
Holistic Scheduling and Analysis of Mixed Time/Event-
Triggered Distributed Embedded Systems

Traian Pop, Petru Eles, Zebo Peng
Department of Computer and Information Science, Linköping University, Sweden

{trapo,petel,zebpe}@ida.liu.se
l,

on
ed
N
he

m
be
ht
ks.
be
hes
hers

to-
s
ols
-

5].
or-
rs
),
-

ir
ut

n-

her
-

d,

g
ms
u-
is
yn-
e-
to

e
y
sis
ti-
m-

e
us
-

ib-
ec-
ty
ues
pti-
6

Abstract
This paper deals with specific issues related to the design of

distributed embedded systems implemented with mixed, event-
triggered and time-triggered task sets, which communicate over bus
protocols consisting of both static and dynamic phases. Such
systems are emerging as the new standard for automotive
applications. We have developed a holistic timing analysis and
scheduling approach for this category of systems. We have also
identified several new design problems characteristic to such hybrid
systems. An example related to bus access optimization in the context
of a mixed static/dynamic bus protocol is presented. Experimental
results prove the efficiency of such an optimization approach.

1. Introduction
Embedded systems very often have to satisfy strict timing

requirements. In the case of such hard real-time applications, pre-
dictability of the timing behavior is an extremely important
aspect. Frequently such applications are implemented as distrib-
uted systems. This is the case, for example, with many applica-
tions in the automotive industry. Predictability of such a system
has to be guaranteed globally, considering both the task sched-
ules determined for the particular processing units as well as the
timing of the communication between different components of
the system.

Task scheduling and schedulability analysis has been inten-
sively studied for the past decades. The reader is referred to
[2],[3] for surveys on this topic.

A few approaches have been proposed for a holistic schedula-
bility analysis of distributed real-time systems, taking into con-
sideration both task and communication scheduling. In [16],
Tindell provided a framework for holistic analysis of event-trig-
gered task sets interconnected through an infrastructure based on
either the CAN protocol or a generic TDMA protocol. In [13] and
[14] we have developed a holistic analysis allowing for either
time-triggered or event-triggered task sets communicating over a
particular TDMA protocol, the TTP. In addition to schedulability
analysis, this work has also addressed the optimization of the TTP
based bus configuration in order to fit the particular application.

Two basic approaches for handling tasks in real-time applica-
tions can be identified [9]. In the event-triggered (ET) approach,
task activities are initiated whenever a particular event is noted.
In the time-triggered (TT) approach, task activities are initiated
at predetermined points in time. There has been a long debate in
the real-time and embedded systems communities concerning the
advantages of each approach and which one to prefer [1], [9],
[18]. Several aspects have been considered in favour of one or the

other approach, such as flexibility, predictability, jitter contro
processor utilization, testability, etc.

The same duality is reflected at the level of the communicati
infrastructure, where communication activities can be trigger
either dynamically, in response to an event (like with the CA
bus [4]), or statically, at predetermined moments in time (as in t
case of TDMA protocols and, in particular, the TTP [9]).

An interesting comparison of the TT and ET approaches, fro
a more industrial, in particular automotive, perspective, can
found in [10]. Their conclusion is that one has to choose the rig
approach depending on the particularities of the scheduled tas
This means not only that there is no single “best” approach to
used, but also that inside a certain application the two approac
can be used together, some tasks being time-triggered and ot
event-triggered.

The fact that such an approach is considered for future au
motive applications is also indicated by the recent activitie
related to the development and standardisation of bus protoc
which support both static (ST) and dynamic (DYN) communica
tion. Such a protocol has been suggested in [12] and [1
Recently, the first mixed protocol has been proposed by a cons
tium, to be used in automotive applications [8]. In [6], the autho
describe the so called Universal Communication Model (UCM
a framework for modelling at a high level of abstraction the com
munication infrastructure in automotive applications. The
approach is targeted towards simulation and refinement witho
considering the aspect of timing analysis with hard real-time co
straints.

Efficient implementation of new, highly complex distributed
automotive applications entails the use of TT task sets toget
with ET ones, implemented on top of a communication infra
structure with a mixed ST/DYN protocol. Given its flexibility,
such an approach has the potential of highly efficient, fine-tune
and optimised implementations.

