
Holistic Twig Joins: Optimal XML Pattern Matching

Nicolas Bruno
Columbia University

nicolas@cs.columbia.edu

Nick Koudas
AT&T Labs-Research

koudas@research.att.com

Divesh Srivastava
AT&T Labs-Research

divesh@research.att.com

ABSTRACT
XML employs a tree-structured da ta model, and, naturally,

XML queries specify pat terns of selection predicates on mul-
tiple elements related by a tree structure. Finding all occur-

rences of such a twig pat tern in an XML database is a core
operation for XML query processing. Prior work has typ-

ically decomposed the twig pat tern into binary structural

(parent-child and ancestor-descendant) relationships, and

twig matching is achieved by: (i) using structural join algo-
r i thms to match the binary relationships against the XML

database, and (ii) stitching together these basic matches.

A l imitation of this approach for matching twig pat terns is

tha t intermediate result sizes can get large, even when the

input and output sizes are more manageable.

In this paper, we propose a novel holistic twig join algo-

r i thm, TwigStack, for matching an XML query twig pattern.

Our technique uses a chain of linked stacks to compactly

represent part ia l results to root-to-leaf query paths, which

are then composed to obtain matches for the twig pattern.

When the twig pa t te rn uses only ancestor-descendant rela-

tionships between elements, TwigStack is I /O and CPU op-
t imal among all sequential algorithms that read the entire
input: it is linear in the sum of sizes of the input lists and the

final result list, but independent of the sizes of intermediate
results. We then show how to use (a modification of) B-

trees, along with TwigStack, to match query twig pat terns

in sub-linear time. Finally, we complement our analysis with
experimental results on a range of real and synthetic data,
and query twig patterns.

1. INTRODUCTION

XML employs a tree-structured model for representing

data. Queries in XML query languages (see, e.g., [8, 5, 2])

typically specify pat terns of selection predicates on multiple

elements tha t have some specified tree s t ructured relation-
ships. For example, the XQuery expression:

book[t i t l e = 'XML'] / /au thor[fn ---- ' j ane ' AND in = 'doe ']

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD '2002 June 4-6, Madison, Wisconsin, USA
Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

matches au thor elements that (i) have a child subelement

fn with content jane , (ii) have a child subelement in with
content doe, and (iii) are descendants of book elements tha t
have a child t i t l e subelement with content XML. This ex-

pression can be represented as a node-labeled twig (or small
tree) pa t te rn with elements and string values as node labels.

Finding all occurrences of a twig pa t te rn in a database
is a core operat ion in XML query processing, both in re-

lational implementat ions of XML databases, and in native

XML databases. Prior work (see, for example, [12, 24, 17,

19, 18, 27, 1]) has typical ly decomposed the twig pa t te rn into

a set of binary (parent-child and ancestor-descendant) rela-

tionships between pairs of nodes, e.g., the parent-child rela-
tionships (book, t i t l e) and (author , fn), and the ancestor-

descendant relationship (book, author) . The query twig

pat tern can then be matched by (i) matching each of the

binary s tructural relationships against the XML database,

and (ii) "stitching" together these basic matches.
For solving the first sub-problem of matching binary struc-

tural relationships, Zhang et al. [27] proposed a variation

of the t radi t ional merge join algorithm, the mult i -predicate
merge join (MPMGJN) algorithm, based on the (DocId,

Lef tPos : R igh tPos , LevelNum) representation of posi-

tions of XML elements and string values (see Section 2.3
for details about this representation). Their results showed

that the MPMGJN algorithm could outperform s tandard
RDBMS join algorithms by more than an order of magni-
tude. More recently, A1-Khalifa et al. [1] took advantage

of the same representat ion of positions of XML elements to

devise I /O and CPU optimal join algorithms for matching

binary structural relationships against an XML database.
The second sub-problem of sti tching together the basic

matches obtained using binary "structural" joins requires

identifying a good join ordering in a cost-based manner,

taking selectivities and intermediate result size est imates

into account. In this paper, we show that a basic l imita-
tion of this (tradit ional) approach for matching query twig

pat terns is that intermediate result sizes can get very large,
even when the input and final result sizes are much more

manageable. As a result, we seek a bet ter solution to the

problem of matching query twig pat terns efficiently.

In this paper, we propose a novel holist ic twig j o i n ap-
proach for matching XML query twig patterns, wherein no

large intermediate results are created. Our technique uses
the (DocId, LeftPos : KightPos, LevelNum) representa-

tion of positions of XML elements and string values (that

succinctly captures s t ructural relationships between nodes
in the XML database) . I t also uses a chain of linked stacks to

3 1 0

compact ly represent part ial results to individual query root-

to-leaf paths, which axe then composed to obtain matches
to the query twig pattern.

Since a great deal of XML da ta is expected to be stored in
relational database systems (all the major DBMS vendors

including Oracle, IBM and Microsoft are providing system
support for XML data), our s tudy provides evidence that

RDBMS systems need to augment their suite of query pro-

cessing strategies to include holistic twig joins for efficient

XML query processing. Our study is equally relevant for
native XML query engines, since holistic twig joins are an

efficient set-at-a-t ime strategy for matching XML query pat-

terns, in contrast to the node-at-a-t ime approach of using

tree traversals.

1.1 Outline and Contributions
We begin by presenting background material (data model,

query twig patterns, and positional representations of XML

elements) in Section 2. Our main contributions are:

• We develop two families of holistic path join algorithms

in Section 3 to match XML query root-to-leaf paths ef-

ficiently. The first, PathStack, generalizes the Stack-
Tree-Desc binary structural join algorithm of [1], while

the second, PathMPMJ, generalizes the MPMGJN bi-
nary join algorithm of [27]. We analyze Pa thStack

and show that it is I /O and CPU optimal among all
sequential algorithms that read the entire input, and

has worst-case complexities linear in the sum of input

and output sizes but independent of the sizes of inter-

mediate results.

• We then develop TwigStack in Section 4, a holistie

twig join algorithm that (i) refines Pa thStack to en-
sure tha t results computed for one root-to-leaf path

of a twig pat tern axe likely to have matching results

in other paths of the twig pattern, and (ii) merges re-
sults for the different root-to-leaf paths in the query

twig pattern, to compute the desired output. When

the query twig uses only ancestor-descendant relation-

ships between elements, we analytically demonstrate
that TwigStack is I /O and CPU optimal among all

sequential algorithms that read the entire input.

• Finally, in Section 5 we present experimental results

on a range of real and synthetic data, and query twig

patterns, to complement our analytical results:

- We show the substantial performance benefits of

using holistic twig joins over binary structural
joins (for arbi t rary join orders).

- We show that among holistic pa th join algorithms,
Pa thStack is significantly faster than PathMPMJ.
This validates the analytical results demonstrat-

ing the I /O and CPU optimali ty of PathStack.
- For the case of twig patterns, we show that the use

of TwigStack is bet ter (both in time and space)
than the independent use of Pa thStack on each

root-to-leaf path, even when the twig pat tern con-

tains parent-child structural relationships.
- We show how to use a modification of B-trees,

denoted XB-trees, along with TwigStack, to per-
form matching of query twig pat terns in sub-linear
time.

We describe related work in Section 6, and conclude by

discussing ongoing and future work in Section 7.

2. BACKGROUND

2.1 Data Model and Query Twig Patterns
An XML database is a forest of rooted, ordered, labeled

trees, each node corresponding to an element or a value,

and the edges representing (direct) element-subelement or

element-value relationships. Node labels consist of a set of

(at t r ibute, value) pairs, which suffices to model tags, IDs,

IDREFs, etc. The ordering of sibling nodes implicitly defines
a total order on the nodes in a tree, obtained by a preorder

traversal of the tree nodes. Figure 1 shows the tree repre-

sentation of a sample XML document. (The util i ty of the

numbers associated with the tree nodes will be explained in

Section 2.3.)

~b . (l,hlS0,1) oo~~ ...

title allauthors year chapter
(1,2:4,2) (I,5:60,2)~ ~ (1 , 6 1 : 6 3 , 2) (1,64:93,2)/ ~ . . .

