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Abstract: The development of hollow core photonic crystal fibers with low

losses over a broad spectral region in the near IR enabled the demonstration

of a novel laser type - Hollow-core Optical Fiber Gas Laser (HOFGLAS).

The laser combines attractive features of fiber lasers such as compactness

and long interaction length of pump and laser radiation with those of gas

lasers such as the potential for high output power and narrow line width.

This paper summarizes recent developments and describes the

demonstration of C2H2 and HCN prototype lasers. Avenues to extend laser

emission further into the IR are discussed.
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1. Introduction

Since their invention in 1961 [1], fiber lasers have matured to a point where today 10 kW [2]

can be obtained from a multi-diode pumped single fiber. Due to their compactness,

ruggedness, and high conversion efficiencies, fiber laser systems have replaced conventional

solid state and gas lasers in many areas of optical technology. Despite this remarkable

progress, fiber lasers still lack the power levels obtainable with gas lasers, which can reach

MW levels in chemical gas lasers [3]. More common gas lasers based on electrical discharges

can also deliver extraordinarily high average (CW, >200 kW CO laser [4]) and pulsed optical 

output (~1.5 kJ [4]). Among other things, this is possible because of high damage thresholds

and heat mitigation techniques specific to gases like for example gas flow. Very high quantum

efficiency is achievable in optically pumped gas lasers (for example 98% in Rb [5]) and slope

efficiencies of 81% have been demonstrated [6]. Diode-pumped alkali lasers (DPALs) have

produced output powers as high as 145 W [7].

The advent of hollow-core photonic crystal fibers (HC-PCF) [8] and their ability to host 

gases for very long interaction lengths and within micro-scale modal areas [9] enabled new

gas based nonlinear optical elements. Among nonlinear optical phenomena that have been

demonstrated using HC-PCF are low damage-threshold stimulated Raman scattering [9], high

energy soliton formation and guidance [10], precision saturated absorption spectroscopy [11],

the development of a gas-filled fiber Raman laser [12,13], and multi-octave spanning Raman

frequency combs [14].

The power scalability of fiber lasers is constrained by detrimental nonlinear optical 

processes and, ultimately, material damage in the solid core gain medium. Hence it is

tempting to envision a laser concept without solid host where gain is provided by gases inside

a hollow fiber core, thus taking advantage of both fiber and gas laser features. Such lasers can

also capitalize on the broad spectral range of emission, from the UV to the IR, that can be

covered by available gas active media. Owing to the nature of transitions in atomic and

molecular gases the emission of such hybrid lasers is spectrally narrow even without

additional bandwidth limiting elements.

Recently such an optically pumped ‘Hollow-core Optical Fiber Gas Laser’ (HOFGLAS)

based on population inversion was demonstrated [15,16] with C2H2 as the gain medium in a

~40 �m hollow core photonic crystal fiber [17,18]. This new class of ‘hybrid’ fiber-gas lasers
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holds the potential to generate diffraction limited beams in wavelength regions and at power

levels beyond the fundamental limitations of rare-earth doped solid core fiber lasers. While

solid core fiber and gas laser technologies have reached a high level of maturity as a result of

intense research activities over the last 50 years, HOFGLAS technology today is just at its

infancy and is confined to a few research laboratories. This paper reviews recent progress in

optically pumped molecular gas-based HOFGLAS and discusses future directions of

development.

In section 2, a comparison of solid core fiber lasers and HOFGLAS is made with an

emphasis on power scaling and spectral coverage. Section 3 discusses selected properties of

gas active media that can be used in HOFGLAS systems. Section 4 describes low loss hollow

core photonic crystal fibers (HC-PCFs), a key component of HOFGLAS. Section 5 describes

HOFGLAS prototypes with C2H2 and HCN as active gases in hollow core Kagome structured

photonic crystal fibers. One of the current challenges HOFGLAS faces is the lack of practical 

low loss hollow fibers for wavelengths beyond 3.5 �m. Waveguide (capillary) based lasers

can be used as a test bed for such HOFGLAS. These waveguide systems are considered in

section 6 with CO and CO2 as example active gas gain media. Modeling of HOFGLAS

systems is discussed in section 7.

