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We give a derivation of Holevo’s bound using an important result from nonequilibrium statistical physics, the

fluctuation theorem. To do so we develop a general formalism of quantum fluctuation theorems for two-time

measurements, which explicitly accounts for the back action of quantum measurements as well as possibly

nonunitary time evolution. For a specific choice of observables this fluctuation theorem yields a measurement-

dependent correction to the Holevo bound, leading to a tighter inequality. We conclude by analyzing equality

conditions for the improved bound.
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Thermodynamics and information theory are intimately

connected. The most prominent evidence for this relationship

is that the Clausius entropy [1] is given by the Shannon infor-

mation [2] in systems at thermal equilibrium [3]. In particular,

Landauer’s principle [4,5] illustrates that information is a

physical, measurable quantity. Thermodynamic work has to be

performed in order to create or erase information. Landauer’s

principle can therefore be understood as a statement of the

second law of thermodynamics in an information theoretic

context. This is also true for Holevo’s bound [6], which

limits the amount of classical information that can be encoded

in a generic quantum system. Recently, nanodevices, for

which these principles are directly applicable, have become

experimentally accessible [7]. These controlled quantum

systems have applications ranging from quantum simulation

[8,9], cryptography [10], and computing [11–13] to metrology

[14–17]. The main obstacles towards realization of such de-

vices are control noise and interactions with the environment.

Thus, a thermodynamic study is necessary to fully under-

stand their information theoretic properties. However, most

nanodevices operate far from thermal equilibrium, so tools

from nonequilibrium statistical physics are required. In recent

years, formulations of the second law have been derived which

are valid arbitrarily far from equilibrium. These so-called

fluctuation theorems, in particular, the Jarzynski equality [18],

enable the calculation of equilibrium quantities from nonequi-

librium averages over many realizations of a single process.

They also encompass nonequilibrium, information-theoretic

generalizations of the second law. As Landauer’s principle

is a direct implication of this approach [19–21], one may ask

whether Holevo’s bound is also such a result. One complication

in this case is that the approach to fluctuation theorems for

quantum systems is mathematically and conceptually more

involved. Thermodynamic quantities, which are not given

as state functions, cannot be assigned a Hermitian operator

[22]. The proper formulation of quantum thermodynamics

for nonequilibrium systems, especially quantum fluctuation

theorems [23], must therefore be treated with care.

The purpose of the present Brief Report is twofold. In the

first part we derive a general quantum fluctuation theorem

that accounts for the back action of measurements on reduced

systems (see Ref. [24] for a similar approach). To this end,

we consider an experimental point of view; we assume that

the system of interest is coupled to an environment which

is experimentally inaccessible. Such measurements on open

quantum systems are inherently incomplete since they ignore

environmental degrees of freedom. Information is lost that,

in principle, could have been acquired by concurrent mea-

surement of the reservoir. A general formulation of quantum

fluctuation theorems must explicitly account for these effects.

The integral fluctuation theorem we derive is applicable to

arbitrary orthogonal measurements for systems undergoing

both unitary and nonunitary dynamics.

In the second part we focus on an information-theoretic

consequence of the general quantum fluctuation theorem:

Holevo’s theorem. The derivation and implications of this

result have attracted much attention [25–29]. Like more recent

works [30–32], our derivation results in a sharpened statement

of Holevo’s bound, which takes into account the choice of

measurement used to obtain the encoded information. Further

our treatment is based on results weaker than the monotonicity

of relative entropy and directly leads to necessary and sufficient

equality conditions. This illustrates an interesting connection

between quantum thermodynamics and quantum information

theory.

