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ABSTRACT 
XML employs a tree-structured da ta  model, and, naturally, 

XML queries specify pat terns  of selection predicates on mul- 
tiple elements related by a tree structure. Finding all occur- 

rences of such a twig pat tern  in an XML database is a core 
operation for XML query processing. Prior work has typ- 

ically decomposed the twig pat tern  into binary structural  

(parent-child and ancestor-descendant) relationships, and 

twig matching is achieved by: (i) using structural  join algo- 
r i thms to match the binary relationships against the XML 

database,  and (ii) stitching together these basic matches. 

A l imitation of this approach for matching twig pat terns  is 

tha t  intermediate result sizes can get large, even when the 

input  and output  sizes are more manageable. 

In this paper,  we propose a novel holistic twig join algo- 

r i thm, TwigStack, for matching an XML query twig pattern.  

Our technique uses a chain of linked stacks to compactly 

represent part ia l  results to root-to-leaf query paths,  which 

are then composed to obtain matches for the twig pattern.  

When the twig pa t te rn  uses only ancestor-descendant rela- 

tionships between elements, TwigStack is I /O  and CPU op- 
t imal among all sequential algorithms that  read the entire 
input: it is linear in the sum of sizes of the input  lists and the 

final result list, but  independent of the sizes of intermediate 
results. We then show how to use (a modification of) B- 

trees, along with TwigStack, to match query twig pat terns  

in sub-linear time. Finally, we complement our analysis with 
experimental  results on a range of real and synthetic data,  
and query twig patterns.  

1. INTRODUCTION 

XML employs a tree-structured model for representing 

data. Queries in XML query languages (see, e.g., [8, 5, 2]) 

typically specify pat terns  of selection predicates on multiple 

elements tha t  have some specified tree s t ructured relation- 
ships. For example, the XQuery expression: 

book[ t i t l e  = 'XML'] / /au thor[ fn  ---- ' j ane '  AND in = 'doe ' ]  
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matches au thor  elements that  (i) have a child subelement 

fn with content jane ,  (ii) have a child subelement in  with 
content doe, and (iii) are descendants of book elements tha t  
have a child t i t l e  subelement with content XML. This ex- 

pression can be represented as a node-labeled twig (or small 
tree) pa t te rn  with elements and string values as node labels. 

Finding all occurrences of a twig pa t te rn  in a database  
is a core operat ion in XML query processing, both  in re- 

lational implementat ions of XML databases,  and in native 

XML databases.  Prior  work (see, for example, [12, 24, 17, 

19, 18, 27, 1]) has typical ly decomposed the twig pa t te rn  into 

a set of binary (parent-child and ancestor-descendant) rela- 

tionships between pairs of nodes, e.g., the parent-child rela- 
tionships (book, t i t l e )  and (author ,  fn),  and the ancestor- 

descendant relationship (book, author) .  The query twig 

pat tern  can then be matched by (i) matching each of the 

binary s tructural  relationships against the XML database,  

and (ii) "stitching" together these basic matches. 
For solving the first sub-problem of matching binary struc- 

tural  relationships, Zhang et al. [27] proposed a variation 

of the t radi t ional  merge join algorithm, the mult i -predicate  
merge join (MPMGJN)  algorithm, based on the (DocId, 

Lef tPos : R igh tPos ,  LevelNum) representation of posi- 

tions of XML elements and string values (see Section 2.3 
for details about  this representation).  Their results showed 

that  the MPMGJN algorithm could outperform s tandard  
RDBMS join algorithms by more than an order of magni- 
tude. More recently, A1-Khalifa et al. [1] took advantage 

of the same representat ion of positions of XML elements to 

devise I /O  and CPU optimal join algorithms for matching 

binary structural  relationships against an XML database.  
The second sub-problem of sti tching together the basic 

matches obtained using binary "structural" joins requires 

identifying a good join ordering in a cost-based manner,  

taking selectivities and intermediate result size est imates 

into account. In this paper,  we show that  a basic l imita- 
tion of this ( tradit ional)  approach for matching query twig 

pat terns  is that  intermediate  result sizes can get very large, 
even when the input  and final result sizes are much more 

manageable. As a result, we seek a bet ter  solution to the 

problem of matching query twig pat terns  efficiently. 

In this paper,  we propose a novel holist ic twig j o i n  ap- 
proach for matching XML query twig patterns,  wherein no 

large intermediate results are created. Our technique uses 
the (DocId, LeftPos : KightPos, LevelNum) representa- 

tion of positions of XML elements and string values ( that  

succinctly captures s t ructural  relationships between nodes 
in the XML database) .  I t  also uses a chain of linked stacks to 
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compact ly  represent part ial  results to individual query root- 

to-leaf paths,  which axe then composed to obtain matches 
to the query twig pattern.  

Since a great deal of XML da ta  is expected to be stored in 
relational database systems (all the major DBMS vendors 

including Oracle, IBM and Microsoft are providing system 
support  for XML data),  our s tudy provides evidence that  

RDBMS systems need to augment their suite of query pro- 

cessing strategies to include holistic twig joins for efficient 

XML query processing. Our study is equally relevant for 
native XML query engines, since holistic twig joins are an 

efficient set-at-a-t ime strategy for matching XML query pat-  

terns, in contrast to the node-at-a-t ime approach of using 

tree traversals. 

1.1 Outline and Contributions 
We begin by presenting background material  (data  model, 

query twig patterns,  and positional representations of XML 

elements) in Section 2. Our main contributions are: 

• We develop two families of holistic path join algorithms 

in Section 3 to match XML query root-to-leaf paths ef- 

ficiently. The first, PathStack,  generalizes the Stack- 
Tree-Desc binary structural  join algorithm of [1], while 

the second, PathMPMJ, generalizes the MPMGJN bi- 
nary join algorithm of [27]. We analyze Pa thStack  

and show that  it is I /O  and CPU optimal among all 
sequential algorithms that  read the entire input, and 

has worst-case complexities linear in the sum of input  

and output  sizes but independent of the sizes of inter- 

mediate results. 

• We then develop TwigStack in Section 4, a holistie 

twig join algorithm that  (i) refines Pa thStack  to en- 
sure tha t  results computed for one root-to-leaf path  

of a twig pat tern  axe likely to have matching results 

in other paths of the twig pattern,  and (ii) merges re- 
sults for the different root-to-leaf paths in the query 

twig pattern,  to compute the desired output.  When 

the query twig uses only ancestor-descendant relation- 

ships between elements, we analytically demonstrate  
that  TwigStack is I /O  and CPU optimal among all 

sequential algorithms that  read the entire input. 

• Finally, in Section 5 we present experimental  results 

on a range of real and synthetic data,  and query twig 

patterns,  to complement our analytical results: 

- We show the substantial  performance benefits of 

using holistic twig joins over binary structural  
joins (for arbi t rary join orders). 

- We show that  among holistic pa th  join algorithms, 
Pa thStack  is significantly faster than PathMPMJ. 
This validates the analytical results demonstrat-  

ing the I /O  and CPU optimali ty  of PathStack.  
- For the case of twig patterns,  we show that  the use 

of TwigStack is bet ter  (both in time and space) 
than the independent use of Pa thStack  on each 

root-to-leaf path,  even when the twig pat tern con- 

tains parent-child structural  relationships. 
- We show how to use a modification of B-trees, 

denoted XB-trees, along with TwigStack, to per- 
form matching of query twig pat terns  in sub-linear 
time. 

We describe related work in Section 6, and conclude by 

discussing ongoing and future work in Section 7. 