(,,6:20,3)/ 1(1,62,3) /
0,3,3) XML author author author 2000 title section

(17:94)/ , , , / \ , , , I ~ , , , (1'6':67'3) :: :::;::34)) . . .

fn In fn In fn In XML head

II I I I I
jane poe john doe jane doe Origins

(1,8,5) 0,11,5) (1,26,5) (1,43,5) (1,46,5) 0,70,5)
F i g u r e 1: A s a m p l e X M L T r e e r e p r e s e n t a t i o n

Queries in XML query languages like XQuery [2], Quilt [5]
and XML-QL [8] make use of (node labeled) twig pat terns

for matching relevant portions of da ta in the XML database.
The twig pa t te rn node labels include element tags, a t t r ibute-

value comparisons, and string values, and the query twig

pa t te rn edges are either parent-child edges (depicted using

a single line) or ancestor-descendant edges (depicted using
a double line). For example, the XQuery expression:

book[title = 'XML' AND year = '2000']

which matches book elements that (i) have a child t i t l e

subelement with content XML, and (ii) have a child yea r

subelement with content 2000, can be represented as the
twig pa t te rn in Figure 2(a). Only parent-child edges are
used in this case. Similarly, the XQuery expression in the
introduction can be represented as the twig pa t te rn in Fig-

ure 2(b). Note that an ancestor-descendant edge is used

between the book element and the au thor element.
In general, at each node in the query twig pat tern, there is

a node predicate on the at t r ibutes (e.g., tag, content) of the

node in question. For the purposes of this paper, exactly

book book

title year title author

I I I / \
XML 2000 XML fn In

(a) (h) I I
jane doe

F i g u r e 2: Q u e r y t w i g p a t t e r n s

311

what is permitted in this predicate is not material. Simi-

laxly, the physical representation of the nodes in the XML

database is not relevant to the results in this paper. It suf-

fices for our purposes that there be efficient access mecha-

nisms (such as index structures) to identify the nodes in the

XML database that satisfy any given node predicate q, and
return a stream of matches Tq.

2.2 Twig Pattern Matching

Given a query twig pat tern Q and an XML database D, a

match of Q in D is identified by a mapping from nodes in Q

to nodes in D, such that: (i) query node predicates are sat-

isfied by the corresponding database nodes (the images un-

der the mapping), and (ii) the structural (parent-child and

ancestor-descendant) relationships between query nodes are

satisfied by the corresponding database nodes. The answer

to query Q with n nodes can be represented as an n-ary re-

lation where each tuple (d l , . . . , dn) consists of the database

nodes that identify a distinct match of Q in D.

Finding all matches of a query twig pattern in an XML

database is a core operation in XML query processing, both

in relational implementations of XML databases, and in na-

tive XML databases. In this paper, we consider the twig

pattern matching problem:

Given a query twig pattern Q, and an XML database

D that has index structures to identify database nodes

that satisfy each of Q's node predicates, compute the
answer to Q on D.

Consider, for example, the query twig pattern in Fig-

ure 2(a), and the database tree in Figure 1. This query

twig pattern has one match in the data tree that maps the

nodes in the query to the root of the data and its first and
third subtrees.

2.3 Representing Positions of Elements and
String Values in an XML Database

The key to an efficient, uniform mechanism for set-at-a-

time (join-based) matching of query twig patterns is a po-

sitional representation of occurrences of XML elements and

string values in the XML database (see, e.g., [6, 7, 27]),

which extends the classic inverted index data structure in
information retrieval [22].

We can represent the position of a string occurrence in the

XML database as a 3-tuple (DocId, LeftPos, LevelNum),

and analogously, the position of an element occurrence as a

3-tuple (DocId, LeftPos : R±ghtPos, LevelNtun), where

(i) DocId is the identifier of the document; (ii) LeftPos and

RightPos can be generated by counting word numbers from

the beginning of the document DocId until the start and

the end of the element, respectively; and (iii) LevelNum is

the nesting depth of the element (or string value) in the

document. Figure 1 shows 3-tuples associated with some

tree nodes, based on this representation (the DocId for all
nodes is chosen to be one).

Structural relationships between tree nodes whose posi-

tions are recorded in this fashion can be determined easily:

(i) ancestor-descendant: a tree node n2 whose position in

the XML database is encoded as (D2,L2 : R2,N2) is a de-

scendant of a tree node n l whose position is encoded as

(D1,L1 : R1,N1) iff D1 = D2,L1 < L2, and R2 < R l l ;

1For leaf strings, the R£ghtPos value is the same as the LeftPos
value.

(ii) parent-child: a tree node n2 whose position in the XML

database is encoded as (De,L2 : R2,N2) is a child of a tree

node nl whose position is encoded as (D1, L1 : R1, N1) iff

Di = D2,L1 < L2, R2 < R1, and N1 + 1 = N2. For exam-

ple, in Figure 1, the author node with position (1, 6 : 20, 3)

is a descendant of the book node with position (1, 1 : 150, 1),

and the string "jane" with position (1, 8, 5) is a child of the

author node with position (1, 7 : 9, 4).

A key point worth noting about this representation of

node positions in the XML data tree is that checking an

ancestor-descendant relationship is as simple as checking

a parent-child relationship (we can check for an ancestor-

descendant structural relationship without knowledge of the

intermediate nodes on the path). Also, this representation

of positions of nodes allow for checking order (e.g., node n2

follows node n l) and structural proximity (e.g., node n2 is

a descendant within 3 levels of n l) relationships.

3. HOLISTIC PATH JOIN ALGORITHMS

3.1 Notation

Let q (with or without subscripts) denote twig patterns, as

well as (interchangeably) the root node of the twig pattern.

In our algorithms, we make use of the following twig node

operations: isLeaf : Node ~ Pool, isRoot: Node ~ Pool,

parent : Node ~ Node, ch£1dren: Node ~ {Node}, and

s u b t r e e N o d e s : Node ~ {Node}. Path queries have only

one child per node, otherwise ch i ld ren(q) returns the set

of children nodes of q. The result of subtreeNodes(q) is the

node q and all its descendants.

Associated with each node q in a query twig pat tern there

is a stream Tq. The stream contains the positional represen-

tations of the database nodes that match the node predicate

at the twig pattern node q (possibly obtained using an ef-

ficient access mechanism, such as an index structure). The

nodes in the stream are sorted by their (DocId, LeftPos)
values. The operations over streams are: eof, advance,

next, nextL, and nextR. The last two operations return the

LeftPos and RightPos coordinates in the positional repre-

sentation of the next element in the stream, respectively.

In our stack-based algorithms, PathStack and TwigStack,

we also associate with each query node q a stack Sq. Each

data node in the stack consists of a pair: (positional repre-

sentation of a node from Tq, pointer to a node in Sparen t (q)).
The operations over stacks are: empty, pop, push, topL,

and topR. The last two operations return the LeftPos and

RightPos coordinates in the positional representation of the

top element in the stack, respectively. At every point during

the computation, (i) the nodes in stack Sq (from bot tom to

top) are guaranteed to lie on a root-to-leaf path in the XML

database, and (ii) the set of stacks contain a compact encod-

ing of partial and total answers to the query twig pattern,

which can represent in linear space a potentially exponential

(in the number of query nodes) number of answers to the

query twig pattern, as illustrated below.

EXAMPLE 3.1. Figure 3 illustrates the stack encoding of

answers to a path query for a sample data set. The answer

[A2, B2, C1] is encoded since C1 points to B2, and B2 points

to A2. Since A~ is below A2 on the stack SA, [A1,B2,C1] is

also an answer. Finally, since B1 is below B2 on the stack

SB, and B1 points to A1, [A1,B1,C1] is also an answer.

Note that [A2,B1,Ci] is not an answer, since A2 is above

the node (A1) on stack SA to which B1 points. D

312

A1 U . B2" A A ~ I .-'~BB~
B1 A
I II Sc SB SA
A 2 B (c) Stack encoding I II
82 C A1 B1 C1
I A1 B2 01
01 A 2 B 2 01

(a) Data (b) Query (d) Query results
Figure 3: Compact encod ing o f a n s w e r s using stacks.

