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Abstract Gibbs energy representations for ices II, III, V, and VI are reported. These were constructed
using new measurements of volumes at high pressure over a range of low temperatures combined with
calculated vibrational energies grounded in statistical physics. The collection of representations are released
within the open source SeaFreeze program, together with the Gibbs representation already known for ice Ih
and water. This program allows accurate determination of thermodynamics properties (phase boundaries,
density, specific heat, bulk modulus, thermal expansivity, chemical potentials) and seismic wave velocities
over the entire range of conditions encountered in hydrospheres in our solar system (130–500 K to 2,300
MPa). These comprehensive representations allow exploration of the rich spectrum of thermodynamic
behavior in the H2O system. Although these results are broadly applicable in science and engineering, their
use is particularly relevant to habitability analysis, interior modeling, and future geophysical sounding of
water‐rich planetary bodies of our solar system and beyond.

1. Introduction

Water is a fundamentally important molecule in scientific fields ranging from biology to engineering, earth
and environmental sciences, chemistry, or astrophysics. As a common molecular species in our cosmic
neighborhood (Hanslmeier, 2011), water ice polymorphs at high pressures in planetary interiors could
be the most abundant “mineral group” in the Universe. A focus on potentially habitable hydrospheres
of icy moons, small bodies such as Pluto and Ceres, and ocean exoplanets (Sotin & Tobie, 2004; S.
Vance & Brown, 2013; B Journaux et al., 2013; Baptiste Journaux et al., 2017; Noack et al., 2016; Kite &
Ford, 2018; Unterborn et al., 2018; Hendrix et al., 2019) motivates an interest in thermodynamic properties
of water and ices in the <200 MPa range. For example, the presence of an insulating layer of high‐pressure
ice between the deep ocean and the underlying silicates on large water‐rich planetary bodies has been
identified as a potential bottleneck for habitability, as it could limit nutrient transport (Léger et al.,
2004; Noack et al., 2016; Baptiste Journaux et al., 2017; Kite & Ford, 2018). Thus, accurate thermodynamic
representations for all stable phases of water and aqueous solutions are essential in the analysis of poten-
tial planetary habitability.

Unfortunately, sparse measurements at high pressure, some performed more than 100 years ago, limit our
understanding of high‐pressure ice thermodynamics and phase equilibria (Salzmann, 2018). In order to bet-
ter constrain the structure, evolution, and habitability of the interiors of water‐rich planetary bodies, a new
generation of accurate measurements and internally consistent thermodynamic representations of aqueous
solutions and ice polymorphs is required. Furthermore, since next‐generation planetary exploration mis-
sions are likely to investigate the seismic structure of icy worlds (Vance, Kedar, et al., 2018; Vance,
Panning, et al., 2018; Panning et al., 2018; R. D. Lorenz et al., 2019; Stähler et al., 2019), data on seismic wave
speeds in ices and aqueous solutions as a function of pressure and temperature are also needed.
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Bridgman (1912) provided the first delimitation of the phase boundaries for ices Ih, II, III, V, and VI.
These measurements and additional work for the phase boundary of ices VI–VII (Bridgman, 1937) con-
stitute the main—and sometimes only—constraints for the water phase diagram boundaries below 2,000
MPa (M Choukroun & Grasset, 2007; Dunaeva et al., 2010; Tchijov, 2004; Wagner et al., 2011).
Bridgman provided numerous pressure‐temperature points along the phase boundaries as well as
volume changes measured using the displacement of the piston of his high‐pressure apparatus.
Crystal structures and absolute volume measurements of ice polymorphs came later as X‐ray and neu-
tron diffraction measurements were obtained on metastable (quenched) samples retrieved cryogenically
(B. Kamb et al., 1967; Barclay Kamb, 1965; Barclay Kamb & Davis, 1964; McFarlan, 1936a, 1936b).
Surprisingly, few additional measurements have been reported for these ices since the pioneering work
of the previous century.

Current thermodynamic representations for water and ices at high pressure (Choukroun & Grasset, 2007;
Choukroun & Grasset, 2010; Dunaeva et al., 2010; Tchijov, 2004) use ad hoc parameterizations to indepen-
dently compute chemical potentials, volumes, and specific heats. Since all equilibrium thermodynamic
quantities (e.g., volume, chemical potential, bulk modulus, thermal expansivity) are derived from an under-
lying thermodynamic potential (e.g., Gibbs energy), properties should not be independently parameterized.
While prior models were adjusted to reproduce observed phase equilibria and volume changes by Bridgman
(1912), they remain thermodynamically inconsistent (cross derivatives do not match), which precludes accu-
rate determination of other thermodynamic properties. As one example, the specific heats for ice poly-
morphs given by Tchijov (2004) and used in the current planetary dynamic models are significantly
overestimated by up to 35%. This leads to an underestimate of temperature gradients within convective
layers. Extrapolations of properties beyond the range of experimental constraints are not reliable, and the
substantial effort necessary to implement these representations remains a barrier to their widespread use.

Full Gibbs energy representations are available for a small number of materials. The conventional approach,
articulated by Span (2000) and used to create a representation for ice Ih (Feistel &Wagner, 2006), has proven
to be tedious. Custom and hard‐to‐implement equations are required for each material, moreover modifica-
tion in the face of new measurements has proven essentially impossible. An alternative approach, described
in Brown (2018), uses “local” basis function (LBF) representations in the form of tensor b‐splines. The advan-
tages of such representations include (i) the ease in creating or modifying the representation for an energy
potential (e.g., Gibbs energy), (ii) the “universal” form of the parameterization (requiring no custom coding
for individual materials), (iii) an ability to reproduce complex local surface features without impacting the
global quality of the fit, and (iv) the straightforward computation of thermodynamic properties through cal-
culations based on analytic derivatives. Recent work on liquid water to 2,300 MPa over a range of tempera-
tures demonstrates the utility of the approach in representing water's complex behavior (Bollengier et al.,
2019). The main obstacle to the extension of that effort to high‐pressure ice polymorphs III, V, and VI has
been the lack of adequate in situ high‐pressure measurements that extend below room temperature.

The compressibility and thermal properties of D2O ice II have been investigated experimentally by Lobban
et al. (2002) and Fortes et al. (2005). Earlier work was likely affected by systematic errors as the ice II struc-
ture was probably contaminated with helium (see discussion in Lobban et al., 2002; Fortes et al., 2005).
Gagnon et al. (1990) gave an isothermal (238 K) equation fitted to four unreported data points.