2. BACKGROUND 

2.1 Data Model and Query Twig Patterns 
An XML database is a forest of rooted, ordered, labeled 

trees, each node corresponding to an element or a value, 

and the edges representing (direct) element-subelement or 

element-value relationships. Node labels consist of a set of 

(at t r ibute,  value) pairs, which suffices to model tags, IDs, 

IDREFs, etc. The ordering of sibling nodes implicitly defines 
a total  order on the nodes in a tree, obtained by a preorder 

traversal of the tree nodes. Figure 1 shows the tree repre- 

sentation of a sample XML document. (The util i ty of the 

numbers associated with the tree nodes will be explained in 

Section 2.3.) 

~b . (l,hlS0,1) oo~~ ... 

title allauthors year chapter 
(1,2:4,2) (I,5:60,2)~ ~ ( 1 , 6 1 : 6 3 , 2 )  (1,64:93,2)/ ~ . . .  

(,,6:20,3)/ 1(1,62,3) / 
0,3,3) XML author author author 2000 title section 

(17:94)/ , , , / \ , , ,  I ~ , , ,  (1'6':67'3) :: :::;::34)) . . .  

fn In fn In fn In XML head 

II I I I  I 
jane poe john doe jane doe Origins 

(1,8,5) 0,11,5) (1,26,5) (1,43,5) (1,46,5) 0,70,5) 
F i g u r e  1: A s a m p l e  X M L  T r e e  r e p r e s e n t a t i o n  

Queries in XML query languages like XQuery [2], Quilt [5] 
and XML-QL [8] make use of (node labeled) twig pat terns  

for matching relevant portions of da ta  in the XML database. 
The twig pa t te rn  node labels include element tags, a t t r ibute-  

value comparisons, and string values, and the query twig 

pa t te rn  edges are either parent-child edges (depicted using 

a single line) or ancestor-descendant edges (depicted using 
a double line). For example, the XQuery expression: 

book[title = 'XML' AND year  = '2000'] 

which matches book elements that  (i) have a child t i t l e  

subelement with content XML, and (ii) have a child yea r  

subelement with content 2000, can be represented as the 
twig pa t te rn  in Figure 2(a). Only parent-child edges are 
used in this case. Similarly, the XQuery expression in the 
introduction can be represented as the twig pa t te rn  in Fig- 

ure 2(b). Note that  an ancestor-descendant edge is used 

between the book element and the au thor  element. 
In general, at each node in the query twig pat tern,  there is 

a node predicate on the at t r ibutes  (e.g., tag, content) of the 

node in question. For the purposes of this paper,  exactly 

book book 

title year title author 

I I I / \  
XML 2000 XML fn In 

(a) (h) I I 
jane doe 

F i g u r e  2: Q u e r y  t w i g  p a t t e r n s  
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what is permitted in this predicate is not material. Simi- 

laxly, the physical representation of the nodes in the XML 

database is not relevant to the results in this paper. It suf- 

fices for our purposes that  there be efficient access mecha- 

nisms (such as index structures) to identify the nodes in the 

XML database that satisfy any given node predicate q, and 
return a stream of matches Tq. 

2.2 Twig Pattern Matching 

Given a query twig pat tern Q and an XML database D, a 

match of Q in D is identified by a mapping from nodes in Q 

to nodes in D, such that: (i) query node predicates are sat- 

isfied by the corresponding database nodes (the images un- 

der the mapping), and (ii) the structural (parent-child and 

ancestor-descendant) relationships between query nodes are 

satisfied by the corresponding database nodes. The answer 

to query Q with n nodes can be represented as an n-ary re- 

lation where each tuple ( d l , . . . ,  dn) consists of the database 

nodes that identify a distinct match of Q in D. 

Finding all matches of a query twig pattern in an XML 

database is a core operation in XML query processing, both 

in relational implementations of XML databases, and in na- 

tive XML databases. In this paper, we consider the twig 

pattern matching problem: 

Given a query twig pattern Q, and an XML database 

D that has index structures to identify database nodes 

that satisfy each of Q's node predicates, compute the 
answer to Q on D. 

Consider, for example, the query twig pattern in Fig- 

ure 2(a), and the database tree in Figure 1. This query 

twig pattern has one match in the data tree that maps the 

nodes in the query to the root of the data and its first and 
third subtrees. 

2.3 Representing Positions of Elements and 
String Values in an XML Database 

The key to an efficient, uniform mechanism for set-at-a- 

time (join-based) matching of query twig patterns is a po- 

sitional representation of occurrences of XML elements and 

string values in the XML database (see, e.g., [6, 7, 27]), 

which extends the classic inverted index data structure in 
information retrieval [22]. 

We can represent the position of a string occurrence in the 

XML database as a 3-tuple (DocId, LeftPos,  LevelNum), 

and analogously, the position of an element occurrence as a 

3-tuple (DocId, LeftPos : R±ghtPos, LevelNtun), where 

(i) DocId is the identifier of the document; (ii) LeftPos and 

RightPos can be generated by counting word numbers from 

the beginning of the document DocId until  the start and 

the end of the element, respectively; and (iii) LevelNum is 

the nesting depth of the element (or string value) in the 

document. Figure 1 shows 3-tuples associated with some 

tree nodes, based on this representation (the DocId for all 
nodes is chosen to be one). 

Structural relationships between tree nodes whose posi- 

tions are recorded in this fashion can be determined easily: 

(i) ancestor-descendant: a tree node n2 whose position in 

the XML database is encoded as (D2,L2 : R2,N2) is a de- 

scendant of a tree node n l  whose position is encoded as 

(D1,L1 : R1,N1) iff D1 = D2,L1 < L2, and R2 < R l l ;  

1For leaf strings, the R£ghtPos value is the same as the LeftPos 
value. 

(ii) parent-child: a tree node n2 whose position in the XML 

database is encoded as (De,L2 : R2,N2) is a child of a tree 

node nl  whose position is encoded as (D1, L1 : R1, N1) iff 

Di = D2,L1 < L2, R2 < R1, and N1 + 1 = N2. For exam- 

ple, in Figure 1, the author node with position (1, 6 : 20, 3) 

is a descendant of the book node with position (1, 1 : 150, 1), 

and the string "jane" with position (1, 8, 5) is a child of the 

author  node with position (1, 7 : 9, 4). 

A key point worth noting about this representation of 

node positions in the XML data tree is that checking an 

ancestor-descendant relationship is as simple as checking 

a parent-child relationship (we can check for an ancestor- 

descendant structural relationship without knowledge of the 

intermediate nodes on the path). Also, this representation 

of positions of nodes allow for checking order (e.g., node n2 

follows node n l )  and structural proximity (e.g., node n2 is 

a descendant within 3 levels of n l )  relationships. 

3. HOLISTIC PATH JOIN ALGORITHMS 

3.1 Notation 

Let q (with or without subscripts) denote twig patterns, as 

well as (interchangeably) the root node of the twig pattern. 

In our algorithms, we make use of the following twig node 

operations: isLeaf :  Node ~ Pool, isRoot: Node ~ Pool, 

parent :  Node ~ Node, ch£1dren: Node ~ {Node},  and 

s u b t r e e N o d e s :  Node ~ {Node}. Path queries have only 

one child per node, otherwise ch i ld ren(q)  returns the set 

of children nodes of q. The result of subtreeNodes(q) is the 

node q and all its descendants. 

