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The multi-orbital Hubbard model is investigated in order to clarify the electron correlation effects and the super-

conductivity in the iron-based superconductor. The renormalization effects on the self-energy and the two-particle irre-

ducible vertex function are calculated on the basis of the dynamical mean field theory. We find that the vertex function

exhibits a strong renormalization with the significant orbital dependence as compared with the renormalization factor,

when the antiferromagnetic and the antiferro-orbital fluctuations are comparably enhanced due to the electron and the

hole Fermi surfaces nesting effects. The orbital-dependent vertex function together with the q ∼ 0 nesting between the

two-hole Fermi surfaces results in the inter-orbital ferromagnetic fluctuation gradually enhanced which is expected to

be observed in LiFeAs. We show that the hole-s±-wave superconductivity with the sign change of the two-hole Fermi

surfaces is realized by the enhanced ferromagnetic fluctuation accompanied by the antiferromagnetic fluctuation and the

antiferro-orbital fluctuation.

KEYWORDS: dynamical mean field theory, iron-based superconductor, magnetic fluctuation, orbital fluctua-

tion, 5-orbital Hubbard model

1. Introduction

The discovery of high-temperature superconductivity in

iron-based compounds1 has attracted much attention to in-

vestigate their electronic state and superconducting mecha-

nism. The most of the 1111 and the 122 systems show the

tetragonal-orthorhombic structural transition and the stripe-

type antiferromagnetic (AFM) transition. Corresponding to

the structural and the AFM transitions, two distinct s-wave

pairings: the s±-wave state with sign change of the gap func-

tion ∆(k) between the hole and the electron Fermi surfaces

(FSs) mediated by the antiferromagnetic fluctuation2, 3 and

the s++-wave state without the sign change mediated by

the ferro-orbital (FO) fluctuation, which is responsible for

the softening of C66 through the mode-coupling correction4

or the electron-phonon coupling,5 and/or the antiferro-orbital

(AFO) fluctuation6, 7 were proposed.

Also, spin excitation, superconducting gap structure and

phase diagram varies among iron-based families. For exam-

ple, unlike 1111 and 122 systems, LiFeAs is a superconduc-

tor in its stoichiometric form; any chemical substitution on the

Fe site causes a reduction in the transition temperature,8 and

ordered magnetic phase or structural transition (or softening

of C66) has yet been observed.9 However, incommensurate-

AFM fluctuations10 are exist, and FM fluctuation has also

been observed by µSR experiment11 albeit in high tempera-

ture. Its fluctuation seems to be intriguing because the first-

principles band calculation for LiFeAs leads to give antiferro-

magnetic groundstate with orthorhombic distortion similar to

the 1111 and 122 systems.12

From theoretical study of superconducting gap structure,

the possibility of the spin-triplet p-wave pairing due to fer-

romagnetic (FM) fluctuation in LiFeAs has been discussed in

the three-orbital Hubbard model within random phase approx-

imation (RPA) because of a bad nesting between the hole and

the electron FSs.13 On the other hands, the hole-s±-wave pair-

ing with the sign change between the two-hole FSs, and with-

out the sign change between the two electron FS mediated

by coexistence of the AFM and the AFO fluctuations, is dis-

cussed in the realistic five-orbital Hubbard model14 by RPA or

mode-coupling theory. In addition, the orbital antiphase s±-

wave pairing,15 with the sign change between the both two-

hole and two-electron FS has been suggested by the combina-

tion of the density functional theory and the dynamical mean

field theory (DMFT). It is noted that the orbital antiphase s±-

wave state makes nodal picture on electronlike FS in the un-

folding Brillouin zone.

As the electron correlation effects together with the de-

tails of band structure are crucial for the metallic magnetisms,

we investigate the realistic five-orbital Hubbard model de-

rived from the first-principles band calculation,2, 3 by using

the DMFT which enables us to take into account of the local

correlation effects sufficiently. The DMFT has become almost

standard for treating electronic-correlated systems in the last

decade and has been able to explain some of the spectral16, 17

and magnetic properties18–20 of iron-based superconductors.

Yin and Kotliar15 have proved that the dynamical magnetic

susceptibility for all momenta and frequency, which requires

the determination of the local irreducible vertices at DMFT

level, reproduces the result of inelastic neutron scattering ex-

periment in detail. Despite the numerous efforts, the pairing

state together with the mechanism of the superconductivity is

still controversial.