Volumemeasurements at high pressure using neutron diffractionwith D2O ice III were reported by Londono
et al. (1998) (3 data points at 245–250 K) and Lobban et al. (2000) (5 data points in the 250–330MPa and 240–
250 K range). Two piston‐displacement points for ice III at 248 K are given by Shaw (1986). The Gagnon et al.
(1990) isothermal equation provides unrealistic volumes, as pointed out by Choukroun and Grasset (2007).

Two piston‐displacement points (248 K) from Shaw (1986) and a density‐pressure law from Gagnon et al.
(1990) are reported for ice V. The latter again provides unreasonable volumes, as also noted above for ice
III. D2O ice V neutron diffraction volumes were collected over a wider range, and represent to this day the
largest data set for ice V, with 11 points in the 400–500 MPa and 100–254 K range (Colin Lobban et al., 2000).

The first extensive pressure‐temperature‐volume data for H2O ice VI were published by Bezacier et al.
(2014), but only above 300 K. A review of other data sets for H2O and D2O ice VI measurements is also pro-
vided in Bezacier et al. (2014).
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To provide the requisite data for constructing better thermodynamic representations, we obtained new X‐ray
diffraction measurements for ices II, III, V, and VI in a pressure regime from 200 to 2,000 MPa for tempera-
tures between 180 and 270 K. Mie‐Grüneisen equations of states were determined, where pressure is sepa-
rated into the cold (zero Kelvin) compression plus a thermal pressure calculated using quasi‐harmonic
vibrational energies based on phonon densities of states constrained by measurements and theory. The
resulting representation of Gibbs energy for each of the ices and for liquid water (Bollengier et al., 2019),
using the framework described in Brown (2018), then provides a fundamental and robust description of their
thermodynamic properties. Phase equilibria (solid‐solid and solid‐liquid) are determined as the locus of
pressure‐temperature points with equal chemical potential. Equilibrium thermodynamic properties (e.g.,
density, specific heat, bulk modulus, thermal expansivity, entropy, and enthalpy) are derived from appropri-
ate analytic derivatives of Gibbs energy. In addition, isotropic seismic wave velocities are estimated for all
polymorphs as a function of pressure and temperature using a volume and temperature dependent shear
modulus that is constrained by the ultrasonic and Brillouin measurements at high pressure, combined with
the adiabatic bulk modulus from the Gibbs energy representation.

This toolkit for predicting thermodynamic properties of water and ices, referred to as SeaFreeze, has been
released as open source code. It allows a self‐consistent exploration of thermodynamic properties and elas-
ticity of water and ices over a large range of pressure‐temperature conditions, applicable to all planetary
hydrospheres occurring in our solar system. Very high pressure body‐centered cubic ice VII and ice X ices,
expected in thick hydrospheres of ocean exoplanets, will be implemented in SeaFreeze in the near future.
Their much larger stability fields, second order phase transitions and complex proton dynamics
(Hernandez & Caracas, 2016, 2018), necessitate a dedicated study to obtain a satisfying representation,
which is beyond the scope of the present work. An anticipated extension of SeaFreeze will also include
solute thermodynamics.

2. Methods

2.1. Volume Determinations at High Pressure

Ultrapure MiliQ™ water was loaded in a diamond anvil cell with 500 to 600 μm culets diamonds and
indented 80 μm thick stainless‐steel gaskets, with a 300 μm in diameter pressure chamber. Ruby was used
as a pressure calibrant, with a precision of 30 MPa, using an external reference ruby in contact with the back
of the anvil to correct for the temperature dependence of the fluorescence. Temperature was regulated using
a He‐cryostat. X‐ray diffraction data were collected at the ID15B beamline of the European Synchrotron
Radiation Facility, Grenoble, France, using a wavelength of 0.41137 Å and a beam diameter of 10 × 10
μm. Diffraction images were collected using a MAR555 flat panel detector. The detector‐to‐sample distance
was calibrated with a silicon standard using the procedure implemented in Fit2D. The program Dioptas
(Prescher & Prakapenka, 2015) was used for masking diamond peaks and integrating the 2‐D images into
1‐D powder diffraction patterns. Powder diffraction data were collected by a continuous ω rotation of ±5°,
with a 2 s exposure time. In the case of single crystals, a continuous ω rotation of ±20° with 2 s exposures
was used. LeBail refinements of the powder diffraction patterns were performed using Topas (Coelho,
2018). All diffraction patterns measured exhibited texturing, and thus Pawley refinements were used to
determine the unit cell variation at different temperature and pressure conditions.

Powder of ice II was obtained by cooling liquid water at 390 MPa down to 180 K by 1 K/min. Strain could be
observed in some of diffraction patterns which presented very broad features at pressure >450 MPa. These
were removed from the present data sets.

Ice III was formed by cooling water to 220 K at 300 MPa. It was metastable in this range as these conditions
correspond to the stability field of ice II. Diffraction measurements taken directly after freezing at 220 K
showed texturing and strain upon formation, with no clear volume‐pressure dependence, and were therefore
not considered. Upon heating, relaxation was observed, along with the formation of larger crystal domains,
and a clear volume trend with temperature could be measured. Both single crystal data (step scans ±25°
every 0.5°) and single frame images (continuous ±20° rotation scan) were measured and integrated with
CrysAlisPro or Dioptas, respectively. Both refinements were included in the fit of the equation of state.

Ice V was crystallized in its stability field by cooling liquid water at 560 MPa to 230 K. Upon heating and
decompression, at ~450 MPa and 245 K the appearance of single reflections of an unknown phase was
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observed. The new phase could not be identified with known water
polymorph structures and will be the subject of future studies. Ice V
and the new phase coexisted over the range of ~220–260 K and 450–
550 MPa. Upon heating, the ice V underwent progressive texturing,
indicated by substitution of the powder‐like rings by sharp diffraction
peaks. Several pressure‐temperature points were excluded from the fit
due to the texturing of ice V and/or dominated presence of the
unknown phase.

Polycrystalline ice VI was obtained by compressing ice V above 650 MPa
at 220 K. As for ice III, data collected at 220 K directly after the solid‐solid
transformation show no clear volume‐pressure dependence, and were
therefore not considered in the fit. Upon heating, relaxation occurred
and a clear volume trend could be measured up to 262 K.

As represented in Figure S1 in the supporting information, some diffraction measurements were acquired
beyond the stability range of some of the ices, taking advantage of the significant metastability at such
low temperatures. Single crystals were formed at the melting curve to ensure pressure and temperature
measurement accuracy.

2.2. Gibbs Energy Representation

A Gibbs energy surface for each ice polymorph was determined using (i) our new measurements of volumes
as a function of pressure and temperature, (ii) thermal pressures calculated from quasi‐harmonic phonon
(vibrational) densities of state, (iii) reported elastic moduli measured as a function of pressure and tempera-
ture, (iv) estimates of the configurational entropy So and Gibbs energyGo at a defined reference state, and (v)
previously determined liquid‐solid phase boundaries (i.e., melting curves).