Our main contribution in this paper is related to the schedulin
and schedulability analysis of distributed embedded syste
implemented with both ET and TT task sets, which are comm
nicating through mixed ST/DYN bus protocols. Such an analys
and scheduling procedure constitutes the fundament for any s
thesis approach aiming at an efficient, highly optimised impl
mentation of a distributed application which is also guaranteed
meet the timing constraints.

We also identified several design problems which offer th
potential of significant optimization and which can be solved b
efficient design space exploration, based on the timing analy
mentioned above. In order to illustrate the potential of such op
mizations, we have looked more closely at one particular co
munication synthesis problem.

This paper is the first one, to our knowledge, to handle th
holistic analysis and the design optimization of heterogeneo
TT&ET systems which are of great importance for future auto
motive applications.

In the next section we present the architecture of the distr
uted systems and the application model that we are studying. S
tion 3 describes the holistic scheduling and schedulabili
analysis we have developed. Some specific optimization iss
are presented in Section 4. Section 5 describes a particular o
mization problem related to the bus access, while Section

re-
if

the

in
ks
ol.

re-
itly
ped

is
es-
ted
The
me
e.
-

es
.
ic

in,
k
sk

e
m-
es.

has

tly
-

th
an

hs

T
ng
ot
is
ing
nd
ion
presents some experimental results. The last section presents our
conclusions.

2. System Architecture and Application Model

2.1 Hardware Architecture
We consider architectures consisting of nodes connected by a

unique broadcast communication channel. Each node consists of
a communication controller, a CPU, memories (RAM, ROM),
and an I/O interface to sensors and actuators (see Figure 1).

We model the bus access scheme using the Universal Commu-
nication Model [6]. The bus access is organized as consecutive
cycles, each with the durationTbus. We consider that the commu-
nication cycle is partitioned into static and dynamic phases
(Figure 1). Static phases consist of time slots, and during a slot
only one node is allowed to send ST messages; this is the node
associated to that particular slot. During a dynamic phase, all
nodes are allowed to send DYN messages and the conflicts
between nodes trying to send simultaneously are solved by an
arbitration mechanism based on priorities assigned to messages.

The bus access cycle has the same structure during each period
Tbus. Every node has a communication controller that imple-
ments the static and dynamic protocol services. The controller
runs independently of the node’s CPU.

2.2 Software Architecture
For the systems we are studying, we have designed a software

architecture which runs on the CPU of each node. The main com-
ponent of the software architecture is a real-time kernel which
supports both time-triggered and event-triggered activities. An
activity is defined as either the execution of a task or as the trans-
mission of a message on the bus. For the ST activities, the kernel
relies on a static schedule table which contains all the informa-
tion needed to take decisions on activation of TT tasks or trans-
mission of TT messages. For the ET tasks, the kernel maintains a
prioritized ready queue in which tasks are placed whenever their
triggering event has occurred and they are ready for activation, or
when they have been pre-empted.

The real-time kernel will always activate a TT task at the par-
ticular time fixed for that task in the schedule table. If at that
moment, an ET task is running on that node, that task will be pre-
empted and placed into the ready queue according to its priority.
If no tasks are active, ET tasks are extracted from the ready queue
and are (re)activated. ET tasks can pre-empt each other based on
their priority.

The transmission of messages is handled in a similar way: for
each node, the sending and receiving times of ST messages are
stored in the schedule table; the DYN messages are organized in
a prioritized ready queue. ST messages will be placed at prede-
termined time moments into a bus slot assigned to the sending
node. DYN messages can be potentially sent during any dynamic
phase and conflicts are solved by the communication controllers
based on message priorities. In order to prevent the delay of an

ST message by a DYN frame or the retransmission of a p
empted DYN message, the DYN messages will be sent only
there is enough time available for that message before
dynamic phase ends.

TT activities are triggered based on a local clock available
each processing node. The synchronization of local cloc
throughout the system is provided by the communication protoc

2.3 Application Model
We model an application as a set of task graphs. Nodes rep

sent tasks and arcs represent communication (and implic
dependency) between the connected tasks. Each task is map
on a certain node of the distributed application.
• A task belongs either to the TT or to the ET domain.
• Communication between tasks mapped to different nodes

preformed by message passing over the bus. Such a m
sage passing is modelled as a communication task inser
on the arc connecting the sender and the receiver tasks.
communication time between tasks mapped on the sa
node is considered to be part of the task execution tim
Thus, such a communication activity is not modelled explic
itly. For the rest of the paper, when referring to messag
we consider only the communication activity over the bus

• A message belongs either to the static (ST) or the dynam
(DYN) domain.