Associated with each node q in a query twig pat tern there 

is a stream Tq. The stream contains the positional represen- 

tations of the database nodes that  match the node predicate 

at the twig pattern node q (possibly obtained using an ef- 

ficient access mechanism, such as an index structure). The 

nodes in the stream are sorted by their (DocId, LeftPos) 
values. The operations over streams are: eof, advance, 

next,  nextL, and nextR. The last two operations return the 

LeftPos and RightPos coordinates in the positional repre- 

sentation of the next element in the stream, respectively. 

In our stack-based algorithms, PathStack and TwigStack, 

we also associate with each query node q a stack Sq. Each 

data node in the stack consists of a pair: (positional repre- 

sentation of a node from Tq, pointer to a node in Sparen t  (q)). 
The operations over stacks are: empty, pop, push, topL, 

and topR. The last two operations return the LeftPos and 

RightPos coordinates in the positional representation of the 

top element in the stack, respectively. At every point during 

the computation, (i) the nodes in stack Sq (from bot tom to 

top) are guaranteed to lie on a root-to-leaf path in the XML 

database, and (ii) the set of stacks contain a compact encod- 

ing of partial and total answers to the query twig pattern,  

which can represent in linear space a potentially exponential 

(in the number of query nodes) number of answers to the 

query twig pattern, as illustrated below. 

EXAMPLE 3.1. Figure 3 illustrates the stack encoding of 

answers to a path query for a sample data set. The answer 

[A2, B2, C1] is encoded since C1 points to B2, and B2 points 

to A2. Since A~ is below A2 on the stack SA, [A1,B2,C1] is 

also an answer. Finally, since B1 is below B2 on the stack 

SB, and B1 points to A1, [A1,B1,C1] is also an answer. 

Note that [A2,B1,Ci] is not an answer, since A2 is above 

the node (A1) on stack SA to which B1 points. D 

312 



A1 U .  B2" A A ~  I .-'~BB~ 
B1 A 
I II Sc SB SA 
A 2 B (c) Stack encoding I II 
82 C A1 B1 C1 
I A1 B2 01 
01 A 2 B 2 01 

(a) Data (b) Query (d) Query results 
Figure 3: Compact  encod ing  o f  a n s w e r s  using stacks.  

We make crucial use of this compac t  s tack encoding in 

our algori thms,  P a t h S t a c k  and TwigStack.  

3.2 PathStack 

Algor i thm Pa thS tack ,  which computes  answers to a query  

pa th  pat tern ,  is presented in Figure  4, for the  case when the  

s t reams contain nodes from a single X M L  document .  W h e n  

the  s t reams contain nodes from mul t ip le  XML documents ,  

the  a lgor i thm is easily ex tended  to test  equal i ty  of Docld 

before manipula t ing  the  nodes in the  s t reams and stacks. 

Algorithm PathStack(q) 
01 while Rend(q) 
02 qmin = getMinSource(q) 
03 for  qi in subtreeNodes(q) / /  clean stacks 
04 while (~empty(Sql) A topR(Sql ) < nextL(Tq~i~ )) 
05 pop(Sqi) 

06 moveStreamToStack(Tqmi.,Sqmi., pointer to 

t op(Sparent (q~i.))) 
07 i f  (isLeaf(qmin)) 
08 showSolutions(Sqml.,1) 
09 pop(Semi.) 

Function end(q) 

return Vqi C subtreeNodes(q):isLeaf(ql)~eof(Tqi ) 

Function getMinSource(q) 

return qi C subtreeNodes(q) such that nextL(Tql) 

is minimal 

Procedure moveStreamToStack (Tq, Se,p) 
01 push(Sq, (next(Tq),p)) 
02 advance (Tq) 

F i g u r e  4: A l g o r i t h m  P a t h S t a c k  

The  key idea of Algor i thm P a t h S t a c k  is to repea ted ly  con- 

s t ruct  (compact)  stack encodings of par t ia l  and to ta l  an- 

swers to the query pa th  pa t te rn ,  by i tera t ing through the 

s t ream nodes in sorted order of their  L e f t P o s  values; thus, 

the  query pa th  pa t te rn  nodes will be ma tched  from the  query 

root down to the query leaf. Line 2, in Algor i thm Pa thS tack ,  

identifies the s t ream conta ining the  next  node to be pro- 

cessed. Lines 3-5 remove par t ia l  answers from the  stacks 

tha t  cannot  be extended to to ta l  answers, given knowledge of 

the  next  s t ream node to be processed. Line 6 augments  the  

part ial  answers encoded in the  stacks wi th  the new s t ream 

node. Whenever  a node is pushed on the  stack Sqm~, , where 

qmi~ is the leaf node of the  query path,  the stacks contain 

an encoding of total  answers to the  query  path,  and Algo- 

r i thm showSo lu t ions  is invoked by Algor i thm P a t h S t a c k  

(lines 7-9) to "output"  these answers. 

A natural  way for Algor i thm s h o w S o l u t i o n s  to ou tpu t  

query  pa th  answers encoded in the  stacks is as n- tuples  

tha t  are in sorted leaf-to-root order of the  query path.  This  

will ensure that ,  over the  sequence of invoca t ions  of Algo- 

r i t hm showSo lu t ions  by Algor i thm P a t h S t a c k ,  the  answers 

to the  query pa th  are also compu ted  in leaf- to-root  order.  

F igure  5 shows such a procedure  for t he  case when only 

ancestor-descendant  edges are present  in the  query  path.  

Procedure shovSolutions (S N, SP) 
/ /  Assume, for simplicity, that the stacks of the query 
/ /  nodes from the root to the current leaf node we 
/ /  are interested in can be accessed as S[1] . . . . .  Sin]. 
/ /  Also assume that we have a global array index[1..n] 
/ /  of pointers to the stack elements. 
/ /  index[i] represents the position in the i ' th  stack that 
/ /  we are interested in for the current solution, where 
/ /  the bottom of each stack has position 1. 

/ /  Mark we are interested in position SP of stack SN. 
01 index[SN] = SP 
02 i f  ( S N = =  1) / /  we are in the root 
03 / /  output solutions from the stacks 
04 output (S[n].index[n],.. . ,  S[1].index[1]) 
05 e l se  / /  recursive call 
06 for i = 1 to S[SN].index[SN].pointer_to_parent 

07 showSolutions (SN - I~ i) 

Figure 5: Procedure  showSolutions 

W h e n  parent-child edges are present  in the  query  path,  

we also need to take the LevelNum informat ion  into ac- 

count.  P a t h S t a c k  does not  need to change,  bu t  we need 

to ensure tha t  each t ime showSolutions is invoked, it does 

not  ou tpu t  incorrect  tuples, in addi t ion to avoiding unnec- 

essary work. This  can be achieved by modify ing  the  re- 

cursive call (lines 6-7) to check for parent-chi ld  edges, in 

which case only a single recursive call ( s h o w S o l u t i o n s ( S N -  

1, S[SN]. index[SN].pointer_to_the_parent_stack))  needs to 

be invoked, after verifying tha t  the  LevelNum of the  two 

nodes differ by one. Looping through all nodes in the  stack 

S[SN - 1] would still be correct, bu t  it would do more work 

than  is s t r ic t ly  necessary. 

If we desire the  final answers to the  query  pa th  be pre- 

sented in sor ted root- to- leaf  order (as opposed to sor ted leaf- 

to-root  order),  it is easy to see tha t  it does not  suffice tha t  

each invocat ion of showSo lu t ions  ou tpu t  answers encoded 

in the  stack in the  root- to- leaf  order. To produce answers 

in the  sor ted root- to- leaf  order, we would need to "block" 

answers, and delay their  ou tpu t  unti l  we are sure tha t  no 

answer prior to t hem in the sort order  can be computed .  