2. Spectral coverage and power limiting factors: solid core fiber lasers versus

HOFGLAS

It is well known that nonlinear optical and thermal effects, such as Stimulated Brillouin

Scattering (SBS), Stimulated Raman Scattering (SRS), thermal lensing, and material damage

in silica ultimately limit the achievable output powers and energies of solid core fiber lasers

[19,20]. Several of the rare-earth based systems operate already close to these fundamental

limits. To a large extent the properties of the host material control the critical fiber parameters

that determine the threshold for the onset of such processes. In a HOFGLAS the

electromagnetic wave interacts only through an evanescent field with the fiber material 

(cladding). This field is typically at least an order of magnitude smaller than the peak field

propagating in the hollow fiber core. The density of the active molecules (at a pressure of a

few torr) in the core of HOFGLAS is too low (compared with a solid host) to contribute to

SBS, SRS and optical damage.

Table 1 compares critical laser powers of solid core and HOFGLAS. For these examples

we assumed 85% pump conversion of absorbed pump energy in a 10-m long fiber of diameter

40 �m at a pump wavelength of 1.5 �m.

Table 1. Comparison of critical powers / intensities for limiting processes in solid-core

and gas-filled hollow-core fibers

Limiting factor Solid core systems HOFGLAS (5 torr gas filled)

SBS 50 W 10 MW

SRS 30 kW 600 MW

Thermal lens 50 kW 150 kW

Material damage 1.3 GW/cm2 30 GW/cm2

It is evident that in the case of HOFGLAS, the threshold for undesired nonlinear optical

processes is orders of magnitude higher. Moreover, optical damage of the fiber occurs at 

power levels at least one order of magnitude larger than in solid-core fibers. This also

suggests the possibility to generate comparatively larger energies in pulsed HOFGLAS

systems. Moreover, the gas active media can be circulated in HC-PCFs [21], which should

further increase the extractable power and energy from such systems.

Solid-core fiber lasers typically operate in the 1 �m to 2 �m wavelength region, see Fig. 1.

The emission regions are determined by the active ions, for example Yb, Er, Pr, Tm, with

which the silica core is doped [22]. By doping Er
3+

(2.8 �m, 3 �m, 3.45 �m) [23–25], Dy
3+

(2.9 �m) [26], Ho
3+

(3.9 �m) [27] in fluorozirconate hosts, lasing between 2 �m and 4 �m has
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been demonstrated. HOFGLAS can cover additional emission regions depending on the active

gas used, cf. Fig. 1.

Fig. 1. Examples of laser emission from typical solid core fiber lasers with silica and

fluorozirconate [22–27] hosts, and possible emission wavelengths in gases. The latter can

principally be used in HOFGLAS with already available silica based HC-PCF [18] and TeAsSe

(TAS) chalcogenide glass fibers [35,36]. The horizontal bars indicate many individual narrow

lines.

Laser operation further into the IR utilizes rotation-vibration transitions in molecular

gases, e.g., HBr, CO, CO2 [28–32]. Emission in the VIS and UV typically relies on electronic

transitions. Examples are dimer lasers [33] and I2 [34,35] lasers.

In summary, HOFGLAS offers attractive features that can be exploited toward power

scaling of fiber-based lasers and new wavelength regions further into the IR and possibly UV.

This concept could be particularly useful to combine several mutual incoherent pump sources

into one (coherent) laser beam.

