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Abstract—In this tutorial paper, we look into the evolution
and prospect of network architecture and propose a novel
conceptual architecture for the 6th generation (6G) networks.
The proposed architecture has two key elements, i.e., holistic
network virtualization and pervasive artificial intelligence (AI).
The holistic network virtualization consists of network slicing and
digital twin, from the aspects of service provision and service
demand, respectively, to incorporate service-centric and user-
centric networking. The pervasive network intelligence integrates
AI into future networks from the perspectives of networking
for AI and AI for networking, respectively. Building on holistic
network virtualization and pervasive network intelligence, the
proposed architecture can facilitate three types of interplay, i.e.,
the interplay between digital twin and network slicing paradigms,
between model-driven and data-driven methods for network
management, and between virtualization and AI, to maximize
the flexibility, scalability, adaptivity, and intelligence for 6G
networks. We also identify challenges and open issues related
to the proposed architecture. By providing our vision, we aim
to inspire further discussions and developments on the potential
architecture of 6G.

Index Terms—6G, network architecture, network virtualiza-
tion, digital twin, AI for networking, networking for AI.

I. INTRODUCTION

A. Background

With the ongoing worldwide deployment of the 5th genera-
tion (5G) networks, the technical community in wireless com-
munications and networking has started looking into the 6th
generation (6G) networks for 2030 and beyond. While the ex-
act concepts and techniques that define 6G are not determined
yet, visions, requirements, use cases, and candidate techniques
are discussed in an increasing amount of works, e.g., [1]–
[3]. Among these discussions, some preliminary consensus
regarding 6G emerges. For instance, in terms of main require-
ments of 6G, the urgency of improving security [4] and energy
efficiency [5] is understood unanimously. For use cases of
6G, the combination of enhanced mobile broadband (eMBB),
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ultra-reliable and low-latency communications (uRLLC), and
massive machine-type communications (mMTC) have been
brought up, despite the different terminologies used in dif-
ferent works [6], [7]. As to candidate techniques, commonly
mentioned examples include the integration of satellite, aerial,
terrestrial, and underwater networks [8], [9], (sub)terahertz and
visible light communications [10], artificial intelligence (AI)
empowered networks [11]–[13], to name a few.

One consensus deserving special attention is that 6G may
need a brand-new network architecture. Driven by cost ef-
fectiveness and efficiency, the evolution of network architec-
ture follows the evolving services provided by the networks.
For instance, to introduce data service, a packet-switched
core network component emerged in the 3G architecture as
a complement to its circuit-switched counterpart for voice
service [14]. Then, to accommodate the exponential growth of
data traffic, 4G introduced a redesigned and simplified network
architecture for a flat all-Internet protocol (IP) network with in-
creased data rate and reduced latency [15]. In the era of 5G, as
networks become more heterogeneous than ever while services
become diversified, various network architecture innovations
have been proposed towards flexible service-oriented network-
ing, including software defined networking (SDN) [16], cloud
radio access network (C-RAN) [17], and network slicing [18],
[19]. Therefore, envisioned to support unprecedentedly diverse
services with exceedingly stringent quality of service (QoS) or
quality of experience (QoE) requirements, 6G will most likely
need ground-breaking innovations in network architecture.

While conceiving an architecture for 6G, it is difficult to
overlook two key elements, i.e., virtualization and AI. Network
virtualization already plays an important role in the architec-
ture of 5G [20]. The virtualization of resources, functions,
and networks enables resource sharing, software implemen-
tation of network functions, and service-orientated network-
ing, respectively, and thereby increases resource utilization
while reducing the cost for deploying and operating networks.
Virtualization reflects a trend of softwarization for flexible,
scalable, and adaptive network management [21]. Therefore,
it is foreseeable that virtualization will remain crucial in the
architecture of 6G. As for the second key element, i.e., AI, a
growing number of research teams worldwide are investigating
AI-driven networks, and high expectation is placed on AI
for empowering 6G [1], [22]. In comparison with heuristic
or mathematical model based approaches for communications
and networking, AI based approaches can handle complicated
networking problems and obtain accurate results, provided
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that sufficient data are available for training. This advantage
suits the increasingly heterogeneous and dynamic networks,
where mathematical models may not exist or cannot accurately
characterize the considered problems. Therefore, it is not
difficult to predict the significance of AI in 6G.

B. Architectural Innovations Required for 6G

Recognizing the importance of virtualization and AI, we
further look into their limitations in the state-of-the-art to
comprehend the architectural innovations required for 6G.
Existing virtualization techniques mostly deal with service
provision in communication networks. For instance, network
slicing highlights available network resources, service provi-
sion capability, and QoS satisfaction for various services [23].
While such virtualization, with a focus on service provision,
enables 5G to handle diverse coexisting services, it may not
suffice for 6G since the characteristics of end user service
demand can be the key to achieving user-centric networking.
Therefore, in the future, virtualization should focus on both
the service provision capability of a network and the service
demand of end users in the network. This will lead to the
virtualization of end users in addition to the virtualization of
networks. As for AI, existing research on AI mostly addresses
specific functions (e.g., routing [24]), layers (e.g., physical
layer [25]), network segments (e.g., access networks [26]),
or applications (e.g., autonomous driving [27]) of a network.
Meanwhile, how to integrate AI into the network architecture
across different layers or network segments needs further
investigation. The scope and extent of AI-driven networks are
yet to be determined.

As virtualization extends to cover both service provision and
service demand while AI pervades every corner of the network,
close connections between the two elements are foreseeable
and can dominate the architectural needs of 6G. The first
connection is through network and end user data [28]. Vir-
tualization facilitates the characterization of network service
provision capability, service performance, resource utilization
and, in future networks, end user service demand. As a result, a
vast amount of data will be generated, which can be exploited
to characterize the network and end users. Such data, if
properly managed, can empower both AI-driven networking
and AI applications (e.g., object detection) [29]. The second
connection is through network control. AI can be used to
make decisions pertinent to virtualization, including service
admission, slice establishment, dynamic virtual network func-
tion orchestration, and resource scheduling. In the future, AI
can also help control data collection for the virtualization of
end users and extract features of virtualized end users. Thus,
AI has the potential to improve the efficacy and adaptivity
of virtualization. The third connection is through network
resources. A main motivation of network virtualization is
to coordinate resource sharing among different services and
thereby improve network resource utilization and service sat-
isfaction. AI-driven networking can target efficient utilization
of network resources. As both virtualization and AI consume
computing, communication, and storage resources, they may
compete for network resources. However, AI has a potential

to increase the efficiency of virtualization through intelligent
network planning and operations, while virtualization may
increase the efficiency of AI through proper data provision
and management. As a result, they should work together to
enhance network resource utilization and service quality.

A rudiment of the above connections through data and
control can be observed in the existing architecture of 5G.
For instance, the 3rd Generation Partnership Project (3GPP)
introduces a network data analytics function (NWDAF) for
5G in Release 15 [30] and enablers for network automation
(eNA) in Release 16 [31]. The architecture design provides
a framework for the NWDAF to collect data from other
network functions (such as policy control and network slice
selection functions) and provide analytics (such as data traffic
statistics and predictions) back to these network functions. In
6G, the scope and level of both data collection and analytics
will expand significantly. Most likely, network data analysis,
instead of being limited to one or two specific functions, will
be AI-driven and available everywhere in a network. Similarly,
the data available for network management, instead of being
limited in type, content, or format, should provide information
of the network and end users as needed. Such expectations can
be fulfilled by extending the roles of virtualization and AI in
the network architecture.

C. Our Vision

Our vision of network architecture for 6G is based on
the importance of virtualization and AI, their limitations in
existing networks, and the essential connections between them.
Specifically, we aim to design a network architecture that i)
supports virtualization of the network and end users from
the perspectives of service provision and service demand,
respectively, ii) integrates AI in various network functions,
layers, segments, and applications under a unified architecture,
and, more importantly, iii) facilitates the interplay between
virtualization and AI, enabling their coexistence, integration,
and mutual enhancement. To consolidate the vision, we raise
the following three key questions:

• How to further advance virtualization beyond network
slicing?

• How to enable AI into every facet of a network?
• How to effectively integrate virtualization and AI through

network architecture design?
In pursuit of answering the preceding questions, we develop

the ideas of holistic network virtualization and pervasive
network intelligence for 6G network architecture. Holistic
network virtualization advances virtualization toward 6G by
incorporating network slicing and digital twin paradigms.
The former enables service-centric network management, and
the latter adds a user-centric perspective to virtualization
for future networks. Pervasive network intelligence enables
generic integration of AI into a network from the perspectives
of AI for networking and networking for AI. The former
emphasizes the role of AI in network management, while the
latter leverages network design to support AI applications.
In this tutorial paper, for both holistic network virtualization
and pervasive network intelligence, we survey existing studies,
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present our network architecture designs, and illustrate their
benefits. Unifying these two components, we further introduce
an overall conceptual network architecture, which fulfills our
vision of unprecedentedly flexible, scalable, adaptive, and
intelligent networks for 6G.

This tutorial paper can provide useful information and
benefit readers from three aspects. First, for readers who
are interested in the historical and current developments of
virtualization and AI techniques, we survey the literature and
provide a review of both in the context of communication
networks. Second, for readers who are exploring future direc-
tions in virtualization and AI, we propose original ideas for
advancing them toward 6G. Specifically, we illustrate designs
and ideas, such as incorporating digital twins for holistic
network virtualization, connected AI for network management,
AI slices with training and inference separation, and hybrid
data-model driven methods, throughout this paper. Last, after
introducing our vision of holistic network virtualization and
pervasive network intelligence, we present open issues and
challenges to inspire further research.

There are a few surveys on virtualization and AI in the liter-
ature [21], [32]–[34]. Regarding virtualization, Minerva et al.
present existing digital twin based applications in the context
of IoT [32], and another survey introduces the key enabling
technologies and design principles of network slicing [21].
Regarding AI, Boutaba et al. undertake a comprehensive
survey on AI applications in various areas of networking [33],
and another survey focuses on deep learning (DL) based
applications in wireless networking [34]. In comparison, this
tutorial paper focuses on the vision of 6G. Specifically, after
introducing state-of-the-art virtualization and AI techniques,
we propose original designs, including holistic network vir-
tualization and pervasive network intelligence, to establish a
novel conceptual architecture for 6G networks.

D. Structure of the Paper

The structure of this tutorial paper is shown in Fig. 1.
Section II illustrates our vision of 6G networks from the

aspect of holistic network virtualization. We review existing
network virtualization concepts and techniques in Subsec-
tion II-A. Then, we introduce end user virtualization with a
focus on digital twins in Subsection II-B. Lastly, we present
our idea of holistic network virtualization, highlighting a six-
layer virtualization architecture, in Subsection II-C.

Section III illustrates our vision of 6G networks from the
aspect of pervasive network intelligence. Subsection III-A
presents an overview of representative AI techniques that are
potentially useful for 6G networks. Subsection III-B introduces
the motivation for pervasive network intelligence and presents
a four-level AI architecture. Subsections III-C and III-D sum-
marize the existing research and present our ideas on AI for
networking and networking for AI, respectively.

Section IV integrates holistic network virtualization and
pervasive network intelligence and presents our overall vision
for 6G. Subsection IV-A reviews related studies on archi-
tectures for 6G. Subsection IV-B introduces a conceptual
architecture for 6G networks that incorporates holistic net-

TABLE I: List of Acronyms

3GPP 3rd Generation Partnership Project
5G 5th Generation
6G 6th Generation
AI Artificial Intelligence
AL AI Level
AP Access Point
API Application Programming Interface
ARQ Automatic Repeat-Request
BS Base Station
C-RAN Cloud Radio Access Network
DL Deep Learning
DNN Deep Neural Network
DRL Deep Reinforcement Learning
eMBB Enhanced Mobile Broadband
FL Federated Learning
IoT Internet of Things
IP Internet Protocol
ITU International Telecommunication Union
LSTM Long Short-Term Memory
LTE Long Term Evolution
mMTC Massive Machine-Type Communications
MIMO Multiple-Input Multiple-Output
ML Machine Learning
NFV Network Function Virtualization
NN Neural Network
NWDAF Network Data Analytics Function
QoE Quality of Experience
QoS Quality of Service
RAN Radio Access Network
SBS Small Base Station
SDN Software Defined Networking
SNR Signal-to-Noise Ratio
UAV Unmanned Aerial Vehicle
uRLLC Ultra-Reliable and Low-Latency Communications
VL Virtualization Layer
VM Virtual Machine
WSN Wireless Sensor Network

work virtualization and pervasive network intelligence. Sub-
sections IV-C and IV-D discuss the components, subsystems,
and potential implementation of the proposed architecture.
Subsections IV-E to IV-G elaborate on three types of inter-
play enabled by the proposed architecture, i.e., the interplay
between digital twin and network slicing, between data-driven
and model-driven methods, and between virtualization and AI,
respectively.