We make crucial use of this compac t s tack encoding in

our algori thms, P a t h S t a c k and TwigStack.

3.2 PathStack

Algor i thm Pa thS tack , which computes answers to a query

pa th pat tern , is presented in Figure 4, for the case when the

s t reams contain nodes from a single X M L document . W h e n

the s t reams contain nodes from mul t ip le XML documents ,

the a lgor i thm is easily ex tended to test equal i ty of Docld

before manipula t ing the nodes in the s t reams and stacks.

Algorithm PathStack(q)
01 while Rend(q)
02 qmin = getMinSource(q)
03 for qi in subtreeNodes(q) / / clean stacks
04 while (~empty(Sql) A topR(Sql) < nextL(Tq~i~))
05 pop(Sqi)

06 moveStreamToStack(Tqmi.,Sqmi., pointer to

t op(Sparent (q~i.)))
07 i f (isLeaf(qmin))
08 showSolutions(Sqml.,1)
09 pop(Semi.)

Function end(q)

return Vqi C subtreeNodes(q):isLeaf(ql)~eof(Tqi)

Function getMinSource(q)

return qi C subtreeNodes(q) such that nextL(Tql)

is minimal

Procedure moveStreamToStack (Tq, Se,p)
01 push(Sq, (next(Tq),p))
02 advance (Tq)

F i g u r e 4: A l g o r i t h m P a t h S t a c k

The key idea of Algor i thm P a t h S t a c k is to repea ted ly con-

s t ruct (compact) stack encodings of par t ia l and to ta l an-

swers to the query pa th pa t te rn , by i tera t ing through the

s t ream nodes in sorted order of their L e f t P o s values; thus,

the query pa th pa t te rn nodes will be ma tched from the query

root down to the query leaf. Line 2, in Algor i thm Pa thS tack ,

identifies the s t ream conta ining the next node to be pro-

cessed. Lines 3-5 remove par t ia l answers from the stacks

tha t cannot be extended to to ta l answers, given knowledge of

the next s t ream node to be processed. Line 6 augments the

part ial answers encoded in the stacks wi th the new s t ream

node. Whenever a node is pushed on the stack Sqm~, , where

qmi~ is the leaf node of the query path, the stacks contain

an encoding of total answers to the query path, and Algo-

r i thm showSo lu t ions is invoked by Algor i thm P a t h S t a c k

(lines 7-9) to "output" these answers.

A natural way for Algor i thm s h o w S o l u t i o n s to ou tpu t

query pa th answers encoded in the stacks is as n- tuples

tha t are in sorted leaf-to-root order of the query path. This

will ensure that , over the sequence of invoca t ions of Algo-

r i t hm showSo lu t ions by Algor i thm P a t h S t a c k , the answers

to the query pa th are also compu ted in leaf- to-root order.

F igure 5 shows such a procedure for t he case when only

ancestor-descendant edges are present in the query path.

Procedure shovSolutions (S N, SP)
/ / Assume, for simplicity, that the stacks of the query
/ / nodes from the root to the current leaf node we
/ / are interested in can be accessed as S[1] Sin].
/ / Also assume that we have a global array index[1..n]
/ / of pointers to the stack elements.
/ / index[i] represents the position in the i ' th stack that
/ / we are interested in for the current solution, where
/ / the bottom of each stack has position 1.

/ / Mark we are interested in position SP of stack SN.
01 index[SN] = SP
02 i f (S N = = 1) / / we are in the root
03 / / output solutions from the stacks
04 output (S[n].index[n],.. . , S[1].index[1])
05 e l se / / recursive call
06 for i = 1 to S[SN].index[SN].pointer_to_parent

07 showSolutions (SN - I~ i)

Figure 5: Procedure showSolutions

W h e n parent-child edges are present in the query path,

we also need to take the LevelNum informat ion into ac-

count. P a t h S t a c k does not need to change, bu t we need

to ensure tha t each t ime showSolutions is invoked, it does

not ou tpu t incorrect tuples, in addi t ion to avoiding unnec-

essary work. This can be achieved by modify ing the re-

cursive call (lines 6-7) to check for parent-chi ld edges, in

which case only a single recursive call (s h o w S o l u t i o n s (S N -

1, S[SN]. index[SN].pointer_to_the_parent_stack)) needs to

be invoked, after verifying tha t the LevelNum of the two

nodes differ by one. Looping through all nodes in the stack

S[SN - 1] would still be correct, bu t it would do more work

than is s t r ic t ly necessary.

If we desire the final answers to the query pa th be pre-

sented in sor ted root- to- leaf order (as opposed to sor ted leaf-

to-root order), it is easy to see tha t it does not suffice tha t

each invocat ion of showSo lu t ions ou tpu t answers encoded

in the stack in the root- to- leaf order. To produce answers

in the sor ted root- to- leaf order, we would need to "block"

answers, and delay their ou tpu t unti l we are sure tha t no

answer prior to t hem in the sort order can be computed .

The details of how to achieve this na tura l ly are presented

in [3] and are omi t t ed here for reasons of space.

EXAMPLE 3.2. Consider the le~most path, b o o k - t i t l e -

XML, in each of the query twigs of Figure 2. I f we used the

binary structural join algorithms of [27, 1], we would first

need to compute matches to one of the parent-child struc-

tural relationships: b o o k - t i t l e , or t i t l e - X M L . Since every

book has a t i t l e , this binary join would produce a lot of

matches against an XML books database, even when there

are only a few books whose title is XML. If, instead, we first

computed matches to t i t l e -XML, we would also match pairs

under c h a p t e r elements, as in the XML data tree of Fig-

ure 1, which do not extend to total answers to the query

path pattern. Using Algorithm P a t h S t a c k , partial answers

are compac t ly represented in the stacks, and not output. Us-

ing the XML data tree of Figure 1, only one to ta l answer,

identified by the mapping [book ~ (1, 1 : 150, 1), t i t l e

(1, 2 : 4, 2), XML ~ (1,3,3)] , is encoded in the stacks. []

313

3.3 Analysis of PathStack

The following proposition is a key to establishing the cor-
rectness of Algorithm PathStack.

PROPOSITION 3.1. I f we fix node Y , the sequence of cases

between node Y and nodes X on increasing order of LeftPos

(L) is: (1[2)'3"4". Cases 1 and Cases 2 are interleaved, then

all nodes in Case 3 before any node in Case ~, and finally

all nodes in Case 4 (see Figure 6). []

Property

Segments

Tree

Case 1 Case 2 Case 3 i Case 4

X.R<Y.L X.L<Y.L X.L>Y.L X.L>Y.R
X.R>Y.R X.R<Y.R

~ X ~ : X : _ X _ : X : v

_ Y _ Y _ Y _ _ Y _

/ \, / y~ x\ /" ~ '

., . \ , eX,

F i g u r e 6: C a s e s for PathStack a n d TwigStack

LEMMA 3.1. Suppose that for an arbitrary node q in the

path pattern query, we have that getMinSource(q) = qg.

Also, suppose that tan is the next element in qY 'S stream.

Then, after tqN is pushed on to stack SqN , the chain of stacks

from SqN to Sq verifies that their labels are included in the

chain of nodes in the X M L data tree from tqN tO the root. []

For each node tqm~, pushed onto stack Sqm~,, it is easy to

see that the above lemma, along with the iterative nature of

Algorithm showSolutions, ensures that all answers in which

tqm~, is a match for query node qmin will be output. This
leads to the following correctness result:

THEOREM 3.1. Given a query path pattern q and an XML

database D, Algorithm PathStack correctly returns all an-

swers for q on D. []

We next show optimality. Given an XML query path of

length n, PathStack takes n input lists of tree nodes sorted

by (DocId, LeftPos) , and computes an output sorted list

of n-tuples that match the query path. It is straightforward

to see that, excluding the invocations to showSolutions, the

I /O and CPU costs of PathStack are linear in the sum of

sizes of the n input lists. Since the cost of showSolutions

is proportional to the size of the output list, we have the
following optimality result:

THEOREM 3.2. Given a query path pattern q with n nodes,

and an XML database D, Algorithm PathStack has worst-

case I / O and CPU time complexities linear in the sum of

sizes of the n input lists and the output list. Further, the

worst-case space complexity of Algorithm PathStack is the

minimum of (i) the sum of sizes of the n input lists, and

(ii) the maximum length of a root-to-leaf path in D. []

It is particularly important to note that the worst-case

time complexity of Algorithm PathStack is independent of

the sizes of any intermediate results.