• All tasks in a certain task graph belong to the same doma
either ET, or TT, which is called the domain of the tas
graph. However, the messages belonging to a certain ta
graph can belong to any domain (ST or DYN). Thus, in th
most general case, tasks belonging to a TT graph, for exa
ple, can communicate through both ST and DYN messag

• Each taskτij (belonging to the task graphΓi) is mapped on

processorProcij , has a worst case execution timeCij , a

period Tij , and a deadlineDij (which, in the case of ET

tasks, can be longer than the period). Each ET task also
a uniquely assigned priorityPrioij .

• All tasks τij belonging to a task graphΓi have the same

periodTi which is the period of the task graph.

• For each message we know its size (which can be direc
converted into communication time on the particular com
munication bus). The period of a message is identical wi
that of the sender task. DYN messages also have
uniquely assigned priority.

Figure 2 shows an application modelled as two task grap
mapped on two nodes.

In order to keep the separation between the TT and E
domains, which are based on fundamentally different triggeri
policies, communication between tasks in the two domains is n
included in the model. Technically, such a communication
implemented by the kernel, based on asynchronous non-block
send and receive primitives (using proxy tasks if the sender a
receiver are on different nodes). The transmission and recept

Node 1

Static phase Dynamic phase Static phase Dynamic phase

Figure 1. System Architecture

telegram

telegram

telegram
telegram
telegram

slot 1

slot 2

slot 3

slot 6

slot 7

slot 8

slot 9

Node 2 Node 3

Bus access cycle or Round (Tbus)

communication
controller

CPU
IO

RAM

ROM

Figure 2. Application Model Example

Γ2:ET

τ2,3

Γ1:TT

τ1,1

τ1,5
τ1,3

τ1,6

τ1,4

τ1,2

τ2,1

τ2,5
τ2,4

τ2,2

Node1: τ1,1, τ1,3, τ2,1
Node2: τ1,2, τ1,4, τ2,2, τ2,3

Messages:
ST: τ1,5, τ2,4
DYN: τ1,6, τ2,5

Tasks:

sk

sin-
se

i-

sy
re
two

m-

l-

s.
es

ity

s

t
il-

s.

lt

rce.
of such a message are not considered as communication tasks or
respectively events in the context described by our model, there-
fore they are outside the scope of our holistic analysis. Such mes-
sages are typically non-critical and are not affected by hard real-
time constraints.

3. Holistic Scheduling
Given an application and a system architecture as presented in

Section 2, the following problem has to be solved: construct a
correct static schedule for the TT tasks and ST messages (a
schedule which meets all time constraints related to these activi-
ties) and conduct a schedulability analysis in order to check that
all ET tasks meet their deadlines. Two important aspects should
be noticed:
1. When performing the schedulability analysis for the ET

tasks and DYN messages, one has to take into considera-
tion the interference from the statically scheduled TT tasks
and ST messages.

2. Among the possible correct schedules for TT tasks and ST
messages, it is important to construct one which favours, as
much as possible, the schedulability of ET tasks and DYN
messages.

In Section 3.1 we present the schedulability analysis for a set
of ET tasks and DYN messages, considering a fixed given static
schedule of TT tasks and ST messages. In Section 3.2 we discuss
the construction of the static schedule which is driven by the
objective of achieving global schedulability of the system. In
order to keep the presentation reasonably simple and given the
space limitations, we present here the analysis for a restricted
model, in the sense that TT tasks are communicating only
through ST messages, while the communication between ET
tasks is only through DYN messages. This is not an inherent lim-
itation of our approach and the analysis we have developed and
implemented supports the general model (in [14], for example,
we have presented an approach to schedulability analysis of ET
tasks communicating through ST messages).