General quantum fluctuation theorem. Consider a time-

dependent quantum system S with Hilbert space HS and

initial density matrix ρ0. Information about the state of the

system is obtained by performing measurements on S at the

beginning and end of a specific process. Initially, a quantum

measurement is made of observable Ai, with eigenvalues

ai
m. Letting �i

m denote the orthogonal projectors into the

eigenspaces of Ai, we have Ai =
∑

m ai
m�i

m. Note that the

eigenvalues {ai
m} can be degenerate, so the projectors {�i

m}

may have a rank greater than 1. Unlike the classical case, as

long as ρ0 and Ai do not have a common set of eigenvectors,

i.e., they do not commute, performing a measurement on

S alters its statistics. Measuring ai
m maps ρ0 to the state

�i
mρ0�

i
m/pm, where pm = tr{�i

mρ0�
i
m} is the probability

of the measurement outcome ai
m. Generally accounting for

all possible measurement outcomes, the statistics of S after

the measurement are given by the weighted average of all

projections,

M i(ρ0) =
∑

m

�i
m ρ0 �i

m . (1)
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If ρ0 commutes with Ai, it commutes with each �i
m, so

M i(ρ0) =
∑

m �i
m�i

mρ0 = ρ0, and the statistics of the system

are unaltered by the measurement. After measuring ai
m, S

undergoes a generic time evolution, after which it is given

by E(�i
mρ0�

i
m)/pm. Here E represents any linear (unitary or

nonunitary) quantum transformation, which is trace preserving

and maps non-negative operators to non-negative operators.

Further, we require that this holds whenever E is extended to an

operation E ⊗ IE on any enlarged Hilbert space HS ⊗ HE (IE
being the identity map on HE ). Such a transformation is called

a trace-preserving, completely positive (TCP) map [33]. After

this evolution, a measurement of a second (not necessarily the

same) observable, Af =
∑

n af
n�

f
n, is performed on S. The

probability of measuring af
n, conditioned on having first mea-

sured ai
m, is pn|m = tr{�f

n E(�i
mρ0�

i
m)}/pm. Accordingly, the

joint probability distribution pm→n reads

pm→n = pmpn|m = tr
{

�f
n E

(

�i
mρ0�

i
m

)}

. (2)

We are interested in the probability distribution of possible

measurement outcomes, P(�a) = 〈δ(�a − �an,m)〉, where

�an,m = af
n − ai

m is a random variable determined in a single

measurement run. Its probability distribution is given by

averaging over all possible realizations,

P(�a) =
∑

m,n

δ(�a − �an,m) pm→n . (3)

To derive the integral fluctuation theorem we follow the

standard approach and compute its characteristic function,

G(s), which is the Fourier transform of P(�a) [23]:

G(s) =

∫

d(�a)P(�a) exp (is �a)

= tr{exp (isAf) E(M i(ρ0) exp (−isAi))} . (4)

Choosing s = i, we obtain the general quantum fluctuation

theorem

〈exp (−�a)〉 = γ . (5)

Since it is explicitly dependent on the map E, the quantity

γ accounts for the information lost by not measuring the

environment. It plays a crucial role in the following discussion

and is given by

γ = tr{exp (−Af) E(M i(ρ0) exp (Ai))} . (6)

Similar fluctuation theorems of the form 〈exp (−�)〉 = γcl

have been derived in the context of classical feedback

processes, where � is an entropy production [34]. We note

that by appropriate choice of initial and final observables Ai

and Af , Eq. (6) reproduces many known quantum fluctuation

theorems [22–24,35–39], which we will discuss in detail

elsewhere.

A complementary result to the fluctuation theorem is

Jensen’s inequality, which states that for any convex function

φ′′(x) � 0 and random variable x, 〈φ(x)〉 � φ(〈x〉) [40].

Applying this to Eq. (5) yields

〈�a〉 � − ln (γ ) . (7)

For specific choices of thermodynamically relevant observ-

ables Ai and Af , this relation can be understood as a

formulation of the Clausius inequality. In particular, for a

unitary time evolution Uτ = T> exp[−i
∫ τ

0
H (t)dt], an initial

Gibbsian state ρ0 = exp[−βH (0)]/Z0, and corresponding

energy measurements, Ai = βH (0) and Af = βH (τ ), Eq. (5)

reproduces the quantum Jarzynski equality [22,41,42]. Ac-

cordingly, Eq. (7) reduces to the maximum work theorem,

β 〈W 〉 � β�F , where 〈W 〉 = 〈H (τ )〉 − 〈H (0)〉 = 〈�a〉 /β

and β�F = − ln (Zτ/Z0) = − ln(γ ).