3.4 PathMPMJ

A straightforward generalization of the MPMGJN algo-

rithm [27] for path queries proceeds one stream at a time to

get all solutions. Consider the path query ql / /q2/ /q3 . The

basic idea is as follows: Get the first (next) element from

the stream Tq~ and generate all solutions that use that par-

ticular element from Tq~. Then, advance Tq~ and backtrack

Tq2 and Tq3 accordingly (i.e., to the earliest position that

might lead to a solution). This procedure is repeated un-

til Tql is empty. The generate all solutions step recursively

starts with the first marked element in Tq2 , gets all solutions

that use that element (and the calling element in Tq~), then

advances the stream Tq2 until there are no more solutions

with the current element in Tq2 , and so on. We refer to this

algorithm as PathMPMJNaive, in our experiments.

It turns out that maintaining only one mark per stream

(for backtracking purposes) is too inefficient, since all marks

need to point to the earliest segment that can match the

current element in Tql (the stream of the root node). A

better strategy is to use a stack of marks, as described in

Algorithm PathMPMJ in Figure 7. In this optimized general-

ization of MPMGJN, each query node will not have a single

mark in the stream, but "k" marks where k is the number

of its ancestors in the query. Each mark points to an earlier

position in the stream, and for query node q, the i ' th mark

is the first point in Tq such that the element in Tq starts

after the current element in the stream of q's i ' th ancestor.

Algorithm PathMPMJ (q)

01 while (~eof(Tq)A (isRoot(q)V

nextL(q) < n~tR(parent(q))))

02 :for (qi 6 subtreeNodes(q)) / / advance descendants
03 while (nextL(qi) < nextL(parent(qi)))
04 advance (Tql)
05 PushMark (rql)

06 if (isLeaf(q)) // solution in the streams' heads

output Solut ion ()

07 else PathMPMJ (child(q))

08 advance (Tq)
09 for (qi 6 subtreeNodes(q)) // backtrack descendants
i0 PopMark (Tq~)

F i g u r e 7: A l g o r i t h m PathMPMJ

THEOREM 3.3. Given a query path pattern q and an X M L

database D, Algorithm PathMPMJ correctly returns all an-

swers for q on D. []

While the two extensions of MPMGJN appear similar,

the difference between their performance is noticeable, as
we shall see in the experimental section. Further, as was the

case with MPMGJN, Algorithm PathMPHJ is not asymptot-
ically optimal either.

4. TWIG JOIN ALGORITHMS

4.1 Limitations of Using PathStack

A straightforward way of computing answers to a query

twig pattern is to decompose the twig into multiple root-

to-leaf path patterns, use PathStack to identify solutions to

each individual path, and then merge-join these solutions to

compute the answers to the query. This approach, which we

314

experimentally evaluate in Section 5, faces the same funda-

mental problem as the techniques based on binary structural

joins, towards a holistic solution: many intermediate results

may not be part of any final answer, as illustrated below.

EXAMPLE 4.1. Consider the query sub-twig rooted at the

author node of the twig pattern in Figure 2(b). Against

the XML database in Figure 1, the two paths of this query:

a u t h o r - f n - j a n e , and author-In--doe, have two solutions

each, but the query twig pattern has only one solution. []

In general, if the query (root-to-leaf) paths have many

solutions that do not contribute to the final answers, using

PathStack (as a sub-routine) is suboptimal, in that the over-

all computation cost for a twig pattern is proportional not

just to the sizes of the input and the final output, but also

to the sizes of intermediate results. In this section, we seek

to overcome this suboptimality using Algorithm TwigStack.

4.2 TwigStack
Algorithm TwigStack, which computes answers to a query

twig pattern, is presented in Figure 8, for the case when

the streams contain nodes from a single XML document.

As with Algorithm PathStack, when the streams contain

nodes from multiple XML documents, the algorithm is easily

extended to test equality of DocId before manipulat ing the

nodes in the streams and on the stacks.

Algorithm TwigStack(q)
/ / Phase 1

01 while ~end(q)
02 qact = getNext(q)
03 if (~isRoot(qact))
04 cleanStack(parent(qact), nextL(qact))
05 if (isRoot(qact) V ~empty(Sparent(qact)))
06 cleanStack(qact, next(qact))
07 moveStreamToStack(Tq.ce,Sqo~t , pointer to

top(Sparent (q~ ,)))
08 if (isLeaf(qact))
09 showSolutionsWithBlocking(Sqact,l)
10 pop(Sq~et)
11 else advance(Tq~¢t)

/ / Phase 2
12 mergeAllPathSolutions()

Func t ion ge tNex t (q)
01 i f (isLeaf(q)). return q
02 for qi in children(q)
03 nl = getNext(qi)
04 if (hi ~ qi) return ni
05 nmln = minargnl nextL(Tnl)
06 nmaz = maxargnl nextL(Tni)
07 while (nextR(Tq) <nextL(Tnma.))
08 advance(Tq)
09 i f (nextL(Tq) <nextL(Tnmi,)) return q
10 e l s e r e t u r n nmin

Procedure cleanStack(S, actL)
01 while (~empty(S)A (topR(S) < aetL))
02 pop(S)

F i g u r e 8: A l g o r i t h m TwigStack

Algorithm TwigStack operates in two phases. In the first
phase (lines 1-11), some (but not all) solutions to individual

query root-to-leaf paths are computed. In the second phase
(line 12), these solutions are merge-joined to compute the

answers to the query twig pattern.

The key difference between PathStack and the first phase

of TwigStack is that before a node hq from the stream Tq is

pushed on its stack Sq, TwigStack (via its call to getNext)

ensures that: (i) node hq has a descendant hq~ in each

of the streams Tq~, for qi 6 ch i ldren(q) , and (ii) each of

the nodes hq~ recursively satisfies the first property. Algo-

ri thm PathStack does not satisfy this property (and it does

not need to do so to ensure (asymptotic) optimality for query

path patterns). Thus, when the query twig pattern has only

ancestor-descendant edges, each solution to each individual

query root-to-leaf path is guaranteed to be merge-joinable

with at least one solution to each of the other root-to-leaf

paths. This ensures that no intermediate solution is larger

than the final answer to the query twig pattern.

The second merge-join phase of Algorithm TwigStack is

linear in the sum of its input (the solutions to individual

root-to-leaf paths) and output (the answer to the query twig

pattern) sizes, only when the inputs are in sorted order of the

common prefixes of the different query root-to-leaf paths.

This requires that the solutions to individual query paths

be output in root-to-leaf order as well, which necessitates

blocking; showSolutions (from Figure 5), which outputs

solutions in sorted leaf-to-root order, cannot be used.

EXAMPLE 4.2. Consider again the query of Example 4.1,

which is the sub-twig rooted at the author node of the twig

pattern in Figure 2(b), and the X M L database tree in Fig-

ure 1. Before Algorithm TwigStack pushes an author node

on the stack So,thor, it ensures that this author node has:

(i) a descendant :fn node in the stream T~n (which in turn

has a descendant jane node in Tj~o), and (ii) a descendant

in node in the stream Txn (which in turn has a descendant

d o e node in Tdo.). Thus, only one of the three author nodes

(corresponding to the third author) from the XML data tree

in Figure 1 is pushed on the stacks. Subsequent steps ensure

that only one solution to each of the two paths of this query:

a u t h o r - f n - j a n e , and author-in--doe, is computed. Finally,

the merge-join phase computes the desired answer. []

4.3 Analysis of TwigStack
In this section we discuss the correctness of algorithm

TwigStack for processing twig queries, and then we ana-

lyze its complexity. Most of the proofs in this section are

omitted for lack of space and can be found in [3].