3. HOFGLAS candidate gas media

Unlike solid state active media, the gain spectrum of molecular gases is comprised of narrow

transitions that represent the rotation-vibration energy level structure of molecules. The line

widths are determined by pressure and Doppler broadening and this also applies to atomic

gases. For gas pressures of a few torr and below, the widths are �ν ≤ 500 MHz and thus are

much narrower than typical transitions of dopants in solid core fibers. Since the invention of

the laser many optically pumped gas lasers have been demonstrated and studied using

conventional gas cells. In principle, all these gases can be used in HOFGLAS provided the

hollow core fiber is able to simultaneously guide pump and laser radiation with acceptable

losses. Because of the much larger interaction lengths of pump and laser in HOFGLAS, gases

whose cross-sections were too small for traditional lasers can be revisited, increasing the

choice of active media. Table 2 lists examples of HOFGLAS candidate media and parameters.
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Table 2. Candidate gas active media with pump and lasing parameters

Gas

Pump Lasing

λ

(�m)

Vibrational

State

Cross-

section

(cm2)

Vibrational

Transition

Cross-

section (cm2)

λ

(�m)

C2H2 1.52 v1 + v3 8.7 × 10−18 v1 + v3 → v1
(a) 2.8 × 10−16 3.1

HCN 1.53 2v3 4.1 × 10−18 2v3 → v3
(b) 4 × 10−16 3.1

HCN-CO 1.53 2v3 4.1 × 10−18 v = 3 → 1 1.1 × 10−17 2.36

HI 1.54 v = 3 2 × 10−19 v = 3 → 2 (c) 9.7 × 10−18 4.76

CO 1.57 v = 3 1.5 × 10−20 v = 3 → 1 1.1 × 10−17 2.36

CO2 2.00 (2v1 + v3)II 1.8 × 10−18 (2v1 + v3)II → 2v1 9.4 × 10−15 4.3

HBr 1.97 v = 2 8.4 × 10−19 v = 2 → 1 2.7 × 10−16 3.95

CO2-N2O 1.96 (2v1 + v3)I 5.7 × 10−19
4v1 → v1 1.6 × 10−17 2.6

4v1 → 2v1 4.4 × 10−16 3.91

CO 2.33 v = 2 3.5 × 10−18 v = 2 → 1 1.7 × 10−15 4.66

N2O 1.98 3v1 + 2v2 1.4 × 10−19 3v1 + 2v2 → v1 1.1 × 10−17 2.66

The symbol vi represents a vibrational normal mode of quantum number “i”. Cross-sections are estimated using

known Einstein coefficients [38–40] for the strongest R-band transition (according to Boltzmann’s distribution at

room temperature) and correspond to line shapes at low pressure (1 torr). In cases where data are not available, cross-

section for a similar transition is used: (a) value for v3 → 0 transition, (b) value for v3 → 0, and (c) value for v = 2 → 1

transition. The suffixes I and II denote different Fermi resonant sub-bands. HCN-CO and CO2-N2O are energy

transfer systems, where the first molecule is optically pumped and transfers the energy to the second (active laser)

molecule.

4. Low loss HC-PCF for HOFGLAS

Since their first demonstration [8] two major families of HC-PCFs have emerged. The first

one is a photonic bandgap (PBG) guiding HC-PCF [41], and the second is an inhibited-

coupling guiding HC-PCF [9]. The PBG guiding HC-PCF has potential of guiding light with

ultra-low transmission loss; however, it exhibits a limited optical bandwidth. Furthermore, the

strong power overlap of the guided mode with the silica core-surround limited the optical

power handling of this type of HC-PCF. On the other hand, the inhibited-coupling guiding

HC-PCF, which is coined Kagome-like HC-PCF, guides over much larger bandwidth but with

higher transmission loss figures. The bandwidth and fiber loss can be tuned by the pitch and

core shape of the fiber. Using this methodology, we have recently dramatically reduced the

fiber loss to ~30 dB/km at 1550 nm by introducing the hypocycloid core shaped Kagome HC-

PCF [42]. Finally, the guided mode of this fiber exhibits a much lower power overlap with the

silica core-surround, making it an ideal host for high power gas lasers.