Section V identifies key challenges and open issues related
to the proposed network architecture, and Section VI con-
cludes this research.

Table I lists the acronyms used in this paper.

II. HOLISTIC NETWORK VIRTUALIZATION

In this section, we first review virtualization techniques in
existing networks and their benefits. Then, we introduce the
idea of holistic network virtualization.

A. Network Virtualization

The concept and techniques of network virtualization have
been evolving over more than three decades [35]. Early
research on network virtualization includes virtual local area
networks motivated by facilitating different types of operations
(services) in distributed systems [36], as well as providing
flexible network control and improving link utilization [37].
Another example of network virtualization is virtual private
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Fig. 1: The structure of this paper.

networks, which establish efficient and secure communication
links to connect geographically dispersed end users. Over time,
the desire for programmable network management extends to
the objective of enhancing network architecture.

The advancement in cloud computing has propelled re-
cent development in network virtualization, including network
function virtualization (NFV) and network slicing. With NFV,
software instances running on virtual machines at general
computing servers replace customized and proprietary hard-
ware for various network functions [38]. At the network
core, NFV applies to functions such as switching, firewall,
deep packet inspection, and session border controller [39].
At radio access networks, NFV applies to frame generation,
modulation, carrier allocation, etc. [40]. The realization of
NFV becomes an enabler for network slicing, which is a
key network architecture innovation in 5G. Network slicing
emphasizes a service-oriented perspective in network man-
agement by creating multiple end-to-end virtual networks, i.e.,
slices, for different services on top of shared physical network
infrastructure. With network slicing, network resources are
first reserved for respective services in network planning stages
and later allocated to individual users in network operation
stages [11]. The creation, adjustment, and termination of slices
are based on the varying spatiotemporal distribution of service
demands to provide a high level of flexibility and adaptivity
in network management [23].1

Virtualization can be applied on different levels and scales
in a network. Existing techniques include virtualization at
node, link, resource, and network levels. Virtual nodes are
abstractions of substrate nodes in a network such as servers,
routers, and switches, and typical examples of node virtualiza-
tion are storage and computing server virtualization [41], [42].
Virtual links are the logical channels that interconnect virtual
nodes. Virtual resources are abstractions of computing, mem-
ory, storage, and communication resources in a network [43],
while physical resources at different locations can form virtual

1SDN and C-RAN are also closely related to network virtualization since
virtualization significantly simplifies and expedites their realization in modern
wireless networks.

resource pools [38]. For instance, the virtualization of a
network function is the execution of a network control or
service function by running software, supported with necessary
resources. A virtual network is the combination of virtual
nodes and links with proper virtual resource allocation for
a service request to meet its QoS requirements, supported by
necessary networking protocols. Besides the aforementioned
works, more representative research works on node, link, re-
source, and network virtualization are summarized in Table II.

Regardless of its level and scale, virtualization in the context
of networking typically demonstrates the following character-
istics:

• Abstraction - Abstraction provides a high-level overview
of a network while hiding details of the underlying
physical network entities (nodes, links, or networks) or
resources [63]. This simplifies network management and
facilitates flexible service provision;

• Co-existence - Multiple virtual entities corresponding
to a shared physical entity co-exist, or multiple virtual
resource pools co-exist on the same physical resource
pool [35]. This enables service-oriented virtual networks
and improves network resource utilization efficiency;

• Isolation - Coexisting virtual entities corresponding to the
same physical entity should function independently [64].
This is necessary for guaranteeing service reliability,
security, scalability, and QoS satisfaction.

Both academia and industry have spent a significant amount
of efforts on network virtualization. For virtualizing core
networks, some works leverage SDN techniques to separate
the control and data planes through different protocols or
application programming interface (API), e.g., OpenFlow [65].
Furthermore, network virtualization has been extended to radio
access networks (RANs), and several frameworks for RAN
virtualization are proposed. A SoftRAN framework enables
both centralized and distributed RAN control based on the time
sensitiveness of control decisions [66]. Another framework,
FlexRAN, offers a hierarchical architecture for real-time RAN
control and incorporates a flexible API to separate control
and data planes in RANs [67]. Initiated by industry, such as
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TABLE II: Some Representative Works on Node, Link, Resource, and Network Virtualization

Type Work Scenario Research Focus Objective

Node
Virtualization

[44] Edge computing Virtual edge node placement Low-cost placement and fast response to user requests
[45] Cloud computing Virtual machine (VM) place-

ment
Reliable VM placement and routing

[46] IP network Virtual node/router as IP over-
lay

Practical IP-level resilience to link failures

[47] Wireless sensor network
(WSN)

Architecture for sensor virtu-
alization in WSN

Multiple applications share the same WSN

[48] C-RAN Clustering of access points Forming user-specific virtual base stations given QoS requirements

Link
Virtualization

[49] WSN Virtual backbone construction Enabling low-complexity backbone construction with performance
guarantee

[50] Generic Virtual link embedding Reducing congestion probability given bandwidth demands
[51] Internet service provider

(ISP) network with SDN
Virtual link provision Maximizing network throughput subject to QoS and robustness

constraints

Resource
Virtualization

[52] Cloud computing Composite virtual resource
mapping

Efficient mapping of computing and networking resources to substrate
resources within networked clouds

[53] Cloud computing VM migration Low-cost transferring of VM storage and memory during VM migra-
tion over wide area networks

[54] Radio access network
(RAN)

Radio resource virtualization Maximizing throughput with fairness among multiple mobile network
operators

[55] RAN Radio resource virtualization Delay-bounded QoS provisioning through radio resource virtualiza-
tion

[56] Vehicular network Resource sharing among
slices

Reusing communication and caching resources to support applica-
tions with different QoS requirements

Network
Virtualization

[57] 5G core network with
SDN

Network function chain em-
bedding

Minimizing embedding cost subject to network resource constraints

[58] Core network with SDN Network function chain em-
bedding

Minimizing total flow in the network subject to network resource
constraints

[59] C-RAN Slice request admission Maximizing the revenue of the C-RAN operator subject to network
resource constraints

[60] Heterogeneous wireless
network

Dynamic radio resource slic-
ing

Maximizing network utility through optimal bandwidth slicing and
user association

[61] 5G RAN Radio resource allocation in
RAN slicing

Satisfying QoS requirements by proper resource mapping and
scheduling

[62] IoT Service-oriented
authentication

Privacy-preserving slice selection and secure access of service data

AT&T and China Mobile, Open-RAN (O-RAN) is proposed as
an open-source and open-interface platform to support RAN
virtualization [68], which can incorporate AI and provide APIs
for data-driven networking [69]–[71].

The adoption of virtualization techniques renders modern
networks programmable, flexible, and scalable, which signifi-
cantly increases cost effectiveness in network deployment and
operation. Due to these benefits, it is foreseeable that advanced
virtualization techniques will be essential to 6G. Meanwhile,
the existing scope of network virtualization is limited in the
sense that virtualization techniques mostly focus on network
infrastructure and resources, yet less attention is given to end
users. In 6G, end user virtualization will become necessary for
two reasons. First, with increasingly diverse end user devices,
resource-demanding services, and heterogeneous and dynamic
networks, providing QoE guarantee for end users will become
more challenging in the era of 6G. Accurate characterization
and abstraction of end users, which necessitate end user virtu-
alization, can be a precondition to QoE satisfaction. Second, as
AI will be a highlight of 6G, extensive user data are required
to fuel AI services and AI-based network management. Given
such need for data, end user virtualization can be a competitive
approach for collecting, managing, and processing data from
end users.

B. End User Virtualization

Until recently, only a few works study end user virtu-
alization in the context of networking. One early example
relevant to end user virtualization is network-hosted avatars,

i.e., virtual agents, of end users for applications such as file
downloading when the users are offline [72]. Another example
is virtual objects, proposed as a component in Internet of
things (IoT) platforms [73]. The motivation is to handle the
heterogeneity of physical objects (end users) via virtualization
and to facilitate the provision of services to end users.

As a potential paradigm to enable end user virtualization,
digital twin attracts much attention lately. The concept of
digital twin was originally conceived by Michael Grieves for
product life-cycle management in industry in 2003 [74], [75].
Later, NASA and U.S. Air Force Vehicles developed a digital
twin paradigm for vehicles to forecast their remaining usable
life and the mission success probability [76]. A digital twin
is characterized by a full digital representation of a physical
object or a process and real-time synchronization between
the physical object or process and its corresponding digital
replica. Digital twins can contain a large volume of data from
physical objects or processes for advanced analytics, and the
analytical results can be used to improve the performance of
the corresponding physical objects or processes. Exemplary
digital twins in general application scenarios, as well as
potential requirements for the digital twins to enable big data
analytics, are discussed in [77]. Potential implementation of
digital twins representing IoT devices in industrial systems
is proposed in [78]. Other representative research works on
digital twins are summarized in Table III.

Most existing research on digital twins in the network field
focuses on applications, e.g., distributed clock synchroniza-
tion [79] and computation offloading [80]. In comparison,
the study of digital twins from the perspective of network
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architecture and network management is limited at the mo-
ment.2 A digital twin based cloud-centric network architecture
is proposed in [83], where digital twins of end users hosted
at the network edge play the role of communication assistants
or network data loggers.

Digital twin appears to be an intuitive solution to end user
virtualization. Nevertheless, extending the existing network
virtualization, represented by network slicing, to end users is
not straightforward, given the target of flexible and efficient
network management and service provision. For instance, it is
trivial to simply use node-level virtualization and to represent
end users as virtual data sources or sinks in a virtual network.
Moreover, while end users may possess communication and
computing resources, resource-level virtualization does not
characterize user-specific properties, e.g., location and mobil-
ity, or service-specific properties, e.g., data traffic variations,
of end users. It is necessary to understand potential benefits,
requirements, and implementation of digital twin based end
user virtualization, with a particular focus on the integration
of digital twin and existing network virtualization frameworks.

There are potentially two-fold benefits of digital twin based
end user virtualization, i.e., extensive end user data and
powerful network emulation capability. While the virtual-
ization of network infrastructure and resources characterizes
the network status and service provision capabilities, digital
twins of end users can provide extensive data regarding
service demand and user QoS/QoE satisfaction. Such data
can play a significant role in network management through
facilitating well-informed network planning and operation
decisions. Moreover, the real-time or near real-time synchro-
nization between end users and their digital twins enables
powerful network emulations. For instance, multiple instances
of the same virtual network can be created, with real-time
end user information, e.g., location and data traffic volume,
provided to all instances through synchronized end user digital
twins.3 Different network planning or operation strategies can
be applied and emulated in different instances, while each
instance remains synchronized with the real-world network
environment through the information provided by the digital
twins of end users.

To take part in network virtualization, digital twins of end
users should satisfy the following requirements:

• Flexible: The abstraction of end users into digital twins
must be sufficiently flexible to represent heterogeneous
physical devices (such as smartphones, vehicles, and
industrial sensors) and serve various applications (such as
virtual reality gaming, autonomous driving, and industrial
automation);

• Compatible: The end user virtualization based on digital
twins should complement and enhance the state-of-the-art
network virtualization, i.e., network slicing. For instance,
digital twins of end users should provide data to support

2Some works focus on distributed networks, e.g., vehicular networks, and
adopt digital twins as an approach for network virtualization instead of end
user virtualization [81], [82].

3The emulation can apply to a virtual network segment, e.g., the network
edge.

various network slices, while each slice may only have
access to a subset of data pertinent to that slice;

• Customizable: The attributes of digital twins should be
customized and updated based on the corresponding
service, network traffic, resource utilization, etc. For
instance, the amount and types of data included in a
digital twin should be adaptable rather than fixed. In
addition, while the focus of digital twins is placed on
end users, digital twins should be able to represent other
network entities, e.g., unmanned aerial vehicle (UAV)
mounted mobile base stations (BSs).

In addition, network resource consumption from creating and
maintaining digital twins should be taken into account.

Noting the aforementioned benefits and requirements, we
aim to answer the following key questions with respect to the
implementation of digital twins:

• Location: Where should digital twins be hosted in a
network?

• Affiliation: Should digital twins exist within or outside
network slices?

• Data: What data attributes pertinent to networking should
be included in a digital twin? How much historical
data should be included for a specific attribute? Should
predicted user information be included?

• Synchronization: How to determine the frequencies of up-
dating various data entries of a digital twin by acquiring
new data from the physical object?

• Control: Who should determine and update digital twin
models and based on what information?

In the next subsection, we propose a novel conceptual architec-
ture for holistic network virtualization, which integrates digital
twins and network slicing, and delve into the above questions.