Relationships between partial derivatives of Gibbs energy and the thermodynamic properties amenable to
measurements (Table 1) provide a path for the determination of Gibbs energy. Using a chosen set of basis
functions to represent the energy surface, and with Gibbs energy and derivatives of Gibbs energy specified
at sufficient pressure‐temperature points, model parameters can be readily determined by least‐square fit-
ting (a “collocation” solution of the differential properties). This numerical inverse problem is linear for
Gibbs energy, entropy, volume, and specific heat. Iterations are required to match bulk moduli and thermal
expansivity measurements.

Here, following the collocation methods described in Brown (2018), LBF representations are implemented
using sixth order tensor b‐splines. By construction, these basis functions are orthonormal and complete
on the representational domain. The parameterization of the representations is universal. No material‐
specific coding is required and the representations can be readily modified in the face of new or improved
measurements. Subroutines/functions are available in most standard scientific numerical environments
currently in use. Examples are provided in the supporting information (Text S2).

In the following subsections we provide first the governing equations for the numerical evaluation of the
Gibbs energy, followed by details on the Mie‐Grüneisen equation of state to fit our pressure‐volume tem-
perature data, description of the vibrational energy physical model, and finally the adjustment strategy of
all model parameters.
2.2.1. Governing Equations

The Gibbs energies for ices II, III, V, and VI at all relevant pressures and temperatures can be numerically
evaluated through successive integrations, starting at reference values of Go and Sowhere the subscript typi-
cally denotes either absolute zero and ambient pressure or a specified thermodynamic invariant (e.g., a triple
point).

G P;Tð Þ ¼ ∫
P

Po
V P;Tð ÞdP þ G Po;Tð Þ; (1)

with V(P,T) the specific volume and G (Po,T) the Gibbs energy temperature profile at ambient pressure. A
Mie‐Grüneisen equation of state (described hereafter) is used to represent V(P,T), and the temperature
dependence of Gibbs energy at the reference pressure is given as

Table 1

Relationship of Thermodynamic Quantities to Derivatives of Gibbs Energy

Thermodynamic quantity Symbol Derivatives w.r.t G

Specific volume V Gp

Entropy S −GT

Specific heat (constant pressure) Cp −T G2T

Isothermal bulk modulus Kt −Gp G2p
−1

Adiabatic bulk modulus Ks GpG2T

G2
pT−G2TG2p

Thermal expansivity α GpT Gp
−1

Note. Subscripts on G denote the appropriate partial derivative with p for
pressure, T for temperature.
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G Po;Tð Þ ¼ Go Po;Toð Þ−So Po;Toð Þ T−Toð Þ þ ∫
T

To
CPdT−T∫

T

To

CP

T
dT: (2)

The chosen values for Go and So and for the (adjustable) parameters associated with the Mie‐Grüneisen
equation of state are discussed in section 2.2.4. The constant pressure specific heat, Cp, is determined from
the constant volume specific heat, Cv, that is based on the quasi‐harmonic phonon energy Evib (described in
section 2.2.3) and the derivatives of V(P,T) that establish the isothermal bulk modulus, KT, and thermal
expansivity, α:

CP ¼ CV P;Tð Þ þ V P;Tð Þ TKT P;Tð Þ α2 P;Tð Þ: (3)

Next, from the numerical evaluation of the Gibbs energies, specific volumes, and heat capacities, an analytic
LBF representations of Gibbs energy for each ice polymorph is then constructed by collocation (Brown,
2018). The smallest number of model parameters (number of control points for the splines) is found that
allows an adequate fit of available data.
2.2.2. Mie‐Grüneisen Equation of State

The Mie‐Grüneisen equation of state (Davis, 1972) permits a physically motivated representation of specific
volumes, valid over a wide range of pressures and temperatures, that is implemented using a small number
of adjustable parameters. It has been used in condensed matter physics to provide reference equations of
states of solids (e.g., for NaCl; Brown, 1999). The total pressure is separated into a static compression com-
ponent (cold compression curve at 0 K) and a thermal component associated with lattice vibrations:

P V ;Tð Þ ¼ P0K Vð Þ þ Ptherm V ;Tð Þ: (4)

Here the cold compression curve P0K is described using third order Eulerian finite‐strain formalism:

P0K ¼ 3Kof E 1þ 2f Eð Þ5=2 1þ
3
2

K ′

o−4
� �

f E

� �

; (5)

with the Eulerian strain given as fE = [(Vo/V)
2/3
− 1]/2, Ko and Ko′ are the bulk modulus and its pressure

derivative at 1 bar and 0 K.

The thermal pressure is

Ptherm ¼
γ

V
Evib T;Vð Þ; (6)

where γ is the thermodynamic Grüneisen parameter and Evib(T,V) is the lattice vibrational energy. A power
law volume dependence is assumed for the Grüneisen parameter:

γ Vð Þ ¼ γ0
V

V0

� �q

: (7)

Values for q between 1 and 2 are commonly used for solids under large range of compressions (Brown, 1999).
Here for the very small pressure stability range and the associated small relative volume variation, a
temperature‐independent Grüneisen parameter with q = 1 is sufficient to adequately fit the data.
2.2.3. Vibrational Energy Model

The quasi‐harmonic energy Evib(T,V) is computed using a phonon density of states (DoS) for each ice poly-
morph where g(ν,V) gives the number of modes lying in a frequency range between ν and ν+dν. Ice, as a
molecular solid, has nine degrees of freedom per molecule that naturally correlate with four families of
modes, each with a distinct range of frequencies. These are translational modes (0–500 cm−1), librational
modes (500–1,100 cm−1), bending modes (1,500–1,800 cm−1), and stretching modes (3,200–3,800 cm−1)
with, respectively, 3, 3, 1, and 2 degrees of freedom. We use a combination of inelastic neutron scattering
(INS) determinations for translational and librational modes of ices II, V, and VI (Li, 1996), and computed
DoS where INS results are not available. A summary of the sources used in constructing the DoS, gi,0(ν,
V0), for the four families at 0 K and 1 bar is presented in Table 2. As the INS data were obtained on quenched
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samples at cryogenic temperature and because thermal expansion tends to zero at absolute zero, these DoS
determinations are associated with the reference volume Vo.