3.1 Schedulability analysis of the ET sub-system
considering the influence of a given static
schedule

An ET task graphΓi is activated by an associated event which
occurs with a periodTi. Each activityτij (task or message) in an
ET task graph has an offsetφij which specifies the earliest activa-
tion time ofτij relative to the occurrence of the triggering event.
The delay between the earliest possible activation time ofτij and
its actual activation time is modelled as a jitterJij (Figure 3.a).
Offsets and jitters are the means by which dependencies among
tasks are modelled for the schedulability analysis. The response
time Rij of an activityτij is the time measured from the occur-
rence of the associated event until the completion ofτij . Each ET

activity τij has a best case response timeRb,ij. The worst case
response timeRij of an activityτij occurs whenτij is released at
the same time momenttc together with all possible higher priority
activities onProcij [11]. The momenttc is called critical instant
and it represents the starting point of the busy windowwij , a time
interval which ends whenτij finishes execution (Figure 3.b). Dur-
ing the busy windowwij , processorProcij executes only taskτij
or higher priority tasks.ϕij is the time interval between the criti-
cal instant and the earliest time for the first activation of the ta
after this instant.

Considering a set of data dependent ET tasks mapped on a
gle processor, the analysis in [11] computes the worst ca
response timeRij of a taskτij , based on the length of its busy
period, considering all the critical instants initiated by higher pr
ority activitiesτik in Γi and all job instancesp of τij which can
appear in the busy windowwij :

wherewijk(p) is the worst-case busy window of thep-th job of
τij , numbered from the critical instanttc initiated byτik.

The value ofwijk(p) is determined as follows:

where,Bij represents the maximum interval during whichτij can
be blocked by lower priority activities1, Wik(τij ,t) is the interfer-
ence from higher priority activities in the same task graphΓi at
time t, and W*

a(τij ,t) is the maximum interference of activities
from other task graphsΓa on τij . One problem that arises during
the computation of response times is that the length of the bu
window depends on the values of task jitters, which in turn a
computed as the difference between the response times of
successive tasks (for example, iftij precedestik in Γi, thenJik =
Rij - Rb,ij). Because of this cyclic dependency, the process of co
putingRij is an iterative one: it starts by assigningRb,ij to Rij and
then computes the values forJij , wijk(p) and then againRij , until
the response times converge to their final value.

Starting from the analysis in [11], we had to consider the fo
lowing additional aspects:
• The interference from the set of statically scheduled task
• The computation of worst case delays for the messag

communicated on the bus and the global schedulabil
analysis of the distributed task set.

First we introduce the notion ofET demandassociated with an
ET activity τij as the amount of CPU time or bus time which i
demandedonly by higher priority ET activities and byτij during
the busy windowwij . In Figure 4, the ET demand of the taskτij
during the busy windowwij is represented withHij(wij), and it is
the sum of worst case execution times for taskτij and two other
higher priority tasksτabandτcd. During the same busy periodwij ,
we define theavailability as the processing time which is no
used by statically scheduled activities. In Figure 4, the CPU ava
ability for the interval of lengthwij is obtained by substracting
fromwij the amount of processing time needed for the TT activitie

During a busy windowwij , theET demand Hij of a taskτij is
equal with the length of the busy window which would resu
when considering only ET activity on the system:

ev
en

t

φij
ϕij wij

Rij

tc

Cij

Figure 3. Model of the event-triggered sub-system

Rij wij φi j ϕi j– p 1–()Ti–+=

φij+1 φij+1 Jij+1

Ti

φij
τij τij+1

τij τij+1

a) Tasks with offsets

b) Response time and busy period w for taskτij

Jij

φij Jij

1. Such blocking can occur at access to a shared critical resou

Rij max max wijk p() ϕi jk– p 1–()Ti– φi j+()[]
k Prioik Prioij p∀,>∀

,=

wijk p() Bij p p0 i jk,– 1+() Cij⋅ Wik τi j wijk p(),()

W*
a τi j wijk p)(),()

a i≠()∀
∑

+ + +=

Hij wij() Bij p p0 i jk,– 1+() Cij⋅

Wik τi j wij,() W*
a τab wij,()

a i≠()∀
∑

+ +

+

=

d-

s
[5].
k

a

es
r all
list,
d on
us-
es-
ct

odi-
ib-

or

rd

T

-

of
ks

list,
de

the

the
e

During the same busy windowwij , the availabilityAij associ-
ated with taskτij is:

whereAq
ij(w) is the total available CPU-time onProcij in the

interval [q Ti + φij− ϕijk, q Ti + φij − ϕijk + wij], Ti is the period of
Γi andTSSis the period of the static schedule (see Section 3.2).
Figure 4 presents howAq

ij(w) and the demand are computed for
a taskτij : the busy window ofτij starts at the critical instantq Ti
+ tc initiated by taskτab and ends at momentqTi + tc + wij , when
both higher priority tasks(τab, τcd), all TT tasks scheduled for
execution in the analysed interval, andτij have finished execution.