DEFINITION 4.1. Consider a twig query Q. For each node

q 6 subtreeNodes(Q) we define the head of q, denoted hq,

as the first element in Tq that participates in a solution for

the sub-query rooted at q. We say that a node q has a mini-

mal descendant extension i f there is a solution for the sub-

query rooted at q composed entirely of the head elements of

subtreeNodes (q).

Proposition 3.1, based on Figure 6, is important for es-

tablishing the following lemma:

LEMMA 4.1. Suppose that for an arbitrary node q in the

twig query we have that getNext(q) = qg. Then, the follow-

ing properties hold:

1. qN has a minimal descendant extension.

2. For each node q' 6 subtreeNodes(qN), the first ele-

ment in Tq, is hq,.

315

3. Either (a) q = qN or (b) parent (qN) does not have

a minimal right extension because of qN (and possibly

other nodes). In other words, the solution rooted at

p = parent (qN) that uses hp does not use hq for node

q but some other element whose L component is larger

than that of hq.

Using the lemma above, we can prove [3] that when some

node q/v is returned by getNext , hqN is guaranteed to have

a descendant extension in subtreeNodes(qN). We can also

prove [3] tha t any element in the ancestors of qg that uses

hqN in a descendant extension was returned by getNext be-
fore hqN. Therefore we can maintain, for each node q in

the query, the elements tha t are part of a solution involving

other elements in the streams of subtreeNodes(q) . Then,

each time that qN = getNext(q) is a leaf node, we output

all solutions tha t use haN. It can be proved [3] that we can
achieve that by maintaining one stack per node in the query.

THEOREM 4.1. Given a query twig pattern q and an XML

database D, Algorithm TwJ.gStack correctly returns all an-

swers for q on D.

PROOF. [Sketch] In Algori thm TwigStack, we repeat-
edly find getNext(q) for query q (line 2). Assume tha t

getNext(q) = qN. Let AqN be the set of nodes in the query

tha t axe ancestors of qN. We know tha t getNext already re-
turned all elements from the streams of nodes in AqN tha t

are par t of a solution tha t uses hqN. If q ¢ qg, in line 4 we
pop from paren t (qN) ' s stack all elements tha t are guaran-

teed not to par t ic ipate in any new solution. After that , in

line 5 we test whether hqN part icipates in a solution. We
know tha t qN has a descendant extension by Lemma 4.1,

property 1. If q ~ qg and p a r e n t (q s) ' g stack is empty,

node qN does not have an ancestor extension. Therefore it

is guaranteed not to par t ic ipate in any solution, so we ad-
vance qN in line 11 and continue with the next iteration.
Otherwise, node qN has both ancestor and descendant ex-

tensions and therefore it par t ic ipates in at least one solution.

We then clean qg'S stack (line 6) and push hqN to it (line 7).

Finally, if qN is a leaf node, we output the stored solutions

from the stacks (lines 8-10). []

While correctness holds for query twig pat terns with both

ancestor-descendant and parent-child edges, we can prove
opt imali ty only for the case where the query twig pa t te rn
has only ancestor-descendant edges. The intuition is simple.

Since we push into the stacks only elements tha t have both
a descendant and an ancestor extension, we are guaranteed

that no element tha t does not par t ic ipate in any solution is

pushed into any stack. Therefore, the merge postprocessing

step is optimal, and we have the following result.

THEOREM 4.2. Consider a query twig pattern q with n

nodes, and only ancestor-descendant edges, and an XML

database D. Algorithm Tw±gStack has worst-case I /O and

CPU time complexities linear in the sum of sizes of the

n input lists and the output list. Further, the worst-case

space complexity of Algorithm TwigStack is the minimum

of (i) the sum of sizes of the n input lists, and (ii) n times

the maximum length of a root-to-leaf path in D. []

It is part icularly impor tant to note that , for the case of
query twigs with ancestor-descendant edges, the worst-case

time complexity of Algori thm TwigStack is independent of

the sizes of solutions to any root-to-leaf path of the twig.

4.4 Suboptimality for Parent-Child Edges
Theorem 4.2 holds only for query twigs with ancestor-

descendant edges. Unfortunately, in the case where the twig

pa t te rn contains a parent-child edge between two elements

(e.g., see the query in Example 4.2), Algori thm TwigStack
is no longer guaranteed to be I / O and CPU optimal. In

particular, the algorithm might produce a solution for one
root-to-leaf path tha t does not match with any solution in

another root-to-leaf path.

Consider the query twig pa t te rn with three nodes: A , B

and C, and parent-child edges between (A, B) and between

(A ,C) . Let the XML da ta tree consist of node A1, with

children (in order) A2, B2,C2, such tha t A2 has children

B1, C1. The three streams TA, TB and Tc have as their

first elements A1, B1 and C1 respectively. In this case, we
cannot say if any of them part ic ipates in a solution without
advancing other streams, and we cannot advance any s t ream
before knowing if it par t ic ipates in a solution. As a result,

opt imal i ty can no longer be guaranteed.

4.5 Using XB-Trees
Algori thms Pa thS tack and TwigStack need to process

each node in the input lists to check whether or not it is par t
of an answer to the query (path or twig) pat tern. When the

input lists axe very long, this may take a lot of time. In this

section, we propose the use of a variant of B-trees, denoted

XB-tree, on the input lists to speed up this processing.

4.5.1 XB-Tree Description

As its name suggests, the XB-tree is a variant of the

B-tree, designed for indexing the posit ional representat ion
(DocId, LeftPos : RightPos, LevelNum)of elements in

the XML tree. We describe the index structure when all

nodes belong to the same XML document; the extension to

multiple documents is straightforward.
The nodes in the leaf pages of the XB-tree are sorted by

their Lef tPos (L) values; this is similar to the leaf pages

of a B-tree on the L values. The difference between a B-
tree and an XB-tree is in the da ta maintained at internal

pages. Each node N in an internal page of the XB-tree

consists of a bounding segment [N.L, N.l-l] (where L denotes
Lef tPos and R denotes RightPos) and a pointer to its child
page N.page (which contains nodes with bounding segments

completely included in [N.L, N.R]). The bounding segments
of nodes in internal pages might part ial ly overlap, but their

L positions are in increasing order. Besides, each page P
has a pointer to the parent page P.parent and the integer

P.parentIndex which is the index of the node in P.parent

tha t points back to P. The construction and maintenance

of an XB-tree is very similar to those in a B-tree, using the
L value as the key; the difference is tha t the R values need

to he propagated up the index structure.

4.5.2 Using X B - Trees

We maintain a pointer act = (actPage, act lndex) to the

act lndex ' th node in page actPage of the XB-tree. There
are two operations over the XB-tree that affect this pointer:

1. advance. If act ---- (actPage, actIndex) does not point
to the last node in the current page, we simply ad-
vance actlndex. Otherwise we replace act with the
value (actPage.parent ,actPage.parentIndex) and re-

cursively advance it.

316

2. drillDown. If act = (actPage, actIndex) , actPage is

not a leaf page, and N is the act Index ' th node in

actPage, we replace act with (N.page, O) so that it

points to the first node in N.p.

Initially act = (rootPage, 0), pointing to the first node in

the root page of the XB-tree. When act points to the last

node in rootPage and we advance it, we finish the traversal.

We can modify the previous algorithms easily to use XB-

trees. Algorithm TwigStackXB, in Figure 9, extends Algo-

ri thm TwigStack so that it uses XB-trees. The only changes

are in the lines indicated by parentheses. The function

i sP la inValue returns true if the actual pointer in the XB-

tree is pointing to a leaf node (actual value in the original

stream). If we define i s P l a i n V a l u e (T) = t r u e when T is not

an XB-tree but a regular file, this algorithm reduces to the

previous one.