The  details of how to achieve this na tura l ly  are presented 

in [3] and are omi t t ed  here for reasons of space. 

EXAMPLE 3.2. Consider the le~most path, b o o k - t i t l e -  

XML, in each of the query twigs of Figure 2. I f  we used the 

binary structural join algorithms of [27, 1], we would first 

need to compute matches to one of the parent-child struc- 

tural relationships: b o o k - t i t l e ,  or t i t l e - X M L .  Since every 

book has a t i t l e ,  this binary join would produce a lot of 

matches against an XML books database, even when there 

are only a few books whose title is XML. If, instead, we first 

computed matches to t i t l e -XML,  we would also match pairs 

under c h a p t e r  elements, as in the XML data tree of Fig- 

ure 1, which do not extend to total answers to the query 

path pattern. Using Algorithm P a t h S t a c k ,  partial answers 

are compac t ly  represented in the stacks, and not output. Us- 

ing the XML data tree of Figure 1, only one to ta l  answer, 

identified by the mapping [ book ~ (1, 1 : 150, 1), t i t l e  

(1, 2 : 4, 2), XML ~ (1,3,3)  ] ,  is encoded in the stacks. [] 
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3.3 Analysis of PathStack 

The following proposition is a key to establishing the cor- 
rectness of Algorithm PathStack. 

PROPOSITION 3.1. I f  we fix node Y ,  the sequence of cases 

between node Y and nodes X on increasing order of LeftPos 

(L) is: (1[2)'3"4". Cases 1 and Cases 2 are interleaved, then 

all nodes in Case 3 before any node in Case ~, and finally 

all nodes in Case 4 (see Figure 6). [] 

Property 

Segments 

Tree 

Case 1 Case 2 Case 3 i Case 4 

X.R<Y.L X.L<Y.L X.L>Y.L X.L>Y.R 
X.R>Y.R X.R<Y.R 

~ X ~  : X : _ X _ : X :  v 

_ Y _  Y _ Y _ _ Y _  

/ \, / y~ x\ /" ~ ' 

., . \ , eX, 

F i g u r e  6: C a s e s  for PathStack a n d  TwigStack 

LEMMA 3.1. Suppose that for an arbitrary node q in the 

path pattern query, we have that getMinSource(q) = qg.  

Also, suppose that tan is the next element in qY 'S stream. 

Then, after tqN is pushed on to stack SqN , the chain of stacks 

from SqN to Sq verifies that their labels are included in the 

chain of nodes in the X M L  data tree from tqN tO the root. [] 

For each node tqm~, pushed onto stack Sqm~,, it is easy to 

see that the above lemma, along with the iterative nature of 

Algorithm showSolutions,  ensures that all answers in which 

tqm~, is a match for query node qmin will be output. This 
leads to the following correctness result: 

THEOREM 3.1. Given a query path pattern q and an XML 

database D, Algorithm PathStack correctly returns all an- 

swers for q on D. [] 

We next show optimality. Given an XML query path of 

length n, PathStack takes n input lists of tree nodes sorted 

by (DocId, LeftPos) ,  and computes an output sorted list 

of n-tuples that match the query path. It is straightforward 

to see that, excluding the invocations to showSolutions,  the 

I /O and CPU costs of PathStack are linear in the sum of 

sizes of the n input lists. Since the cost of showSolutions 

is proportional to the size of the output  list, we have the 
following optimality result: 

THEOREM 3.2. Given a query path pattern q with n nodes, 

and an XML database D, Algorithm PathStack has worst- 

case I / O  and CPU time complexities linear in the sum of 

sizes of  the n input lists and the output list. Further, the 

worst-case space complexity of Algorithm PathStack is the 

minimum of (i) the sum of sizes of the n input lists, and 

(ii) the maximum length of  a root-to-leaf path in D. [] 

It is particularly important  to note that the worst-case 

time complexity of Algorithm PathStack is independent of 

the sizes of  any intermediate results. 

3.4 PathMPMJ 

A straightforward generalization of the MPMGJN algo- 

rithm [27] for path queries proceeds one stream at a time to 

get all solutions. Consider the path query ql / /q2/ /q3 .  The 

basic idea is as follows: Get the first (next) element from 

the stream Tq~ and generate all solutions that use that par- 

ticular element from Tq~. Then, advance Tq~ and backtrack 

Tq2 and Tq3 accordingly (i.e., to the earliest position that  

might lead to a solution). This procedure is repeated un- 

til Tql is empty. The generate all solutions step recursively 

starts with the first marked element in Tq2 , gets all solutions 

that use that element (and the calling element in Tq~ ), then 

advances the stream Tq2 until  there are no more solutions 

with the current element in Tq2 , and so on. We refer to this 

algorithm as PathMPMJNaive, in our experiments. 

It turns out that maintaining only one mark per stream 

(for backtracking purposes) is too inefficient, since all marks 

need to point to the earliest segment that can match the 

current element in Tql (the stream of the root node). A 

better strategy is to use a stack of marks, as described in 

Algorithm PathMPMJ in Figure 7. In this optimized general- 

ization of MPMGJN, each query node will not have a single 

mark in the stream, but  "k" marks where k is the number 

of its ancestors in the query. Each mark points to an earlier 

position in the stream, and for query node q, the i ' th  mark 

is the first point in Tq such that the element in Tq starts 

after the current element in the stream of q's i ' th  ancestor. 

Algorithm PathMPMJ (q) 

01 while (~eof(Tq)A (isRoot(q)V 

nextL(q) < n~tR(parent(q)))) 

02 :for (qi 6 subtreeNodes(q)) / /  advance descendants 
03 while (nextL(qi) < nextL(parent(qi))) 
04 advance (Tql) 
05 PushMark (rql) 

06 if (isLeaf(q)) // solution in the streams' heads 

output Solut ion ( ) 

07 else PathMPMJ (child(q)) 

08 advance (Tq) 
09 for (qi 6 subtreeNodes(q)) // backtrack descendants 
i0 PopMark (Tq~) 

F i g u r e  7: A l g o r i t h m  PathMPMJ 

THEOREM 3.3. Given a query path pattern q and an X M L  

database D, Algorithm PathMPMJ correctly returns all an- 

swers for q on D. [] 

While the two extensions of MPMGJN appear similar, 

the difference between their performance is noticeable, as 
we shall see in the experimental section. Further, as was the 

case with MPMGJN, Algorithm PathMPHJ is not asymptot- 
ically optimal either. 

4. TWIG JOIN ALGORITHMS 

4.1 Limitations of Using PathStack 

A straightforward way of computing answers to a query 

twig pattern is to decompose the twig into multiple root- 

to-leaf path patterns, use PathStack to identify solutions to 

each individual path, and then merge-join these solutions to 

compute the answers to the query. This approach, which we 

314 



experimentally evaluate in Section 5, faces the same funda- 

mental problem as the techniques based on binary structural 

joins, towards a holistic solution: many intermediate results 

may not be part of any final answer, as illustrated below. 

EXAMPLE 4.1. Consider the query sub-twig rooted at the 

author  node of the twig pattern in Figure 2(b). Against 

the XML database in Figure 1, the two paths of this query: 

a u t h o r - f n - j a n e ,  and author-In--doe, have two solutions 

each, but the query twig pattern has only one solution. [] 

In general, if the query (root-to-leaf) paths have many 

solutions that  do not contribute to the final answers, using 

PathStack (as a sub-routine) is suboptimal, in that the over- 

all computation cost for a twig pattern is proportional not 

just  to the sizes of the input and the final output, but  also 

to the sizes of intermediate results. In this section, we seek 

to overcome this suboptimality using Algorithm TwigStack. 

