrarily large

α, since 0 ≤ C2−jα for all α > 0. As a consequence, the

predicted coefficient dn+1,k will be zero, since it must satisfy

the same inequality: The smooth region will remain smooth,

because no detail will be added. On the other hand, above a

step edge, the wavelet coefficients dj,k do not decay in scale.

This imply that α = 0. The predicted coefficient dn+1,k will

then be of the same order as dn,k. As a consequence, the local

regularity of the interpolated image will be again equal to 0 at

this point, and the edge will not be blurred.

We describe the interpolation procedure in the next sec-

tion. Section 3 highlights some theoretical features of the

method related to asymptotic regularity properties of the in-

terpolated signal and bounds on the reconstruction error. Fi-

nally, section 4 displays some numerical experiments.

2. THE METHOD

Let X denote the original signal, and Xn = (xn
1 , . . . x

n
2n) its

regular sampling over the 2n points (tn1 , . . . t
n
2n). Letψ denote

a wavelet such that the set {ψj,k}j,k forms an orthonormal

basis of L2. Let dj,k be the wavelet coefficients of X .

For k = 1 . . . 2n, we consider the point t = tnk and the

wavelet coefficients dj,k(j,t) which are located ”above” it (ie

k(j, t) = ⌊(t + 1)2j+1−n⌋). Let αn(t) denote the slope of

the liminf regression of the vector (log(d1,k(1,t), . . . dn,k(n,t))
versus (−1, . . . ,−n).
See [12] for an account on liminf regressions. When n tends

to infinity, αn(t) tends to liminf
log dn,k(n,t)

−n
. This number has

been considered in the literature [13] under the name of weak

scaling exponent, denoted βw. It is a measure of the local

regularity in the following sense. The weak scaling exponent

of the signal X at t0 is defined as:

βw = sup{s : ∃n, X(−n) ∈ Cs+n
t0

}.

whereX(−l) denotes a primitive of order l ofX andCs
t0

is

the usual pointwise Hölder space at t0. When the local Hölder

exponent αl and the pointwise Hölder exponent αp of X at t
coincide, then βw is also equal to their common value. See

[14] for more on this topic. In the following we will always

assume that this is the case. In other words, we consider that

our signals belong to the class S defined as follows:

S = {X ∈ L2(IR), ∀t ∈ IR, αp(t) = αl(t)}

The class S may appear somewhat abstract to the reader.

Here are a few clues. S contains all C∞ signals and all

signals of the type
∑

n∈IN |t − tn|
γn , with tn ∈ IR, γn ∈

IR+. Many everywhere irregular signals are also in S, such

as the continuous nowhere differentiable Weierstrass function∑
n∈IN 2−nh sin(2nt), h ∈ (0, 1). On the other hand, ”chirp”

signals as |t|γ sin(1/|t|β), γ > 0, β > 0 do not belong to S.

The easiest way to picture elements in S is maybe through

their wavelet transform: At each point t, the ”largest” coef-

ficients are located above t in the following sense. Take any

sequence dj,k of coefficients such that k2−j tends to t. Then,

if X belongs to S,

liminf j→∞

log |dj,k|

−j
≥ liminf j→∞

log |dj,k(j,t)|

−j
(1)

For a general continuous signal (i.e. a signal not in S),

the Hölder regularity at t may always be evaluated from the

decay of all the wavelet coefficients dj,k such that k2−j tends

to t (i.e. from liminf such as above). When the signal is in S,

inequality (1) implies that we may restrict our attention to the

ones above t. Such signals are called ”non-oscillatory” in the

literature.

To perform the interpolation, we compute above each point

t the regression of the wavelet coefficients vs scale. The pa-

rameters of the regression allow to build the extrapolated co-

efficient. These coefficients in turn determine the ”superre-

solved” signal.



3. REGULARITY AND ASYMPTOTIC PROPERTIES

We give two properties of the regularity-based interpolation.

See [15] for more results and proofs. Let X̃n+m the signal

after m interpolations, β̃n,k the slope of the regression and

log2

(
K̃n+1,k

)
the ordinate in zero.

Proposition 1 If X ∈ Cα then, whatever the number m of

added scales:

‖ X − X̃n+m ‖2
2≤

c2

2

1

22α − 1
2−2αn +

K̂n

22β̂n − 1
2−2β̂nn

With (K̂n+1, β̂n) such as:

K̂n+12
−2j(β̂n+ 1

2 ) = max
( eKn+1,k,β̃n,k)

[
K̃n+1,k2−2j(β̃n,k+ 1

2 )
]

Proposition 2 Let X belong to S, and assume X ∈ Cα.

Then, ∀ε > 0, ∃N :

n > N ⇒ ||X − X̃n+m||2 = O(2−(n+m)(α−ε))

In addition,

||X − X̃n+m||Bs
p,q

= O(2−(n+m)(α−s−ε)) for all s < α− ε.

4. NUMERICAL EXPERIMENTS

We present results of the regularity-based interpolation on two

images. The first one is the well-known Lena image, the sec-

ond is a scene containing a Japonese door (toryi ). Both orig-

inal images are 128x128 pixels and are shown on figure 1.

Figure 2 displays a comparison between four-times bicubic

and regularity-based interpolations on a detail of Lena. Fig-

ure 3 presents eight-times bicubic and regularity-based inter-

polations on a detail of the door image.

Fig. 1. Original Lena and Door images, 128x128 pixels
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