Algorithm TwigStackXB(q)

01 while ~end(q)

02 qact : getNext(q)
(03) if (isPlainYalue(Tqac,))
04 if (~isRoot(qact))

05 cleanStack(parent(qac~), next(qace))

06 i~ (isRoot(q.~) v Impty(Sparent(qo¢,)))

07 cleanStack(qact, next(qact))
08 moveStreamToStack(Tqact,Sqact , pointer to

top (Sparent (q~t)))

09 if (isLeaf(qact))
10 showSolut ionsWithBlocking(Sq~, l)
11 pop(Sqo~t)
12 e l se advance(TqoCt)
(13) e l s e i f (~isRoot(qact) A empty(Sparent(q.¢t))A

nextL(Tparent (qo~t)) > nextR(Tqa~t))
(14) advance (Tq,~t) / / Not part of a solution
(15) e l s e / / Might have a child in some solution
(16) drillDown (Tq~¢t)

/ / Phase 2
17 mergeAllPathSolutions()

Function getNext(q)
01 i f (i sLeaf(q)) re turn q
02 for ql in children(q)

03 n i = g e t N e x t (q i)

(04) i f (qi # n i V ~ i sP la inValue(T , i)) return n i

05 n m i n = minargn~ nextL(Tn i)
06 n m a z : maxargnl nextL(Tnl)
0~ while (nextR(Tq) <nextL(Tnmo.))
08 adva.nce(Tq)
09 if (nextL(Tq) <nextL(Tnm,n)) return q
10 e l se re turn n m i n

P r o c e d u r e cleanStack(S, a c t L)

01 while (~empty(S) A (topR(S) < actL))
02 pop(S)

F i g u r e 9: A l g o r i t h m TwigStackXB

THEOREM 4.3. Given a query twig pattern q and an XML

database D, Algorithm TwigStackXB correctly returns all an-

swers for q on D. []

While we do not have any analytical results about the
efficiency of Algorithm TwigStackXB, we show experimen-
tally that it performs matching of query twig patterns in

sub-linear time.

5. E X P E R I M E N T A L EVALUATION
In this section we present experimental results on the per-

formance of the join algorithms introduced in Sections 3

and 4 using both real and synthetic data.

5.1 Experimental Setting

We implemented all XML join algorithms in C + + using

the file system as the storage engine. All experiments were

run on a 550Mhz Pentium III processor with 768MB of main

memory and a 2GB quota of disk space.

We used both synthetic and real-world data. The syn-

thetic data sets are random trees generated using three pa-

rameters: depth, fan-out and number of different labels. For

most of the experiments presented involving synthetic data

sets, we generated full binary and ternary trees. Unless

specified explicitly, the node labels in the trees were uni-

formly distributed. We tried other configurations (larger

fanout and random depths in the tree) and also used the

XMach-1 [25] and XMark [26] benchmarks. Those results

are omitted for lack of space and can be found in [3].

The real data set is an "unfolded" fragment of the DBLP

database. In the DBLP data set, each author is represented

by a name, a homepage, and a list of papers. In turn, each

paper contains a title, the conference where it was published,

and a list of coauthors. We generated our unfolded fragment

of DBLP as follows. We started with an arbitrary author

and converted the corresponding information to XML for-

mat. For each paper, we replaced each coauthor name with

the actual information for that author. We continued un-

folding authors until we reached a previously traversed au-

thor, or a depth of 200 authors. The resulting XML data

set has depth 805 and around 3 million nodes, representing

93,536 different papers from 36,900 unique authors.

5.2 Binary Structural Joins vs PathStack

In this experiment we compare our holistic PathStack

algorithm against strategies that use a combination of bi-

nary structural joins [1]. For this purpose, we used a syn-

thetic data set consisting of 1,000,000 nodes and six dif-

ferent labels: A1,A2, . . . ,A6. 2 We issued the path query

A 1 / / A 2 / / . . . / / A 6 and evaluated it using PathStack. Then,

we evaluated all binary join strategies resulting from apply-

ing all possible join orders. Figure 10 shows the execution

time of all join strategies, where each strategy is represented

with a bar. We also show with a solid line the execution time

of PathStack, and with a dotted line the time it takes to do

a sequential scan over the input data (labeled SS) .

For this query, PathStack took 2.53s, slightly more than

the 1.87s taken by the sequential scan over the input data.

In contrast, the strategies based on binary structural joins

ranged from 16.1s to 53.07s. Our first conclusion is that

optimization plays an important role for binary structural

joins, since a bad join ordering can result in a plan that

is more than three times worse than the best plan. Our

second conclusion is that the holistic strategy is superior to

the approach of using binary structural joins for arbitrary

join orders; in this case, it results in more than a six-fold

improvement in execution time over the best strategy that

uses binary structural joins.

2Note that the actual XML data can contain many more labels,
but that does not affect our techniques since we only access the
indexes of labels present in the query.

317

6 0

i B i n a r y Joins PathStack S S

~ 4 0

~ 30
o

"~ 2o

~ 1 0

F i g u r e 10: I-Iolistie a n d b i n a r y j o i n s for p a t h quer ies

5.3 Paths: PathStackvs PathMPMJ
In this section we study the efficiency of the different holis-

tic path join algorithms of Section 3. We first compare the

two versions of PathMPMJ. We used a 64K synthetic data

set with labels A1, . . . A10, and issue path queries of differ-

ent lengths. Figure 11 shows the execution times of both

techniques, as well as the time taken for a sequential scan

over the input data. PathMPMJNaive is much slower com-

pared to the optimized PathMPMJ (generally over an order

of magnitude). The reason is that PathMPMJNaive is too

conservative when backtracking and reads several times un-

necessary portions of the data (in our experiments, as much

as 15 times more nodes than PathMPMJ). Since the perfor-

mance of Patl~PMJNaive degrades considerably with the size

of the data set and the length of the input query, we do not

consider this strategy for the remainder of this paper.

"-e-.- SS ,,,Nil-- Palt,bMPM J --o-- PallhMPMJNal-ie
2O

~ 5 .

0 - . T . g ; . , ¢ . = . " , "

2 3 4 5 6 7 8 9 10

Pans t . ~

Figure 11: PathHPMJ ve r sus PathHPMJNaive

We now compare PathStack against PathMPMJ. In Fig-

ure 12 we show the execution time and the number of nodes

read from disk for path queries of different length and a

synthetic data set of 1,000,000 nodes and 10 different la-

bels. Clearly, PathStack results in considerably better per-

formance than PathMPMJ, and this difference increases with

longer path queries. This is explained by the fact that

PathStack makes a single pass over the input data, while

PathNPMJ needs to backtrack and read again large portions of

data. For instance, for a path query of length 10, PathblPblJ

reads the equivalent of five times the size of the original data,

as seen in Figure 12(b). In Figure 12(a), for path queries

of length two, the execution time of PathStack is consider-

ably slower than that of the sequential scan, and closer to

PathMPMJ. This behavior is due to the fact that for the path

query of length two, the number of solutions is rather large

(more than 100,000), so most of the execution time is used

in processing these solutions and writing them back to disk.

For longer path queries, the number of solutions is consid-

erably smaller, and the execution of PathStack is closer to

a sequential scan and much more efficient than PathMPMJ.

Figure 13 shows the execution time and number of values

read for two simple path queries over the unfolded DBLP

data set (note the logarithmic scale on the Y axis). Due to

the specific nesting properties between nodes in this data

set, the PathMPMJ algorithm spends much time backtracking

and reads several times the same values. For instance, for

the path query of length three in Figure 13, PathMPMJ reads

two orders of magnitude more elements than PathStack.

5.4 Twigs: PathStack vs TwigStack
We now focus on twig queries, and compare TwigStack

against the naive application of PathStack to each branch

in the tree followed by a merge step. As shown in Section 4,

TwigStack is optimal for ancestor/descendant relationships,

but it is provably suboptimal for parent/child relationships.

In this section, we analyze these two cases separately.

AUTHOR

I (2)
PAPER

/A
A YEAR CO-AUTHOR

A1 I I (pararneter d)
A~ A~ ~ II % = o o o /\'~"==

I I (parameterd)
~3 ~ Z,,O . . , , .

6 A3 As Ar I

A4 Az I
1 9 8 0

(a) (b) (c)

F i g u r e 14: T w i g quer i e s used in the experiments

5.4.1 Ancestor-Descendant Relationships

We first used the query shown in Figure 14(a) over dif-

ferent synthetically generated data sets. Each data set was

generated as a full ternary tree. The first subtree of the

root node contained only nodes labeled A1, A2, A3 and A4.