Holevo’s bound. We now use the fluctuation theorem (5)

to derive a sharpened version of Holevo’s bound. This bound

sets a limit on how much classical information can be sent

through a (noisy) quantum channel. Let us consider a message

composed of code words wj that appear with probability

πj . A messenger (Alice) attempts to transfer this message

to a receiver (Bob) by encoding each word wj in a quantum

state and transmitting that state to Bob. We assume that Bob

receives the state ρj , which may have come through a lossy

medium and therefore may be different from the original state

prepared by Alice. Bob attempts to infer the word wj from

the encoding by making a generalized measurement of the

state ρj . This corresponds to introducing a probe, initially in a

pure state |0〉, and making an orthogonal measurement on the

compound state ρj ⊗ |0〉〈0| [43]. If {�k} represents the set of

orthogonal projectors corresponding to Bob’s measurement,

the probability of measuring �k , given message wj , is given

by

πk|j = tr{ρj ⊗ |0〉〈0|�k} = tr{ρjMk} , (8)

where Mk = 〈0|�k|0〉 are operators acting only on the

encoding degree of freedom. Although the operators {Mk}

are non-negative and
∑

k Mk = I, they are generally not

projectors, M2
k �= Mk . Such a collection {Mk} is called a

positive operator-valued measure (POVM) and describes the

most general measurement on a quantum system. The classical

message distribution {πj }, output quantum encoding {ρj },

and POVM elements {Mk} define a classical-quantum channel

[44].

A proper measure of how well Bob decodes Alice’s message

is the mutual information between the encoded message

and measurement distributions, I =
∑

jk πj πk|j ln (πk|j/πk),

where πk =
∑

j πj πk|j is the overall probability of measuring

�k . Note that I =
∑

j πjD(πk|j ||πk), where D(πk|j ||πk) =
∑

k πk|j ln(πk|j/πk) is the (classical) relative entropy [45].

Hence I is a sum of non-negative terms and is zero if and

only if πk|j = πk for all k,j . That is, I vanishes only if all

outcomes of the measurement are independent of the encoded

word, so that Bob always learns nothing about the message.

The probability of the message being wj , conditioned on

Bob measuring �k , is πj |k = πk|j πj/πk . We have

I = S({πj }) +
∑

k

πk

∑

j

πj |k ln πj |k, (9)

where S({πj }) = −
∑

j πj ln πj is the Shannon information of

distribution {πj }. Since x ln(x) � 0 for |x| � 1, with equality

only for x = 0 and x = 1, we observe that I � S({πj }), with

equality if and only if πj |k is 0 or 1 for all j,k. In other

words, the mutual information I is at most S({πj }), with

equality if and only if Bob correctly decodes the message
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in every instance. If Alice’s encoded states are not perfectly

distinguishable (that is, if the supports of ρj and ρj ′ are not

orthogonal for some j �= j ′), then I can never equal S({πj }),

no matter what measurement Bob chooses to make. Holevo’s

theorem is then an upper bound for I , namely,

χ ≡ S(ρ̄) −
∑

j

πjS(ρj ) � I, (10)

where S(ρ) = −tr {ρ ln ρ} is the von Neumann entropy and

ρ̄ =
∑

j πjρj is the density matrix describing the statistics

of the encoding given no knowledge of the message word.

Heuristically, the Holevo quantity χ can be considered as the

uncertainty of the encoding with no knowledge of the message

minus the average remaining uncertainty given knowledge of

the message. Note that if the encoded states are distinguishable,

i.e., ρjρj ′ = O for all j �= j ′, then χ = S({πj }), so that with a

proper measurement Bob may always correctly decode Alice’s

message.

