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Abstract. Computer vision has a great potential to help our daily lives
by searching for lost keys, watering flowers or reminding us to take a pill.
To succeed with such tasks, computer vision methods need to be trained
from real and diverse examples of our daily dynamic scenes. While most
of such scenes are not particularly exciting, they typically do not appear
on YouTube, in movies or TV broadcasts. So how do we collect suffi-
ciently many diverse but boring samples representing our lives? We pro-
pose a novel Hollywood in Homes approach to collect such data. Instead
of shooting videos in the lab, we ensure diversity by distributing and
crowdsourcing the whole process of video creation from script writing
to video recording and annotation. Following this procedure we collect a
new dataset, Charades, with hundreds of people recording videos in their
own homes, acting out casual everyday activities. The dataset is com-
posed of 9,848 annotated videos with an average length of 30 s, showing
activities of 267 people from three continents. Each video is annotated by
multiple free-text descriptions, action labels, action intervals and classes
of interacted objects. In total, Charades provides 27,847 video descrip-
tions, 66,500 temporally localized intervals for 157 action classes and
41,104 labels for 46 object classes. Using this rich data, we evaluate and
provide baseline results for several tasks including action recognition and
automatic description generation. We believe that the realism, diversity,
and casual nature of this dataset will present unique challenges and new
opportunities for computer vision community.

1 Introduction

Large scale visual learning fueled by huge datasets has changed the computer
vision landscape [1,2]. Given the source of this data, it’s not surprising that most
of our current success is biased towards static scenes and objects in Internet
images. As we move forward into the era of AI and robotics, however, new
questions arise. How do we learn about different states of objects (e.g., cut vs.
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whole)? How do common activities affect changes of object states? In fact, it is
not even yet clear if the success of the Internet pre-trained recognition models
will transfer to real-world settings where robots equipped with our computer
vision models should operate.

Shifting the bias from Internet images to real scenes will most likely require
collection of new large-scale datasets representing activities of our boring every-
day life: getting up, getting dressed, putting groceries in fridge, cutting vegeta-
bles and so on. Such datasets will allow us to develop new representations and to
learn models with the right biases. But more importantly, such datasets repre-
senting people interacting with objects and performing natural action sequences
in typical environments will finally allow us to learn common sense and contex-
tual knowledge necessary for high-level reasoning and modeling.

But how do we find these boring videos of our daily lives? If we search
common activities such as “drinking from a cup”, “riding a bike” on video sharing
websites such as YouTube, we observe a highly-biased sample of results (see
Fig. 1). These results are biased towards entertainment—boring videos have no
viewership and hence no reason to be uploaded on YouTube!

In this paper, we propose a novel Hollywood in Homes approach to collect
a large-scale dataset of boring videos of daily activities. Standard approaches in
the past have used videos downloaded from the Internet [3–8] gathered from
movies [9–11] or recorded in controlled environments [12–17]. Instead, as the
name suggests: we take the Hollywood filming process to the homes of hundreds
of people on Amazon Mechanical Turk (AMT). AMT workers follow the three
steps of filming process: (1) script generation; (2) video direction and acting
based on scripts; and (3) video verification to create one of the largest and most
diverse video dataset of daily activities.

There are threefold advantages of using the Hollywood in Homes approach
for dataset collection: (a) Unlike datasets shot in controlled environments (e.g.,
MPII [14]), crowdsourcing brings in diversity which is essential for generalization.
In fact, our approach even allows the same script to be enacted by multiple
people; (b) crowdsourcing the script writing enhances the coverage in terms of
scenarios and reduces the bias introduced by generating scripts in labs; and
(c) most importantly, unlike for web videos, this approach allows us to control
the composition and the length of video scenes by proposing the vocabulary of
scenes, objects and actions during script generation.