C. Holistic Network Virtualization

We propose a novel virtualization architecture, i.e., holistic
network virtualization, for integrating digital twins into net-
work virtualization, in order to improve network management
and service provision capabilities. The proposed virtualization
architecture consists of six layers and is illustrated in Fig. 2, in
which virtualization layer (VL) 1 is the bottom layer for data
collection and VL 6 is the top layer for digital twin model
control. The outline of each layer is given as follows:

VL 1 – Data Collection: Data required for the digital
twin representation of selected end users are collected from
the corresponding physical entities following prescribed data
precision, uploading method, collection frequency, etc. The
data are collected via access points, and the data collection is
controlled by local controllers deployed at network edge;

VL 2 – Level-One Abstraction: Based on the current digital
twin model from the digital twin model control layer (i.e., VL
6), which determines the content and format of data included
in every digital twin, digital twins are formed and updated
using data collected by VL 1. The abstraction may include
the aggregation of data from different sources, the update of
historical data, and the creation of digital twins for new or
additional end users. The digital twins created in this layer
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TABLE III: Some Related Works on Digital Twins

Work Application Type of Physical Ob-
ject

Role of Digital Twin Target of Using Digital Twin

[84] Underwater network
for ocean observation

Underwater
sensors/actuators

Monitoring and testing observation sys-
tem

Visualizing an ocean observation system and enhancing simulations

[85] Edge computing for in-
ternet of vehicles

Vehicles Collecting and sharing information
about vehicles and surroundings

Empowering computing offloading by facilitating data analytics

[86] 5G network slicing Network slices Predicting and monitoring slice perfor-
mance

Assisting autonomous network slicing

[87] Smart factory Workstations in a con-
veyor system

Evaluating and validating control strate-
gies

Implementing intelligent conveyor systems

[88] Smart city Road infrastructure Monitoring roads and detecting vehi-
cles/persons

Supporting smart city applications through gathering and processing
data

[89] IoT Objects with sensing
capability

Storing data for detecting events and
recognizing behaviors

Facilitating synthetic sensing through situation awareness and ex-
plainability

[90] Industry 4.0 Industrial machinery Generating training dataset and simula-
tions

Achieving accurate anomaly detection with limited labelled data

[91] Smart healthcare Patients Handling data for analysis and develop-
ing AI models

Improving healthcare operations

[92] Industry 4.0 Technical assets (e.g.,
machine, environment)

Integrating knowledge from model and
data for simulations

Enhancing simulation-based systems engineering

[93] Mobile edge comput-
ing

Real-world network
environments

Training learning algorithms and moni-
toring network environments

Enabling learning for optimizing user association, resource alloca-
tion, and offloading

[94] Industrial 4.0 Products, workstations,
conveyor belts

Data sharing and control of security-
critical processes

Building a security architecture based on state replication and
synchronization

[95] Cyber-physical
systems

Generic physical de-
vices

Monitoring, diagnostics, and prognos-
tics

Supporting applications such as context aware interaction and
driving assistance

[96] IoT Generic physical sys-
tems

Managing context information and self-
adapting

Increasing autonomy and enhancing cooperation through autonomic
digital twins

[97] Welding manufactur-
ing

Human-robot interac-
tion systems

Monitoring welding robot and enabling
simulations

Visualizing welder behavior and training welders

[98] Smart manufacturing Job shop scheduling
systems

Obtaining scheduling data and simulat-
ing scheduling strategies

Enabling timely response and reducing scheduling plan deviation

[99] Smart manufacturing Manufacturing systems Predicting and verifying the system per-
formance

Increasing autonomy and enhancing fault diagnosis

[100] Smart building Photovoltaic energy
conversion units

Estimating the status of photovoltaic en-
ergy conversion unit

Improving the accuracy of fault detection

[101] Internet of vehicles Vehicles and road side
units

Monitoring the real-time status of vehi-
cles and road side units

Supporting network resource management

[102] Mobile edge caching Vehicles Capturing the social characteristics of
vehicles

Improving the effectiveness of cache management

are level-one digital twins, representing individual end users,
and hosted at servers connected to local controllers;

VL 3 – Local Processing and Control: The data from
level-one digital twins are processed at network edge for
predicting behaviors of individual users, such as user data
traffic and mobility patterns, and making user-level service
decisions, such as computing offloading, content delivery,
and link-layer protocol adaption. Local processing may also
include emulations of an edge network or a part of it based
on level-one digital twins. Local control may include further
data aggregation from level-one digital twins for VL 4, the
migration of digital twins based on user mobility, and the
selection of end users for digital twin representation. Similar
to the case of VL 2, the local processing and control occur at
servers affiliated with local controllers;

VL 4 – Level-Two Abstraction: The aggregated data from
VL 3 is sorted into service-specific data for respective net-
work slices in VL 4. Additional data that describe slice
configuration, slice resource utilization, slice service level
agreement satisfaction, etc., are generated for each slice. Then,
the aforementioned data are abstracted to form or update the
digital twins of various slices. The digital twins created in
this layer are level-two digital twins, which are associated
with virtual networks (slices). The level-two digital twins are
hosted at servers connected to the centralized controller of the
network;

VL 5 – Slice-Level Processing and Control: The data

from level-two digital twins of network slices are processed
for service-specific prediction, e.g., spatiotemporal service
demand distribution forecast, or slice-level decision making,
e.g., planning and operation decisions. Slice-level processing
may include emulations of an end-to-end slice or a part of
it based on level-two digital twins. Slice-level control may
include slice admission, resource reservation, and slice service
coverage control. Similar to the case of VL 4, the service-
level processing and control occur at servers affiliated with
the centralized controller of the network;

VL 6 – Digital Twin Model Control: This layer determines
and updates the models of level-one and level-two digital twins
based on available network resources for digital twins, the
performance of network management and service provision
decisions derived based on the current digital twins, and
the dynamic spatiotemporal service demands. For instance,
VL 6 determines data precision, synchronization frequencies
for different data attributes, the amount of historical data
contained in the digital twins for each attribute, and the
inclusion of predicted user information. In addition, this layer
decides the subset of data in level-one digital twins that each
slice can access. The digital twin model control also occurs at
servers affiliated with the centralized controller of the network;

The level-one digital twin model configured by VL 6 may
include the following data, which shall be collected by the
local controllers from end users at VL 1: (1) connectivity
and channel information, such as the AP(s) that an end user
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Fig. 2: The conceptual six-layer virtualization architecture for holistic network virtualization.

is connected to and the channel state information for each
connection; (2) service information, such as active service
types, data traffic volume of each service, and QoS satisfaction
of each service; (3) user information, such as user profile,
user location and mobility, network resources allocated to the
user, and the local computing and caching capabilities of the
user; and (4) additional use case-specific information, such
as motion sensor readings for augmented reality interactive
gaming or operation log for industrial IoT devices. The level-
two digital twin model configured by VL 6 may include
the following data, which shall be collected or generated
by the centralized controller: (1) slice service demand, such
as the number of service requests and the spatiotemporal
service request distribution; (2) slice resource configuration,
such as the reserved communication, computing, and caching
resources for the slice; (3) slice performance, such as the slice
service level agreement satisfaction, slice resource utilization,
and slice energy consumption; (4) slicing strategy, such as the
method or algorithm used for network function deployment,
resource reservation, and resource scheduling; (5) additional
use case-specific information, such as UAV trajectory config-
uration for UAV-assisted networks. Note that different end
user digital twin models are applicable to different types
of end users, and each network slice may have a uniquely
defined slice digital twin model. For example, the digital twins
of vehicles and industrial IoT devices most likely contain
different data, and the digital twin models may differ between
slices for industrial IoT and those for smart home or between
slices of different network operators. Accordingly, the need
for customization necessitates the digital twin model control
in VL 6.

In the conceptual virtualization architecture, VL 1 to VL 3
interface with the local controllers in the network, VL 4 and

VL 5 interface with the centralized controller of the network,
and VL 6 interfaces with both the local controllers and the
centralized controller. This architecture fully exploits the two
benefits of digital twins, i.e., providing extensive data for net-
work management and enabling powerful network emulations.
It also satisfies the aforementioned requirements for digital
twins in terms of flexibility, compatibility, and customization.
Last but not least, it answers the key questions regarding the
implementation of digital twins raised in Subsection II-B.

With the architecture design in Fig. 2, digital twins and
network slicing are integrated in the idea of holistic network
virtualization. Network slicing incorporates existing network
virtualization techniques such as NFV. Digital twins enhance
network slicing by providing organized and customized end
user data to slices and by further abstracting slices into level-
two digital twins. The design of two-level digital twins avoids
extra resource consumption from creating and maintaining
multiple digital twins of the same user for different slices and
the resulting burden of synchronizing them. Instead, each slice
has access to a subset of data from level-one digital twins
pertinent to either the corresponding service or general user
information such as location and mobility, and the pertinent
data are further aggregated to the level-two digital twins for
that slice. In this architecture, network slicing conforms to
service-centric network management, while digital twins add
a user-centric perspective to the virtualization. Specifically,
level-one digital twins characterize end users and their service
demands, and level-two digital twins characterize network ser-
vice provision capability, network performance, and network
resource utilization. Overall, the digital twin paradigm and
network slicing jointly support network management and ser-
vice provision, while the network configures digital twins and
network slices as needed, depending on network dynamics.
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D. Holistic Network Virtualization: A Summary

In this section, we have reviewed the existing scope and
techniques of network virtualization, identified the insuffi-
ciency of current network virtualization, introduced the idea
of holistic network virtualization to incorporate network and
end user virtualization, and developed a six-layer virtualization
architecture for holistic network virtualization.

The virtualization of resources, network functions, and
networks in 5G is expected to remain important in 6G, since
they contribute to flexible and adaptive network management.
Meanwhile, the virtualization techniques in 5G, represented
by network slicing and NFV, mostly focus on network vir-
tualization from the perspective of service provision. In 6G,
it will be essential to extend the scope of virtualization and
incorporate end user virtualization.

The digital twin paradigm is a promising solution to end-
user virtualization. In 6G, digital twins can be used for
characterizing the status and the service demand of individual
end users. The study of digital twins in the context of 6G
networks is still in an initial stage, and various definitions or
implementations exist. In our vision of holistic network vir-
tualization, digital twins are configurable assemblage of data,
including both historical and real-time data and both collected
and generated data, for describing end users, infrastructure, or
network slices. Moreover, the corresponding data collection
and processing are also configurable.

To consolidate holistic network virtualization, we have
proposed a six-layer virtualization architecture for 6G. The
architecture provides a reference design for systematically
integrating digital twins and network slicing and answers
important questions related to digital twins in 6G networks,
including where are they hosted, what data do they contain,
and how to manage them.

III. PERVASIVE NETWORK INTELLIGENCE

Pervasive network intelligence is the second element of our
vision for 6G. In this section, we first present an overview
of existing AI techniques. Then, we introduce the motivation
and propose a four-level architecture for pervasive network
intelligence. Next, we elaborate the idea of pervasive network
intelligence from the perspectives of AI for networking and
networking for AI, and review related works. Rather than
surveying specific AI techniques, this section focuses on the
architecture and methods of pervasive network intelligence.

A. AI Techniques: An Overview

The idea of AI is to design intelligent machines or sys-
tems to demonstrate human intelligence and perform tasks
as humans do or even better [131]. The advancement of
machine learning (ML) has facilitated the success of AI in
both academia and industry. Applications supported by ML
techniques, such as computer vision and natural language
processing, can achieve beyond human-level accuracy. Lately,
for its potential in enabling intelligent networks, AI has
received significant attention in the research field of wireless
networks.

ML techniques can be categorized into three types: un-
supervised learning, supervised learning, and reinforcement
learning. In terms of learning structures, the techniques can
be subdivided into centralized and decentralized techniques.
We list common ML techniques used in wireless networks in
Table IV.

Unsupervised learning evaluates features and patterns hid-
den in data for data analysis, such as prediction, without using
a labeled dataset. One popular application of unsupervised
learning techniques is data clustering, e.g., k-means [103] and
mixture models [105], for solving network planning problems,
such as cluster-forming in wireless sensor networks [104]
and small-cell deployment [132]. Neural networks can be
adopted to facilitate novel unsupervised learning algorithms.
For example, neural network-based autoencoders can learn the
compressed features of input data with a limited number of
neurons and can be leveraged for data prediction, such as
traffic forecasting [107].

Supervised learning exploits the mapping between the in-
put and output data via a given labeled dataset. Supervised
learning techniques can derive a mapping function, i.e., a
training model, from the input data to the labeled output
data in the dataset. Through applying a training model, the
output corresponding to a new input can be evaluated, which
can be utilized for decision making or prediction. A typical
method for supervised learning is using deep neural networks
(DNNs). DNNs use layers of artificial neurons to estimate
a non-linear correlation between the input and the output
data and iteratively improve the estimation accuracy. There
have been many successful applications of DNN techniques in
communications. For example, convolutional neural networks
(CNNs) utilize convolutional and pooling layers to identify
the correlation of multi-dimensional input data and have been
applied in modulation classification [112]; recurrent neural
networks (RNNs) explore the correlation among a sequence
of the data and have been widely adopted for traffic prediction
[113] and wireless channel modeling [133].