We now show how Holevo’s theorem (10) follows as

a consequence of the general quantum fluctuation theorem

(5). To do this we must appropriately choose the initial

state, evolution operation, and observables so that the random

variable 〈�a〉 averages to χ − I . In the language of the general

fluctuation theorem, let the initial state ρ0 reside in a composite

Hilbert space HE ⊗ HP ⊗ HM. HE represents the encoding

Hilbert space, which Alice prepares and Bob then measures,

HP is the probe Hilbert space accessible only to Bob, and

HM is a message Hilbert space. Note that HM is not a

real, physically accessible subspace, but rather a mathematical

construction denoting the memory for the classical information

of the message [44]. We have

ρ0 =
∑

j

πjρj ⊗ |0〉〈0| ⊗ |j 〉〈j | , (11)

where the states |j 〉, each corresponding to word wj , form an

orthonormal basis for HM. We see that, with probability πj ,

ρ0 corresponds to the message state |j 〉. The measured initial

and final observables are

Ai =
∑

j

ln
(

ρ̂−1
j

)

⊗ |0〉〈0| ⊗ |j 〉〈j |,

(12)
Af = − ln (ρ̄ ⊗ |0〉〈0|) ⊗ IM −

∑

k,j

Ik,j�k ⊗ |j 〉〈j | ,

where Ik,j = ln (πk|j/πk). Here ρ̂−1
j denotes the inverse within

the support of ρj , so that ρ̂−1
j |ψ〉 = 0 whenever ρj |ψ〉 = 0.

This form for Eq. (12) ensures that exp(Ai) and exp(−Af) are

bounded operators.

Note that the states ρj do not represent the original

encoding set up by Alice, but rather its time-evolved state

after undergoing dynamics in a quantum channel. To apply

the fluctuation theorem (5), we start with the output of

this channel and perform the two measurements, Ai and

Af , immediately after each other. The TCP map crucial for

Eq. (5) is thus the identity map E(ρ) = ρ. Ai commutes

with ρ0, so after measurement of Ai, measurement of Af

is carried out on the same state, M i(ρ0) = ρ0. Computing

〈�a〉 = tr{(Af − Ai)ρ0} = χ − I , Eq. (7) is

χ − I � − ln (γ ) , (13)

where the corresponding quantum efficacy is given by

γ = tr{exp (−Af)ρ0 exp (Ai)} . (14)

Equations (13) and (14) constitute the sharpened Holevo’s

bound as a consequence of the general quantum fluctuation

theorem (5). Indeed, our new bound is tighter than the usual

inequality (10), in the sense that the correction term, − ln (γ ),

is always non-negative. Consider

ρ0 exp (Ai) =
∑

j

πjρj exp
[

ln
(

ρ̂−1
j

)]

⊗ |0〉〈0| ⊗ |j 〉〈j |

=
∑

j

πj P̂j ⊗ |0〉〈0| ⊗ |j 〉〈j | , (15)

where P̂j is the projector into the support of ρj . We can rewrite

Eq. (14) with Eq. (15) as

γ = tr{exp (−Af) ρ0 exp (Ai)}

= tr

⎧

⎨

⎩

exp (−Af)
∑

j

πj P̂j ⊗ |0〉〈0| ⊗ |j 〉〈j |

⎫

⎬

⎭

�
∑

j

πj tr

{

exp

(

ln (ρ̄ ⊗ |0〉〈0|) +
∑

k

Ik,j �k

)}

,

(16)

where the inequality is justified by noting that

exp[ln (ρ̄ ⊗ |0〉〈0|) +
∑

k Ik,j �k] is non-negative and

P̂j ⊗ |0〉〈0| is a projection operator. We now use a

statement of the Golden-Thompson inequality [46,47];

that is, for any Hermitian operators A and B, we have

tr {exp (A + B)} � tr {exp (A) exp (B)}. Note that in the

present case, A and B are both logarithms of bounded

Hermitian operators and are only bounded from above,

although the Golden-Thompson inequality still holds [48].