The Charades v1.0 Dataset. Charades is our large-scale dataset with a focus
on common household activities collected using the Hollywood in Homes app-
roach. The name comes from of a popular American word guessing game where
one player acts out a phrase and the other players guess what phrase it is. In a
similar spirit, we recruited hundreds of people from Amazon Mechanical Turk to
act out a paragraph that we presented to them. The workers additionally pro-
vide action classification, localization, and video description annotations. The
first publicly released version of our Charades dataset will contain 9,848 videos
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The Charades Dataset

Fig. 1. Comparison of actions in the Charades dataset and on YouTube: Reading a

book, Opening a refrigerator, Drinking from a cup. YouTube returns entertaining and
often atypical videos, while Charades contains typical everyday videos.

of daily activities 30.1 s long on average (7,985 training and 1,863 test). The
dataset is collected in 15 types of indoor scenes, involves interactions with 46
object classes and has a vocabulary of 30 verbs leading to 157 action classes.
It has 66,500 temporally localized actions, 12.8 s long on average, recorded by
267 people in three continents, and over 15% of the videos have more than one
person. We believe this dataset will provide a crucial stepping stone in devel-
oping action representations, learning object states, human object interactions,
modeling context, object detection in videos, video captioning and many more.
The dataset is publicly available at http://allenai.org/plato/charades/.

Contributions. The contributions of our work are three-fold: (1) We introduce
the Hollywood in Homes approach to data collection, (2) we collect and release
the first crowdsourced large-scale dataset of boring household activities, and (3)
we provide extensive baseline evaluations.

The KTH action dataset [12] paved the way for algorithms that recognized
human actions. However, the dataset was limited in terms of number of cate-
gories and enacted in the same background. In order to scale up the learning
and the complexity of the data, recent approaches have instead tried collecting
video datasets by downloading videos from Internet. Therefore, datasets such as
UCF101 [8], Sports1M [6] and others [4,5,7] appeared and presented more chal-
lenges including background clutter, and scale. However, since it is impossible to
find boring daily activities on Internet, the vocabulary of actions became biased
towards more sports-like actions which are easy to find and download.

There have been several efforts in order to remove the bias towards sport-
ing actions. One such commendable effort is to use movies as the source of
data [18,19]. Recent papers have also used movies to focus on the video descrip-
tion problem leading to several datasets such as MSVD [20], M-VAD [21], and

http://allenai.org/plato/charades/
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Table 1. Comparison of Charades with other video datasets.

Actions Classes Labelled Total Origin Type Temporal

per video instances videos localization

Charades v1.0 6.8 157 67K 10K 267 homes Daily

activities

Yes

ActivityNet [3] 1.4 203 39K 28K YouTube Human

activities

Yes

UCF101 [8] 1 101 13K 13K YouTube Sports No

HMDB51 [7] 1 51 7K 7K YouTube/movies Movies No

THUMOS’15 [5] 1–2 101 21K+ 24K YouTube Sports Yes

Sports 1M [6] 1 487 1.1M 1.1M YouTube Sports No

MPII-cooking [14] 46 78 13K 273 30 In-house actors Cooking Yes

ADL [25] 22 32 436 20 20 Volunteers Ego-centric Yes

MPII-MD [11] Captions Captions 68K 94 Movies Movies No

MPII-MD [11]. Movies however are still exciting (and a source of entertain-
ment) and do not capture the scenes, objects or actions of daily living. Other
efforts have been to collect in-house datasets for capturing human-object inter-
actions [22] or human-human interactions [23]. Some relevant big-scale efforts in
this direction include MPII Cooking [14], TUM Breakfast [16], and the TACoS
Multi-Level [17] datasets. These datasets focus on a narrow domain by collect-
ing the data in-house with a fixed background, and therefore focus back on the
activities themselves. This allows for careful control of the data distribution, but
has limitations in terms of generalizability, and scalability. In contrast, PhotoC-
ity [24] used the crowd to take pictures of landmarks, suggesting that the same
could be done for other content at scale.

Another relevant effort in collection of data corresponding to daily activities
and objects is in the domain of ego-centric cameras. For example, the Activities
of Daily Living dataset [25] recorded 20 people performing unscripted, everyday
activities in their homes in first person, and another extended that idea to ani-
mals [26]. These datasets provide a challenging task but fail to provide diversity
which is crucial for generalizability. It should however be noted that these kinds
of datasets could be crowdsourced similarly to our work.