The second subtree contained nodes labeled A1, As, A6 and

AT. Finally, the third subtree contained all possible nodes.
Clearly, there are many partial solutions in the first two

subtrees but those do not produce any complete solution.

Only the third subtree contains actual solutions. We varied

the size of the third subtree relative to the sizes of the first

two from 8°7o to 24% (beyond that point the number of solu-

tions became too large). Figures 15(a-b) show the execution

time of PathStack and TwigStack and the number of partial

solutions each algorithm produces before the merging step.

The consistent gap between TwigStack and PathStack re-

sults from the latter generating all partial solutions from

the first two subtrees which axe later discarded in the merge

step (AI//A2//As//A4) ~ (A1//As//A6//AT). As seen in

Figure 15(b), the number of partial solutions produced by

PathStack is several orders of magnitude larger than that

of the TwigStack algorithm. The number of solutions to the

query computed by both algorithms is, of course, the same.

We then used the twig query of Figure 14(b) and gener-

ated different synthetic data sets in the following way. As

before, each data set is a full ternary tree. The first subtree

does not contain any nodes labeled A2 or A3. The second

subtree does not contain any A4 or As nodes. Finally, the

third subtree does not contain any A6 or AT nodes. There-

fore, there is not even a single solution for the query twig,

although each subtree contains a large number of partial so-

lutions. The main difference with the previous experiment

is that we need to materialize an intermediate join result

before getting the final answer. Therefore, there is no ex-

318

IlSS II PathStack OPathMPMJ
30

0

5O0000O

40O000O

3000000

200000O

1000000

0

2 4 6 8 10 2 4 6 8 10
Path 1~gth Path length

(a) Execution time (b) Number of elements read

F i g u r e 12: PathStack v e r s u s PathMPMJ us i ng s y n t h e t i c d a t a s e t s

1 S S • PathStack 1PathMPMJ
• PathStack • PathMPMJ

g

!

100000000 I

10000000

1000000

100000

PAPEWFCEAR PAPE~f~EAPJ/1960

(a) Execution time

F i g u r e 13: PathStack ve r sus PathMPMJ

10000

PAPER//YEAR PAPER#YEAWI1960

(b) Number of elements read

for the u n f o l d e d D B L P d a t a s e t

ecution strategy using PathStack that avoids materializing

a big intermediate result. Figure 15(c) shows the execution

time for PathStack and TwigStack for different data sizes

(note the logarithmic scale). For the last data set (with 243K

nodes), PathStack could not finish, since the intermediate

result filled all the available space on disk (2GB).

5.4.2 Parent-Child Relationships

As explained in Section 4, TwigStack is not optimal for

parent/child relationships. We now show that even in this

case, TwigStack performs much better than PathStack. For

that purpose, we modified the queries in Figures 14(a-b)

adding the following constraint: all ancestor-descendant re-

lationships are connected by a path of length between one

and three (this can be checked by comparing the LevelNum

values of the positional representations). Figure 16 shows

the results for these experiments. Even in the presence of

parent-child constraints, TwigStack is considerably more ef-

ficient than PathStack. In particular, Figure 16(b) shows

that the number of partial solutions produced by TwigStack

(though not minimal) is small. The non-minimality is evi-

dent from the observation that the number of partial solu-

tions produced by TwigStack is sometimes larger than the

number of total solutions to the query twig.

We also evaluated the query of Figure 14(c) over the un-

folded DBLP data set. This query asks for authors with

papers published in the year 2000, who have some coauthor

with a paper published in 1990, who in turn has some coau-

thor with a paper in 1980. We vary the allowed depth in the

relationship COAUTHOR / / PAPER, i.e., the number of coau-
thors and papers we can traverse from a given author, from

0 (no solutions) to 37. The results are shown in Figure 17.
We can see that for these queries, TwigStack is again more

efficient than PathStack.

5.5 Sub-Linearity: Using XB-Trees
We now study the advantages of using XB-trees to process

path and twig queries. In particular, we show that the num-

ber of nodes that need to be read from the XB-tree (counting

both leaf and internal nodes) is significantly smaller than the

size of the input, which causes sub-linear behavior in our al-

gorithm. As we will see, XB-trees with small node capacities

can effectively skip many leaf nodes, but the number of in-

ternal nodes traversed is large. On the other hand, for large

node capacities there are fewer internal node accesses, but

XB-trees cannot skip many leaf nodes because they could

miss some solutions. We experimentally obtained the best

results when using node capacities ranging from 4 to 64.

For the experiments in this section, we evaluated different

queries using PathStack and TwigStack, with and without

XB-trees. We varied the node capacity of the XB-trees be-

tween 2 and 1,024 values per index node. Figure 18(a) shows

the number of values read in the XB-tree (separated into in-

ternal and leaf accesses) for the data set and path queries

used in Section 5.3. Figure 18(b) shows the results when

using the twig query of Figure 14(a), and the data sets of

Section 5.4. Finally, Figure 18(c) shows the results for the

twig query in Figure 14(c) over the unfolded DBLP data set.

In general, the total number of nodes visited in the XB-

Tree is consistently smaller than the input data size for a

wide range of node capacities. For the synthetic data set,

we obtained better results for complex queries. In those sit-

uations, XB-trees can prune significant portions of the input

data. In contrast, for simpler queries, we need to go deep in

the XB-tree nodes, in many cases down to the leaves, since

there are many solutions dispersed throughout the whole
data set. For data sets with solutions concentrated around

certain portions of the data, the impact of XB-trees is more
significant, since many internal nodes can be skipped.

319

S$ --0-- T t t~ lack + Pa018tack

J 15 .

!1:/ ii
9% 10% 11% 12% 13% 15% 17% 20% 24%

Fractlml of data set with solutlons

(a) Execution t ime

-o-,.Pat~mITwigStack -II-PartlaIPathStack -'4--Total

1000CO0
= = : : _- = = = = =

100000 i ~ I

10

1
8% 9% 10% 11% 12% t3% 15% 17% 20% 24%

Fraction of data set with solutlcm$

(b) Number of solutions

100-
- e - TMgStack - I I - PathStack

i '° iiii i ii ,- ,
i 0.1.

0.01.

3K 9K 27K alK 243K

D l t l

(c) Execution t ime for a complex query

F i g u r e 15: Pa thStack v e r s u s TwigStack for t w o t w i g queries

--e--SS --O--T~Stack --¢l--PathSlack

i 5 .

• 4 " .
E

i ,

0
9% 10% 11% 12% 13% 15% 17% 20% 24%

Fraction of data let with iolut lonl

(a) Execution t ime

-.-o-- Par~,l Tw~gSta<~ ~ Partial PathStack ~ Total

10C000
~ = = = = = = = = =

I ~ .

10

1
8% 9% 10% 11% 12% 13% 15% 17% 20% 24%

Pwcm'ltagm of data set ,with solutlems

(b) Number of solutions

--@- T~gStack " 0 - PathS4ack
100

t

0.1

0.01
3K 9K 27K 81K 243K

Data sizs

(c) Execution t ime for a complex query

Figure 16: PathStack versus TwigStack for a parent-child twig query

6. RELATED W O R K

Join processing is central to database implementation [13].

For inequality join conditions, band join [9] algorithms are

applicable when there exists a fixed ari thmetic difference be-

tween the values of join at t r ibutes. Such algorithms are not

applicable in our domain as there is no notion of fixed arith-

metic difference. In the context of spatial and mult imedia
databases, the problem of computing joins between pairs of

spatial entities has been considered, where commonly the

predicate of interest is overlap between spatial entities [14,
20, 15] in multiple dimensions. The techniques developed in

this paper are related to such join operations. However, the

predicates considered as well as the techniques we develop
are special to the nature of our s tructural join problem.