For constant mode Grüneisen parameters, γi ¼ −

dlnνi
dlnV, the volume dependences of phonon frequencies fol-

low as

νi Vð Þ ¼ νi V oð Þ
V0

V

� �γi

; (8)

which allows computation of the volume dependence of gi(ν,V). Although modes within families of modes
can have different γi, here a single value (listed in Table 2) is assumed for each of the four vibrational
families. Limited data for ices and other solids (based primarily on Raman and infrared measurements) indi-
cate broad trends with translational modes showing values for γi in a range from 1 to 2. In contrast, the inter-
nal stretching and bending bonds show little or negative changes in frequency with compression. Although
the γi must depend on volume (compatible with that shown for the thermodynamic γ in equation (7)), the
impact on νi is second order and can be neglected.

For ices II, V, and VI, translational and stretching modes γi are estimated from experimental insitu spectro-
scopic studies of Raman‐active mode shifts with pressure (Minceva‐Sukarova et al., 1984). Libration and
bending are more challenging to observe in diamond anvil cells as they are masked by the diamond's first
and second order Raman signal. As no experimental nor computational data exist for those, we chose to
use the same approach used for ice Ih, for which the Evib is already known in detail (Feistel & Wagner,
2006). For ice Ih, translation and libration from Li (1996) and computed bending and stretching from
Jenkins and Morrison (2001) give a value of γi of 1 for libration and 0 for bending modes. This provides a
description with less than 5% error for Evib. For ices II and III, we used the mean Grüneisen associated with
the computed DoS family (Ramírez et al., 2012).

The integral of each DoS mode family is normalized by its degrees of freedomNi, such that ∫gidν ¼Ni, and
assembled into the final DoS as a sum of all mode families g(ν,V). The quasi‐harmonic energy Evib per mole-
cule of H2O is then computed as a function of temperature and volume:

Evib T;Vð Þ ¼ ∫
hν

exp hν=kTð Þ−1
g ν;Vð Þ dν; (9)

where k is Boltzmann's constant, h is Plank's constant, and the integral is over the full frequency range of the
vibrational modes.

The isochoric specific heat is obtained as the temperature derivative of the vibrational energy at
constant volume:

Table 2

Details for the Constructed Ice Polymorphs Constructed Density of States

Ice polymorphs Mode family Type and conditions Reference γi Ni

Ice II Translation Measured INS/P = 20 mbar, T < 15 K Li (1996) 1.3 3
Libration Measured INS/P = 20 mbar, T < 15 K Li (1996) 0.5 3
Bending Computed (Q‐TIP4P/F) /P = 0 Mpa, Vref = 24.14 Å/molec. Ramírez et al. (2012) 0.05 1
Stretching Computed (Q‐TIP4P/F) /P = 0 Mpa, Vref = 24.14 Å/molec. Ramírez et al. (2012) −0.15 2

Ice III Translation Computed (Q‐TIP4P/F) /P = 0 Mpa, Vref = 24.99 Å/molec. Ramírez et al. (2012) 1.3 3
Libration Computed (Q‐TIP4P/F) /P = 0 Mpa, Vref = 24.99 Å/molec. Ramírez et al. (2012) 0.25 3
Bending Computed (Q‐TIP4P/F) /P = 0 Mpa, Vref = 24.99 Å/molec. Ramírez et al. (2012) 0.05 1
Stretching Computed (Q‐TIP4P/F) /P = 0 Mpa, Vref = 24.99 Å/molec. Ramírez et al. (2012) −0.1 2

Ice V Translation Measured INS/P = 20 mbar, T < 15 K Li (1996) 1.6 3
Libration Measured INS P = 20 mbar, T < 15 K Li (1996) *1 3
Bending Computed/P = 0 Mpa, Vref = 24.27 Å/molec Jenkins and Morrison (2001) *0 1
Stretching Computed/P = 0 Mpa, Vref = 24.27 Å/molec Jenkins and Morrison (2001) −0.4 2

Ice VI Translation Measured INS/P = 20 mbar, T < 15 K Li (1996) 2.5 3
Libration Measured INS/P = 20 mbar, T < 15 K Li (1996) *1 3
Bending Computed/P = 0 Mpa, Vref = 20.88 Å/molec Jenkins and Morrison (2001) *0 1
Stretching Computed/P = 0 Mpa, Vref = 20.88 Å/molec Jenkins and Morrison (2001) −0.44 2
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Cv ¼
∂Evib

∂T

�

�

�

�

V

: (10)

An example of a constructed DoS as a function of volume and resulting Evib and Cv for ice V is shown in
Figure 1. The densities of state for ices II, III, and VI are reported in the supporting information
(Figures S6–S8).

In the range of temperatures associated with the equilibrium stability of these ices (<355 K), only transla-
tional and librational modes are sufficiently populated and contribute significantly to thermal properties.
As necessary for the quasi‐harmonic assumption, at high temperatures the model asymptotes to the
Dulong‐Petit limit for the Cv of water (4157.2 J/kg/K) (Figure 1). However, in the range of stability of these
ices Cv is smaller and highly temperature dependent. Although explicit anharmonic contributions to the
vibrational energy are likely at high temperatures, they are generally thought to be small in comparison with
the harmonic contributions at modest or low temperatures and are ignored in the current analysis.
2.2.4. Adjustment of Model Parameters

For each ice phase, the four parameters (Vo, Ko, Ko′, and γo) were adjusted to best fit both the volumes deter-
mined by means of diffraction measurements and the high‐pressure determinations of the adiabatic bulk
modulus based on ultrasonic and Brillouin measurements (Gagnon et al., 1988, 1990; Shaw, 1986;
Shimizu et al., 1996; Tulk et al., 1997; Tulk et al., 1997).

Figure 1. Thermal properties of ice V. (a) Phonon density of states as a function of frequency and volume compression, (b) vibrational energy Evib as a function of
compression and temperature, and (c) isochoric specific heat Cv as function of compression and temperature. Ices II, III, and VI thermal properties are provided in
the supporting information (Figures S6–S8).
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In the IAPWS‐95 representation of water (Wagner & Pruß, 2002), the
internal energy and entropy are set to zero at its liquid‐vapor‐solid triple
point. This convention was also adapted for the Gibbs energy representa-
tion of water by Bollengier et al. (2019) that provides more accurate ther-
modynamic properties at high pressures and in the supercooled regime.
Here the reference energy Go of each ice phase was set to be internally
consistent with Bollengier et al. (2019) values by matching the Gibbs
energy of the ice phase with water at each lower pressure triple point on

the melt line (e.g., ice Ih‐III‐liquid triple point for ice III). For ice II, the reference energy Go is set to be con-
sistent with the computed Gibbs energy of ice III at the ice Ih‐II‐III triple point.