The most related dataset is the recently released ActivityNet dataset [3].
It includes actions of daily living downloaded from YouTube. We believe the
ActivityNet effort is complementary to ours since their dataset is uncontrolled,
slightly biased towards non-boring actions and biased in the way the videos
are professionally edited. On the other hand, our approach focuses more on
action sequences (generated from scripts) involving interactions with objects.
Our dataset, while diverse, is controlled in terms of vocabulary of objects and
actions being used to generate scripts. In terms of the approach, Hollywood in
Homes is also related to [27]. However, [27] only generates synthetic data. A
comparison with other video datasets is presented in Table 1. To the best of our
knowledge, our approach is the first to demonstrate that workers can be used to
collect a vision dataset by filming themselves at such a large scale.
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2 Hollywood in Homes

We now describe the approach and the process involved in a large-scale video
collection effort via AMT. Similar to filming, we have a three-step process for
generating a video. The first step is generating the script of the indoor video.
The key here is to allow workers to generate diverse scripts yet ensure that we
have enough data for each category. The second step in the process is to use the
script and ask workers to record a video of that sentence being acted out. In
the final step, we ask the workers to verify if the recorded video corresponds to
script, followed by an annotation procedure.

2.1 Generating Scripts

In this work we focus on indoor scenes, hence, we group together rooms in
residential homes (Living Room, Home Office, etc.). We found 15 types of rooms
to cover most of typical homes, these rooms form the scenes in the dataset. In
order to generate the scripts (a text given to workers to act out in a video),
we use a vocabulary of objects and actions to guide the process. To understand
what objects and actions to include in this vocabulary, we analyzed 549 movie
scripts from popular movies in the past few decades. Using both term-frequency
(TF) and TF-IDF [28] we analyzed which nouns and verbs occur in those rooms
in these movies. From those we curated a list of 40 objects and 30 actions to be
used as seeds for script generation, where objects and actions were chosen to be
generic for different scenes.

To harness the creativity of people, and understand their bias towards activ-
ities, we crowdsourced the script generation as follows. In the AMT interface, a
single scene, 5 randomly selected objects, and 5 randomly selected actions were
presented to workers. Workers were asked to use two objects and two actions
to compose a short paragraph about activities of one or two people performing
realistic and commonplace activities in their home. We found this to be a good
compromise between controlling what kind of words were used and allowing the
users to impose their own human bias on the generation. Some examples of
generated scripts are shown in Fig. 2. (see the website for more examples). The
distribution of the words in the dataset is presented in Fig. 3.

2.2 Generating Videos

Once we have scripts, our next step is to collect videos. To maximize the diver-
sity of scenes, objects, clothing and behaviour of people, we ask the workers
themselves to record the 30 s videos by following collected scripts.

AMT is a place where people commonly do quick tasks in the convenience of
their homes or during downtime at their work. AMT has been used for annotation
and editing but can we do content creation via AMT? During a pilot study we
asked workers to record the videos, and until we paid up to $3 per video, no
worker picked up our task. (For comparison, to annotate a video [29]: 3 workers
× 157 questions × 1 second per question × $8/h salary = $1.) To reduce the base
cost to a more manageable $1 per video, we have used the following strategies:
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Fig. 2. An overview of the three Amazon Mechanical Turk (AMT) crowdsourcing
stages in the Hollywood in Homes approach.

Worker Recruitment. To overcome the inconvenience threshold, worker
recruitment was increased through sign-up bonuses (211% increased new worker
rate) where we awarded a $5 bonus for the first submission. This increased the
total cost by 17%. In addition, “recruit a friend” bonuses ($5 if a friend submits
15 videos) were introduced, and were claimed by 4% of the workforce, generat-
ing indeterminate outreach to the community. US, Canada, UK, and, for a time,
India were included in this study. The first three accounted for estimated 73%
of the videos, and 59% of the peak collection rate.

Worker Retention. Worker retention was mitigated through performance
bonuses every 15th video, and while only accounting for a 33% increase in base
cost, significantly increased retention (34% increase in come-back workers), and
performance (109% increase in output per worker).

Each submission in this phase was manually verified by other workers to
enforce quality control, where a worker was required to select the corresponding
sentence from a line-up after watching the video. The rate of collection peaked
at 1225 per day from 72 workers. The final cost distribution was: 65% base
cost per video, 21% performance bonuses, 11% recruitment bonuses, and 3%
verification. The code and interfaces will be made publicly available along with
the dataset.

2.3 Annotations

Using the generated scripts, all (verb,proposition,noun) triplets were analyzed,
and the most frequent grouped into 157 action classes (e.g., pouring into cup,
running, folding towel, etc.). The distribution of those is presented in Fig. 3.