Reinforcement learning iteratively learns the optimal policy
by interacting with the environment, sensing network states,
and evaluating feedback. The goal is to maximize a cumula-
tive reward in a dynamic environment. Deep reinforcement
learning (DRL), which combines DNN and reinforcement
learning techniques, is used extensively in resource manage-
ment to solve complex decision-making problems. In DRL,
neural networks play the role of approximators to store high-
dimensional states or actions, which enables DRL to solve
complex problems efficiently. DRL has been widely used for
network optimization [134], resource allocation [19], [118],
[135], and user association [116], [121], [123] in wireless
networks.

With the development of mobile edge computing, dis-
tributed AI has been developed to harvest computing resources
at network edge and reduce communication overhead due to
data collection and exchange [136]. The learning models can
be trained and evaluated at network edge in a semi- or fully-
distributed manner. Specifically, federated learning (FL), as
one of the most popular distributed learning techniques, trains
models with data distributed over network edge. A centralized
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TABLE IV: Common ML algorithms.

Unsupervised Learning Supervised Learning Reinforcement Learning

Centralized
Learning
Algorithms

• K-means [103], [104]
• Mixture models [105], [106]
• Autoencoders [107]
• Generative adversarial
network [108], [109]

• Support-vector machine [110]
• Logistic regression [111]
• Deep neural network
[107], [112], [113]

• Deep Q-learning [114]–[116]
• Policy gradient [117]–[119]
• Actor-critic [120], [121]
• Deep deterministic policy
gradient (DDPG) [19], [122], [123]

Distributed
Learning
Algorithms

• Federated learning [124], [125]
• Split learning [126]

• Multi-agent reinforcement learning
[127]–[130]

controller aggregates locally-computed learning models and
updates parameters in the learning models. Due to such de-
centralized model training, FL is capable of preserving privacy
and can be applied in privacy-sensitive network management
scenarios [137], [138]. In addition, multi-agent reinforcement
learning has been developed to implement reinforcement learn-
ing in a distributed manner, which aims to handle scenarios
in which network agents cannot obtain sufficient information
from each other. Multi-agent reinforcement learning tech-
niques can be used, for example, to solve resource allocation
problems in heterogeneous networks [129], [130].

B. Motivation and AI Architecture

In 6G, AI is expected to penetrate every facet of the
network including end users, the network edge, and the cloud,
resulting in pervasive network intelligence. Such trend is due
to advancements and innovations in the areas of ML, data
collection, edge and cloud computing, and programmable net-
work control in recent decades. As such, AI will fundamentally
transform modern networks in many aspects and foster a
myriad of exciting applications.

The AI applications can be categorized into management-
oriented and service-oriented applications, which are detailed
as follows:

• Management-Oriented AI Applications - In these ap-
plications, AI is used as a tool for network manage-
ment, such as transmission power allocation in cellu-
lar networks [139] and resource reservation in network
slices [19]. AI techniques, such as reinforcement learn-
ing, have the potential of handling complicated decision
making problems in a dynamic network environment.
Resorting to AI techniques, the management-oriented AI
applications can analyze a large amount of network data,
make real-time network management decisions, and then
update network management policies based on the newly
analyzed data. Hence, for such applications, the key issue
is how to leverage advanced AI techniques to manage and
enhance complex networks, which falls into the scope of
AI for networking;

• Service-Oriented AI Applications - In these applications,
AI is offered as services for end users. Fuelled by
powerful computing servers and well-curated datasets,
AI techniques, especially DL, can outperform traditional
techniques in a wide range of applications, such as
environmental perception in autonomous driving, audio
recognition in intelligent healthcare, and object detection
in mobile virtual reality [140]–[142]. For instance, an

AL 2: 

Edge-Hosted AI 

AL 1: 

End User-Hosted AI 

Management-Oriented 

Management-Oriented

Service-Oriented

Service-Oriented

AL 3: 

Edge-Hosted AI  

AL 4: 

Cloud-Hosted AI 
AI for

 Networking

Networking 

for AI

Fig. 3: An illustration of the four-level AI architecture for
pervasive network intelligence.

AI-based YOLO algorithm can detect objects with a
high accuracy [143], [144], and the state-of-the-art DL-
based face recognition algorithm can achieve an accuracy
of 99% or higher [145]. Facilitating service-oriented AI
applications in a network consumes a large amount of
network resources, including storage and computing re-
sources for model training/inference, and communication
resources for data collection and model uploading. Hence,
for such applications, the key issue is how to design and
optimize the network to support emerging AI services,
which falls into the scope of networking for AI.

Note that the scope of AI in 6G includes AI for networking
and networking for AI, which is larger than that in 5G, as the
latter simply focuses on applying AI in communications.

An AI architecture is needed to characterize AI’s different
functionalities in different network segments. In the literature,
there are a few studies on the AI architecture. Edge intelligence
(or edge AI) is represented in six levels based on the amount
and path length of data offloading [131]. Moreover, edge
intelligence can be categorized into two parts: AI for edge
(i.e., to enhance and optimize the network edge with AI
techniques) and AI on edge (i.e., to carry out AI models
on the network edge) [146], [147]. Different from these
works on edge intelligence, our work focuses on a broader
scope of pervasive network intelligence and categorizes it into
multiple levels based on AI’s locations and functionalities in
the network.

As shown in Fig. 3, we propose a four-level AI architecture,
in which AI levels (ALs) 1 and 2 focus on service-oriented
applications, and ALs 3 and 4 aim at management-oriented
applications. We describe each level in detail as follows.

AL 1 - End User-Hosted Service-Oriented AI: Utilizing
local data and computing resources at end users, end user-
hosted service-oriented AI applications are offered as services
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for end users by processing AI tasks locally, such as next
word prediction in mobile keyboards [148], user traffic de-
mand prediction [149], and vehicle trajectory prediction [150].
When computing resources of end users are insufficient for
computation-intensive AI tasks, partial computation workloads
can be offloaded to nearby edge servers for collaborative
processing.

AL 2 - Edge-Hosted Service-Oriented AI: Residing at
network edge (e.g., Wi-Fi access points and BSs) close to
end users, edge-hosted service-oriented AI applications are
offered as low-latency services for end users, such as face
recognition in video surveillance [151] and object detection in
virtual reality [152]. To support edge-hosted service-oriented
AI applications, service demand data from end users are
collected, stored, and analyzed, and then the analytical results
are utilized for service provision.

AL 3 - Edge-Hosted Management-Oriented AI: At this
level, AI is hosted at local controllers at network edge for
network management that is executed in real time, such as
spectrum allocation, content caching [153], and computation
offloading [154]. Specifically, the edge-hosted management-
oriented AI is to allocate network resources to network nodes
for supporting services, including AI services at ALs 1 and 2.
For instance, the edge-hosted management-oriented AI can
be used to perform service migration across edge networks
to guarantee service continuity for high-mobility users, e.g.,
vehicular users.

AL 4 - Cloud-Hosted Management-Oriented AI: Cloud-
hosted management-oriented AI resides at the centralized con-
troller in the cloud for network management that is executed
once every several minutes or hours, such as slice admission
control [155] and virtual network function deployment [156].
Since the cloud possesses abundant computing and storage
resources, powerful and complex AI models can be trained
and deployed for managing large-scale networks.

Next, AI for networking is elaborated in Subsection III-C
to illustrate AI’s role in network management, and networking
for AI is discussed in Subsection III-D to illustrate AI service
provision in 6G networks.

C. AI for Networking

In this subsection, we discuss how AI techniques can
support network management. We first review existing works
on AI-based network slicing. Then, we introduce our idea of
connected AI solution for AI-based network slicing.

1) AI-Based Network Slicing: Network slicing includes two
stages: network planning stage for resource reservation and
network operation stage for resource scheduling [11]. In the
network planning stage, network resources are reserved for
network slices on a large time scale (e.g., from several minutes
to several hours). In the network operation stage, the reserved
resources of each slice are allocated to end users on a small
time scale (e.g., from several milliseconds to several seconds).
Due to network dynamics such as spatiotemporally changing
network traffic, it can be difficult for model-based solutions to
attain the optimal network slicing strategies. By contrast, AI
techniques can characterize network dynamics by analyzing

the collected network data and obtain the optimal network
slicing strategies accordingly. Next, we review AI-based net-
work slicing, taking into account the interplay between the
planning and operation stages. Representative research works
on AI-based network slicing are summarized in Table V.

On a small time scale, a local controller collects data and
provides resource scheduling strategies to allocate resources
reserved for each slice to end users. Specifically, the local
controller determines resource scheduling strategies based on
two factors: the amount of resources reserved for each slice,
which is determined by the centralized controller, and the in-
stantaneous user data from level-one digital twins pertinent to
that slice, such as service type, user location, and user mobility.
The main challenges of determining the optimal resource
scheduling strategies are two-fold: a large number of end users
and service demand dynamics. AI techniques have potentials
to cope with both challenges. First, to schedule resources for
a large number of end users, unsupervised learning methods,
such as k-means [167] and DNN based autoencoders [107],
can be utilized to classify end users according to their service
demands. Similar resource scheduling strategies can be applied
to end users with similar service demands, which facilitates
scalable network management. For instance, end users in close
proximity and with similar mobility patterns may experience
similar channel statistical behaviors, and the same power
control policy can be applicable to them. Second, to deal with
network dynamics, reinforcement learning can be applied for
generating adaptive resource scheduling strategies [168]. Rein-
forcement learning iteratively allocates resources to maximize
a long-term reward function and updates the reward function
based on feedback from the network environment. Moreover,
reinforcement learning can be combined with DNNs, such
as recurrent neural networks [27] and conventional neural
networks [123], to analyze the spatiotemporal pattern of user
data for finding the optimal resource scheduling strategies.

On a large time scale, local controllers aggregate the col-
lected user-level data to service-level information from level-
two digital twins, i.e., slice digital twins. Utilizing information
from slice digital twins, the centralized controller reserves
network resources for each slice. The challenges of resource
reservation are two-fold. First, making proactive resource
reservation that can avoid either resource over-provisioning or
under-provisioning is challenging with time-varying network
traffic. Second, the strategies for resource reservation and
scheduling are coupled, which further complicates resource
reservation. AI techniques can cope with these challenges as
follows. To address the challenge of proactive resource reser-
vation, supervised learning, such as long short-term memory
(LSTM) networks, can be used to exploit the features of
historic network traffic loads and predict traffic loads in near
future [149], [159]. The centralized controller can then use
the predicted traffic loads for proactive resource reservation.
To handle the correlation between resource reservation and
scheduling, reinforcement learning can be adopted to reserve
resources while considering network operation strategies as a
part of the dynamic network environment [19], [135], [164].
Moreover, an option-based hierarchical reinforcement learning
technique can be a potential solution for jointly optimizing
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TABLE V: Representative Works on AI-based Network Slicing

Stage Work Research Focus Objective AI Method

Network
Planning

[107] Network capacity prediction Forecasting the capacity for individual virtual networks Deep neural network based autoen-
coder

[86] Virtual representation for net-
work slices

Capturing the relationships among slices and monitoring the
end-to-end performance in dynamic network environments

Graph neural networks

[157] Resource reservation adjust-
ment

Maximizing the overall reward obtained from the tenants of
slices

Deep dueling neural networks

[158] Bandwidth allocation Jointly maximizing spectrum efficiency and the QoS require-
ment satisfaction ratio

Generative adversarial network and
deep Q network

[159] Bandwidth allocation Jointly maximizing spectrum efficiency and overall service
level agreement satisfaction ratio of slices

Long short-term memory and advan-
tage actor-critic

[160] Traffic prediction and re-
source provisioning

Minimizing the probability of slice service level agreements
violation

Gated recurrent unit

Network
Operation

[161] Computation offloading Minimizing average computing time of services and maxi-
mizing user computing experience

Deep Q network

[162] Slice selection and channel al-
location

Minimizing the power consumption of wireless transmission
for a sliced fog-RAN

Reinforcement learning

[163] Content caching placement
and delivery

Managing caching resources to maximize cache hit ratio
while satisifying resource reservation constraints

Deep Q network

[164] Inter-slice coordination Maximizing long-term payoff from the competition among
service providers through resource orchestration

Deep Q network

[165] Inter-slice coordination Maximizing QoS satisfaction ratio for slices by scheduling
transmission power and sharing resources among slices

Multi-agent deep Q learning

Two-Stage
Interplay

[19] Computing resource alloca-
tion in vehicular networks

Allocating spectrum and computing resources for slices
while minimizing computing service delay

Deep deterministic policy gradient

[166] Cross-slice admission and
congestion control

Maximizing operator revenue by resource reservation and
adjust reserved resources in real time

State-action-reward-state-action
(SARSA)

resource reservation and network operation policies and ad-
dressing network dynamics in both stages. This technique
has been used to tackle complex DRL problems by grouping
decision variables according to decision time scales [169]
or decision-making agents [170] and then determining the
decision variables. Through this novel reinforcement learning
technique, the complex correlation between resource reser-
vation and scheduling strategies can be obtained iteratively.
To apply this technique in network slicing, the centralized
controller can select the resource reservation strategies on a
large time scale, and local controllers find optimal resource
scheduling strategies on a small time scale, thereby jointly
optimizing both the resource reservation and the scheduling
strategies.