In our previous research,21, 22 we pointed out that the lo-

cal correlation effects affect on the possible pairing states: the

1
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magnetic-fluctuation-mediated s±-wave state and the orbital-

fluctuation-mediated s++-wave state, by using the DMFT

combined with the Eliashberg equation beyond the Hartree-

Fock (HF) approximation and the RPA. We have found that

the s++-wave state is largely expanded relative to the RPA

result, while the s±-wave state is reduced, because the lo-

cal component of the repulsive (attractive) pairing interac-

tion are responsible for the suppression (enhancement) of the

s±(s++)-pairing. This is because the self-energy correction

and vertex correction is considered in the DMFT. As is well

known, the self-energy correction have been understood as

describing the non Fermi-liquid behavior,23 the orbital selec-

tive change in the band dispersion24 and the orbital selec-

tive Mott transition25 as observed in recent experiments.26–28

However, the effect of the two particle vertex correction have

not been fully understood in the multi-orbital system. The pur-

pose of this paper is to clarify the relation between the ver-

tex correction and superconductivity in the wide parameter

region.

2. Model and Formulation

For our discussion, we analyze the following model con-

sists of the Fe 3d-orbitals,

H = H0 +Hint. (1)

Here, the kinetic part Ĥ0 is determined so as to reproduce the

first-principles band structure for LaFeAsO3 and its FSs, the

band structure and the orbital weight on the FSs are shown in

Fig. 1. In present paper, we set d3Z2−R2 , dZX , dY Z , dX2−Y 2 ,
and dXY orbitals as 1,2,3,4 and 5 where x, y axes (X,Y axes)

are along the nearest Fe-Fe (Fe-As) direction. The Coulomb

interaction part is given as

Hint =
1

2
U
∑

i

∑

ℓ

∑

σ 6=σ̄

d†iℓσd
†
iℓσ̄diℓσ̄diℓσ

+
1

2
U ′

∑

i

∑

ℓ 6=ℓ̄

∑

σ,σ′

d†iℓσd
†

iℓ̄σ′
diℓ̄σ′diℓσ

+
1

2
J
∑

i

∑

ℓ 6=ℓ̄

∑

σ,σ′

d†iℓσd
†

iℓ̄σ′
diℓσ′diℓ̄σ

+
1

2
J ′

∑

i

∑

ℓ 6=ℓ̄

∑

σ 6=σ̄

d†iℓσd
†
iℓσ̄diℓ̄σ̄diℓ̄σ, (2)

which includes the multi-orbital interaction on a Fe site: the

intra- and inter-orbital direct terms U and U ′, the Hund’s rule

coupling J and the pair transfer J ′.

To solve the model, we use the DMFT29 which approx-

imates the lattice model by a single-site problem of elec-

trons in an effective medium that may be described by the

frequency dependence. In the actual calculations with the

DMFT, we solve the effective five-orbital impurity Anderson

model, where the Coulomb interaction at the impurity site is

given by the same form as Ĥint with a site i, and the kinetic

energy responsible for the bare impurity Green’s function Ĝ
in the 5 × 5 matrix representation is determined so as to sat-
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Fig. 1. (Color online) (a) The FSs of the five-orbital model (b) The disper-

sion of the band structure. (c)-(f) The weight of the each d orbitals on the

FSs. The horizontal axis is θ = tan−1(ky/kx). We number the orbitals as

follows: (1) d3Z2−R2 (red), (2) dZX (green), (3) dY Z (cyan), (4) dX2−Y 2

(blue) and (5) dXY (pink).

isfy the self-consistency condition as possible. We use the ex-

act diagonalization (ED) method for a finite-size cluster as

an impurity solver to obtain the local quantities such as the

self-energy Σ̂. To avoid CPU-time consuming calculation, we

employ the clusters with the site number Ns = 4 within a re-

stricted Hilbert space, as used in our previous paper;22 where

we approximate the clusters with those of d3Z2−R2 and dXY

orbital byNs = 2 since the two orbitals are far from the Fermi

energy in contrast to the another three orbitals. We have con-

firmed that the results withNs = 4 are qualitatively consistent

with those with Ns = 221 and quantitatively improved espe-

cially for the intermediate interaction regime. Moreover, the

studies by the slave-spin mean field,28, 30, 31 the slave-boson

mean field (Gutzwiller)32 approximations, and also the DMFT

with the continuous-time quantum Monte Carlo method (CT-

QMC)20 give a similar results over our approach. Then, we

expect that the present calculation is sufficiently accurate at

least up to the intermediate regime.