4.2 TwigStack 
Algorithm TwigStack, which computes answers to a query 

twig pattern, is presented in Figure 8, for the case when 

the streams contain nodes from a single XML document. 

As with Algorithm PathStack, when the streams contain 

nodes from multiple XML documents, the algorithm is easily 

extended to test equality of DocId before manipulat ing the 

nodes in the streams and on the stacks. 

Algorithm TwigStack(q) 
/ /  Phase 1 

01 while ~end(q) 
02 qact = getNext(q) 
03 if (~isRoot(qact)) 
04 cleanStack(parent(qact), nextL(qact)) 
05 if (isRoot(qact) V ~empty(Sparent(qact))) 
06 cleanStack(qact, next(qact)) 
07 moveStreamToStack(Tq.ce,Sqo~t , pointer to 

top(Sparent (q~ , ) ) )  
08 if (isLeaf(qact)) 
09 showSolutionsWithBlocking(Sqact,l) 
10 pop(Sq~et) 
11 else advance(Tq~¢t) 

/ /  Phase 2 
12 mergeAllPathSolutions() 

Func t ion  ge tNex t (q )  
01 i f  (isLeaf(q)). return q 
02 for qi in children(q) 
03 nl = getNext(qi) 
04 if  (hi ~ qi) return ni 
05 nmln = minargnl nextL(Tnl) 
06 nmaz = maxargnl nextL(Tni) 
07 while (nextR(Tq) <nextL(Tnma.)) 
08 advance(Tq) 
09 i f  (nextL(Tq) <nextL(Tnmi,)) return q 
10 e l s e  r e t u r n  nmin 

Procedure cleanStack(S, actL) 
01 while (~empty(S)A (topR(S) < aetL)) 
02 pop(S) 

F i g u r e  8: A l g o r i t h m  TwigStack 

Algorithm TwigStack operates in two phases. In the first 
phase (lines 1-11), some (but not all) solutions to individual 

query root-to-leaf paths are computed. In the second phase 
(line 12), these solutions are merge-joined to compute the 

answers to the query twig pattern. 

The key difference between PathStack and the first phase 

of TwigStack is that before a node hq from the stream Tq is 

pushed on its stack Sq, TwigStack (via its call to getNext) 

ensures that: (i) node hq has a descendant hq~ in each 

of the streams Tq~, for qi 6 ch i ldren(q) ,  and (ii) each of 

the nodes hq~ recursively satisfies the first property. Algo- 

ri thm PathStack does not satisfy this property (and it does 

not need to do so to ensure (asymptotic) optimality for query 

path patterns). Thus, when the query twig pattern has only 

ancestor-descendant edges, each solution to each individual 

query root-to-leaf path is guaranteed to be merge-joinable 

with at least one solution to each of the other root-to-leaf 

paths. This ensures that  no intermediate solution is larger 

than the final answer to the query twig pattern. 

The second merge-join phase of Algorithm TwigStack is 

linear in the sum of its input (the solutions to individual 

root-to-leaf paths) and output (the answer to the query twig 

pattern) sizes, only when the inputs are in sorted order of the 

common prefixes of the different query root-to-leaf paths. 

This requires that the solutions to individual query paths 

be output in root-to-leaf order as well, which necessitates 

blocking; showSolutions (from Figure 5), which outputs 

solutions in sorted leaf-to-root order, cannot be used. 

EXAMPLE 4.2. Consider again the query of Example 4.1, 

which is the sub-twig rooted at the author  node of the twig 

pattern in Figure 2(b), and the X M L  database tree in Fig- 

ure 1. Before Algorithm TwigStack pushes an author  node 

on the stack So,thor, it ensures that this author  node has: 

(i) a descendant :fn node in the stream T~n (which in turn 

has a descendant jane  node in Tj~o), and (ii) a descendant 

in  node in the stream Txn (which in turn has a descendant 

d o e  node in Tdo.). Thus, only one of the three author  nodes 

(corresponding to the third author) from the XML data tree 

in Figure 1 is pushed on the stacks. Subsequent steps ensure 

that only one solution to each of the two paths of this query: 

a u t h o r - f n - j a n e ,  and author-in--doe,  is computed. Finally, 

the merge-join phase computes the desired answer. [] 

4.3 Analysis of TwigStack 
In this section we discuss the correctness of algorithm 

TwigStack for processing twig queries, and then we ana- 

lyze its complexity. Most of the proofs in this section are 

omitted for lack of space and can be found in [3]. 

DEFINITION 4.1. Consider a twig query Q. For each node 

q 6 subtreeNodes(Q) we define the head of q, denoted hq, 

as the first element in Tq that participates in a solution for 

the sub-query rooted at q. We say that a node q has a mini- 

mal descendant extension i f  there is a solution for the sub- 

query rooted at q composed entirely of the head elements of 

subtreeNodes (q). 

Proposition 3.1, based on Figure 6, is important for es- 

tablishing the following lemma: 

LEMMA 4.1. Suppose that for an arbitrary node q in the 

twig query we have that getNext(q) = qg. Then, the follow- 

ing properties hold: 

1. qN has a minimal descendant extension. 

2. For each node q' 6 subtreeNodes(qN), the first ele- 

ment in Tq, is hq,. 
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3. Either (a) q = qN or (b) parent (qN)  does not have 

a minimal right extension because of qN (and possibly 

other nodes). In other words, the solution rooted at 

p = parent (qN)  that uses hp does not use hq for node 

q but some other element whose L component is larger 

than that of hq. 

Using the lemma above, we can prove [3] that  when some 

node q/v is returned by getNext ,  hqN is guaranteed to have 

a descendant extension in subtreeNodes(qN).  We can also 

prove [3] tha t  any element in the ancestors of qg that  uses 

hqN in a descendant extension was returned by getNext  be- 
fore hqN. Therefore we can maintain,  for each node q in 

the query, the elements tha t  are part  of a solution involving 

other elements in the streams of subtreeNodes(q) .  Then, 

each time that  qN = getNext(q)  is a leaf node, we output  

all solutions tha t  use haN. It  can be proved [3] that  we can 
achieve that  by maintaining one stack per node in the query. 

THEOREM 4.1. Given a query twig pattern q and an XML 

database D, Algorithm TwJ.gStack correctly returns all an- 

swers for q on D. 

PROOF. [Sketch]  In Algori thm TwigStack, we repeat-  
edly find getNext(q)  for query q (line 2). Assume tha t  

getNext(q)  = qN. Let AqN be the set of nodes in the query 

tha t  axe ancestors of qN. We know tha t  getNext  already re- 
turned all elements from the streams of nodes in AqN tha t  

are par t  of a solution tha t  uses hqN. If q ¢ qg, in line 4 we 
pop from paren t (qN) ' s  stack all elements tha t  are guaran- 

teed not to par t ic ipate  in any new solution. After that ,  in 

line 5 we test whether hqN part icipates in a solution. We 
know tha t  qN has a descendant extension by Lemma 4.1, 

property 1. If q ~ qg and p a r e n t ( q s ) ' g  stack is empty, 

node qN does not have an ancestor extension. Therefore it 

is guaranteed not to par t ic ipate  in any solution, so we ad- 
vance qN in line 11 and continue with the next iteration. 
Otherwise, node qN has both  ancestor and descendant ex- 

tensions and therefore it par t ic ipates  in at least one solution. 