The discussion above is, in principle, valid for both ET tasks
and ST messages. However, there exist two important differ-
ences. First, messages do not pre-empt each other, therefore, the
demand equation is modified so that it will not consider the time
needed for the transmission of the message under analysis (once
the message has gained the bus it will be sent without any inter-
ference [12]). Second, the availability for a message is computed
by substracting fromwij the length of the ST slots which appear
during the considered interval; moreover, because a DYN mes-
sage will not be sent unless there is enough time before the cur-
rent dynamic phase ends, the availability is further decreased
with CA for each dynamic phase in the busy window (where CA
is the transmission time of the longest DYN message).

Our schedulability analysis algorithm determines the length of
a busy windowwij for an ET task or DYN message by identifying
the appropriate size ofwij for which the ET demand is satisfied
by the availability:Hij(wij) ≤ Aij(wij). This procedure for the cal-
culation of the busy window is included in the iterative process
for calculation of response times, presented earlier in this subsec-
tion. It is important to notice that this process includes both tasks
and messages and, thus, the resulted response times of the ET
tasks are computed by taking into consideration the delay
induced by the bus communication.

After performing the schedulability analysis, we can check if
Rij ≤ Dij for all the ET tasks. If this is the case, the set of ET activ-
ities is schedulable. In order to drive the global scheduling proc-
ess, as it will be explained in the next section, it is not sufficient
to test if the task set is schedulable or not, but we need a metric
that captures the “degree of schedulability” of the task set. For
this purpose we use a cost function similar with the one described
in [14]:

whereN is the number of ET task graphs andNi is the number
of activities in the ET task graphΓi.

If the task set is not schedulable, there exists at least one task
for which Rij > Dij . In this case,f1 > 0 and the cost function is a
metric of how far we are from achieving schedulability. If the set
of ET tasks is schedulable,f2 ≤ 0 is used as a metric. A valuef2
= 0 means that the task set is “just” schedulable. A smaller value
for f2 means that the ET tasks are schedulable and a certain
amount of processing capacity is still available.

Now, that we are able to perform the schedulability analysis
for the ET tasks considering the influence from a given static

schedule of TT tasks, we can go on to perform the global sche
uling and analysis of the whole application.

3.2 Static schedule construction and holistic
analysis

For the construction of the cyclic static schedule for TT task
and ST messages, we use a list-scheduling based algorithm
Assuming that in our application we have N time-triggered tas
graphsΓ1, Γ2, ..., ΓΝ, the static schedule will be computed over
period TSS= LCM(T1, T2, ..., TN). The input to the list scheduling
algorithm is a graph consisting ofni instances of eachΓi, where
ni=TSS/Ti. A ready list contains all TT tasks and ST messag
which are ready to be scheduled (they have no predecessors o
their predecessors have been scheduled). From the ready
tasks and messages are extracted one by one to be schedule
the processor they are mapped to, respectively into a static b
slot associated to that processor on which the sender of the m
sage is executed. The priority function which is used to sele
among ready tasks and messages is a critical path metric, m
fied for the particular goal of scheduling tasks mapped on distr
uted systems [13]. Let us consider a particular taskτij selected
from the ready list to be scheduled.θ1 is the earliest time moment
which satisfies the condition that all preceding activities (tasks
messages) ofτij in graphΓi are finished and the processorProcij
is free.θ2 = ALAP(τij) is the latest time whenτij can be sched-
uled. With only the TT tasks in the system, the straight forwa
solution would be to scheduleτij atθ1. In our case, however, such
a solution could have negative effects on the schedulability of E
tasks. What we have to do is to placeτij in such a position inside
the interval [θ1, θ2] that the chance to finally get a globally sched
ulable system is maximised.

In order to find the right position forτij , we try k different
alternatives:

For each alternative we perform the schedulability analysis
the ET task set considering the influence from those TT tas
which are already scheduled. We will select that start time forτij
which produces the minimum value forCost (see Section 3.1).

When scheduling an ST message extracted from the ready
we place it into the first bus-slot associated with the sender no
in which there is sufficient space available.

If all TT tasks and ST messages have been scheduled and
schedulability analysis for the ET tasks indicatesCost≤ 0, the
global system scheduling has succeeded.