Within the DMFT, the spin (charge-orbital) susceptibility

2
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is given in the 25× 25 matrix representation as

χ̂s(c)(q) =
[

1− (+)χ̂0(q)Γ̂s(c)(iωn)
]−1

χ̂0(q), (3)

with χ̂0(q) = −(T/N)
∑

k Ĝ(k + q)Ĝ(k), where Ĝ(k) =

[(iεm +µ)− Ĥ0(k)− Σ̂(iεm)]−1 is the lattice Green’s func-

tion, Ĥ0(k) is the kinetic part of the Hamiltonian with the

wave vector k, Σ̂(iεm) is the lattice self-energy, which co-

incides with the impurity self-energy obtained in impurity

Anderson model, and k = (k, iεm), q = (q, iωn). Here,

εm = (2m+1)πT andωn = 2nπT are fermionic and bosonic

Matsubara frequencies. In eq. (3), Γ̂s(c)(iωn) is the local irre-

ducible spin (charge-orbital) vertex in which only the external

frequency (ωn) dependence is considered as a simplified ap-

proximation22 and is explicitly given by

Γ̂s(c)(iωn) = −(+)
[

χ̂−1
s(c)(iωn)− χ̂−1

0 (iωn)
]

, (4)

with χ̂0(iωn) = −T
∑

εm
Ĝ(iεm + iωn)Ĝ(iεm), where

χ̂s(c)(iωn) is the local part of spin (charge-orbital) sus-

ceptibility. When the largest eigenvalue αs(q) [αc(q)] of

(−)χ̂0(q)Γ̂s(c)(iωn) in eq. (3) for a wave vector q with iωn =
0 reaches unity, the instability towards the magnetic (charge-

orbital) order with the corresponding q takes place. After

convergence of the DMFT self-consistent loop, the quantity

χ̂s(c)(iωn) in eq. (4) is measured by means of continued frac-

tion algorithm.29 It includes automatically all vertex correc-

tions respect to the χ̂0(iωn), without the need of explicit cal-

culation of the local irreducible vertex function.

The effective pairing interaction for the spin-singlet state,

obtained by using the spin (charge-orbital) susceptibility in

eq. (3) and the spin (charge-orbital) vertex in eq. (4), is given

as

V̂ (q) =
3

2
Γ̂s(iωn)χ̂s(q)Γ̂s(iωn)−

1

2
Γ̂c(iωn)χ̂c(q)Γ̂c(iωn)

+
1

2

(

Γ̂(0)
s + Γ̂(0)

c

)

, (5)

with the bare spin (charge-orbital) vertex: [Γ
(0)
s(c)]ℓℓℓℓ = U(U),

[Γ
(0)
s(c)]ℓℓ′ℓℓ′ = U ′(−U ′ + 2J), [Γ

(0)
s(c)]ℓℓℓ′ℓ′ = J(2U ′ − J)

and [Γ
(0)
s(c)]ℓℓ′ℓ′ℓ = J ′(J ′), where ℓ′ 6= ℓ and the other matrix

elements are 0. Substituting the effective pairing interaction

in eq. (5) into the linearized Eliashberg equation:

λ∆ll′ (k) = −
T

N

∑

k′

∑

l1l2l3l4

Vll1,l2l′(k − k′)

×Gl3l1(−k
′)∆l3l4(k

′)Gl4l2(k
′), (6)

we obtain the gap function ∆ll′(k) with the eigenvalue λ
which becomes unity at the superconducting transition tem-

perature T = Tc. To solve eq. (6), we neglect the frequency

dependence of the vertex: Γ̂s(c)(iωn) ≈ Γ̂s(c)(iωn = 0) as a

simple approximation but the effect of the frequency depen-

dence will be discussed later.

All calculations are performed for the electron number

n = 6.0 corresponding to the non-doped case at T = 0.02eV
except for the ED calculation in the impurity Anderson model

where we calculate the self-energy at T = 0 as the ex-

plicit T -dependence is expected to be small at low temper-

ature T = 0.02eV in the intermediate correlation regime with

Z >
∼ 0.5. We use 32×32 k-point meshes and 1024 Matsubara

frequencies in the numerical calculations with the fast Fourier

transformation. Here and hereafter, we measure the energy in

units of eV.