The entropy of the ices, important in determining the Clapeyron slopes, is the sum of a small “configura-
tional” entropy associated with proton disorder (except for ice II which is proton ordered), as estimated by
Herrero and Ramírez (2014), and a larger contribution from vibrational entropy. The latter was modified
from initial estimates by small adjustments, within measurement and calculational uncertainties, to the fre-
quencies of translational and libration modes (by factors of 1.01 to 1.07). These adjustments allowed a better
match of melting points over the entire melting range of pressures for ices III, V, and VI. For ice II, adjust-
ments were made to match Bridgman's (1912) determinations of the ice II–III solid‐solid transition, assum-
ing that hysteresis is negligible for this transition.

3. Results

3.1. X‐Ray Diffraction Measurements

High‐pressure low‐temperature X‐ray diffraction measurements of ice polymorphs were performed at the
ID15B beamline (European Synchrotron Radiation Facility, France) using cryo‐cooled diamond anvil cell.
Ice powders of the forms II, III, V, and VI were obtained by freezing supercooled liquid water far from the
melting line. Several volumes were obtained on unstrained single crystals annealed near the melting point.
Volumes as a function of pressure were measured along several isotherms for each polymorph (Table 3). All
powder and single crystal patterns could be fitted with the space groups R‐3, P41212, C2/c, and P42/nmc for
ices II, III, V, and VI, respectively. Examples of LeBail refinement are given in Figures S2, S3, S4, and S5 in
the supporting information.

3.2. Thermodynamic Representations for Ice Polymorphs

3.2.1. Gibbs Energy Equation of State

Analytical Gibbs energy surfaces for ices II, III, V, and VI are derived using the methodology described
above. Table 2 provides sources and data associated with the quasi‐harmonic phonon densities of states and
Table 3 lists equation of state parameters (Ko, Ko′, Vo, and γo). Relevant constraints for Go and So for each ice
polymorph and the value in our models are reported in Table 4.

In Figure 2, pressures are shown as a function of volume for the four high‐pressure ices. Based on the Mie‐
Grüneisen approach, measurements (filled symbols) minus calculated thermal (vibrational) pressures define
“corrected” points (open symbols) that should lie within measurement uncertainty of the cold compression
curve (dashed lines parameterized using Ko, Ko′, and Vo). The 1‐bar volumes for ice V and ice VI quenched to
98.15 K (Kamb, 1965) (the largest volume data for each ice) have relatively small thermal pressures and thus
provide robust estimates of Vo. The quenched volume reported by Kamb for ices II and III are inconsistent
with the current measurements and were excluded from the fit. For ice VI, our new cryogenic measurements
at high pressure were combined with 45 points previously reported in Bezacier et al. (2014), ranging from
1,260 to 2,560MPa and from 300 to 340 K, which were measured using the same experimental setup and pro-
cedures. The combined data cover the entire range of pressure stability of this polymorph. The thermody-
namic Grüneisen parameters, γo, were chosen to be consistent with spectroscopically determined mode γ′s
(Table 2) and to reduce misfit of data on the cold compression curve. A systematic trend of larger γo values
for higher pressure ices ranging from 1 to 1.4 is apparent in Tables 1 and 2.

The pressure derivative of the isothermal bulk modulus, Ko′, is poorly constrained by volume measurements
that span a relatively small range of compression. A value of 4 was assumed in the previous work of Fortes
et al. (2012) and Bezacier et al. (2014). However, a strong constraint on the pressure dependence of the

Table 3

Ice Polymorphs Mie‐Grüneisen Equations of States Fit Parameters

Phase V0 (m
3/kg) V0 (cm

3/mol) Ko (GPa) K′o γo q

Ice II 8.423·10−4 15.17(5) 14.4(3) 6 1 1
Ice III 8.595·10−4 15.49(5) 9.9(3) 6 1.0 1
Ice V 8.035·10−4 14.48(5) 13.2(3) 6 1.1 1
Ice VI 7.562·10−4 13.62(2) 15.2(3) 6.5 1.4 1
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adiabatic bulk modulus is provided by ultrasonic and Brillouin measurements (Gagnon et al., 1988, 1990;
Shaw, 1986; Shimizu et al., 1996; Tulk, Gagnon, et al., 1997; Tulk, Kiefte, et al., 1997). Simultaneous fits to
compressions (Figure 2) and the adiabatic moduli (Figure 3a) require that Ko′ range from 6 for ice III and
ice V to 6.5 for ice VI. To our knowledge, there are no previously published adiabatic bulk moduli versus
pressure or temperature for ice II.

3.2.2. Shear Modulus and Seismic Velocities

The isotropic elastic shear modulus, μ, determined as the mean of Hashin‐Shtrikman bounds (Brown, 2015)
from single crystal measurements or directly from transverse wave speed measurements in isotropic poly-
crystalline samples (Gagnon et al., 1988, 1990; Shaw, 1986; Shimizu et al., 1996; Tulk, Gagnon, et al.,
1997; Tulk, Kiefte, et al., 1997), are also shown in Figure 3a. A simple linear function in density and

Table 4

Experimental PVT Data

Ice II Ice II (continued)

Pressure (MPa) Temperature (K) Volume (Å3) Pressure (MPa) Temperature (K) Volume (Å3)

370 180 298.11 410 200 298.96
330 180 298.38 260 220 300.85
320 180 298.62 240 220 301.27
320 180 298.97 320 220 300.5
280 200 300.19 370 220 299.75
340 200 299.75 280 240 302.19
380 200 299.37 280 240 302.64
Ice III Ice III (continued)
Pressure (MPa) Temperature (K) Volume (Å3) Pressure (MPa) Temperature (K) Volume (Å3)
260 250.5 309.168 410 245.5 304.460
350 250.5 306.188 410 245.5 304.390
480 250.5 303.449 390 240.5 304.424
480 250.5 303.200 390 240.5 304.790
400 250.5 304.830 340 240.5 305.790
320 250.5 307.266 340 240.5 305.610
289 250.5 308.127 320 240.5 306.319
220 250.5 310.610 290 240.5 306.909
260 245.5 308.534 260 240.5 308.303
260 245.5 308.630 260 240.5 308.110
300 245.5 307.750 220 240.5 309.277
340 245.5 306.526 210 240.5 310.157
340 245.5 306.620 230 252.5 310.055
Ice V Ice V (continued)
Pressure (MPa) Temperature (K) Volume (Å3) Pressure (MPa) Temperature (K) Volume (Å3)
689 242.3 654.867 566 252.3 660.269
562 242.3 660.141 578 249.3 660.479
531 242.3 662.162 581 243.3 659.901
496 242.3 663.845 583 237.3 659.206
421 242.3 667.471 581 232.3 659.638
506 262.3 665.551 603 222.3 658.473
538 262.3 663.699 647 222.3 656.677
548 262.3 663.103 704 222.3 654.532
500 252.3 664.129 779 222.3 651.850
Ice VI Ice VI (continued)
Pressure (MPa) Temperature (K) Volume (Å3) Pressure (MPa) Temperature (K) Volume (Å3)
1,007 242.3 218.895 889 262.3 220.434
1,537 242.3 214.056 1,041 262.3 218.331
1,351 242.3 215.042 1,216 262.3 216.399
1,217 242.3 216.174 1,452 262.3 214.312
1,094 242.3 217.336 476 262.3 224.652
913 242.3 219.730 726 262.3 221.252
746 242.3 221.642 903 262.3 219.731
706 262.3 222.595