For each recorded video we have asked other workers to watch the video and
describe what they have observed with a sentence (this will be referred to as a
description in contrast to the previous script used to generate the video). We
use the original script and video descriptions to automatically generate a list of
interacted objects for each video. Such lists were verified by the workers. Given
the list of (verified) objects, for each video we have made a short list of 4–5
actions (out of 157) involving corresponding object interactions and asked the
workers to verify the presence of these actions in the video.
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In addition, to minimize the missing labels, we expanded the annotations
by exhaustively annotating all actions in the video using state-of-the-art crowd-
sourcing practices [29], where we focused particularly on the test set.

Finally, for all the chosen action classes in each video, another set of workers
was asked to label the starting and ending point of the activity in the video,
resulting in a temporal interval of each action. A visualization of the data collec-
tion process is illustrated in Fig. 2. On the website we show numerous additional
examples from the dataset with annotated action classes.

3 Charades v1.0 Analysis

Charades is built up by combining 40 objects and 30 actions in 15 scenes. This
relatively small vocabulary, combined with open-ended writing, creates a dataset
that has substantial coverage of a useful domain. Furthermore, these combina-
tions naturally form action classes that allow for standard benchmarking. In
Fig. 3 the distributions of action classes, and most common nouns/verbs/scenes
in the dataset are presented. The natural world generally follows a long-tailed
distribution [30,31], but we can see that the distribution of words in the dataset
is relatively even. In Fig. 3 we also present a visualization of what scenes,
objects, and actions occur together. By embedding the words based on their co-
occurance with other words using T-SNE [32], we can get an idea of what words
group together in the videos of the dataset, and it is clear that the dataset pos-
sesses real-world intuition. For example, food, and cooking are close to Kitchen,
but note that except for Kitchen, Home Office, and Bathroom, the scene is not
highly discriminative of the action, which reflects common daily activities.

Since we have control over the data acquisition process, instead of using
Internet search, there are on average 6.8 relevant actions in each video. We hope
that this may inspire new and interesting algorithms that try to capture this
kind of context in the domain of action recognition. Some of the most common
pairs of actions measured in terms of normalized pointwise mutual information
(NPMI), are also presented in Fig. 3. These actions occur in various orders and
context, similar to our daily lives. For example, in Fig. 4 we can see that among
these five videos, there are multiple actions occurring, and some are in common.
We further explore this in Fig. 5, where for a few actions, we visualize the most
probable actions to precede, and most probable actions to follow that action. As
the scripts for the videos are generated by people imagining a boring realistic
scenario, we find that these statistics reflect human behaviour.

4 Applications

We run several state-of-the-art algorithms on Charades to provide the com-
munity with a benchmark for recognizing human activities in realistic home
environments. Furthermore, the performance and failures of tested algorithms
provide insights into the dataset and its properties.
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Fig. 3. Statistics for actions (gray, every fifth label shown), verbs (green), nouns (blue),
scenes (red), and most co-occurring pairs of actions (cyan). Co-occurrence is measured
with normalized pointwise mutual information. In addition, a T-SNE embedding of
the co-occurrence matrix is presented. We can see that while there are some words
that strongly associate with each other (e.g., lying and bed), many of the objects and
actions co-occur with many of the scenes. (Action names are abbreviated as necessary
to fit space constraints.) (Color figure online)
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Fig. 4. Keyframes from five videos in Charades. We see that actions occur together in
many different configurations. (Shared actions are highlighed in color). (Color figure
online)

Train/Test Set. For evaluating algorithms we split the dataset into train and
test sets by considering several constraints: (a) the same worker should not
appear in both training and test; (b) the distribution of categories over the test
set should be similar to the one over the training set; (c) there should be at least
6 test videos and 25 training videos in each category; (d) the test set should
not be dominated by a single worker. We randomly split the workers into two
groups (80 % in training) such that these constraints were satisfied. The resulting
training and test sets contain 7,985 and 1,863 videos, respectively. The number
of annotated action intervals are 49,809 and 16,691 for training and test.