3. Numerical Results

In the previous paper,22 It was shown that, for U > U ′,

the s±-pairing is realized by the magnetic fluctuation near

the AFM order, while, for U < U ′, the s++-pairing is re-

alized by the orbital fluctuation near the FO order within the

DMFT+Eliashberg equation. In the present paper, we focus

on the typical parameter U ∼ U ′ by putting U = U ′ − 0.2
and J = J ′ = 0.15 corresponding to intermediate region of

U > U ′ and U < U ′, where the magnetic and the orbital fluc-

tuations coexist, although itinerant metal should satisfy the

relations U = U ′ + 2J .

3.1 Renormalization factor

First, we discuss the self-energy correction. Figure 2 shows

the renormalization factor Zℓ =
[

1− dΣℓ(ε)
d(ε)

∣

∣

ε→0

]−1

, as

functions of U . When U increases, all of Zℓ gradually de-

crease with the weak orbital dependence. The orbital depen-

dence of the renormalization factor largely depends on the

Hund’s coupling J and crystal field splitting of the five d
orbitals, as previously discussed by several authors.31, 33, 34

The Hund’s coupling stabilizes orbital selective Mott phase

(OSMP) since J enhances (suppresses) magnetic (orbital)

fluctuations.33 More generally, the imbalance between the

intra- and the inter-orbital Coulomb interaction is critical for

OSMP. Indeed, the small Zℓ of the X2 − Y 2 orbital is found

for the both sides of U > U ′ and U < U ′ in our previ-

ous paper.22 On the other hands, when the orbital and mag-

netic fluctuation are competing, the metallic state with almost

orbital-independentZℓ is stabilized.33 This is the reason why

Zℓ shows the small orbital dependence as shown in Fig. 2.

3.2 Vertex function

Next, we address the irreducible two-particle vertex func-

tion. We consider the independent eight of Γ̂ξ, i.e. the four dif-

ferent orbital combinations [(ℓℓℓℓ), (ℓℓ′ℓℓ′), (ℓℓℓ′ℓ′), (ℓℓ′ℓ′ℓ)]
for each of the two channels [ξ = (s, c)] and the other matrix

elements are neglected.

Figures 3(a) and (b) show the spin vertex Γ̂s(iωn = 0)
with several orbitals, where the zeroth-order contribution of

the vertex represents the bare Coulomb repulsion (thin-dot

lines). We find that Γ̂s is strongly renormalized with the

significant orbital dependence as U increases. The orbital-

diagonal components of the spin vertex is renormalized with

dX2−Y 2 , dZX , dY Z , dXY and d3Z2−R2 orbital in ascending

order to eliminate the magnetic instability. The X2 − Y 2 or-

3
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Fig. 2. (Color online) The renormalization factor Zℓ with ℓ =
d3Z2−R2 , dZX , dY Z , dX2−Y 2 , and dXY as functions of U with U =
U ′

− 0.2, J = 0.15 and J = J ′ for n = 6.0 and T = 0.02. The orbital

numbers are the same as Fig. 1.

bital has the weakest Γ̂s because of the large weights of its

single-particle density of states, while the spin vertex related

to theXY and/or the 3Z2−R2 orbitals which have the small

weights on FSs shows the weak renormalization relative to the

other orbitals [see also Fig. 1(c)-(f)]. The orbital dependence

of the vertex (and also the renormalization factor) may be de-

scribed by perturbation theory in the weak coupling regime.

In the direct contrast to the spin vertex, the charge vertex

is enhanced by the correlation effect [Fig. 4(a)] which makes

the charge fluctuation smaller. The enhancement is qualita-

tively consistent with the single-orbital DMFT+ED study.35

On the other hands, the orbital-off-diagonal components of

the charge vertex is strongly renormalized similar to the case

of the spin vertex [Fig. 4(b)], since the orbital and the mag-

netic fluctuations are mutually suppressed by correlation ef-

fects.

The deviation between the orbital-diagonal components of

the spin and the charge vertex shows Γs < Γ(0) < Γc which

is qualitatively consistent with the self-consistent fluctuation

theory.36 It indicates that applying the weak coupling the-

ory, such as the HF-RPA theory, the same parameter of the

Coulomb repulsion in the spin and the charge vertex should

not be used even in the single-orbital model. The irreducible

two-particle vertex function may be used to build up the weak

coupling calculation for parametrizing the vertex functions.