There are two aspects to be mentioned:
1. How large should be the numberk of alternatives to be tried

for the placement of a taskτij? If k is large, we will increase

the chance to generate a schedulable system, however
execution time for the scheduling algorithm could becom

Aij wij() min Aij
q

wij()[] q, 0
LCM Ti TSS,()

Ti
-----------------------------------,= =

f 1 m
j 1=

Ni

∑ ax 0 Rij Dij–,()
i 1=

N

∑=

f 2 Rij Dij–()
j 1=

Ni

∑
i 1=

N

∑=

Cost =

, if f1 = 0

, if f1 > 0

φij
ϕij wijtc

Cij

Figure 4. Availability and Demand

Rij w φi j ϕi j– p 1–()Ti–+=

T
T

Ccd
Cab

ET availability: Aq
ij (wij) = wij - Ttt

ET demand: Hij (wij) = Cij + Cab + Ccd

ac
tiv

ity

interval [tc, tc+w] {

qTi
Ttt

start_timeτi j() θ1

θ2 θ1–

k 1–
----------------- x× x 0 .. k, 1–,=,+=

le,
ring
er,

es.
e
d in
n-
on.

ne
the

best
in
T

set is
e is
s-
d a
ed
ity

e
slot
ns-
se

e
tes
are

ve
ch
he
n-
he

of
80
on
the

or
us
he
n

ng
nd
a-
the
e
e 7
unacceptably large. At the same time, for relatively large
intervals [θ1, θ2] it is reasonable to try more alternatives

than for tight intervals. In our current implementation we
set the numberk as follows:

The value∆ is determined at the beginning of the scheduling
process after an initial ASAP and ALAP schedule has been
constructed for the TT tasks.∆ is the average of (ALAP(τij)-
ASAP(τij)) over all TT tasksτij . Thus, the value ofk will
oscillate around the valueN, getting larger values for long
intervals [θ1, θ2] and small values for short intervals. The
valueN is set by the designer. In Section 6 we present some
experimental results showing the influence ofN on the
scheduling time and on the quality of the generated schedules.

2. For the case that no correct schedule has been produced, we
have implemented a backtracking mechanism in the list
scheduling algorithm, which allows to turn back to previ-
ous scheduling steps and to try alternative solutions. In
order to avoid excessive scheduling times, the maximum
number of backtracking steps can be limited.

4. System Optimization
Considering a hard real-time system like the one described in

Section 2, several design problems emerge. There are, of course,
the classical issues as selection of an architecture (e.g. number
and kind of nodes), the mapping of tasks on the processing nodes,
or the assignment of priorities to ET tasks and DYN messages
[1],[7],[17]. However, due to the heterogeneous ET and TT
nature of the application and the mixed synchronous/dynamic
bus protocol, some new, very interesting problems can be identi-
fied:
• Partitioning of the system functionality into TT and ET

activities. During the design process, a decision should be
made on which tasks and messages will be implemented as
TT/ET and ST/DYN activities, respectively. Typically, this
decision is taken, based on the experience and preferences
of the designer, considering aspects like the functionality
implemented by the task, the hardness of the constraints,
sensitivity to jitter, etc. There exists, however, a subset of
tasks/messages which could be assigned to any of the
domains. Decisions concerning the partitioning of this set
of activities can lead to various trade-offs concerning, for
example, the size of the schedule table or the schedulability
properties of the system.

• Determining the optimal structure of the bus access cycle.
The configuration of the bus access cycle has a strong
impact on the global performance of the system. The
parameters of this cycle have to be optimised such that they
fit the particular application and the timing requirements at
the task level. Parameters to be optimised are the number of

static and dynamic phases during a communication cyc
as well as the length and order of these phases. Conside
the static phases, parameters to be fixed are the ord
number, and length of slots assigned to the different nod

The optimization problems identified above can b
approached once the holistic scheduling technique presente
Section 3 is available. In the next section we illustrate this by co
sidering a particular problem related to bus access optimizati

5. Bus Access Optimization
We consider an application and an architecture like the o

described in Section 2. The designer has mapped the tasks on
nodes of the system and has set the bus cycle according to his
knowledge. After running the holistic scheduling presented
Section 3, it turns out that a correct static schedule for the T
tasks and ST messages has been generated, but the ET task
not schedulable. One of the reasons for this could be that ther
not sufficient bandwidth allocated for the communication of me
sages between ET tasks. The problem to be solved is to fin
structure of the bus cycle such that more bandwidth is allocat
to the dynamic phases with the goal to improve the schedulabil
of ET tasks while maintaining a correct static schedule.