Figure 2 shows the transmission characteristics of different Kagome fibers over our

spectral range of interest. Two types of hypocycloid-core Kagome HC-PCF were investigated.

The first one consists of 3-ring (Fig. 2, left panel) cladding and the second one of 1-ring

cladding (Fig. 2, right side panels). For both, different pitches and strut thickness were

investigated. The loss of the Kagome fibers was characterized with cut-back measurements in

the near-IR using a broadband illumination source and an optical spectrum analyzer to record

transmission versus wavelength. For the 2.6 �m to 3.6 �m region, an optical parametric

amplifier (OPA) was used as probe. The fiber loss measurements were performed by

measuring the ratio of input to output power as a function of wavelength (OPA tuning) for a
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single fiber length, and then cutting the fiber to a shorter length and repeating the ratio 

measurement. This was usually repeated so that two cut-back measurements were performed 

for each fiber. This process is lengthy and uncertainty arises due to its sensitivity to OPA 

power, mode and bandwidth while tuning. The error bars represent the repeatability of the 

measurement. The resulting curves represent the average of the fractional transmission 

through 1 m lengths based on two separate cutback measurements. For example, at 3.61 �m in 

the 42 �m pitch Kagome 1-ring fiber (Fig. 2, right bottom), the upper limit of the loss is 1.45 

dB/m, as indicated by the error bar. 

 

Fig. 2. (a-c): Kagome fibers having hypocycloid core with 3 cladding rings and 7 cell defects 

with pitches of 18.75 �m, 20 �m, and 22.5 �m and core diameters of 85-93.75, 87.5 – 92.5, and 

85-93.75 �m; (d-e): Kagome fibers with hypocycloid core structure having 1 cladding ring with 

pitches of 32 �m and 42 �m and core sizes of 58 �m and 64 �m respectively. (left) fiber loss vs 

wavelength in the near and mid-IR for 3 ring hypocycloid fibers (a)-(c). (Right top) 

Transmission of 1 ring Kagome hypocycloid core fibers in the near IR. For reference, the loss 

in 42 �m pitch fiber (red) is measured to be 5 dB/m at 1.50 �m wavelength. (Right bottom) 

mid-IR loss of 1 ring Kagome hypocycloid core fibers measured with the OPA. Error bars are 

generated from repeatability of 2 cut-backs of fiber length 0.8 and 2.0 m. 

Both types (3-ring and 1-ring) of fibers have extremely small loss in the 3-�m region 

while still maintaining acceptable loss (~< 5dB/m, with a minimum reaching 30 dB/km) in 

potential pump wavelength regions at ~1.5 �m. The hypocycloid structure exhibits a larger 

wavelength region where losses are below 1.5 dB/m and its fiber properties can be tuned for 

particular target lasing and pump wavelengths, making this breed of hollow fibers ideal for 

HOFGLAS applications. 

5. Representative HOFGLAS systems: C2H2 and HCN 

The central element of a HOFGLAS is a hollow core fiber (HCF) terminated in small vacuum 

chambers for gas filling and optical windows, see Fig. 3. 

 

Fig. 3. Schematic diagram of a HOFGLAS operating in the mid IR spectral region. HC-PCF: 

for example a Kagome circular core structured hollow core photonic crystal fiber of core 

diameter ~40 �m and cross section as shown, VC- vacuum chambers filled with active gas. D1, 

D2: detectors, F- germanium filter to separate residual pump from laser. W is an uncoated CaF2 

window. 
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In principle, the vacuum chamber can be removed and the fiber closed by optically

welding windows to both fiber ends. The first HOFGLAS demonstration [15,16] used a

pulsed optical parametric oscillator (OPO) as a pump source. The pump is coupled into the

gas filled fiber from one end, laser output is observed at the other end. Here we review two

representative HOFGLAS systems: (i)
12

C2H2 [15,16], and (ii) H
12

C
14

N [43]. Both C2H2 and

HCN have strong absorption in the 1.52-1.55 �m region [44,45] and hence are well suited for

optical pumping in the fiber optic communication C-band, for example, with Erbium fiber

lasers. C2H2 and HCN have been shown to lase in the mid-IR when optically pumped at 1.5

�m in conventional gas cells [46].