We then clean qg'S stack (line 6) and push hqN to it (line 7). 

Finally, if qN is a leaf node, we output  the stored solutions 

from the stacks (lines 8-10). []  

While correctness holds for query twig pat terns  with both 

ancestor-descendant and parent-child edges, we can prove 
opt imali ty  only for the case where the query twig pa t te rn  
has only ancestor-descendant edges. The intuition is simple. 

Since we push into the stacks only elements tha t  have both 
a descendant and an ancestor extension, we are guaranteed 

that  no element tha t  does not par t ic ipate  in any solution is 

pushed into any stack. Therefore, the merge postprocessing 

step is optimal,  and we have the following result. 

THEOREM 4.2. Consider a query twig pattern q with n 

nodes, and only ancestor-descendant edges, and an XML 

database D. Algorithm Tw±gStack has worst-case I /O and 

CPU time complexities linear in the sum of sizes of the 

n input lists and the output list. Further, the worst-case 

space complexity of Algorithm TwigStack is the minimum 

of (i) the sum of sizes of the n input lists, and (ii) n times 

the maximum length of a root-to-leaf path in D. [] 

It is part icularly impor tant  to note that ,  for the case of 
query twigs with ancestor-descendant edges, the worst-case 

time complexity of Algori thm TwigStack is independent of 

the sizes of solutions to any root-to-leaf path of the twig. 

4.4 Suboptimality for Parent-Child Edges 
Theorem 4.2 holds only for query twigs with ancestor- 

descendant edges. Unfortunately, in the case where the twig 

pa t te rn  contains a parent-child edge between two elements 

(e.g., see the query in Example 4.2), Algori thm TwigStack 
is no longer guaranteed to be I / O  and CPU optimal.  In 

particular,  the algorithm might produce a solution for one 
root-to-leaf path  tha t  does not match with any solution in 

another root-to-leaf path.  

Consider the query twig pa t te rn  with three nodes: A , B  

and C, and parent-child edges between (A, B) and between 

(A ,C) .  Let the XML da ta  tree consist of node A1, with 

children (in order) A2, B2,C2, such tha t  A2 has children 

B1, C1. The three streams TA, TB and Tc  have as their 

first elements A1, B1 and C1 respectively. In this case, we 
cannot say if any of them part ic ipates  in a solution without 
advancing other streams, and we cannot advance any s t ream 
before knowing if it  par t ic ipates  in a solution. As a result, 

opt imal i ty  can no longer be guaranteed. 

4.5 Using XB-Trees 
Algori thms Pa thS tack  and TwigStack need to process 

each node in the input  lists to check whether or not it is par t  
of an answer to the query (path or twig) pat tern.  When the 

input  lists axe very long, this may take a lot of time. In this 

section, we propose the use of a variant of B-trees, denoted 

XB-tree, on the input  lists to speed up this processing. 

4.5.1 XB-Tree Description 

As its name suggests, the XB-tree is a variant of the 

B-tree, designed for indexing the posit ional representat ion 
(DocId, LeftPos  : RightPos, LevelNum)of elements in 

the XML tree. We describe the index structure when all 

nodes belong to the same XML document; the extension to 

multiple documents is straightforward. 
The nodes in the leaf pages of the XB-tree are sorted by 

their Lef tPos  (L) values; this is similar to the leaf pages 

of a B-tree on the L values. The difference between a B- 
tree and an XB-tree is in the da ta  maintained at  internal 

pages. Each node N in an internal page of the XB-tree 

consists of a bounding segment [N.L, N.l-l] (where L denotes 
Lef tPos  and R denotes RightPos)  and a pointer  to its child 
page N.page (which contains nodes with bounding segments 

completely included in [N.L, N.R]). The bounding segments 
of nodes in internal pages might part ial ly overlap, but  their 

L positions are in increasing order. Besides, each page P 
has a pointer to the parent  page P.parent and the integer 

P.parentIndex which is the index of the node in P.parent 

tha t  points back to P.  The construction and maintenance 

of an XB-tree is very similar to those in a B-tree, using the 
L value as the key; the difference is tha t  the R values need 

to he propagated up the index structure.  

4.5.2 Using  X B -  Trees 

We maintain a pointer act = (actPage, act lndex)  to the 

act lndex ' th  node in page actPage of the XB-tree. There 
are two operations over the XB-tree that  affect this pointer: 

1. advance. If act ---- (actPage, actIndex)  does not point 
to the last node in the current page, we simply ad- 
vance actlndex.  Otherwise we replace act with the 
value (actPage.parent ,actPage.parentIndex)  and re- 

cursively advance it. 

316 



2. drillDown. If act = (actPage, actIndex) ,  actPage is 

not a leaf page, and N is the act Index ' th  node in 

actPage, we replace act with (N.page, O) so that it 

points to the first node in N.p. 

Initially act = (rootPage, 0), pointing to the first node in 

the root page of the XB-tree. When act points to the last 

node in rootPage and we advance it, we finish the traversal. 

We can modify the previous algorithms easily to use XB- 

trees. Algorithm TwigStackXB, in Figure 9, extends Algo- 

ri thm TwigStack so that it uses XB-trees. The only changes 

are in the lines indicated by parentheses. The function 

i sP la inValue  returns true if the actual pointer in the XB- 

tree is pointing to a leaf node (actual value in the original 

stream). If we define i s P l a i n V a l u e ( T ) = t r u e  when T is not 

an XB-tree but a regular file, this algorithm reduces to the 

previous one. 

Algorithm TwigStackXB(q) 

01 while ~end(q) 

02 qact  : getNext(q) 
(03) if (isPlainYalue(Tqac,)) 
04 if (~isRoot(qact)) 

05 cleanStack(parent(qac~), next(qace)) 

06 i~ (isRoot(q.~) v Impty(Sparent(qo¢,))) 

07 cleanStack(qact, next(qact)) 
08 moveStreamToStack(Tqact,Sqact , pointer to 

top (Sparent (q~t) ) ) 

09 if (isLeaf(qact)) 
10 showSolut ionsWithBlocking(Sq~, l )  
11 pop(Sqo~t) 
12 e l se  advance(TqoCt) 
(13) e l s e  i f  (~isRoot(qact) A empty(Sparent(q.¢t))A 

nextL(Tparent (qo~t)) > nextR(Tqa~t )) 
(14) advance (Tq,~t) / /  Not part of a solution 
(15) e l s e  / /  Might have a child in some solution 
(16) drillDown (Tq~¢t) 

/ /  Phase 2 
17 mergeAllPathSolutions() 

Function getNext(q) 
01 i f  ( i sLeaf(q))  re turn  q 
02 for ql in children(q) 

03 n i  = g e t N e x t ( q i )  

(04) i f  (qi # n i  V ~ i sP la inValue(T , i )  ) return n i  

05  n m i n  = minargn~ nextL(Tn i)  
06 n m a z  : maxargnl nextL(Tnl) 
0~ while (nextR(Tq) <nextL(Tnmo.)) 
08 adva.nce(Tq) 
09 if (nextL(Tq) <nextL(Tnm,n) ) return q 
10 e l se  re turn  n m i n  

P r o c e d u r e  cleanStack(S,  a c t L )  

01 while (~empty(S) A (topR(S) < actL)) 
02 pop(S) 

F i g u r e  9: A l g o r i t h m  TwigStackXB 

THEOREM 4.3. Given a query twig pattern q and an XML 

database D, Algorithm TwigStackXB correctly returns all an- 

swers for q on D. [] 

While we do not have any analytical results about the 
efficiency of Algorithm TwigStackXB, we show experimen- 
tally that it performs matching of query twig patterns in 

sub-linear time. 