In Ref. 37, effective Coulomb repulsion which could

achieves an emergent condition of the magnetic instabilities

is approximately estimated by a screening effect of particle-

particle scattering: U eff = U [1+Uψ0(0)]
−1, where ψ0(q) =

T/N
∑

kG(k)G(q−k). This relation is justified in the dilute

electron gas. It should be noticed that the renormalization of

the vertex functions, in principle, partly includes the particle-

particle multiple scattering discussed in Ref. 37.
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Fig. 3. (Color online) The spin vertex Γ̂s for the orbital-diagonal compo-

nents (a) and the orbital-off-diagonal components (b) with the lowest Matsub-

ara frequency iωn = 0 as functions of U . The bare vertex are also plotted by

thin-dot lines. The orbital numbers are the same as Fig. 1.
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Fig. 4. (Color online) The charge-orbital vertex Γ̂c for the orbital-off-

diagonal components of (a) and the orbital-off-diagonal components (b) with

the lowest Matsubara frequency iωn = 0 as functions of U . The bare vertex

are also plotted by thin-dot lines. The orbital numbers are the same as Fig. 1.

3.3 Spin and charge-orbital Stoner factors

U -dependence of the largest eigenvalues αs(q) and αc(q)
is calculated and plotted for several wave vectors q in Fig.

5(a)-(b) where αs(c)(q) shows the maximum at q = qmax.

Within the HF-RPA theory, the critical interaction of mag-

netic instability is given by Uc ∼ 0.8, while the instability in

4
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Fig. 5. (Color online) (a) and (b) the largest eigenvalues αs and αc for

several q and λ which reach unity towards the magnetic, charge-orbital and

superconducting instabilities, respectively, as functions of U with U = U ′
−

0.2, J = 0.15 and J = J ′ for n = 6.0 and T = 0.02.

the present study are largely suppressed as Uc ∼ 5 because of

the self-energy and the vertex correction in the strong correla-

tion regime, where the magnetic and the orbital ordered states

are competing. The AFM and the AFO eigenvalues of αs(c)

are dominant in wide parameter region. However, when U in-

crease, the FM eigenvalue of αs becomes competitive from

the AFM and the AFO one, and finally becomes unity. The

FM fluctuation originates from the two-effects: (i) the q ∼ 0

nesting between the inter-hole FS1 with the large ZX/YZ
orbital weights [see Fig.1(c)] and the outer-hole FS2 with the

XY orbital weight [see Fig.1(d)], (ii) the weak renormaliza-

tion of the spin vertex with dZX -dXY orbital components as

shown in Fig. 3(b).

To clarify the effect of the vertex correction on the mag-

netic and the orbital fluctuations, we compare the specific

case as follows. (i) (second row of Table I) We replace

the vertex functions with the bare vertex functions which

is corresponding to a RPA-type calculation except for the

self-energy correction [Γs(c)]ℓ1ℓ2ℓ3ℓ4 ≈ [Γ
(0)
s(c)]ℓ1ℓ2ℓ3ℓ4 , the

AFM fluctuation is largely enhanced as compared with the

other three fluctuations as the strongest renormalization of

the orbital-diagonal components of the spin vertex, which

enhances the AFM fluctuation, is neglected. (ii) (third row

of Table I) Then, if we replace the vertex function with

calculation conditions αAFM
s αFM

s αAFO
c αFO

c

[Γs(c)]ℓ1ℓ2ℓ3ℓ4 ≈ [Γ
(0)
s(c)

]ℓ1ℓ2ℓ3ℓ4 1.000 0.498 0.727 0.586

[Γs(c)]ℓ1ℓ2ℓ3ℓ4 ≈ [Γ̄s(c)]ℓ1ℓ2ℓ3ℓ4 1.000 0.766 0.966 0.785

[Γs(c)]ℓ1ℓ2ℓ3ℓ4 1.000 1.003 1.001 0.863

Table I. Spin and charge-orbital Stoner factors for q = (π, 0), q = (0, 0).
The calculation conditions with (second row) the RPA-type vertices (neglect

the vertex correction) for U = 0.76, (third row) the orbital-independent ver-

tex functions (averaged in orbitals) for U = 2.66 and (fourth row) the vertex

correction (normal DMFT) for U = 5.05.