Both HOFGLAS systems were pumped with nanosecond pulses from an OPO or OPA.

The pulse, tuned to resonance with a particular absorption transition of the active gas, was

coupled to the fiber using appropriate optics. The pump pulse fluence incident on the fiber

was kept well below the damage threshold of the cladding, which was estimated to be about 

42 J/cm
2

based on measurements [47] for this class of fibers with 8-ns pulses, and scaling to

1-ns pulses used in our measurements assuming a square root dependence [48] of the damage

fluence with respect to pulse width. The gain was high enough to generate lasing with a single

pass of the pump, avoiding the need for external mirrors. Suitable filters were used to separate

the transmitted pump light from the laser pulses exiting the fiber. The laser output was

recorded using a fast detector and the laser spectrum was recorded using a near infrared

scanning spectrometer. For both systems, the experiments were carried out at room

temperature.

5.1. C2H2 HOFGLAS

The observed C2H2 laser spectrum when pumped at 1.521 �m (R(7), v1 + v3 transition) with

4 ns pulses is shown in Fig. 4(a) together with a simplified energy level diagram. In principle,

C2H2 can be pumped on any of the rotation-vibration transitions from the ground state to the

v1 + v3 vibrational state, and lasing occurs from the upper pumped rotational level. Typically,

a pump wavelength is chosen close to the maximum absorption. The gain of such lasers is

very high and its first demonstration was possible with a fiber exhibiting losses of 20 dB/m at

the lasing wavelength and 0.75 dB/m losses for the pump (fiber A) [15,16]. The laser

spectrum contains two peaks corresponding to R(7) and P(9) transition [49] from the pumped

state. Pump laser thresholds as low as 200 nJ were observed.

Fig. 4. (a) Spectrum of a C2H2 (7 Torr) filled HOFGLAS and energy level diagram of C2H2

showing the observed lasing transitions. The group of horizontal lines for each vibrational state

are to indicate the manifold of rotational states. P(J), R(J) refers to transitions J-1 → J and J +

1 → J respectively, where J is the rotational quantum number of the lower vibrational state. A

40-�m diameter Kagome fiber (23 �m pitch) with a length of 165 cm was used. The pump

energy was 1.6 �J and the OPO pump bandwidth was ~3.5 GHz. (b) Total laser pulse energy of

a C2H2 HOFGLAS as a function of absorbed pump energy for two different fibers, see text, and

selected gas pressures. The P(13) transition to the (v1 + v3) state was pumped with a 1-ns pulse.
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Figure 4(b) shows the laser output energy (sum of the two spectral components) as a

function of the absorbed pump energy obtained with two different fibers (fiber A and B).

Fiber B exhibited losses of 5 dB/m and 0.12 dB/m for the laser and pump wavelength,

respectively. The P(13) absorption transition was excited with 1-ns pump pulses and the two

lasing components shown in Fig. 4(a) are shifted to 3114.6 nm and 3172.4 nm corresponding

to the R(11) and P(13) transitions, respectively.

At low pressures, the output shows onset of saturation as the pump energy is increased.

Not surprisingly, the laser efficiency increased in switching from the higher-loss ~40-�m core

Kagome fiber (fiber A) to the lower-loss ~85-�m core fiber (fiber B). However, the threshold

also increased. While the loss per unit length is reduced by a factor of ~30, the core diameter

is increased by a factor of two, reducing the fluence by a factor of ~4, which results in larger

threshold pump energies. Changing the length of the low loss Kagome fiber from 1.46 m to 45

cm does not have significant impact on the laser threshold or optical-to-optical efficiency. For

the low-loss fiber a maximum efficiency of 27% was observed for a pressure of 2 torr. This is

close to the theoretical limit of this system of 33% determined by simultaneous saturation of

pump and lasing transitions.