Note. Typical uncertainties are estimated to be 30 MPa in pressure, 0.5 K in temperature, and 5·10−3 Å3 in volume.
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Figure 2. Pressures as a function of specific volume for (a) ice II, (b) ice III, (c) ice V, and (d) ice VI. Black filled symbols aremeasurements. White diamond symbols
are measurements minus Ptherm that provide an estimate of the zero‐Kelvin compression curve. Stars for ice V and ice VI are the ambient pressure volumes from
Kamb (1965). Experimental uncertainties are indicted as 30 MPa in pressure and 0.3% in volume. The dashed curves are the result fits of the cold‐compression
(zero‐Kelvin) data.

Table 5

Values for the Triple Point Coordinates, Constraints to the Gibbs Energy Surface LBF Representations

Triple point Constrains values LBF Gibbs representation values

Phase
Triple point

phases
PTP
(MPa)

TTP
(K) Ref (TP)

Gref (PTP, TTP) (Bollengier et al.,
2019) Sc

Go

(PTP, TTP)
So (PTP,
TTP) Sc

Ice II Ih‐II‐III 213 238.5 Dunaeva et al.
(2010)

*1.8097·105 0 3.9099
·105

3516.4 0

Ice
III

Ih‐III‐L 208.566 251.165 Wagner et al. (2011) 1.9528·105 189.99 4.3452
·105

3326.4 189.99

Ice V III‐V‐L 350.1 256.164 Wagner et al. (2011) 3.2394·105 190.68 5.7396·105 3327.7 190.68
Ice
VI

V‐VI‐L 632.4 273.31 Wagner et al. (2011) 5.7096·105 194.47 8.4519·105 3346.5 194.47

Note. Configurational entropies Sc are from Herrero and Ramírez (2014). Gibbs energies are given in J kg−1 and entropies in J K−1 kg−1. The Gref (PTP, TTP)
value for ice II, marked by an asterisk, is equal to the ice III Gibbs energy at the Ih‐II‐III triple point: GiceIII (PTP, TTP).
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temperature (μ = A + B*ρ + C*T) using the same parameters adequately fits the shear moduli of high‐
pressure ices III, V, and VI, while different parameters were required for ice Ih (see details in Text S1 of
the supporting information). Ice II shear moduli were fitted using a different A parameter to reproduce
the sound speeds results from Gagnon et al. (1990) shown in Figure 3b. Density and temperature depen-
dence were kept equal to the corresponding parameters for other high‐pressure ices, as no data were avail-
able to provide other constrains. This results in a prediction of ice II shear modulus around 6 GPa at 238 K
and 300 MPa. Using this parameterization and the adiabatic bulk modulus and density from the Gibbs

energy representations, isotropic body wave velocities (compressional VP P;Tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KS P;Tð Þ þ 4
3 μ P;Tð Þ

� 	

=ρ P;Tð Þ
q

and transverseVS P;Tð Þ ¼
ffiffiffiffiffiffiffiffiffiffi

μ P;Tð Þ
ρ P;Tð Þ

q

) are compared as a function of pressure

with measurements in Figure 3b. The computed sound speeds match most of the data within a few percent,
with the exception of the shear wave velocities reported for ice VI by Shaw (1986).
3.2.3. Ice Polymorph Melting Curves

The predicted phase boundaries for both solid‐liquid and solid‐solid transitions from the intersections of
Gibbs surfaces are shown in Figure 4 along with experimental determinations. Temperature residuals of
data from the predicted melting points are plotted in Figure 5. The Gibbs energy for Ice Ih is a direct LBF
parametrization of the Feistel and Wagner (2006) equation of state.

More than 90% of the reported melting points (including metastable determinations) lie within the measure-
ment uncertainty of the Gibbs energy‐determined melting lines. The current melting curve for ice V is indis-
tinguishable from the Simon‐Glatzel parameterization of Wagner et al. (2011). Although the ice III melting
curve ofWagner et al. (2011) has larger curvature than the current prediction, both lie within the 0.6 K uncer-
tainty range. Measurements of ice VI melting are well represented over a much larger range of pressure than
for the other lower pressure polymorphs. The distinct curvature of the melting line shown in Figure 3 is well
matched by the current representations, lending credence to the underlying physical model. Previously
reported locations of the VI‐VII‐liquid triple point range from 352.2 to 355 K and from 2,160 to 2,216 MPa
(Journaux et al., 2013; Wagner et al., 2011). Using Wagner et al. (2011) Simon‐Glatzel parameterization for
the ice VII melting curve, our estimated VI‐VII‐L triple point at 353.5 K and 2,200 MPa lies within the
prior bounds.

Figure 3. Isotropic aggregate elastic properties for ices Ih, II, III, V, and VI. (a) Bulk Ks and shear μmoduli as a function of density and (b) isotropic P and S waves
velocities as a function of pressure. Different symbols (described in the legend) are used for data sets from different studies. Brillouin spectroscopy and sound
speed data (Gagnon et al., 1988, 1990; Shaw, 1986; Shimizu et al., 1996; Tulk, Gagnon, et al., 1997; Tulk, Kiefte, et al., 1997). Solid (300 K), dashed (250 K), and dotted
(238 K) lines are predictions based on the SeaFreeze representations. Vertical scales in gray boxes near the data are indicative of the typical scatter within one data
set (5% in KS, 10% in μ, 2.5% in VP, and 5% in VS).
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3.2.4. New Predictions of Solid‐Solid Phase Transitions and Triple Points

The solid‐solid phase transitions for ices Ih–III, III–V, and V–VI are model predictions, since no optimiza-
tion was undertaken to match these transitions. As shown in Figure 3, the predicted ice Ih–ice III transition
matches measurements while the predicted ice III–ice V and ice V–ice VI transitions are systematically offset
by up to 30 MPa. The Ih–III transition was determined (Bridgman, 1912; Kell & Whalley, 1968) in reversed
measurements, crossing the boundary during both compression and decompression. In contrast, the deter-
minations for ice III–ice V and ice V–ice VI by Bridgman (1912) represent pressures of transition during
decompression only. Based on normal hysteresis of solid‐solid transitions requiring significant structural
reorganizations, it is likely that such measurements would significantly underestimate the transition pres-
sure. For example, Pistorius et al. (1968) reported 100MPa of hysteresis for the ice VI–VII transition. We sug-
gest that our estimates for the solid‐solid transitions better represent thermodynamic equilibrium than
determinations based on unreversed measurements.