2) Connected AI Solution for Network Management: Ex-
isting AI applications on network management mostly focus
on individual control functions. For instance, learning-based
autoencoders can achieve reliable transmission power control
for high-speed data transmission with limited channel state in-
formation [171], and DNNs can select medium access control
protocol parameters with low communication and processing
overhead [172], [173]. Although various AI techniques have
been proposed for network management, AI models among
network control functions are usually isolated. Such isolation
may result in inefficient and redundant data processing, which
brings up a pressing need for integrating the AI models in
AI-based network control functions.

There are three types of solutions for integrating AI mod-
els [6]. In the first type of solutions, the entire network is
viewed as a black box, where a single AI model characterizes
the entire network and generates network control policies.
Such structure simplifies decision-making processes in net-
work management. However, training the single AI model
can be extremely difficult due to high-dimensional input data.
Then, the second type of solutions adopts different AI models
in a network for different network control functions, and the AI

models are generally independent on each other to reduce the
complexity of training. However, this approach neglects the
correlation and interplay among network functions and thus
cannot obtain a global-optimal network management strategy.
Moreover, network data may be repetitively processed by
different AI models with similar network functions, which
degrades network management efficiency. For instance, AI
models for user mobility management and computing service
migration would repetitively analyze end user mobility. In
contrast, the third type of solutions, namely connected AI,
exploits the correlations among network control functions,
connects their AI models, and allows them to jointly make
network control decisions. The connected AI solution offers
benefits in integrating AI models by highlighting the interplay
among them and balancing training complexity and network
performance. Therefore, the connected AI solution has great
potential in facilitating AI-based network slicing. However,
existing research on the connected AI solution is limited.
How to apply connected AI solution to network management
requires further studies [26].

Recent advancements in distributed learning techniques fa-
cilitate the development of a connected AI solution for network
management. Model partition, investigated in [174], can divide
a global DNN into multiple sub-neural networks (sub-NNs).
The sub-NNs can reside at different network entities, accord-
ing to the available computing and communication resources,
and communicate with each other [175], [176]. Furthermore,
the idea of nested DNN, which allows sub-NNs to have their
own functionalities while contributing to the global DNN for
model inference and training, has been proposed and evaluated
in [177] and [178]. Using the above two techniques, each sub-
NN can perform a specific network control function. Accord-
ingly, multiple sub-NNs can collaboratively fulfill common
control functions, thereby applying the connected AI solution
to network management.

Based on the above advanced DNN techniques, we present
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Fig. 4: The connected AI solution for network management.

our idea of applying the connected AI solution to network
management next. The control functions for network manage-
ment are encapsulated into intelligent modules. An intelligent
module can be implemented solely by a DNN or cooperatively
by a DNN and conventional model-based techniques. An
example is shown in the upper right corner of Fig. 4, in which
the intelligent module for power control includes a learning-
based channel estimator and a model-based power allocation
scheme, e.g., water-filling power allocation [179]. Moreover,
the DNN in each intelligent module can play the role of a
sub-NN of a global DNN. The intelligent modules connect
with each other to share information, such as their outputs
and gradient information in model training, and aggregated
user data. Via the intelligent modules, control functions can
manage the network in a divide-and-conquer manner to avoid
the complicated model training required for layer-free AI. With
model partition and nested DNN techniques, multiple network
control functions can cooperatively make control decisions to
achieve globally optimal network management.

Fig. 4 shows another example of the connected AI design,
i.e., supporting mobile edge computing. We explain the design
using the case of vehicular networks as an example. Note
that other networks can use the same or a similar design.
Small base stations (SBSs), as edge servers, can process
computation tasks offloaded by vehicles. Intelligence modules
at SBSs provide computing offloading decisions, including the
computing tasks to be offloaded, transmit power for offloading,
task scheduling, etc., based on network status and computing
offloading requests. Due to the high mobility of vehicles and
the limited communication coverage of the SBSs, computing
tasks are often migrated among the SBSs, referred to as service
migration, and migration decisions are determined by a macro
base station (MBS). Service migration and computing offload-
ing decisions are highly coupled. For example, the chance
of service migration increases when vehicles offload more
computing tasks to an SBS. In addition, service migration
requires the collaboration of multiple SBSs. In our idea of
connected AI, service migration and computing offloading
decisions are jointly determined. Specifically, we split the

DNN into multiple sub-NNs by DNN splitting and nested
DNN techniques. Some sub-NNs are deployed at the SBSs
to provide computing offloading decisions. These sub-NNs are
also connected with a sub-NN deployed at an MBS, which can
be leveraged to make migration decisions. In this example, the
input of the service migration module includes the output of
intelligent modules at the SBSs, e.g., computing offloading
decisions and the parameters of sub-NNs, and the output of
the service migration module is the service migration policy.
In this way, the intelligent modules can cooperate to make
decisions for mobile edge computing.

D. Networking for AI

In addition to managing networks, AI can function as
services, namely AI services, which reside at ALs 1 and 2 in
the proposed AI architecture in Fig. 3. Networking for AI is to
design and optimize networks to facilitate AI services. In this
subsection, we first introduce the motivation of networking for
AI. Next, existing works are reviewed, and research challenges
are presented. Finally, the idea of AI slice is proposed and
elaborated.

1) Motivation: Networking for AI is attracting great atten-
tion in both academia and industry. In academia, networking
for AI calls for extensive interdisciplinary research efforts
between networking researchers and AI researchers to de-
velop new communication standards and technologies to cater
for AI services at scale [141], [180]–[182]. In industry, the
International Telecommunication Union (ITU) is discussing
high-level architectures to integrate, orchestrate, and update
AI components for future networks, including IMT-2020 net-
works [183], [184]. Some 3GPP working groups are studying
data collection frameworks in the network for supporting AI
services [185], [186]. Notably, networking for AI is becoming
an indispensable component for facilitating AI services in
networks and is expected to be a key enabling technology
in 6G.

Networking for AI should take the following factors into
consideration:

• Distributed Data - With the wide deployment of various
IoT devices and small BSs, massive data are generated
from many distributed network nodes, e.g., end users
and the network edge. In the traditional cloud-based AI
paradigm, the cloud collects massive distributed data for
model training, and a well-trained model is deployed
at the cloud for model inference. This paradigm suffers
from spectrum resource scarcity and user privacy leakage
concerns.4 To address these issues, a potential solution is
to facilitate AI services over a large number of network
nodes in a distributed manner [148], which requires
new networking protocols to coordinate multiple network
nodes;

• Constrained Resources - Network nodes, such as end
users, have limited resources, while state-of-the-art AI
models (e.g., DNN models with dozens of neural net-
work layers) are complex. As such, running a complex

4Google’s autonomous driving vehicle can generate more than 750 MB of
data per second [187].
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AI model on a single network node can exhaust its
computing resource and energy.5 With advanced model
partition techniques (e.g., DNN partition), a complex AI
model can be partitioned into multiple sub-models and
embedded into a network with data exchange among
the sub-models [189]. Executing sub-models consumes
computing resources of network nodes, and exchanging
data between sub-models also consumes communication
resources. Hence, running AI models at multiple network
nodes in a cost-effective manner requires innovative net-
work embedding designs;

• Network Heterogeneity and Dynamics - 6G networks
will be highly heterogeneous, in which network nodes
possess different amounts of communication, computing,
and storage resources. As complex AI models need to
be deployed at multiple network nodes, executing AI
tasks requires judiciously allocating resources of these
network nodes. Moreover, network dynamics, such as
time-varying channel conditions among network nodes
and spatiotemporal service demands, further complicate
the resource allocation decision making problem. Hence,
it is necessary to design tailored resource management
algorithms to optimize AI performance, while adapting
to network dynamics.

The scope of networking for AI covers the entire lifecycle
of AI services, which consists of three stages. The first stage
is data collection for model training via communication links.
For instance, real-time service load data from end users need
to be collected to train an AI model for service demand
prediction. The second stage is model training, which is to
achieve a certain objective based on the collected data. For
instance, a large number of images are processed to train
DNN-based object detection modules until the target accuracy
requirement is satisfied. The third stage is model inference,
which is to apply well-trained models to complete specific
computation tasks. For instance, AI-based object recognition
for autonomous driving detects and classifies nearby vehicles,
pedestrians, and obstacles based on real-time images captured
by on-board cameras [143].

2) State-of-the-Art Approaches: The research on network-
ing for AI is still at its infancy stage with only a few existing
works. In this subsection, the existing studies are categorized
into data collection, model training, and model inference
according to the lifecycle of AI services. Representative related
works are summarized in Table VI.

Data Collection - The objective is to efficiently collect the
data from end users for optimizing AI performance. Since data
are distributed across end users in the network, transmission
resource is scheduled to end users for uploading their data.
For instance, the level-one digital twins require periodical data
synchronization with the end users, and such data can be
provided for AI services. Data collection is a classic research
problem widely investigated in wireless sensor networks [203]
and UAV networks [204], and these works focus on optimizing
either the reliability of data collection or the amount of

5The energy consumption of using AlexNet to process an image on a
tailored energy-efficient Eyeriss chip is up to 0.28 W [188].

collected data. In AI services, the collected data are used
to train AI models, and the data samples may have different
importance levels for model training. Merely maximizing the
reliability or the amount of the collected data is not optimal.
Hence, novel data collection designs taking model training into
account are required for performance optimization.

Recently, AI-centric data collection is investigated in the
following two research directions:

• Resource Allocation - Data importance-aware resource
allocation schemes have been proposed to optimize AI
model accuracy. The idea is to schedule data transmission
while taking both end users’ channel conditions and data
importance levels into account [190]. The data impor-
tance level can be captured via data uncertainty, i.e.,
higher uncertainty means higher importance. The data
uncertainty can be measured by entropy [205]. Power
allocation for data collection is investigated in multi-
model training scenarios [191]. Since the number of
collected data samples impacts the model accuracy, a
learning-centric power allocation scheme can adjust the
users’ transmission power to determine the amount of col-
lected data for different AI models, thereby maximizing
the overall model accuracy given a transmission power
budget;

• Protocols - There are a few AI-centric data collection
protocols. In a network environment with poor channel
conditions, data retransmission is applied to improve data
collection reliability. Existing automatic repeat-request
(ARQ) retransmission protocols, such as hybrid ARQ
in long term evolution (LTE) networks, trigger data
retransmissions for lost packets once the end user’s
signal-to-noise ratio (SNR) threshold is satisfied. The
importance of data samples should be incorporated in
transmission protocols to speed up the model training
process. An importance-aware ARQ protocol is proposed
for CNN-based classification model training in [192]. In
the protocol, both data importance levels and channel
conditions are taken into account to determine the data
retransmission threshold, which can enhance the model
training performance.

Model Training - Due to the distributed data and user
privacy concerns, distributed training is suitable for training
AI models in a network [206]. FL is one of the most promising
distributed training paradigms, which can be applied in various
fields such as smart healthcare and financial services [138],
[207], [208]. The FL operates as follows. Each end user
iteratively trains a local model with its own data, and the
local model is uploaded to an edge server. Then, the edge
server aggregates the local models to obtain a global model.
The model training lasts multiple rounds until the global model
achieves satisfactory accuracy.