5.2. HCN HOFGLAS

The molecules HCN and C2H2 have similar energy levels and similar HOFGLAS behavior is

expected. Indeed, pumping the P(10), 2v3 transition [45] of HCN at 1541 nm using 1 ns pulses

results in a spectrum similar to what is shown in Fig. 4(a) for both fiber A and B. The two

emission lines (now at 3091 nm and 3147 nm) also originate at the upper pump level and

correspond to the R(8) and P(10) transition between the J = 9, 2v3 excited state and the J = 8

and J = 10, v3 states [50]. The HCN laser spectrum in the short, low-loss fiber indicates that

the longer wavelength P-branch transition is favored over the shorter wavelength R-branch

transition, most likely due to wavelength-dependent absorption in the fiber.

Figure 5(a) shows the mid-IR laser pulse energy as a function of the absorbed pump pulse

energy for an HCN pressure of 19 torr. The absorbed pump pulse energy threshold was 1 �J

with an optical-to-optical efficiency of 0.02%. The much reduced efficiency (as compared

with acetylene) may be due to poor OPA performance in this experiment. Figure 5(b) shows

the maximum observed laser pulse energy as a function of absorbed pump pulse energy for

various pressures of HCN gas contained within 45 cm of fiber B.

Fig. 5. (a) Laser pulse energy as a function of absorbed pump pulse energy for 33-cm long

high-loss fiber ‘A’ filled with 19 torr of HCN gas, (b) maximum laser pulse energy as a

function of absorbed pump pulse energy for various pressures of HCN gas contained in 45 cm

long low-loss fiber ‘B’.

For the low-loss fiber B, the maximum laser pulse energy observed is ~80 nJ and occurs at 

an HCN pressure of 8 torr. This is a factor of 10 higher than the maximum laser pulse energy
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observed in fiber A, most likely due to the lower loss in fiber B. Still, the HCN-filled laser

produced a factor 10 lower laser pulse energy than that produced by the acetylene laser at 30

torr in the same fiber, cf. Fig. 4(b).

6. Hollow Waveguides – alternate option for mid-IR

While successful mid-IR operation of HOFGLAS has been demonstrated [15,16], extension of

the laser emission beyond 3.5 �m is not possible with silica glass fibers due to material 

absorption. Hollow fibers based on chalcogenide glass with guiding properties in this region

are on the horizon [36,37] and will be of interest for HOFGLAS if they can also provide low

loss guiding for the needed pump wavelengths. Currently available silver coated glass

capillaries [51] can serve as surrogates to study lasing of gases in the mid-IR and beyond.

6.1. Guiding in capillary waveguides

Under optimal coupling, the free-space TEM00 mode couples to the EH11 waveguide mode

with ~98% efficiency [52]. The waveguide power loss for the dominant EH11 mode is given

by [53],

2 2 2

3 2

1 2.405 1 1
Re ,

2 2 1

n

a n

λ
α

π

 + =       − 
(1)

where λ is the wavelength, a is the radius of the waveguide, and n is the complex refractive

index of the material of the inner-wall coating (for example, silver). Figure 6 compares the

loss of a 500-�m and a 40-�m diameter, silver coated capillary to that of a HCF (40-�m

diameter silica Kagome fiber). While silica based HCFs of comparable diameter show clear

advantages in the near IR up to about 3.5 �m, they cannot be used at longer wavelengths

unlike coated capillaries.

Fig. 6. Propagation losses for silver (Ag) coated capillaries [from Eq. (1)] and calculated losses

for a Kagome fiber [8,10–12,42] as a function of wavelength. Possible pump and laser

wavelengths for CO and CO2 active media are also indicated.