Accordingly, we have

γ = tr{exp (−Af) ρ0 exp (Ai)}

�
∑

j

πj tr

{

exp[ln (ρ̄ ⊗ |0〉〈0|)] exp

(

∑

k

Ik,j �k

)}

=
∑

j

πj tr

{

(ρ̄ ⊗ |0〉〈0|)
∑

k

πk|j/πk �k

}

. (17)

From the definition πk =
∑

j πjπk|j we finally obtain

γ � tr

{

ρ̄ ⊗ |0〉〈0|
∑

k

�k

}

= 1 , (18)

which shows that − ln (γ ) � 0, as desired. We note that our

derivation does not invoke the monotonicity of the relative
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entropy or equivalent statements [49]. Instead, we have used

only Jensen’s inequality and the Golden-Thompson inequality,

which are weaker results [50,51].

Equality conditions. Holevo’s bound (12) is obtained with

the help of Jensen’s inequality. For strictly convex functions

φ′′(x) > 0, the Jensen bound 〈φ(x)〉 � φ(〈x〉) achieves equal-

ity if and only if the random variable x is constant valued.

This allows us to derive the equality conditions for (13) in a

straightforward manner. Specifically, equality is achieved only

if
(

− ln
(

ρ̂−1
j

)

− ln(ρ̄) −
∑

k

Ik,jMk

)

P̂j = − ln(γ )P̂j (19)

for all j . This follows from a few simple observations.

First, assume that χ − I = − ln(γ ). As Ai, ρ0, and the

projectors I ⊗ |0〉〈0| ⊗ |j 〉〈j | mutually commute, we consider

a mutual eigenprojector Rmj = R
(j )
m ⊗ |0〉〈0| ⊗ |j 〉〈j | such that

AiRmj = ai
mRmj and ρ0Rmj �= 0. Since the function exp (x) is

strictly convex, the random variable �anm obtained from the

measurements of Ai and Af has to satisfy �anm = − ln(γ ) for

all measurements with nonzero probability. Hence an initial

measurement of ai
m implies with certainty a final measurement

ai
m − ln(γ ). Since Rmj is a projector into an eigenspace of ρ0,

any state satisfying Rmj |ψ〉 = |ψ〉 must therefore also be an

eigenstate of Af with eigenvalue ai
m − ln(γ ), so

(Af − Ai)Rmj = − ln(γ )Rmj . (20)

Using definition (12) and Mk = 〈0|�k|0〉, Eq. (19) follows by

summing on m, noting that
∑

m Rmj = P̂j ⊗ |0〉〈0| ⊗ |j 〉〈j |.

Conversely, assume that Eq. (19) holds for all j . Since Ai

and ρ0 commute, we have

χ − I = tr{ρ0(Af − Ai)}

=
∑

j

πj tr

{

ρj

(

ln(ρj ) − ln(ρ̄) −
∑

k

Ik,jMk

)

P̂j

}

=
∑

j

πj tr{ρj [− ln(γ )P̂j ]} = − ln(γ )
∑

j

πj

= − ln(γ ) (21)

We conclude that Eq. (19) is equivalent to equality in

Eq. (13). Observe that since χ − I � − ln(γ ) � 0, the equal-

ity condition for χ = I , Eq. (19) with ln(γ ) = 0, is ob-

tained as a corollary of our result [49]. Equation (19) may

be used to determine the bound saturating observable Af

self-consistently.

Concluding remarks. We developed a general framework

for quantum fluctuation theorems by explicitly accounting

for the back action of quantum measurements. With this

result, we showed that quantum-mechanical formulations of

the second law are intimately tied to quantum information

theory by deriving Holevo’s bound as a consequence of a

fluctuation theorem. The new approach provides not only

simple derivation but also a sharpened statement of the original

bound and a corresponding equality criterion.

Acknowledgments. The authors thank Jacob Taylor and Eric

Lutz for interesting discussions. SD acknowledges financial

support by a fellowship within the postdoc-program of

the German Academic Exchange Service (DAAD, contract

No D/11/40955). DK acknowledges financial support by a

fellowship from the Joint Quantum Institute.

[1] R. Clausius, Abhandlungen über die mechanische Wärmetheorie
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