In the context of semistructured and XML databases,
query evaluation and optimizat ion has a t t racted a lot of

research attention. In particular, work done in the Lore
DBMS [21, 16, 17], and the Niagara system [19], has consid-

ered various aspects of query processing on such data. XML

da ta and various issues in their storage as well as query pro-

cessing using relational database systems have recently been
considered in [12, 24, 23, 4, 10, 11]. In [12, 24, 11], the map-
ping of XML da ta to a number of relations was considered

along with translat ion of a subset of XML queries to rela-

tional queries. In subsequent work [23, 4, 10], the authors

considered the problem of publishing XML documents from
relational databases. Our holistic join strategy for query
twig pat terns can leverage these previous techniques.

The representation of positions of XML elements (DocId,

S t a r t P o s : EndPos, LevelNum) is essentially that of Con-
sens and Milo, who considered a fragment of the PAT text

searching operators for indexing text databases [6, 7], and
discussed optimization techniques for the algebra. This rep-

resentation was used to compute containment relationships

between "text regions" in the text databases. The focus of

tha t work was on theoretical issues, without elaborat ing on
efficient algorithms for computing these relationships.

Finally, the recent works of Zhang et al. [27] and Al-

Khalifa et al. [1] are closely related to ours. They proposed

binary s tructural join algorithms as primitives for matching
query twig patterns. Our Algori thm PathMPMJ is a general-
ization of the MPMGJN algorithm of [27] to match query

paths, and Algorithms Pa thS tack and TwigStack axe gen-
eralizations of the stack-based algorithms of [1] to match

query paths and query twig patterns, respectively.

7. CONCLUSION
In this paper we developed holistic join algorithms for

matching XML query twig patterns, a core operat ion cen-

t ral to much of XML query processing, both for native XML

query processor implementat ions and for relational XML
query processors. In particular, Algori thm TwigStack was
shown to be I /O and CPU optimal for a large class of query
twig patterns, and practically efficient.

There is more to efficient XML query processing than is

within the scope of this paper. We have ini t ia ted efforts

to address some of these issues. One such issue involves
the use of axes like following-sibling in XPath expres-

sions, in addit ion to the more commonly used c h i l d and
descendant axes (used in this paper to specify twig pat-
terns). How can we compute answers to XPath expressions

with such axes? Another issue involves the piecing together
of holistic twig joins with value-based joins (including links

across documents) to build effective query plans.

320

4O

30 -

2 0 -

10-

- - e - - SS - I I I - TwigStack ~ PathStack

0 1 5 9 13 17 21 25 29 33 37

Depth of candidate papers

30C000
TwigStack --liP.- PathStack

i 200000

100000
O.

0

0 1 5 9 13 17 21 25 29 33 37

Depth of candidate papers

(a) Execu t ion t i m e (b) N u m b e r of pa r t i a l so lu t ions

F i g u r e 17: P a t h S t a c k v e r s u s TwigS tack o n a r e a l d a t a s e t

~PathStack-XB0eaves) I¢~PalhStack-XB~lnternal) ~PathStack

12000OO

10O00OO

BOO000
!

6OO000

• 4O000

E~TwigStack-XB(k~aves) ~TwigStack-XB(intemal) --TwkjJStack

70OOO0 .. i

s O 0 O 0 0 . t

5OO0OO !

i i
30O0O0

>
2OO000

1O0O00

0
4 8 16 32 64 128 256 512 1024 4 8 16 32 64 128 256 512 1024

Node capacity Node capacity

(a) P a t h query (b) Twig query (c) Twig query

~Tv~gStack-XB(leaves) ~TwlgStac.~-XB0nternal) ~ T ~ 4 g S t a c k

2000000 .

J
• ~ 16O0000 i

12O0000

00OOOO

4 0 ~

0
4 8 16 32 64 128 256 512 1024

Node capacity

F i g u r e 18: U s i n g X B - t r e e s : (a) , (b) w i t h s y n t h e t i c d a t a s e t s , a n d (c) w i t h u n f o l d e d D B L P d a t a

8. R E F E R E N C E S

[1] S. A1-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel,
D. Srivastava, and Y. Wu. Structural joins: A primitive for
efficient XML query pat tern matching. In Proceedings of the
IEEE International Conference on Data Engineering, 2002.

[2] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu,
J. Robie, J. Simeon, and M. Stefanescu XQuery 1.0: An
XML Query Language. W3C Working Draft. Available
from ht tp : / /www.w3.org/TR/xquery, Dec. 2001.

[3] N. Bruno, N. Koudas, D. Srivastava. Holistic Twig Joins:
Optimal XML Pat tern Matching. Technical Report.
Columbia University. March 2002.

[4] M. Carey, J. Kiernan, J. Shanmugasundaram, E. Shekita,
and S. Subramanian. XPERANTO: Middleware for
publishing object relational data as XML documents.
Proceedings of VLDB, 2000.

[5] D. D. Chamberlin, J. Robie, and D. Florescu. Quilt: An
XML query language for heterogeneous data sources. In
WebDB (Informal Proceedings), 2000.

[6] M. P. Consens and T. Milo. Optimizing queries on files. In
Proceedings of ACM SIGMOD, 1994.

[7] M. P. Consens and T. Milo. Algebras for querying text
regions. In Proceedings off the ACM Symposium on
Principles of Database Systems, 1995.

[8] A. Deutsch, M. Fernandez, D. Florescu, A, Levy, and
D. Suciu. XML-QL: A query language for XML. Available
from ht tp : / /www.w3.org/TR/NOTE-xml-qt . , 1998.

[9] D. DeWitt , J. Naughton, and D. Schneider. An evaluation
of non equijoin algorithms. Proceedings off ACM SIGMOD,
1991.

[10] M. Fernandez and D. Suciu. SilkRoute: Trading between
relations and XML. WWW9, 2000.

[11] T. Fiebig and G. Moerkotte. Evaluating queries on
structure with access support relations. Proceedings of
WebDB, 2000.

[12] D. Florescu and D. Kossman. Storing and querying XML
data using an RDMBS. IEEE Data Engineering Bulletin,
22(3):27-34, 1999.

[13] G. Graefe. Query evaluation techniques for large databases.

ACM Computing Surveys, Vol. 25 No. 2, June 1993.

[14] N. Koudas and K. C. Sevcik. Size separation spatial join.
Proceedings of ACM SIGMOD, 1997.

[15] M.-L. Lo and C. V. Ravishankar. Spatial hash-joins.
Proceedings off ACM SIGMOD, 1996.

[16] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A database management system for
semistructured data. SIGMOD Record 26(3), 1997.

[17] J. McHugh and J. Widom. Query optimization for XML. In
Proceedings off VLDB, 1999.

[18] U. of Washington. The Tukwila system. Available from
ht tp : / /da ta .cs .washington.edu/ in tegra t ion/ tukwila / .

[19] U. of Wisconsin. The Niagara system. Available from
ht tp: / /www.es.wisc.edu/niagara/ .

[20] J. M. Patel and D. J. DeWitt. Part i t ion based spatial
merge join. Proceedings off A CM SIGMOD, 1996.

[21] D. Quass, J. Widom, R. Goldman, H. K, Q. Luo,
J. McHugh, A. Rajaraman, H. Rivero, S. Abiteboul,
J. Ullman, and J. Wiener. LORE: A lightweight object
repository for semistructured data. Proceedings off ACM
SIGMOD, page 549, 1996.

[22] G. Salton and M. J. McGill. Introduction to modern
information retrieval. McGraw-Hill, New York, 1983.

[23] J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J. Carey,
B. G. Lindsay, H. Pirahesh, and B. Reinwald. Efficiently
publishing relational data as XML documents. In
Proceedings of VLDB, 2000.

[24] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J.
DeWitt , and J. F. Naughton. Relational databases for
querying XML documents: Limitations and opportunities.
In Proceedings off VLDB, 1999.

[25] XMach-1. Available from h t tp : / /dbs .un i -
le ipzig .de/en/projekte /XML/XmlBenchmarking.html .

[26] The XML benchmark project. Available from
ht tp: / /www.xml-benchmark.org.

[27] C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and
G. Lohman. On supporting containment queries in
relational database management systems. In Proceedings off
ACM SIGMOD, 2001.

321