6.2. CO and CO2-filled waveguide lasers

The basic layout of a gas – capillary laser [54] is the same as shown in Fig. 3 except that the

glass capillary replaces the fiber, see Fig. 7. In our realization we pumped the v = 0 → 2, R(7)

and 2v1 + v3, R (22) transitions of CO and CO2, respectively at 2.33 �m and 2.00 �m using 5-

ns pulses from an OPO. Both the lasers were operated at room temperature. The laser

threshold was about 40 �J of absorbed pump energy for CO2 and ~5 �J in case of CO for

typical gas pressures of 50 torr.
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Fig. 7. Experimental setup of an optically pumped mid-IR CO and CO2 capillary waveguide

laser. VC- vacuum chambers filled with active gas, F- filter to suppress pump beam, W-

uncoated CaF2 window, D- detector. The length of the capillary was 1.5 m.

From Fig. 6, the estimated losses for the pump and laser radiation in the waveguide are

about 0.04 dB/m and 0.9 dB/m, respectively.

Figure 8(a) shows the spectrum of the mid-IR laser pulses generated from the CO2-filled

(5 torr) waveguide laser together with an energy level diagram showing relevant transitions.

From the spectroscopic constants of the molecule [55], our preliminary assessment is that the

peak near 4.30 �m corresponds to the expected R(22) transition between the terminal pump

state and the lower lying J = 22, 2v1 state, while the peak near 4.37 �m likely corresponds to

the transition from J = 19, 2v1 + v3 → J = 20, 2v1; the J = 19 in the upper state being

populated during relaxation from the initially populated J = 23 pump level. A very similar

spectrum was observed when CO (50 torr) was pumped on its R(7) transition. Two laser

components were observed at 4.67 �m and 4.78 �m corresponding to the R(7) and P(6), v =

2→1 transition.

Fig. 8. (a) Observed lasing transitions from the optically pumped CO2 waveguide laser, and

energy level diagram showing pump and lasing transitions. Solid red arrows indicate lasing

transitions, dashed arrows indicate other possible transitions. The levels in square brackets

denote Fermi resonant states, (b) CO2 waveguide laser energy as a function of absorbed pump

energy at a pressure of 100 torr. The lasing threshold is about 40 �J.

Figure 8(b) shows the laser pulse energy as a function of absorbed pump pulse energy for

the waveguide CO2 laser measured for a gas pressure of 100 torr. A maximum laser pulse

energy of about 105 �J corresponding to a laser efficiency of ~18% is observed.

7. Modeling of HOFGLAS

Modeling pulsed HOFGLAS requires propagating the pump pulse and emerging laser pulse

through the gas filled fiber. To this end, the fiber is divided into slices of length �L. In each

slice a set of rate equations for the occupation numbers of relevant gas energy levels and the

laser and pump fluence is solved. After accounting for the linear fiber losses the obtained

pump and laser pulse serve as input for the next slice. Molecular line broadening and
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relaxation kinetics are controlled by collisions with other active gas and buffer gas molecules

and such processes must be modeled to explain optically pumped gas lasers in quantitative

detail, see for example [29]. Figure 9(a) shows a simplified energy level diagram to be used

here for a qualitative understanding of C2H2 HOFGLAS features.

Fig. 9. (a) Five-level energy diagram of C2H2 showing the pump transition, two possible laser

transitions and rotational (kR) and vibrational (kV) relaxation rates that determine the total

removal rate of population from the upper laser level. A total removal rate of ktot ~1.3 10−15

m−3s−1 [56] was used in the simulations and the fiber loss for the pump was neglected. (b)

Schematic diagram of the sliced fiber, and calculated pump and laser pulse energies

(normalized) as a function of the position in the fiber for two different pump pulse energies.

The three bottom subplots show the calculated temporal evolution of pump (gray), laser (red),

and depleted pump (black) pulses at three different positions in the fiber (5 ns pump pulse

duration, 20 dB/m laser loss).