the orbital-independent vertex functions, i.e. orbital-averaged

in each eight-channels [Γs(c)]ℓ1ℓ2ℓ3ℓ4 ≈ [Γ̄s(c)]ℓ1ℓ2ℓ3ℓ4 , the

AFO fluctuation become comparable with the AFM fluctu-

ation. The orbital-diagonal components of the spin and the

charge vertex fill a gap between the magnetic and the charge-

orbital fluctuation, while the orbital-off-diagonal one do not

because of the following reason. The enhancement of the

orbital-diagonal components of the charge vertex is moder-

ate as compared with the renormalization of the spin vertex

[Γ̄c]ℓℓℓℓ/U ∼ 1.5 and [Γ̄s]ℓℓℓℓ/U ∼ 0.5. In contrast to the

orbital-diagonal components, the orbital-off-diagonal compo-

nents of the charge vertex is renormalized similar to the spin

vertex [Γ̄c]ℓℓ′ℓℓ′/(−U
′ + 2J) ∼ 0.46 and [Γ̄s]ℓℓ′ℓℓ′/U

′ ∼
0.51. Thus the orbital-independent vertex renormalization

lifts a relative level of the magnetic and the charge-orbital

fluctuations due to the orbital-diagonal components of vertex

functions. (iii) (fourth row of Table I) Simultaneously, the ef-

fect of the orbital-dependent vertex corrections indicates that

FM fluctuation is stabilized because of the presence of the

small renormalization of the spin vertex in XY orbital as dis-

cussed above. The result shows that the orbital degrees of

freedom makes an important rule to stabilize the FM fluc-

tuation. Then, we conclude that the major factor of the FM

fluctuation is the orbital dependence of the vertex correction.

3.4 Susceptibility and effective pairing interaction

Figures 6 (a) and (b) show the intra- and the inter-orbital

components of the spin susceptibility χs
ℓ,ℓ;m,m and χs

ℓ,m;ℓ,m

with the lowest Matsubara frequency iωn = 0 for U = 4.5,

U ′ = 4.7 and J = J ′ = 0.15, where the spin Stoner factor is

αs = 0.958. χs
4,4;4,4 around q ∼ (π, 0) is enhanced by the ef-

fect of the intra-orbital nesting between the hole FS3 and the

electron FS, where the dX2−Y 2 component has a large contri-

bution to the density of state in the both FSs as shown in Fig.

1(e) and (f). That is, the spin susceptibility
∑

ℓ,m χs
ℓ,ℓ;m,m

develop mainly on the dX2−Y 2 orbital. Note that the inter-

orbital spin susceptibility χs
2,4;2,4 is also large for q ∼ (π, 0)

[Fig. 6(b)].

Remarkably, χs
2,5;2,5 [Fig.6(b)] around the q ∼ 0 is en-

hanced by the inter-orbital nesting between the inter-hole and

the outer-hole FSs [Fig.1(c) and (d)]. The enhancement of FM

fluctuation is due to the vertex correction on the spin vertex

in dZX -dXY orbital which is neglected in the RPA [see also

Fig.4(b) (ℓ, ℓ′) = (2, 5)].
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Figure 6 (c) shows the intra- and inter-orbital components

of the orbital susceptibility χc. The charge-orbital Stoner fac-

tor is αc = 0.958. Similar to the spin susceptibility, the or-

bital susceptibility χs around q ∼ (π, 0) is enhanced by the

intra- and inter-orbital nesting effects. In present model, one

observes χc
4,4;4,4 ≈ χc

2,4;2,4.

Figure 6 (d) show the obtained pairing interaction V . The

strong enhancement of V2,5;2,5 for q ∼ 0 is observed due

to the FM fluctuation, whereas the moderate enhancement of

V for q ∼ (π, 0) is observed due to the AFM fluctuation.

This is because the attractive AFO fluctuation cancel out the

repulsive AFM one in the pairing channel.

3.5 Gap function

Next we discuss the superconducting state when the mag-

netic and the orbital fluctuation coexist. In Figs. 7 (a)-(c), we

show the gap function∆ with the lowest Matsubara frequency

iεm = iπT for band 2-4 where the hole (electron) FSs are

also plotted . It is shown that the hole-s±-wave state medi-

ated by the FM fluctuation which favors the sign change of the

gap function between the inner hole-pocket and outer hole-

pocket is realized. It is worth to notice that the gap function

on ZX/Y Z orbitals in orbital representation has opposite

sign with XY orbital in the momentum space (not shown).