5. E X P E R I M E N T A L  EVALUATION 
In this section we present experimental results on the per- 

formance of the join algorithms introduced in Sections 3 

and 4 using both real and synthetic data. 

5.1 Experimental  Setting 

We implemented all XML join algorithms in C + +  using 

the file system as the storage engine. All experiments were 

run on a 550Mhz Pentium III processor with 768MB of main 

memory and a 2GB quota of disk space. 

We used both synthetic and real-world data. The syn- 

thetic data sets are random trees generated using three pa- 

rameters: depth, fan-out and number of different labels. For 

most of the experiments presented involving synthetic data 

sets, we generated full binary and ternary trees. Unless 

specified explicitly, the node labels in the trees were uni- 

formly distributed. We tried other configurations (larger 

fanout and random depths in the tree) and also used the 

XMach-1 [25] and XMark [26] benchmarks. Those results 

are omitted for lack of space and can be found in [3]. 

The real data set is an "unfolded" fragment of the DBLP 

database. In the DBLP data set, each author is represented 

by a name, a homepage, and a list of papers. In turn, each 

paper contains a title, the conference where it was published, 

and a list of coauthors. We generated our unfolded fragment 

of DBLP as follows. We started with an arbitrary author 

and converted the corresponding information to XML for- 

mat. For each paper, we replaced each coauthor name with 

the actual information for that  author. We continued un- 

folding authors until we reached a previously traversed au- 

thor, or a depth of 200 authors. The resulting XML data 

set has depth 805 and around 3 million nodes, representing 

93,536 different papers from 36,900 unique authors. 

5.2 Binary Structural Joins vs PathStack 

In this experiment we compare our holistic PathStack 

algorithm against strategies that use a combination of bi- 

nary structural joins [1]. For this purpose, we used a syn- 

thetic data set consisting of 1,000,000 nodes and six dif- 

ferent labels: A1,A2, . . . ,A6.  2 We issued the path query 

A 1 / / A 2 / / . . . / / A 6  and evaluated it using PathStack. Then, 

we evaluated all binary join strategies resulting from apply- 

ing all possible join orders. Figure 10 shows the execution 

time of all join strategies, where each strategy is represented 

with a bar. We also show with a solid line the execution time 

of PathStack, and with a dotted line the time it takes to do 

a sequential scan over the input data (labeled SS) .  

For this query, PathStack took 2.53s, slightly more than 

the 1.87s taken by the sequential scan over the input data. 

In contrast, the strategies based on binary structural joins 

ranged from 16.1s to 53.07s. Our first conclusion is that 

optimization plays an important role for binary structural 

joins, since a bad join ordering can result in a plan that 

is more than three times worse than the best plan. Our 

second conclusion is that the holistic strategy is superior to 

the approach of using binary structural joins for arbitrary 

join orders; in this case, it results in more than a six-fold 

improvement in execution time over the best strategy that 

uses binary structural joins. 

2Note that the actual XML data can contain many more labels, 
but that does not affect our techniques since we only access the 
indexes of labels present in the query. 
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5.3 Paths: PathStackvs PathMPMJ 
In this section we study the efficiency of the different holis- 

tic path join algorithms of Section 3. We first compare the 

two versions of PathMPMJ. We used a 64K synthetic data 

set with labels A1, . . .  A10, and issue path queries of differ- 

ent lengths. Figure 11 shows the execution times of both 

techniques, as well as the time taken for a sequential scan 

over the input data. PathMPMJNaive is much slower com- 

pared to the optimized PathMPMJ (generally over an order 

of magnitude). The reason is that PathMPMJNaive is too 

conservative when backtracking and reads several times un- 

necessary portions of the data (in our experiments, as much 

as 15 times more nodes than PathMPMJ). Since the perfor- 

mance of Patl~PMJNaive degrades considerably with the size 

of the data set and the length of the input query, we do not 

consider this strategy for the remainder of this paper. 
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Figure 11: PathHPMJ ve r sus  PathHPMJNaive 

We now compare PathStack against PathMPMJ. In Fig- 

ure 12 we show the execution time and the number of nodes 

read from disk for path queries of different length and a 

synthetic data set of 1,000,000 nodes and 10 different la- 

bels. Clearly, PathStack results in considerably better per- 

formance than PathMPMJ, and this difference increases with 

longer path queries. This is explained by the fact that 

PathStack makes a single pass over the input data, while 

PathNPMJ needs to backtrack and read again large portions of 

data. For instance, for a path query of length 10, PathblPblJ 

reads the equivalent of five times the size of the original data, 

as seen in Figure 12(b). In Figure 12(a), for path queries 

of length two, the execution time of PathStack is consider- 

ably slower than that of the sequential scan, and closer to 

PathMPMJ. This behavior is due to the fact that for the path 

query of length two, the number of solutions is rather large 

(more than 100,000), so most of the execution time is used 

in processing these solutions and writing them back to disk. 

For longer path queries, the number of solutions is consid- 

erably smaller, and the execution of PathStack is closer to 

a sequential scan and much more efficient than PathMPMJ. 

Figure 13 shows the execution time and number of values 

read for two simple path queries over the unfolded DBLP 

data set (note the logarithmic scale on the Y axis). Due to 

the specific nesting properties between nodes in this data 

set, the PathMPMJ algorithm spends much time backtracking 

and reads several times the same values. For instance, for 

the path query of length three in Figure 13, PathMPMJ reads 

two orders of magnitude more elements than PathStack. 

5.4 Twigs: PathStack vs TwigStack 
We now focus on twig queries, and compare TwigStack 

against the naive application of PathStack to each branch 

in the tree followed by a merge step. As shown in Section 4, 

TwigStack is optimal for ancestor/descendant relationships, 

but  it is provably suboptimal for parent/child relationships. 

In this section, we analyze these two cases separately. 

AUTHOR 

I (2) 
PAPER 

/A 
A YEAR CO-AUTHOR 

A1 I I (pararneter d) 
A~ A~ ~ II % = o o o  /\'~"== 

I I (parameterd) 
~3 ~ Z,,O . . , , .  

6 A3 As Ar I 

A4 Az I 
1 9 8 0  

(a) (b) (c) 

F i g u r e  14: T w i g  quer i e s  used  in  the experiments 

5.4.1 Ancestor-Descendant Relationships 

We first used the query shown in Figure 14(a) over dif- 

ferent synthetically generated data sets. Each data set was 

generated as a full ternary tree. The first subtree of the 

root node contained only nodes labeled A1, A2, A3 and A4. 

The second subtree contained nodes labeled A1, As, A6 and 

AT. Finally, the third subtree contained all possible nodes. 
Clearly, there are many partial solutions in the first two 

subtrees but  those do not produce any complete solution. 

Only the third subtree contains actual solutions. We varied 

the size of the third subtree relative to the sizes of the first 

two from 8°7o to 24% (beyond that  point the number of solu- 

tions became too large). Figures 15(a-b) show the execution 

time of PathStack and TwigStack and the number  of partial 

solutions each algorithm produces before the merging step. 

The consistent gap between TwigStack and PathStack re- 

sults from the latter generating all partial solutions from 

the first two subtrees which axe later discarded in the merge 

step (AI//A2//As//A4) ~ (A1//As//A6//AT). As seen in 

Figure 15(b), the number of partial solutions produced by 

PathStack is several orders of magnitude larger than that 

of the TwigStack algorithm. The number of solutions to the 

query computed by both algorithms is, of course, the same. 