Since the model is trained locally, FL is communication-
efficient and can preserve data privacy of end users [148],
[209]. However, with the increase of data sizes in state-of-
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TABLE VI: Summary of Related Works on Networking for AI

Topic Work Contribution Highlight

Data
Collection

[190] Scheduling data transmission based on users’ data importance levels and channel conditions Data importance-aware spectrum
allocation

[191] Allocating users’ transmission power that can adjust the amount of collected data samples for
multiple AI models to enhance the overall model accuracy

Data amount-aware power allo-
cation

[192] Designing an importance-aware ARQ protocol, in which users’ data importance levels and channel
conditions are jointly considered to trigger data retransmission

Data importance-aware retrans-
mission protocol

Model
Training

[193] Proposing an edge-cloud assisted FL framework, in which the edge and cloud servers alternatively
aggregate local models to reduce communication overhead

Two-tier FL framework

[194] Proposing an over-the-air computation approach for model aggregation Over-the-air model aggregation
[195] Selecting users with more contribution to convergence for model aggregation based on users’ data

distribution
Data distribution-aware user se-
lection

[196] Selecting users with low training delay considering heterogeneity among users Training latency-aware user se-
lection

[197] Optimizing the number of local model updates given a resource budget Local update frequency opti-
mization

[198] Scheduling model uploading based on end users’ model importance levels and channel conditions Model importance-aware model
uploading

Model
Inference

[144] Optimizing video frame rate and input image resolution to balance service latency and detection
accuracy for virtual reality users

Data resolution optimization

[199] Selecting the optimal DNN model for real-time video analytics DNN model selection
[200] Selecting the optimal DNN model’s cut layer to minimize inference latency for user-edge DNN

synergy
User-edge DNN model partition

[201] Partitioning a complicated DNN model across end users, the network edge, and the cloud to reduce
communication overhead

User-edge-cloud DNN model
partition

[202] Designing a collaborative DNN model inference scheme with light-weight models at IoT devices
and an uncompressed model at the network edge

Collaborative DNN model infer-
ence

the-art AI models,6 uploading local AI models still places
a growing strain on spectrum-constrained wireless networks.
In addition, end users with powerful computing servers can
conduct local model training with a low delay. As such, the
model uploading delay due to limited radio resources can
be the dominant component in the entire FL delay. Hence,
it is necessary to maximize FL performance in resource-
constrained wireless networks.

Recent research works optimize FL performance from the
following perspectives:

• FL Framework Design - A line of works focus on design-
ing innovative FL frameworks to reduce communication
overhead. A novel two-tier hierarchical FL framework
is proposed in [193], which coordinates end users, edge
servers, and the cloud server to perform FL. Each edge
server aggregates local models from end users in its cov-
erage in every FL round, and the cloud server aggregates
the models from edge servers in its coverage once in a
few FL rounds. The proposed two-tier framework can
accommodate a large number of end users for model
training due to its broad coverage and, at the same
time, reduce the backhaul data traffic between the cloud
server and edge servers due to a low model aggregation
frequency. Such framework is applied to industrial IoT
networks with geographically distributed data in [215];

• Model Aggregation - Another line of works study ra-
dio spectrum-efficient model aggregation. Over-the-air
computation based approaches are investigated in [194],
[216], [217]. The basic idea is to exploit the superposition
property of wireless multiple-access channels to perform
model aggregation, which can reduce radio resource
consumption;

• Resource Management - The FL performance can be

6The data sizes of ResNet32 [210], Inception-v3 [211], AlexNet [212]
and VGG16 [213] models are 50 MB, 108 MB, 240 MB, and 552 MB,
respectively [214].

optimized via efficient resource management. As FL
performance depends on multiple factors, such as end
user selection, the number of local model updates, and
local model importance levels, different resource man-
agement schemes are developed as follows: (1) User
selection - How to select participating end users in the
FL process impacts model convergence and training delay
and hence is crucial to FL performance. A few end
user selection algorithms are proposed based on princi-
ples such as training data distribution [195] and local
training latency [196]; (2) FL parameters - To alleviate
communication overhead, end users conduct a few local
model updates before model uploading. Given a resource
budget, the optimal number of local model updates is
studied in [197], which provides a theoretical guideline
for selecting the number of local model update; (3) Local
model importance level, which is a concept extended
from the idea of data importance7 - An importance-aware
model uploading strategy is proposed in [198], in which
end users with high model importance levels and good
channel conditions are scheduled with high priority, to
speed up the convergence of FL.

Model Inference - For many AI services in the network,
AI models are usually deployed at end users and edge
servers to achieve low service latency. The model inference
is computation-intensive, while end users and edge servers
usually have limited computing capabilities and battery power.
Executing model inference tasks usually results in long service
latency and high energy consumption. Hence, performing
model inference should satisfy service latency under node
energy constraints, thereby calling for innovative model in-
ference schemes.

7The model importance can be measured by layer-wise gradient norm.
Local models with larger gradient norm contribute more to global model
convergence in FL [197].
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Existing studies on model inference can be categorized as
follows:

• Data Resolution - Raw data are offloaded to edge or cloud
servers for model inference. The input data resolution
influences the inference accuracy. For instance, the ac-
curacy of object detection is related to the input image
resolution [144], which in turn affects the offloaded data
volume since the data size of high-resolution images is
usually large. Taking into account the trade-off between
the inference accuracy and the amount of offloaded data,
the input image resolution should be optimized to satisfy
the target AI service requirements. The optimal video
frame rate and input image resolution are investigated
in [144] to balance service latency and detection accuracy
for virtual reality users;

• Model Selection - An appropriate AI model is selected
to satisfy specific AI service requirements. In addition to
the data resolution, the inference accuracy depends on the
type of AI models. A DNN model with more hidden lay-
ers can usually achieve a higher inference accuracy than
a shallow DNN model. Considering multiple available
DNN models deployed at the network edge, the optimal
DNN model selection for real-time video analytics is
investigated in [199];

• Model Partition - With advanced model partition tech-
niques, an AI model can be partitioned into multiple sub-
models and then embedded into different network nodes
to conduct model inference. For instance, leveraging the
layered structure of DNNs, the entire DNN model can be
partitioned into an end user-side model and a server-side
model at a proper DNN layer (i.e., the cut layer). As such,
the end users and the edge servers can conduct model
inference in a collaborative manner. DNN models can be
partitioned for achieving different goals. For instance, the
optimal model partition for minimizing inference latency
is studied in [200], in which an online learning algorithm
can adaptively determine the optimal cut layer. To reduce
communication overhead among network nodes, compli-
cated DNNs models can be partitioned into sub-models
for end users, edge servers, and the cloud as in [201];

• Model Compression - Light-weight models are used
to facilitate prompt model inference at end users.
Computation-efficient compressed models can be ob-
tained via various model compression techniques, such
as weight pruning [218], knowledge distilling [219] and
fast exiting [220]. For instance, weight pruning tech-
niques remove less important model weights to reduce
the computational complexity of model inference, while
achieving inference accuracy close to that of the un-
compressed models. To enhance service performance,
a collaborative model inference scheme that deploys
light-weight models at IoT devices and uncompressed
models at the network edge is proposed in industrial
IoT networks [202]. The IoT devices dynamically make
AI task offloading decisions according to time-varying
channel conditions to minimize the service delay while
guaranteeing the accuracy requirements of DNN-based

fault diagnosis services.
3) Research Challenges: Despite the aforementioned re-

search efforts, facilitating AI services in a network faces vari-
ous challenges, some of which are discussed in the following.

Complex Implementation Option Selection - An AI service
can be implemented by various options with different model
structures, training procedures, and inference processes. For
instance, a service of object detection can be implemented
via different neural networks, such as AlexNet [212] and
SqueezeNet [221]. Even if the model structure is the same,
a model can be trained in different ways, such as centralized
training, decentralized training (e.g., FL [207]), and semi-
centralized training (e.g., split training [126]). In addition,
model inference can be conducted in various manners, such as
end user-only inference, edge-only inference, and collaborative
inference. Different implementation options consume different
amounts of computing, storage and communication resources.
Hence, it is necessary to select an implementation solution for
AI services that suits the service characteristics and network
dynamics.

Multi-Dimensional QoS Requirements - The QoS require-
ments of AI services are multi-dimensional. AI model ac-
curacy is usually a key performance metric. In addition, AI
services should be offered to end users with low latency in
many use cases. For instance, the service latency of object
detection in autonomous driving should be less than 100 ms
for safety considerations [143], whereas autonomous vehicles
require an ultra-high accuracy in 3D object detection [222].
Moreover, these performance metrics are correlated. High-
accuracy object detection usually requires high-resolution im-
ages as input and advanced AI models to process the input
images, which can result in long service latency. How to satisfy
multi-dimensional QoS requirements of AI services requires
further investigation.

4) AI Slice: To better support AI services, we extend the
network slice concept and propose an idea of AI slice with two
subslices. The basic idea is to construct a training subslice for
model training and an inference subslice for model inference.
The two subslices are logically isolated and use their own
network resources. The rationale behind training and inference
separation is that the two stages can have different goals.

An illustration of an AI slice is given in Fig. 5. In the
AI slice, the training and inference subslices share the same
resource pool and are coordinated to jointly support the
AI service. First, the multi-dimensional QoS requirement of
the AI slice is decoupled into two separate QoS require-
ments for the two subslices. For an object detection service
in autonomous driving, both high detection accuracy (e.g.,
99%) and low service latency (e.g., 100 ms) are required.
The training subslice should satisfy the detection accuracy
requirement, while the inference subslice should satisfy the
service latency requirement. Second, to satisfy the individual
QoS requirements of the two subslices, the resources reserved
for the AI slice are judiciously allocated between the two
subslices, based on the performance of the two subslices and
their QoS requirements. Then, given the allocated resources,
the two subslices are configured to satisfy their individual QoS
requirements, as described in the following:
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Fig. 5: Conceptual AI slice consisting of a training subslice and an inference subslice.

• In the training subslice, based on the training data dis-
tribution in the network, a subslice controller determines
training configurations (e.g., data collection schemes and
model training methods) and schedules resources to net-
work nodes to train a model given the target accuracy.
In addition, since the training data vary over time in
a dynamic network, the AI model may need to be
retrained from time to time. Note that allocating dedicated
resources for the training subslice can effectively mitigate
the straggler effect that plagues distributed learning in
large-scale networks, thereby speeding up the model
training process;

• In the inference subslice, the subslice controller analyzes
the service demand pattern at each BS and determines
inference configurations (e.g., model inference and input
data compression schemes) to satisfy the inference la-
tency requirement. For instance, uncompressed models
can be deployed at resource-abundant BSs, and parti-
tioned and pruned models can be deployed at resource-
limited BSs. This can achieve close inference service
latency performance across different BSs.

Overall, the two logically-isolated subslices focus on satisfying
different QoS requirements and jointly support the AI service.

To elaborate the idea of AI slices, we present the fol-
lowing example on real-time video analytics in vehicular
networks [199]. Smart cameras are deployed in intersections
to provide a video surveillance service such as vehicle plate
recognition. In such service, a CNN model is trained using
the video streams collected by smart cameras, and then the
well-trained model is used to conduct video analytics tasks.
Using the proposed AI slice framework, CNN model training
is conducted in a training subslice, while real-time video

analytics is conducted in an inference subslice. Specifically,
in the training subslice, the CNN model can be trained via a
FL framework for protecting data privacy. The corresponding
computing resources at smart cameras and spectrum resources
in the network are allocated to satisfy model training require-
ments, such as training accuracy. In the inference subslice,
different user-edge orchestration schemes (e.g., DNN model
partition), input data compression schemes (e.g., frame rate
reduction), and network resource management policies can be
configured to satisfy the inference delay requirement in video
analytics services based on time-varying service demands
and network conditions due to vehicle mobility. With the AI
slice for video analytics, both training accuracy and inference
latency requirements can be satisfied in a dynamic network
environment.

E. Summary

In this section, we have reviewed some common AI tech-
niques, explored the role of AI in 6G networks, and proposed a
four-layer AI architecture for pervasive intelligence in 6G. Two
perspectives of AI in wireless networks, i.e., AI for networking
and networking for AI, have been discussed, which correspond
to using AI as a powerful tool for network management and
optimizing networks to support AI applications, respectively.

Recent advancements in ML algorithms have accelerated the
deployment of AI in wireless networks. In 5G, AI techniques
are used to address particular networking problems, whereas,
in 6G, AI will penetrate every corner of wireless networks
from network management to network services. Therefore, an
architecture for AI is needed for identifying the role of AI and
characterizing the functionalities of AI across a network.
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Appropriate AI techniques should be selected to tackle
networking problems with different characteristics and on
different decision time scales when it comes to AI for network-
ing. Furthermore, the collaboration among intelligent modules
is important to implement AI-driven networks efficiently and
flexibly. The idea of connected AI is to enable cooperative
decision making among intelligent modules for network con-
trol. In terms of networking for AI, a distributed architecture
of AI algorithms connects AI models and network resources
located at network edge. The study of networking for AI is
still in its infancy but essential to supporting an expanding
group of AI services. Network slicing will remain to be an
enabler for delivering AI services, but slicing policies should
be customized according to the features of AI algorithms and
the training and inference stages of AI.

IV. A POTENTIAL NETWORK ARCHITECTURE FOR 6G

In this section, we propose a conceptual network architec-
ture for 6G, which integrates holistic network virtualization
(including digital twins and network slicing) and pervasive
network intelligence (including connected AI and AI slices).
Then, we illustrate three types of interplay enabled by the
proposed architecture, i.e., the interplay between digital twin
paradigm and network slicing, model-driven methods and data-
driven methods, and virtualization and AI, respectively.