Our obtained superconducting symmetry is the same sign be-

tween the hole FS3 and the electron FS and the opposite sign

between the inner-hole FS1 and the outer-hole FS2, and is

summarized as (∆h1,∆h2,∆h3,∆e) = (−,+,+,+). We ar-

gue that the hole-s±-wave state shown in Figs. 7 (a)-(c) is

different from the previously proposed states,14, 38, 39 where

the superconducting gap is given by (∆h1,∆h2,∆h3,∆e) =
(−,+,−,+), (+,+,−,+), (+,+,−,−). However, the ab-

solute value and the anisotropy of the gap function is similar

to Ref. 14.

Since the most iron-based superconductor is considered to

be the s±-wave pairing or the s++-wave pairing, the hole-s±-

wave pairing is a exotic superconducting state. The hole-s±-

wave state (and orbital antiphase s±-wave state) have been

proposed in the literature,14, 38, 39 but the correlation-induced

hole-s±-wave state is more pronounced in the present case

than in the above two cases. As is evident in the angle-

resolved photoemission spectroscopy,40 a nodeless gap struc-

ture of the hole-s±-wave state is consistent with LiFeAs. Al-

though the quasiparticle interference experiments41–43 can, in

principle, determine relative signs of the gaps on various FSs,

the hole-s±-wave state can not be distinguished from other

s-wave state experimentally.

Ref. 13 discussed the spin-triplet chiral p state in three

band model for LiFeAs due to the weak nesting effects.

Thus we discuss the possibility of a spin-triplet supercon-

ducting state. Within the DMFT+Eliashberg equation, the ef-

fective pairing interaction for the spin-triplet state is given as

V̂ (q) = − 1
2 Γ̂sχ̂s(q)Γ̂s−

1
2 Γ̂cχ̂c(q)Γ̂c+

1
2 (Γ̂

(0)
s +Γ̂

(0)
c ). Here,

the electron-electron Coulomb interaction is symmetric under

rotations in spin space. Therefore, pairing interaction V̂ (q)

0
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Fig. 6. (Color online) The spin susceptibility χs
ℓ,ℓ;m,m

(a), χs
ℓ,m;ℓ,m (b),

the orbital susceptibility χ̂c(c) and the pairing interaction V̂ for several or-

bital components in q space with the lowest Matsubara frequency iωn = 0
for U = 4.5, U ′ = 4.7 and J = J ′ = 0.15, where αs = 0.958 and

αc = 0.958 for qmax. The orbital numbers are the same as Fig. 1.

induced only by the Coulomb repulsion does not bring about

any anisotropy in spin space, and never lifts the degeneracy

of the d-vector states in principle. Then we calculate only

px-type solution of the gap function. The spin-triplet super-

conducting eigenvalue is not larger than the singlet one, but

appreciably enhanced by the Coulomb interaction (see Fig.8).

4. Summary and discussion

In summary, we have investigated superconductivity in

five-orbital Hubbard model for iron pnictides for the case that

the intra-orbital Coulomb interaction U is set to be a little

smaller than the inter-orbital one U ′ with a fixed Hund’s cou-

pling J , by using the DMFT+ED method. We have found that

when U increases, the FM fluctuation of inter-orbital compo-

nent is slowly enhanced because the vertex correction leads

to suppression of AFM and AFO order. It seems to be con-

sistent with LiFeAs11 where both FM and AFM fluctuations

are observed, although the FM fluctuation is observed only

in high temperature. To determine the superconducting pair-

ing symmetry, we calculate the pairing interaction mediated

by the spin-charge-orbital fluctuations obtained from the sus-

ceptibilities and the two-particle vertex function and is sub-

stituted it into the linearized Eliashberg equation where the

single-particle Green’s function is renormalized due to the lo-

cal self-energy correction within the DMFT. Remarkably, the

hole-s±-wave state mediated by the FM fluctuation accom-

panied by the AFM fluctuation and the AFO fluctuation is

realized in this case.

The HF-RPA theory, in which the self-energy and the

vertex correction are neglected, overestimates the magnetic

(charge-orbital) fluctuations and the ordered states. To avoid
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Fig. 7. (Color online) The band-diagonal components of the gap function

∆ with the lowest Matsubara frequency iεm = iπT for band 2 (a) and band

3 (b) (band 4 (c)) with the hole (electron) FSs (solid lines) for U = 4.5,

U ′ = 4.7 and J = J ′ = 0.15, where the eigenvalue λ = 1.07.