As a first step, the optimization algorithm transforms som
parts of the static phases into dynamic phases. For each static
in the bus cycle and for each round in the static schedule we tra
form the periodically unused part of the slot in a dynamic pha
(see Figure 5).

After this initial step, various bus cycle configurations ar
explored by splitting and merging bus phases. Figure 6 illustra
the operations on dynamic phases. Three possible outcomes
shown for both the splitting and the merging example. We ha
implemented a simulated annealing based algorithm whi
applies successive splitting and merging transformations with t
goal to improve the schedulability of the ET task set and the co
straint of achieving a correct static schedule for TT tasks. T
objective function driving the algorithm is the functionCost
introduced in Section 3.1

6. Experimental Results
For evaluation of our scheduling and analysis algorithm and

the bus access optimization heuristic, we generated a total of
applications. Each application consisted of 80 tasks mapped
10 processor nodes. The percentage of ET tasks was 40% of
total number of tasks for half of the application set and 60% f
the other half. Processor utilisation was 60% and 80%. The b
bandwidth was equally divided between the dynamic and t
static phases. All experiments were run on an AMD Athlo
850MHz PC.

The first set of experiments concerns the holistic scheduli
algorithm and, in particular, the trade-off between speed a
quality. In Section 3 we have shown that the number of altern
tives considered for the placement of a TT task depends on
coefficientN. A larger number of such alternatives improves th
quality of the schedule but increases the schedule time. Figur

k max
θ2 θ1–()

∆
---------------------- N× 1,()=

slot1 slot2
dynamic

slot1 slot2
dynamic

Cycle1 Cycle2

new dynamic phase

Figure 5. Transformation of unused static
bandwidth into dynamic phases

phasephase
static phase static phase

unused unused

slot1 slot2 slot1 slot2 b) New bus cycle

a) Initial bus cycle

dyn.ph.2

dyn.ph.2

dyn.ph.1

dyn.ph.1

a) Phase Splitting b) Phase Merging

st.ph.1 st.ph.2dyn.phase dyn.ph.1 dyn.ph2st. ph.1 st.ph.2

dyn.phase1+2st. ph.1 + st.ph.2dyn.ph.2st.ph.1

st.ph.1

st.ph.2

st.ph.2 dyn.phase1+2st. ph.1 st.ph.2

dyn.ph.1 st.ph.1 + st.ph.2 dyn.phase1+2 st. ph.1 + st.ph.2

Figure 6. Operations on dynamic phases

mic
for
ns
tic
s.

s-
ver-
he
d

ro-
ave
wn
pt-
n.

3.
:

l-
ry-

r

s",

d

c

s
E

-

s

d
0.
r
3.

",

l-
g,
shows how the scheduling time grows withN. When following
Figure 8, however, we can observe that the quality of the schedule
(expressed through the functionCost) at the beginning very
quickly improves with growingN, and then practically keeps at a
constant level. For all experiments a value ofN around 5 already
provided for the best quality schedule.

The next set of experiments concerns the potential of the bus
access optimization discussed in Section 5. For this purpose we
selected that part of the generated applications for which the ET
component resulted unschedulable. Table 1 shows the results after
running our optimization heuristic for this application set. As can
be observed, the average improvement of the schedulability is
between 24% and 34%, with an average optimization time just
above 1 minute. As discussed in Section 5, these improvements
have been obtained considering only a very limited optimization
issue, namely the distribution of bandwidth between the static and
the dynamic phases. This demonstrates the huge optimization
potential of the different design problems discussed in Section 4.

Finally, we considered a real-life example implementing a
vehicle cruise controller and a control application related to the
Anti Blocking System. The cruise controller consists of 32 TT
tasks mapped over 5 nodes. The second control system consists
of 30 ET tasks which are mapped on 3 of the same 5 nodes. Ini-
tially, the bandwidth on the communication bus is equally
divided between the static and dynamic phases. The scheduling
of the system took 0.57 seconds and resulted in a correct static
schedule and an unschedulable ET domain. After running the bus
access optimization, the schedulability (expressed in terms of the
function Cost) has improved by more than one order of magni-
tude, resulting in a completely schedulable system. The optimi-
zation was solved in less than 2 minutes.