A. Related Studies on Architecture for 6G

Several works have proposed architectures with various
focuses for 6G networks, e.g., space-air-ground integrated net-
works for global coverage [8], cell-free massive multiple-input
multiple-output (MIMO) architecture for inter-cell interference
mitigation [223], and multi-tier computing architecture for
ubiquitous computing service provisioning [224]. Pursuing the
goal of advanced network management, most of the proposed
architectures highlight AI techniques to optimize network
architecture, control, and management [12], [183]. For exam-
ple, AI-based data analytics functions, which mine historical
data for network operation troubleshooting, network resource
optimization, and network traffic prediction, are incorporated
in the network architecture in [12]. The ITU specifies a high-
level AI-based architectural framework for future networks, in
which several novel components such as ML management and
orchestration functionalities are incorporated for flexible AI-
based function placement [183]. In addition to AI techniques,
some recent conceptual network architectures start to embrace
digital twin techniques [75], [83]. For example, a digital
twin-based network architecture constructs a digital twin for
each end user to serve as its communication assistant and
data asset manager [83]. Another digital twin-enabled network
architecture adopts three categories of digital twins, i.e., edge-
based, cloud-based, and hybrid digital twins, for supporting
different types of services [75].

Different from the existing network architectures, our pro-
posed network architecture features novel holistic network
virtualization, which incorporates network slicing and digital
twin paradigms, and pervasive network intelligence, which
integrates AI for networking and networking for AI. Moreover,

featuring the designs in Sections II and III, the proposed
architecture enables various interplay among its key elements
to empower 6G. In the following subsections, we present the
details of the proposed architecture.

B. Architecture Overview

The overall network architecture is illustrated in Fig. 6,
which consists of the physical space and the cyber space. The
physical space includes end users and network infrastructure at
the edge and the core networks. Data describing end users are
collected from the physical network to create level-one digital
twins as introduced in detail in Subsection II-C, and network
slices are created for various services. The slices are further
abstracted into level-two digital twins, which are supplemented
with service-specific information aggregated from level-one
digital twins. The six-layer virtualization architecture in Fig. 2
applies to the network slices and the digital twins, both of
which reside in the cyber space in Fig. 6.

AI pervades the entire architecture, which supports both AI
for networking and networking for AI. First, AI is used to
manage network slices and digital twins, as shown in the logic
network control section in Fig. 6. For network management, a
connected AI solution discussed in Subsection III-C is applied
to enable intelligent modules, which in turn manage network
slices and digital twins. The connected AI solution corresponds
to AL 3 and 4 in Fig. 3. Second, the architecture supports
dedicated AI slices with training and inference separation for
AI service provisioning, as mentioned in Subsection III-D. AI
slices provide services corresponding to AL 1 and 2 in Fig. 3,
while the management of AI slices is conducted by intelligent
modules.

With the overall network architecture in Fig. 6, we integrate
holistic network virtualization and pervasive network intel-
ligence for 6G. Virtualization is supported from the aspects
of both the network and the end users, while intelligence is
reflected through both AI for networking and networking for
AI. Taking advantage of digital twin paradigm and network
slicing as well as those of virtualization and AI, the proposed
architecture aims at exceeding flexibility, scalability, adaptiv-
ity, and intelligence.

C. Components and Subsystems

In the physical space, the proposed architecture includes
both RANs and core networks. Specifically, the following
components are involved:

• Assorted APs: This component includes MBSs, SBSs,
mobile APs (such as UAVs), satellites, and other non-
cellular APs;

• Network controllers: This component includes local con-
trollers located at APs or servers on network edge and the
centralized controller located at servers in core networks
or in the cloud. Each controller can consist of computing
servers and affiliated network storage servers;

• General computing servers: This component includes
computing servers for implementing network functions,
such as routing and firewall, and hosting the VNFs;
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Fig. 6: The proposed network architecture for 6G networks.

• Application servers: This component includes computing
and network storage servers for supporting general edge
computing and AI services. These servers are not used for
network management or implementing network functions;

• Other network devices: This component includes special-
ized network hardware that are not general computing
servers, such as baseband processing units and network
switches;

• End users: This component includes human mobile users,
sensors, vehicles, and various IoT devices, such as meters,
actuators, and robots.

In the cyber space, the proposed architecture includes three
subsystems, i.e., network slices, digital twins, and connected
AI, as follows:

• Network slices: This subsystem includes all virtual net-
works created in network slicing, including AI slices. A
network slice can involve a RAN, a core network, or both.
General slices are inherited from existing networks, while
AI slices are described in detail in Subsection III-D;

• Digital twins: This subsystem includes level-one and
level-two digital twins. The digital twin subsystem is

described in detail in Subsection II-C;
• Connected AI: This subsystem includes intelligent mod-

ules deployed across a network at both the local con-
trollers and the centralized controller. The connected AI
subsystem is described in detail in Subsection III-C.

Interconnections between different components and subsys-
tems of the proposed architecture are elaborated in Subsec-
tions IV-E to IV-G, which highlight the interplay between dig-
ital twin paradigm and network slicing, between model-driven
and data-driven methods, and between virtualization and AI,
in the proposed architecture. Some open issues and challenges
regarding the architecture are presented in Section V.

Note that the proposed conceptual architecture can apply
to various types of physical networks, such as vehicular
networks and integrated terrestrial-satellite networks, although
Fig. 6 cannot illustrate every possible network scenario. In
different physical networks, the implementation of holistic
network virtualization and pervasive network intelligence can
be different and require certain customization. For example,
the deployment of intelligent modules and the data flow among
the modules in a satellite network segment can be different
from those in a terrestrial network segment. Furthermore, the
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migration of digital twins can be more important in a vehicular
network than in a static IoT network. Related discussions can
be found in Section V, where we present challenges and open
issues. Nevertheless, the basic ideas in the proposed conceptual
architecture, including the two-level digital twins, intelligent
modules, and AI slices, are applicable in various physical
networks.

D. Implementation

In this subsection, we provide a case study on a vehicular
network to demonstrate the potential implementation of the
proposed network architecture. Roadside BSs co-located with
edge computing and caching servers facilitate autonomous
driving services for vehicles on the road. To implement the
proposed network architecture, the following steps are con-
ducted.

• Network Slice Establishment: Multiple network slices are
established for autonomous driving services with different
QoS requirements, achieving network virtualization. Con-
ventional network slices are established for non-AI based
services, e.g., high-definition map downloading, while AI
slices consisting of training and inference subslices are
established for AI based services, such as deep learning
based cooperative sensing. The network slices are stored
and managed by a centralized controller.

• Digital Twin Construction: By collecting extensive data
from physical entities, digital twins are constructed for
vehicle users, roadside BSs, and the established net-
work slices, achieving the virtualization of end users
and slices. Digital twins of vehicle users and roadside
BSs are located at edge servers, while digital twins of
network slices are located at a cloud server. Due to high
vehicle mobility, digital twins of vehicle users should be
migrated across edge servers to ensure service continuity.
In addition to collected data, digital twins can include
generated user and service specific data, such as predicted
vehicle trajectory and spatial-temporal service demands,
via mining historical data. The generated vehicle data will
be used for network management and service provision.

• AI Module Deployment: AI modules with different func-
tionalities can be deployed at both the centralized and
local network controllers, achieving intelligent network
management. The AI modules at the centralized network
controller are in charge of network planning. For guar-
anteeing QoS requirements of different slices, these AI
modules can make resource reservation decisions based
on the predicted service demands from the digital twins
of roadside BSs and collected slice performance data
from the digital twins of network slices. The AI modules
at local network controllers are in charge of network
operations. For enhancing the perceived performance of
the vehicle users, the AI modules schedule on-demand
network resources based on the collected data (e.g.,
vehicle users’ channel conditions) and the generated data
(e.g., predicted vehicle trajectory) from the digital twins
of vehicle users.

E. Interplay between Digital Twin Paradigm and Network
Slicing

As the two components of holistic network virtualization,
digital twin paradigm and network slicing are connected in the
following two aspects.

First, the digital twin paradigm for end user virtualization
focuses on data management, while network slicing focuses
on network management. Data may be viewed as a new type
of resources in future networks, in addition to communica-
tion, computing, caching, and sensing resources. Meanwhile,
as a resource, data has its unique features. First, data can
be considered as an application-layer resource rather than
a physical-layer resource. Second, different from computing
or communication resources, the amount of data resources
available to a network is not fixed but progressive. Last,
the collection and processing of data, which is necessary for
utilizing any data resource, consume other network resources.
On one hand, effectual utilization of the data resource will
benefit network management, and hence digital twin paradigm
can enhance network slicing. On the other hand, network
management should take into account the need and cost
of allocating other network resources for utilizing the data
resource. Hence, network slicing can facilitate digital twins.

Second, digital twins will enable user-centric networking
in future networks, while network slicing enables service-
centric networking. Creating an isolated slice for each service
and provisioning the service through managing the slice yield
a service-centric focus in network management. Meanwhile,
creating a digital copy of each end user and administrating data
that characterize the end user provide a user-centric perspective
of network management. Having a set of information, selected
by the centralized controller through digital twin model con-
trol, to describe various characteristics of the end users, such
as their location, service request profile, resource utilization,
and channel information, creates the possibility of user-specific
scheduling within each slice in the network operation stage.
For instance, access control and resource allocation decisions
for an end user may depend on the data profile from its
digital twin, while different data profiles may lead to different
scheduling policies. Accordingly, future networks may feature
service-centric network planning and user-centric network
operations, which can improve the granularity of network
management for handling highly diversified end users and
dynamic network environments.

F. Interplay between Model-Driven and Data-Driven Methods

The second interplay enabled by the proposed architecture is
the interplay between model-driven and data-driven methods in
network operation and service provision. This interplay applies
to the intelligent modules for network management shown in
Fig. 6.

Network management mostly relied on model-driven or
heuristic methods before 5G. Prior to the prevalence of
AI, mathematical tools such as optimization methods and
game theory have been widely used for network manage-
ment. Optimization methods formulate the objective and con-
straints in a closed form, and the corresponding network
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management problems are solved using optimization algo-
rithms [225]–[227]. Game-theoretic approaches analyze the
interactions among network entities in either cooperative or
non-cooperative scenarios to identify the optimal strategy of
each entity [228]–[230]. Mechanism design, an analytical
framework in game theory, has also been used to coordinate
network entities with locally-held information to achieve desir-
able network-wide solutions in network utility maximization
problems [231].

Through characterizing the relations among several key
variables, model-driven methods can lead to either closed-form
solutions or algorithms for network management problems.
Based on mathematical models, model-driven methods are
usually explainable and generalize well for different specific
problems [232].8 However, when networks become complex
(i.e., when there are a large number of variables and/or
complicated correlation among them) or highly dynamic (e.g.,
when the network environment changes too rapidly for an
optimization algorithm to converge or for a game to achieve an
equilibrium), model-driven methods may no longer be accurate
or applicable.

The investigation of data-driven methods for network man-
agement has gained momentum since 5G. Through collecting
and exploiting real-world data, data-driven methods implicitly
characterize the relations among variables to generate and fine-
tune policies for network management. Given sufficient data
and a stationary network environment, data-driven methods
can provide close-to-optimal solutions to problems that are
too complicated for model-driven methods. However, when
the network environment is non-stationary so that new and
unknown situations occur from time to time, the performance
of data-driven methods can be questionable [233]. In addition,
data-driven methods may not generalize well due to their
strong dependence on data collected from a specific network
environment.

In 6G, data-driven and model-driven methods should work
in synergy. The proposed architecture enables the interplay
between data-driven and model-driven methods for creating
advanced hybrid data-model driven methods. There are differ-
ent options of hybrid data-model driven methods, as illustrated
in Fig. 7 and elaborated below. The first three options suit AI
for networking, while the last option suits networking for AI.

• Backup/Switching - Data-driven and model-driven meth-
ods can be the backup for each other. For instance, models
can be selected to back up data-driven methods, for
the case when unknown situations occur in the network
environment and degradation in the performance of data-
driven methods appears. Meanwhile, switching between
data-driven and model-driven methods, e.g., based on the
available resources, can potentially increase the adaptivity
of network management.

• Task Division - Date-driven and model-driven methods
can target different steps and solve different subprob-
lems of network management. Specifically, data-driven

8For instance, the water-filling algorithm could be applied to various
power allocation problems, and the Rayleigh fading model could characterize
channels in various network environments.
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Fig. 7: Options for hybrid data-model driven methods. The
“Data” and “Model” blocks represent “data-driven methods”
and “model-driven methods”, respectively.

methods can solve the subproblems with a large number
of variables or complicated coupling relations among
variables, while model-driven methods can solve rela-
tively isolated subproblems with a few key variables. This
would allow data-driven and model-driven methods to
play to their respective strengths.