We then used the twig query of Figure 14(b) and gener- 

ated different synthetic data sets in the following way. As 

before, each data set is a full ternary tree. The first subtree 

does not contain any nodes labeled A2 or A3. The second 

subtree does not contain any A4 or As nodes. Finally, the 

third subtree does not contain any A6 or AT nodes. There- 

fore, there is not even a single solution for the query twig, 

although each subtree contains a large number of partial so- 

lutions. The main difference with the previous experiment 

is that  we need to materialize an intermediate join result 

before getting the final answer. Therefore, there is no ex- 
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ecution strategy using PathStack that avoids materializing 

a big intermediate result. Figure 15(c) shows the execution 

time for PathStack and TwigStack for different data sizes 

(note the logarithmic scale). For the last data set (with 243K 

nodes), PathStack could not finish, since the intermediate 

result filled all the available space on disk (2GB). 

5.4.2 Parent-Child Relationships 

As explained in Section 4, TwigStack is not optimal for 

parent/child relationships. We now show that even in this 

case, TwigStack performs much better than PathStack. For 

that  purpose, we modified the queries in Figures 14(a-b) 

adding the following constraint: all ancestor-descendant re- 

lationships are connected by a path of length between one 

and three (this can be checked by comparing the LevelNum 

values of the positional representations). Figure 16 shows 

the results for these experiments. Even in the presence of 

parent-child constraints, TwigStack is considerably more ef- 

ficient than PathStack. In particular, Figure 16(b) shows 

that the number of partial solutions produced by TwigStack 

(though not minimal) is small. The non-minimality is evi- 

dent from the observation that the number of partial solu- 

tions produced by TwigStack is sometimes larger than the 

number of total solutions to the query twig. 

We also evaluated the query of Figure 14(c) over the un- 

folded DBLP data set. This query asks for authors with 

papers published in the year 2000, who have some coauthor 

with a paper published in 1990, who in turn has some coau- 

thor with a paper in 1980. We vary the allowed depth in the 

relationship COAUTHOR / /  PAPER, i.e., the number of coau- 
thors and papers we can traverse from a given author, from 

0 (no solutions) to 37. The results are shown in Figure 17. 
We can see that for these queries, TwigStack is again more 

efficient than PathStack. 

5.5 Sub-Linearity: Using XB-Trees 
We now study the advantages of using XB-trees to process 

path and twig queries. In particular, we show that the num- 

ber of nodes that need to be read from the XB-tree (counting 

both leaf and internal nodes) is significantly smaller than the 

size of the input, which causes sub-linear behavior in our al- 

gorithm. As we will see, XB-trees with small node capacities 

can effectively skip many leaf nodes, but  the number of in- 

ternal nodes traversed is large. On the other hand, for large 

node capacities there are fewer internal node accesses, but 

XB-trees cannot skip many leaf nodes because they could 

miss some solutions. We experimentally obtained the best 

results when using node capacities ranging from 4 to 64. 

For the experiments in this section, we evaluated different 

queries using PathStack and TwigStack, with and without 

XB-trees. We varied the node capacity of the XB-trees be- 

tween 2 and 1,024 values per index node. Figure 18(a) shows 

the number of values read in the XB-tree (separated into in- 

ternal and leaf accesses) for the data set and path queries 

used in Section 5.3. Figure 18(b) shows the results when 

using the twig query of Figure 14(a), and the data sets of 

Section 5.4. Finally, Figure 18(c) shows the results for the 

twig query in Figure 14(c) over the unfolded DBLP data set. 

In general, the total number of nodes visited in the XB- 

Tree is consistently smaller than the input data size for a 

wide range of node capacities. For the synthetic data set, 

we obtained better results for complex queries. In those sit- 

uations, XB-trees can prune significant portions of the input 

data. In contrast, for simpler queries, we need to go deep in 

the XB-tree nodes, in many cases down to the leaves, since 

there are many solutions dispersed throughout the whole 
data set. For data sets with solutions concentrated around 

certain portions of the data, the impact of XB-trees is more 
significant, since many internal nodes can be skipped. 
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Figure 16: PathStack versus TwigStack for a parent-child twig query 

6. RELATED W O R K  

Join processing is central to database implementation [13]. 

For inequality join conditions, band join [9] algorithms are 

applicable when there exists a fixed ari thmetic difference be- 

tween the values of join at t r ibutes.  Such algorithms are not 

applicable in our domain as there is no notion of fixed arith- 

metic difference. In the context of spatial  and mult imedia 
databases,  the problem of computing joins between pairs of 

spatial  entities has been considered, where commonly the 

predicate of interest is overlap between spatial  entities [14, 
20, 15] in multiple dimensions. The techniques developed in 

this paper  are related to such join operations. However, the 

predicates considered as well as the techniques we develop 
are special to the nature  of our s tructural  join problem. 

In the context of semistructured and XML databases,  
query evaluation and optimizat ion has a t t racted a lot of 

research attention. In particular,  work done in the Lore 
DBMS [21, 16, 17], and the Niagara system [19], has consid- 

ered various aspects of query processing on such data. XML 

da ta  and various issues in their storage as well as query pro- 

cessing using relational database  systems have recently been 
considered in [12, 24, 23, 4, 10, 11]. In [12, 24, 11], the map- 
ping of XML da ta  to a number of relations was considered 

along with translat ion of a subset of XML queries to rela- 

tional queries. In subsequent work [23, 4, 10], the authors 

considered the problem of publishing XML documents from 
relational databases. Our holistic join strategy for query 
twig pat terns  can leverage these previous techniques. 

The representation of positions of XML elements (DocId, 

S t a r t P o s  : EndPos, LevelNum) is essentially that  of Con- 
sens and Milo, who considered a fragment of the PAT text  

searching operators for indexing text  databases [6, 7], and 
discussed optimization techniques for the algebra. This rep- 

resentation was used to compute containment relationships 

between "text regions" in the text  databases.  The focus of 

tha t  work was on theoretical issues, without elaborat ing on 
efficient algorithms for computing these relationships. 

Finally, the recent works of Zhang et al. [27] and Al- 

Khalifa et al. [1] are closely related to ours. They proposed 

binary s tructural  join algorithms as primitives for matching 
query twig patterns.  Our Algori thm PathMPMJ is a general- 
ization of the MPMGJN algorithm of [27] to match query 

paths,  and Algorithms Pa thS tack  and TwigStack axe gen- 
eralizations of the stack-based algorithms of [1] to match 

query paths  and query twig patterns,  respectively. 

7. CONCLUSION 
In this paper  we developed holistic join algorithms for 

matching XML query twig patterns,  a core operat ion cen- 

t ral  to much of XML query processing, both  for native XML 

query processor implementat ions and for relational XML 
query processors. In particular,  Algori thm TwigStack was 
shown to be I /O  and CPU optimal for a large class of query 
twig patterns,  and practically efficient. 

There is more to efficient XML query processing than is 

within the scope of this paper.  We have ini t ia ted efforts 

to address some of these issues. One such issue involves 
the use of axes like following-sibling in XPath  expres- 

sions, in addit ion to the more commonly used c h i l d  and 
descendant  axes (used in this paper  to specify twig pat-  
terns). How can we compute answers to XPath  expressions 

with such axes? Another  issue involves the piecing together 
of holistic twig joins with value-based joins (including links 

across documents) to build effective query plans. 
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