3 4 5
0

1

λ

U

singlet hole−s±

triplet p

Fig. 8. (Color online) The eigenvalue λ of Eq. 6 as functions of U with

U = U ′
− 0.2, J = 0.15 and J = J ′ for n = 6.0 and T = 0.02. The

hole-s±-wave state is realized for a wide region.

such a overestimation, simply reduced vertex function or the

simply renormalized bandstructure are often applied in the

weak coupling theory instead of taking into account of the

self-energy and the vertex correction. However, the effect of

the orbital-independent renormalization of the vertex func-

tion fills a gap between the magnetic and the orbital fluctu-

ation, meaning that the inconsistency of the renormalization

effect between the spin and the charge vertex as previously

discussed in single-orbital Hubbard model.36 Thus one should

employs Γs < Γ(0) < Γc for the orbital-diagonal components

as a consequence of the intra-band screening effect in the low-

energy downfolding model. In addition, we argue that the

orbital-dependent renormalized vertex induces the enhance-

ment of the ferromagnetic (ferro-orbital) fluctuation.

At the large U region, we observed the FM fluctuation with

the competition of the AFM and the AFO fluctuation. The ex-

istence of the FM fluctuation agrees with other numerical cal-

culations13, 44 for LiFeAs. The reason favoring the ferromag-

netism is attributed to, as mentioned above, the weak renor-

malization of the spin vertex with dZX -dXY orbital compo-

nents and the q ∼ 0 nesting between the inter-hole FS1 with

the largeZX/Y Z orbital weights and the outer-hole FS2 with

the XY orbital weight despite of the existence of the good

nesting between the hole and the electron FSs. In the condi-

tion of the rotational symmetry U = U ′+2J , we did not find

a signature of the FM fluctuation and the strong vertex cor-

rection since the AFO fluctuation is immediately suppressed

for U > U ′. However, if we consider the effect of the cou-

pling g between the electron and the Eg phonon as discussed

in Refs. 7 and 45, the AFO fluctuation can be expanded over

the realistic parameter region with U > U ′. Indeed, a kink

structure of the single-particle dispersion around the Γ point

is observed experimentally in LiFeAs which is due to strong

electron-phonon coupling.40 Thus the strong vertex correc-

tion may be realized by taking into account of the realistic

electron-phonon coupling.

According to the NMR measurements of LiFeAs,46–48 the

Knight shift decrease below transition temperature indicating

that the spin-triplet state is inconsistent with the experiments.

In H = 8.5T, however, the Knight shift does not show any

suppression in H ⊥ c, whereas it decrease in H ‖ c.48 In

addition, recent results of detailed field dependence of onset

temperature derived from magnetic torque measurement indi-

cate that the unusual spontaneous magnetization in high mag-

netic field is attributable to the chiral p state of the spin-triplet

superconductivity.49 Thus, we expect that the spin-triplet state

due to ferromagnetic fluctuation is realized in high magnetic

field in LiFeAs.

In Ref. 50, itinerant ferromagnetism has been investigated

in order to clarify the electron correlation in the two-orbital

degenerated Hubbard model on the basis of the DMFT. The

obtained phase diagrams shows that the FM order is stabilized

between quarter filling (orbital order) and half filling (AFM

order). The important point is that the FM ordered state is

stabilized by the Hund’s coupling and the band degeneracy.

Finally, we comment on the dynamical screening of the

irreducible vertex functions affecting on the superconduct-

ing instabilities. To solve the linearized Eliashberg equation,

we replace the frequency-dependent vertex with the constant

for simply approximation. However, the frequency depen-

dence in the irreducible vertices is significantly important in

strongly correlated electron systems. The dynamical screen-

ing of the Coulomb repulsion51 influences the retardation

effect of the effective pairing interaction which strengthens

7
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the pairing magnitude in the high frequency region. In fact,

self-consistent renormalization study52 shows that the rela-

tive spread of the frequency space of the magnetic fluctuation

increases the superconducting transition temperature. Indeed,

we have also discussed the approximate effect of the dynami-

cal screening of the irreducible vertex functions on the present

model for the iron-based superconductors and have found

that the screening effect enhances the magnetic fluctuation-

mediated s-wave superconductivity. Therefore, we need fur-

ther investigation of the dynamical screening of the irre-

ducible vertex functions with including the more realistic ef-

fects. Generally, the higher order terms may play an important

role for the superconducting instability, since it is considered

that most of unconventional superconductors are in the inter-

mediate coupling region. For instance, vertex correction due

to Aslamazov-Larkin terms which is not included in the RPA

plays an important role to stabilize the s++-wave state in iron-

pnictides.4 Therefore, it is an important issue to investigate the

role of higher order corrections.
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