• Refinement - Model-driven methods can provide rough
solutions based on general mathematical models, and
then data-driven methods, taking the rough solutions as
input and exploiting real-world data from the network,
can refine the solutions for the specific network scenario.
Having the initial solution generated from models may
reduce either the amount of data or the amount of time
needed by data-driven methods.

• Mixing - In networking for AI, while deploying a service
function chain for an AI service, some of the function
modules can use data-driven methods, while other func-
tion modules in the same service function chain can
use model-driven methods. For example, in an AI-based
image processing service, a model-driven module can be
used for image resolution adjustment prior to a data-
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driven module for object detection. The idea is similar to
task division, except that the scenario here is networking
for AI instead of AI for networking [28].

G. Interplay between Virtualization and AI

The third interplay enabled by the proposed architecture,
i.e., the interplay between virtualization and AI, is illustrated
in Fig. 8.

First and foremost, virtualization and AI are coupled
through data. With the introduction of digital twins, a vast
amount of organized data regarding end users, i.e., level-one
digital twins, and network services, i.e., level-two digital twins,
become available. The data included in the digital twins can be
provided to the intelligent modules, the training or inference
subslice of an AI slice, or both. For instance, edge-hosted AI,
possibly collaborating with end user-hosted AI, can perform
user-specific data processing and prediction based on the data
from digital twins. The results, such as prediction results,
resource scheduling schemes, or slicing policies, can be fed
back to the digital twins to record certain predicted status, e.g.,
location and mobility, of the end users. Correspondingly, data
in the digital twins of end users, network infrastructure, and
slices can be either the input or the output of AI modules,
leading to a bidirectional interaction between virtualization
and AI.9

The second connection between virtualization and AI is
through control. Based on the data from digital twins, AI
functions hosted at the edge and core networks can make the
network management and service provisioning decisions. The
decisions may include network slice control, which are fed
back to the physical network and network slices for execution
and, at the same time, to the level-two digital twins for data
update. In addition, the decisions may include digital twin
model control for level-one and level-two digital twins. Digital
twin model control may include the determination of the type
and the amount of data to be included in digital twins, the
frequency and the method of data collection, the format and
the precision of stored data, and so on. The digital twin
models affect the availability and quality of data available
for network control, especially AI-driven network control,
and thereby impact the network performance. Therefore, from
the perspective of network control, the interaction between
virtualization and AI is also bi-directional.10

The third and implicit connection between virtualization
and AI is through resources. Holistic network virtualization
requires extensive resources, including computing resource for
virtual network functions, caching resource for storing digital
twins, and communication resource for the synchronization
between end users and their digital twins. Similarly, perva-
sive network intelligence also requires extensive computing
resource and possibly other resources, e.g., communication
resource for distributed training as mentioned in Section III.
Therefore, the network resources need to be shared and

9Interested readers are referred to [234] for the relation between AI and
data life cycle, although the discussions therein do not involve virtualization.

10The interaction between digital twin and AI for intelligent network control
is discussed in [235]. Note that the definition of digital twins therein is
different from ours.
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coordinated between virtualization and AI functions. However,
this does not mean that virtualization and AI functions simply
compete for resources. Instead, they can help each other
improve resource utilization efficiency. Digital twin paradigm
may reduce the resource consumption of AI functions by
providing high-importance data only. This can be achieved
by the aforementioned digital twin model control. Meanwhile,
creating a digital twin for every end user may be too resource-
demanding for networks in the near future. Using AI to
select representative end users for generating digital twins
and optimizing digital twin models may reduce the resource
consumption of maintaining and updating digital twins. One
potential implementation is using AI to categorize end users
and select a portion of users from each category for creating
digital twins. Alternatively, since it may be more challenging
to provide QoE guarantee for some end users than others,
using AI to select such end users for creating digital twins can
potentially reduce the resource consumption on digital twins
for 6G networks.

H. Potential Network Architecture for 6G: A Summary

This section has provided a potential network architecture
for 6G, which integrates two key elements, i.e., pervasive
network intelligence and holistic network virtualization. In
the proposed network architecture, detailed network compo-
nents, subsystems, and potential implementation have been
discussed. Moreover, three types of interplay in the archi-
tecture are provided to characterize the proposed network
architecture.

The proposed network architecture holds great potential
for achieving advanced network management schemes and
supporting AI services in 6G networks. Firstly, integrating
digital twins and network slicing facilitates user-centric net-
working and improves the granularity of network management.



23

Secondly, integrating data-driven methods and model-driven
methods enables novel hybrid data-model driven methods,
which has the potential to outperform existing network man-
agement methods in terms of adaptivity, granularity, and so on.
Thirdly, leveraging the network slicing concept in AI services
facilitates AI services targeting QoS performance guarantees.

V. CHALLENGES AND OPEN ISSUES

Many challenges and open issues are yet to be addressed for
holistic network virtualization and pervasive network intelli-
gence in 6G. In the following, we present some key challenges
and open issues.

A. Digital Twin

The six-layer architecture in Subsection II-C provides a
high-level design for integrating the digital twin paradigm
into network virtualization. Open issues to be investigated for
practical implementation of this architecture include quantita-
tive performance characterization of digital twins, the optimal
digital twin model, digital twin migration, and data security.

First, it is necessary to quantitatively characterize the
network performance improvement from introducing digital
twins, either from the perspective of QoS/QoE satisfaction or
from the perspective of resource utilization. Second, level-one
digital twin models configured by the centralized controller
may be different for different edge networks to account for
network heterogeneity, and how to determine effective digital
twin models is a challenge. Third, the mobility of end users
such as vehicles creates a need for updating and migrating
digital twins across different edge networks, which requires
further study. Last, ensuring the security of user data in the
digital twin paradigm is yet another challenge. As the local and
centralized network controllers have access to a vast amount of
user data, developing proper security mechanisms for data col-
lection, aggregation, and migration becomes essential. Readers
are referred to [32], [236]–[238] for discussions on some of
the aforementioned challenges, such as the heterogeneity and
migration of digital twins, and more open issues related to
digital twins in 6G.

B. Network Management Oriented Data Abstraction and Pro-
cessing

While digital twins provide data to enable AI for network-
ing, including automated network slicing and AI-empowered
network control, efficient data management can be challeng-
ing. First, it is necessary to develop data abstraction methods
to aggregate the data with different levels of granularity for
making different network management decisions. For instance,
in network slicing, high-granularity data are required for
determining the optimal network operation strategies and low-
granularity data are sufficient for determining the optimal
network planning strategies [11], [239]. How to determine
the appropriate data granularity for different network man-
agement decisions is an open issue. A potential solution is
to empirically adjust data granularity and the time scale for
decision-making [240]. Meanwhile, as the number of variables

and data types in network management can be huge, more
scalable and efficient solutions are required. Second, while
applying the connected AI solution for network management,
the settings of intelligent modules, such as the selection of
algorithms, the input and output attributes, and the connections
among intelligent modules, should be configured to maximize
the utilization of data with low communication and processing
overhead, yet finding the optimal settings is challenging. The
cooperation between model-driven and data-driven methods
in intelligent modules can be a potential approach to address
the challenge, yet how to support such cooperation among
different types of intelligent modules requires further inves-
tigation. Third, as data can be generated, transmitted, and
processed at different network stakeholders, configurable and
regulation-compliant data management is also a challenge. The
integration of the blockchain and privacy-enhancing technolo-
gies can be a potential solution, while the trade-offs between
privacy preservation and processing efficiency need in-depth
investigation. Readers are referred to [4], [131], [182], [234]
for discussions on the aforementioned challenges, such as
privacy preservation, AI model selection, intelligent modules,
and more open issues about data abstraction and processing.

C. Model and Resource Orchestration

Networking for AI in Subsection III-D can facilitate AI
services in a network. One key issue is to optimize AI service
performance, which requires judicious configuration of the
network, including AI algorithm selection, data collection,
and network resource allocation. The main challenge lies in
modeling the relationship between AI performance and these
network configurations. Establishing an accurate mathematical
or empirical model requires extensive measurements in real-
world networks. Even if establishing a model is viable, the
model may be suitable only for a chosen AI algorithm. In
addition, to adapt to network dynamics (e.g., rapidly fluc-
tuating service demands), an online network configuration
scheme is desirable. Since reinforcement learning algorithms
are able to make online decisions in a dynamic environment,
developing cost-effective reinforcement learning algorithms
for high-dimensional network configuration problems can be a
promising approach. For example, a reinforcement learning al-
gorithm is developed for joint AI model selection and resource
allocation in industrial IoT [202]. For more discussions on
the above challenges, interested readers are referred to [175],
[241], [242].

D. Training and Inference Coordination

The concept of AI slice is proposed to meet specific
QoS requirements of AI services in Subsection III-D. The
training and inference stages for an AI service consume multi-
dimensional network resources [131], [243]. In an AI slice,
two subslices share the virtualized network resource pool,
and hence resource reservation decisions for the two subslices
are closely correlated. On the one hand, reserving abundant
resources for the training subslice may help achieve a high
training accuracy but potentially render resource insufficiency
in the inference subslice, which can result in a long service
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latency. On the other hand, insufficient resource provisioning
for the training subslice may yield a model with low accuracy
and consequently create a bottleneck for inference accuracy. To
optimize the performance of the AI service, resource reserva-
tion for training and inference subslices should be coordinated.
Developing an accurate mathematical model to characterize
the interplay between training and inference stages is difficult,
since a large number of system factors should be taken into
account. Hence, it is necessary to study efficient model-free
approaches to characterize the interplay.

E. Energy Efficiency of AI

With hundreds of neural network layers, thousands of
neurons, and millions of parameters, state-of-the-art AI mod-
els usually consume extensive energy and incur substantial
environmental costs.11 Improving energy efficiency has be-
come a major issue for wide deployment of AI services. In
addition, recent research shows that improving the accuracy
of an AI model may come at an exponential increase in
the computation, environmental and economic costs [245].12

Hence, deploying energy-efficient AI services in a network
is necessary for reducing costs for the network operator and
meeting environmental standards. Several model compression
techniques, such as weight pruning [218], parameter quanti-
zation [246], and model compression [247], can be applied to
alleviate the problem. In addition, hybrid data-model driven
methods can train AI models with a reduced amount of data,
which can also decrease energy consumption.

F. Hybrid Data-Model Driven Methods

The four options listed in Subsection IV-F provide our
initial ideas for hybrid data-model driven methods. Related
open issues to be investigated include the following. First, it
is necessary to study how to determine which option to use
and how to switch among options. Designing mechanisms for
choosing and switching among options will allow networks
to flexibly and adaptively integrate data-driven and model-
driven methods. Second, for a chosen option, it is important to
understand how much the data-driven and model-driven com-
ponents affect the overall performance and how much impact
they have on each other. For instance, in the mixing option,
the AI service performance may depend on the combined
choices of data-driven and model-driven methods, and finding
a proper combination can be a challenge. Third, in addition to
the four options as introduced, there should be other potential
options for hybrid data-model driven methods, and identifying
other promising options is an open issue of great importance.
Last, due to the lack of explainability in existing data-driven
methods, careful investigations and analysis should be directed
to the management of critical network operations. The role

11The estimated carbon footprint of training a state-of-the-art natural
language processing model is about five times the life emissions of an average
car [244].

12It is estimated that reducing the classification error probability from
11.5% to 5% over the ImageNet dataset needs to increase computation from
1014 to 1019 Gflops, carbon emissions from 106 to 1010 lbs, and economic
costs from 106 to 1011 USD [245], respectively.

of hybrid data-model driven methods in enhancing system
robustness is an open issue that deserves further investigation.
For more discussions on challenges in hybrid data-model
driven methods for networks, interested readers are referred
to [232], [248], [249].13

VI. CONCLUSION

Designing an architecture for future networks is challenging,
especially when the use cases and defining techniques are still
beneath the surface. Nevertheless, the evolution of networks
through the previous generations demonstrates a necessity to
support increasingly heterogeneous networks, diverse services,
and stringent QoS/QoE requirements. This has been driving
the trend of virtualization and generating significant interest
in AI-driven networking. Recognizing the insufficiency of the
existing scope and level of virtualization and AI for future 6G
networks, we have presented a conceptual architecture design
that integrates holistic network virtualization and pervasive
network intelligence. To complement and solidify our over-
all network architecture, we have proposed several specific
designs, including the six-layer holistic network virtualization
based on digital twins, the connected AI solution for network
management, as well as ideas, including AI slices and hybrid
data-model driven methods. As a result, the proposed network
architecture has the potential to achieve unprecedented scala-
bility and flexibility due to the holistic network virtualization
as well as exceeding adaptivity and intelligence due to the
pervasive network intelligence. At last, we have identified
some challenges and open issues related to the proposed
architecture. We hope this study will lead to further discussions
and developments on the architecture of 6G networks.
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