Depending on the actual gas, fiber and pump parameters the laser pulse starts somewhat

delayed with respect to the absorbed pump. If the fiber extends beyond the point of complete

absorption of the pump the laser pulse energy decreases due to the linear fiber losses. An

optimum fiber length can thus be expected for given pump energy and fiber loss. If the fiber is

short sufficiently large pump energy can saturate the absorption transition completely and

increase in pump energy will not change the laser energy much. Figure 10(a) shows the laser

energy as a function of fiber length for a high and a low-loss fiber and different fiber

diameters. Figure 10(b) shows the laser energy versus fiber length for different gas pressure.

Fig. 10. (a) Laser energy as a function of fiber length for 20dB/m and 5 dB/m losses at the laser 

wavelength and fiber diameters of 85 �m and 45 �m, respectively as predicted by the model.

(b) Calculated laser energy as a function of the fiber length at different pressures in the low loss

fiber. The incident pump energy was constant (30 �J) and the pump pulse duration was 1 ns.

The pump laser was in resonance with the P(13) transition.
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Longer fibers are advantageous for lower gas pressure. If the pump fluence is large enough

to saturate the absorption transition there is a region of fiber length over which the laser

output does not change; gain and linear fiber loss are equal. If the pump cannot saturate the

transition a distinct optimum fiber length exists at which gain equals loss.

The gas pressure p controls the number density of active molecules, the absorption and

lasing cross sections (σ ∝ 1/p in the region where pressure broadening dominates Doppler

broadening) as well as the relaxation out of the upper laser level, which is expected to affect 

laser threshold and efficiency. This is exemplified in Fig. 11. The increase in laser threshold

and decrease in slope efficiency with increasing gas pressure is qualitatively similar to what 

was measured; cf. Fig. 4(b). Neglecting population removal from the upper laser level, the

maximum possible efficiency is ~33% and corresponds to the situation where the 1 → 2 pump

transitions and the two gain transitions, 2 → 3 and 2 → 5 are completely saturated, cf. Fig. 9.

Fig. 11. Calculated pump energy at laser threshold and slope efficiency using the maximum

absorbed energy from experiment as a function of gas pressure for a 1.46- m long fiber and 5

dB/m losses for the laser.

For a better quantitative agreement of simulation and experiment a more comprehensive

gas model is necessary, taking into account additional energy levels and relaxation processes.

In addition the mode profile in the HCF must be considered.

8. Summary

Recent progress in the development of hollow-core photonic crystal fibers with low

propagation loss in broad frequency regions in the near and mid IR enabled a new class of

lasers where the active medium is a gas inside the hollow core, which is optically pumped.

Prototypes of such lasers dubbed HOFGLAS (Hollow-core Optical Fiber Gas Laser), were

first demonstrated with C2H2 and HCN as active gases, and operated in pulsed mode using a

nanosecond pump pulse. The gain in the 3-micron region is large enough so that a single path

of the pump results in lasing without external cavity. The laser output is intrinsically

spectrally narrow because of the small transition line width of molecular gases at a pressure of

a few Torr. Pump energy thresholds are as low as a few hundred nJ. Because only the

evanescent field of the guided pump and laser mode interacts with the host material undesired

nonlinear optical effects like stimulated Brillouin scattering (SBS) and damage are expected

to occur at much higher energy and power levels compared to solid core fibers. Extension of

the wavelength region further into the IR seems possible with recent developments in hollow-

core chalcogenic fibers. Corresponding gas media in coated glass capillaries, for example CO

and CO2, showed lasing in the 4-micron region when pulse pumped at about 2 �m. While

currently still in its infancy HOFGLAS is an attractive new laser concept for single frequency,

high-power emission in the IR spectral region and beyond. While the present HOGLASs

operate in pulsed mode, cw operation seems possible with the right combination of active gas
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and pump laser. One concept involves lasing of HCN with small Stokes shift when pumped

with a C-band source [57]. Another possibility is I2 pumped at 532 nm, which has produced

lasing using conventional gas cells three decades ago [35].
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