The ice II parameterization reproduces the previously published results for Ih–II, II–III, and II–V transition
within experimental uncertainties (<10 MPa) (Bridgman, 1912; Tammann, 1900). Although the II–VI tran-
sition has not been experimentally observed (Salzmann, 2018), the present Gibbs parametrization
(Figure 4b) predicts the ice II‐V‐VI triple point to lie at 209.1 K and 670.8 MPa. Since our representation is
based on a robust physical model for the thermal energy, low temperature predictions should remain valid
for the ice VI–ice XV (proton ordering) transition at 130 K (Salzmann et al., 2009). Based on observed tem-
peratures of transition for XI–Ih (Yen & Chi, 2015) and XV–VI (Salzmann et al., 2009), we predict a Ih‐II‐XI
triple point at 73.4 K & 89.6 MPa and a II‐VI‐XV at 130 K and 828.5 MPa.
3.2.5. Metastable and Equilibrium Thermodynamic Properties for Icy World Interiors

The current Gibbs energy representations are expected to sensibly predict properties both within and
beyond the stability range of each ice phase. An illustration of thermodynamic properties

Figure 4. Water phase diagram. (a) Ices polymorphs melting curves and Ih–III, III–V, and V–VI solid‐solid phase transitions calculated using the Gibbs LBF
representations in red and blue dotted lines, respectively. Melting curves from the Simon‐Glatzel equations for the melting curves from Wagner et al. (2011),
represented with a thin black line, often overlap by the LBF predictedmelting lines at this scale. Solid‐solid phase transitions from Bridgman (1912) are represented
as dashed black lines. Experimental data are represented as open diamonds from Bridgman (1912) and Bridgman (1937), black asterisks from Grasset et al. (2005),
open squares from Journaux et al. (2013), and open circles for Kell and Whalley (1968). A zoom on the ice Ih‐III‐V melting region is shown on the bottom
right. (b) Ice II stability field with data from Bridgman (1912) and Tammann (1900) (systematic error in pressure corrected to agree with Bridgman), solid‐solid
phase transitions and position of predicted triple points (Tp).
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determination for ice V is presented in Figure 6, over a wide range of temperatures and pressures. Other
polymorphs and liquid water thermodynamic surfaces are provided in Figures S9–S12 in the supporting
information. All surfaces extrapolate with reasonable trends into the metastable regions and have
correct limiting behavior at absolute zero where thermal expansivity and specific heat go to zero. Since
the characteristic temperatures of molecular vibrational modes (libration, bending, and stretching) are
high, specific heat remains temperature dependent and, in the stability field of ice V, is approximately
half the high‐temperature Dulong‐Petit limit (4157.2 J/kg/K). The only other specific heat estimations
for high pressure ice derived by Tchijov (2004), following on the ice VII calculations of Fei et al.
(1993), are up to 35% higher than the current analysis. Their use of the Debye approximation
(inappropriate for molecular solids like ices) does not adequately account for the large number of high
frequency molecular modes.

Figure 7 depicts the behavior with pressure of major thermodynamic properties (density, thermal expansiv-
ity, specific heat, and isothermal bulk modulus) computed using the LBF representations and seismic velo-
cities for ices Ih, III, V, and VI. These are provided up to 2,300 MPa, on isotherms relevant to the interiors of
icy ocean worlds, at 250, 260, 270, and 300 K (Lunine, 2017; Sohl et al., 2010; Vance, Planning, et al., 2018).
Temperature has a notable effect only on specific heat and thermal expansivity which shows 20% to 30%
increases with increasing temperature in this 50 K range. However, over the relevant pressure range, all
changes in thermodynamic parameters and seismic wave velocities show significant variations with pressure
and with the solid‐solid phase transitions. Ice II is not represented here for clarity as its stability at <250 K
limits its importance for larger icy moons interiors. Its thermodynamic properties surfaces are reported in
Figure S12 in the supporting information.
3.2.6. The “SeaFreeze” Thermodynamic Framework

The LBF Gibbs surfaces of ices II, III, V, and VI are combined with the liquid water representation of
Bollengier et al. (2019), and the representation for ice Ih (Feistel &Wagner, 2006) (converted to the LBF for-
mat) as the open source computational tool “SeaFreeze” (in Python and Matlab™) that is provided in a
GitHub repository (https://github.com/Bjournaux/SeaFreeze). The SeaFreeze representations are thermody-
namically consistent within and between phases. Gibbs energies and entropies of all phases are referenced to

Figure 5. Temperature residuals of the melting curves data (see Figure 3 for symbols references) and the Simon‐Glatzel
equations from Wagner et al. (2011) as black lines, with our LBF‐calculated melting boundaries (red line). Propagated
temperature uncertainties of 0.6 K for ice III and ice V and 0.9 K for ice VI (corresponding to the reported pressure and
temperature uncertainties) are represented as black dashed lines. Triple points from Wagner et al. (2011) are represented
as red dots.
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IAPWS‐95 values for water at its vapor‐fluid‐ice Ih triple point (Bollengier et al., 2019). This tool gives
equilibrium thermodynamic properties (including phase boundaries, density, heat capacities, bulk
modulus, thermal expansivity, chemical potentials) as well as shear moduli and seismic wave velocities for
each phase extending into metastable regimes. Details and examples on using SeaFreeze is provided in the
Text S2 in the supporting information.

The SeaFreeze implementation is computationally efficient. More than 105 thermodynamic points per sec-
ond can be determined on a mid‐range 2015‐vintage laptop computer (2.7GHz Intel core i5‐5257U CPU).
Thus, use of SeaFreeze within computationally intensive frameworks (e.g., geodynamic simulations)
appears possible.