7. Conclusions
Distributed embedded systems based on mixed static/dyna

communication protocols are becoming the new standard
automotive applications. Such systems typically run applicatio
consisting of both ET and TT tasks. We have presented a holis
scheduling and timing analysis approach for this class of system
A static cyclic schedule is constructed for TT tasks and ST me
sages and the schedulability of ET tasks and DYN messages is
ified. The static schedule is constructed in such a way that it fits t
schedulability requirements of the ET domain. We have identifie
a new class of system optimization issues typical for the hete
geneous systems considered in the paper. In particular, we h
considered a bus access optimization problem and have sho
that the system performance can be improved by carefully ada
ing the bus cycle to the particular requirements of the applicatio

8. References
[1] N. Audsley, K. Tindell, A. et. al., “The End of Line for Static Cyclic

Scheduling?”, 5th Euromicro Works. on Real-Time Systems, 199
[2] N. Audsley, A. Burns, et. al., “Fixed Priority Preemptive Scheduling

An Historical Perspective”, Real-Time Systems, 8(2/3), 1995.
[3] F. Balarin, L. Lavagno, et. al., “Scheduling for Embedded Rea

Time Systems”, IEEE Design and Test of Computers, Janua
March,1998.

[4] R. Bosch GmbH, “CAN Specification Version 2.0”, 1991.
[5] E.G. Coffman Jr., R.L. Graham, "Optimal Scheduling for two

Processor Systems",Acta Informatica, 1, 1972.
[6] T. Demmeler, P. Giusto, “A Universal Communication Model fo

an Automotive System Integration Platform”, DATE, 2001.
[7] R. Ernst, "Codesign of Embedded Systems: Status and Trend

IEEE Design&Test of Comp., April-June, 1998.
[8] FlexRay homepage: http://www.flexray-group.com/.
[9] H. Kopetz, “Real-Time Systems - Design Principles for Distribute

Embedded Applications”, Kluwer Academic Publisher, 1997.
[10] H. Lönn, J. Axelsson, “A Comparison of Fixed-Priority and Stati

Cyclic Scheduling for Distributed Automotive Control
Applications”, Euromicro Conf. on RTS, 1999.

[11] J. C. Palencia, M. G. Harbour, “Schedulability Analysis for Task
with Static and Dynamic Offsets”, Proceedings of the 9th IEE
Real-Time Systems Symposium, 1998.

[12] P. Pedreiras, L. Almeida, “Combining Event-Triggered and Time
Triggered Traffic in FTT-CAN: Analysis of the Asynchronous
Messaging System”, WFCS, 2000.

[13] P. Pop, P. Eles, Z. Peng, A. Doboli, “Scheduling with Bus Acces
Optimization for Distributed Embedded Systems“, IEEE
Transactions on VLSI Systems, 8(5), 2000.

[14] P. Pop, P. Eles, Z. Peng, “Bus Access Optimization for Distribute
Embedded Systems Based on Schedulability Analysis“, DATE, 200

[15] P. Raja, G. Noubir, “Static and Dynamic Polling Mechanisms fo
Fieldbus Networks”, ACM Operating Systems Review, 27(3), 199

[16] K. Tindell, J. Clark, “Holistic Schedulability Analysis for
Distributed Hard Real-Time Systems”, Microprocessing &
Microprogramming, Vol. 50, Nos. 2-3, 1994.

[17] W. Wolf, "Hardware-Software Co-Design of Embedded Systems
Proceedings of the IEEE, V82, N7, 1994.

[18] J. Xu, D.L. Parnas, “On satisfying timing constraints in hard-rea
time systems”, IEEE Transactions on Software Engineerin
19(1), 1993.

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40 45
N

S
ch

ed
ul

in
g

tim
e

(s
ec

) 80 tasks (60% ET),
10 processors,
60% processor utilisation

Figure 7. Optimization time

1 2 3 4 5 6 7 8N

C

80 tasks (60% ET),
10 processors,
60% processor utilisation

Figure 8. Schedulability improvement with N

Processor
utilisation

60% ET tasks 40% ET tasks

schedulability
improvement

optimiza-
tion time

(sec)

schedulability
improvement

optimiza-
tion time

(sec)

60% 34% 67.4 25% 109.8

80% 29% 64.7 24% 71.5

Table 1: Bus Optimization Results