4. Discussion and Perspectives

A uniform numerical environment for the thermodynamic properties of water and phases in equilibrium
withwater from ambient to high pressures supports research in a broad range offields including astrobiology,
planetary sciences, oceanic science, geochemistry, and condensed‐matter physics. Planetary interior studies
have illustrated the importance of using thermodynamically consistent properties of hydrosphere materials
in icy ocean worlds (Mitri et al., 2014; S. Vance et al., 2014; Vance, Panning, et al., 2018) while also noting
inconsistencies in available parameterizations. SeaFreeze offers clarity in how measurements inform the
representations and consistency in how properties relate to energy and entropy reference states. The trans-
parency of the open source process creates an opportunity to improve and extend the framework with

Figure 6. Thermodynamic properties of ice V determined as derivatives of the LBF representation of Gibbs energy inside
and beyond its stability range (red dashed lines).
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future data. Other ice phases can be included to extend the range of applications (e.g., ice VII, ice X, and
additional stable or metastable ice polymorphs). The framework can also be extended to accommodate
major planetary solutes, including solid phases of interest for planetary hydrospheres, such as salts and
hydrates. Representations for electrolyte solutions are under development. Not included at this time in
SeaFreeze are transport properties such as thermal and electrical conductivities, viscosities of fluids, and
rheological properties of solids. These could also find a place within the SeaFreeze framework.

For conditions found inside icy ocean worlds (0–1,800 MPa, 150–350 K), pressure changes and solid‐solid
phase transitions are the dominant factors for changes in thermodynamic properties and seismic wave velo-
cities of ices (Figure 7). The temperature range expected in these planetary bodies being more limited, only
the specific heat and the thermal expansivity are significantly altered for all ice polymorphs.

Prior studies of the interiors and geodynamics of icy moons and water‐rich planets (e.g., Noack et al., 2016;
Choblet et al., 2017; Kalousová et al., 2018; Marounina & Rogers, 2019) relied on ad hoc thermodynamic

Figure 7. Thermodynamic properties and seismic velocities for ice Ih, III, V, and VI based on the SeaFreeze parameter-
izations. Isotherms at 250, 260, 270, and 300 K are shown. The estimated pressure range found in the hydrosphere of
Europa (E), Titan (T), and Ganymede (G) are reported as blue, yellow, and green bars, respectively (Vance, Planning, et al.,
2018). Black dots on the 250 K profile represent the equilibrium pressure for the solid‐solid phase transitions.
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parameterizations with tenuous physical bases, built from limited data. The present framework, using accu-
rate and self‐consistent descriptions of the candidate constituents, will significantly aid investigations of the
icy moon interiors and their potential habitability. As an example, the presently estimated heat capacities of
high‐pressure ices being 20–35% smaller than previously predicted ones (Tchijov, 2004), the resulting adia-
batic gradient in the high‐pressure ice mantle of icy worlds should significantly increase. This could lead to
an increase in the estimated heat flux toward the ocean of a similar magnitude, with all other parameters
kept equal.

Looking beyond our solar system, the representation reported here encompassing all ice polymorphs and
liquid water up to 2,300 MPa is also relevant for the study of exoplanets interiors and their potential habit-
ability. This is especially true for water worlds like the ones proposed in the TRAPPIST‐1 system (Grimm
et al., 2018; Unterborn et al., 2018). The self‐consistent thermodynamic properties for water and its ices pro-
vided by SeaFreeze can be used to accurately study the interior structure and evolution of watery exoplanets
(Noack et al., 2016), computing of radius‐mass curves (Sotin & Grasset, 2007; Unterborn et al., 2018), as well
as studying their habitability and the effects of possible snow‐ball regime on ocean words (Kite & Ford, 2018;
Ramirez & Levi, 2018). It should be noted that these world's hydrospheres could be significantly thicker than
those of large icy moons, resulting in possibly ice VII and ice X being present as well. The validity of the pre-
sent SeaFreeze representations extends to ice VI (2,300 MPa). Ice VII and ice X representations will be
included in future revisions.

The scientific objectives of upcoming flagship missions (NASA Europa Clipper, Phillips & Pappalardo, 2014;
and ESA/JUICE, Grasset et al., 2013) include a strong emphasis on the study of water‐rich planetary inter-
iors and the potential habitability of icy moons. Instrument investigations planned for these missions will
determine gravitational moments and induced magnetization that depend on high‐pressure aqueous system
thermodynamics (Vance, Planning, et al., 2018, and reference therein).

The recent success of theMars InSight seismometer on theMartian surface highlights the importance of seis-
mic investigations to determine planetary structure. Two concept lander missions, a Europa Lander (Hand,
2017; Pappalardo et al., 2013) and the recently selected New Frontiers Dragonfly mission to Saturn's moon
Titan (Ralph D Lorenz et al., 2018), include a seismometer package. Because SeaFreeze body wave velocities
in ices and fluids can be implemented in seismic models (Panning et al., 2018; Stähler et al., 2018, 2019), this
framework can be used to refine seismic instrument specifications, and ultimately can be a resource for the
analysis of mission data.

In summary, using state of the art techniques, we accurately measured long‐needed volumes of H2O ices II,
III, V, and VI over 180–270 K and 200–1,600 MPa, within and beyond their stability fields. By combining
these data with a physically grounded thermal model to determine the Gibbs energy, we provide the first
Gibbs energy equations of state for ices II, III, V, and VI. These Gibbs representations allow accurate deter-
mination of melting curves (including metastable extensions) to 2,300 MPa. Moreover, our vibrational ener-
gies, based on a statistical physics and experimental and computational densities of state for each
polymorph, allow us to derive for the first time physically grounded specific heats for ices II, III, V, and
VI. Our comprehensive Gibbs representations refine the solid‐solid phase boundaries down to 130 K (Ih–
II, Ih–III, II–III, II–V, II–VI, III–V, V–VI), identifying the hysteresis in the unreversed measurements of
Bridgman (1912). We combined these Gibbs representation in an open source and modular computational
framework “SeaFreeze” (in Python and Matlab™), providing access to thermodynamic properties of water
and ices under conditions found in the hydrospheres of ocean worlds.
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Data Availability Statement

The SeaFreeze open‐access code is available at https://doi.org/10.5281/zenodo.3367730, an open source
repository hosted by Zenodo (all results presented here are computed using the released version 0.9.2).
Future updates will be available through GitHub (https://github.com/Bjournaux/SeaFreeze). See the sup-
porting information Figure S1 for data PT coordinates and Figures S2–S5 for examples of LeBail refinement
of high‐pressure ices II, III, V, and VI X‐Ray diffraction patterns. In Figures S6–S8, constructed phonon den-
sity of states and resulting thermal energy and isochoric specific heat are represented for ice II, III, and VI.
Text S1 summarizes the fitting of the shear modulus and seismic wave data. Figures S9–S12 show the ther-
modynamic properties surfaces of ices II, III, and VI. Finally, Text S2 provides details and examples on how
to use the SeaFreeze code.
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