Fig. 5. Selected actions from the dataset, along with the top five most probable actions
before, and after the action. For example, when Opening a window, it is likely that
someone was Standing up before that, and after opening, Looking out the window.
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4.1 Action Classification

Given a video, we would like to identify whether it contains one or several actions
out of our 157 action classes. We evaluate the classification performance for sev-
eral baseline methods. Action classification performance is evaluated with the
standard mean average precision (mAP) measure. A single video is assigned to
multiple classes and the distribution of classes over the test set is not uniform.
The label precision for the data is 95.6%, measured using an additional verifica-
tion step, as well as comparing against a ground truth made from 19 iterations
of annotations on a subset of 50 videos. We now describe the baselines.

Improved Trajectories. We compute improved dense trajectory features
(IDT) [33] capturing local shape and motion information with MBH, HOG and
HOF video descriptors. We reduce the dimensionality of each descriptor by half
with PCA, and learn a separate feature vocabulary for each descriptor with
GMMs of 256 components. Finally, we encode the distribution of local descrip-
tors over the video with Fisher vectors [34]. A one-versus-rest linear SVM is used
for classification. Training on untrimmed intervals gave the best performance.

Table 2. mAP (%) for action classification with various baselines.

Random C3D AlexNet Two-stream-B Two-stream IDT Combined

5.9 10.9 11.3 11.9 14.3 17.2 18.6

Table 3. Action classification evaluation with the state-of-the-art approach on Cha-
rades. We study different parameters for improved trajectories, by reporting for differ-
ent local descriptor sets and different number of GMM clusters. Overall performance
improves by combining all descriptors and using a larger descriptor vocabulary.

HOG HOF MBH HOG + MBH HOG + HOF + MBH

K = 64 12.3 13.9 15.0 15.8 16.5

K = 128 12.7 14.3 15.4 16.2 16.9

K = 256 13.0 14.4 15.5 16.5 17.2

Static CNN Features. In order to utilize information about objects in the
scene, we make use of deep neural networks pretrained on a large collection of
object images. We experiment with VGG-16 [35] and AlexNet [36] to compute
fc6 features over 30 equidistant frames in the video. These features are averaged
across frames, L2-normalized and classified with a one-versus-rest linear SVM.
Training on untrimmed intervals gave the best performance.



520 G.A. Sigurdsson et al.

Fig. 6. On the left classification accuracy for the 15 highest and lowest actions is
presented for Combined. On the right, the classes are sorted by their size. The top
actions on the left are annotated on the right. We can see that while there is a slight
trend for smaller classes to have lower accuracy, many classes do not follow that trend.

Two-Stream Networks. We use the VGG-16 model architecture [?] for both
networks and follow the training procedure introduced in Simonyan et al. [37],
with small modifications. For the spatial network, we applied finetuning on Ima-
geNet pre-trained networks with different dropout rates. The best performance
was with 0.5 dropout rate and finetuning on all fully connected layers. The tem-
poral network was first pre-trained on the UCF101 dataset and then similarly
finetuned on conv4, conv5, and fc layers. Training on trimmed intervals gave the
best performance.

Balanced Two-Stream Networks. We adapt the previous baseline to handle
class imbalance. We balanced the number of training samples through sampling,
and ensured each minibatch of 256 had at least 50 unique classes (each selected
uniformly at random). Training on trimmed intervals gave the best performance.

C3D Features. Following the recent approach from [38], we extract fc6 features
from a 3D convnet pretrained on the Sports-1M video dataset [6]. These features
capture complex hierarchies of spatio-temporal patterns given an RGB clip of 16
frames. Similar to [38], we compute features on chunks of 16 frames by sliding 8
frames, average across chunks, and use a one-versus-rest linear SVM. Training
on untrimmed intervals gave the best performance.
Action classification results are presented in Table 2, where we additionally

consider Combined which combines all the other methods with late fusion.
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Fig. 7. Confusion matrix for the Combined baseline on the classification task. Actions
are grouped by the object being interacted with. Most of the confusion is with other
actions involving the same object (squares on the diagonal), and we highlight some
prominent objects. Note: (A) High confusion between actions using Blanket, Clothes,
and Towel ; (B) High confusion between actions using Couch and Bed ; (C) Little confu-
sion among actions with no specific object of interaction (e.g., standing up, sneezing).

Notably, the accuracy of the tested state-of-the-art baselines is much lower
than in most currently available benchmarks. Consistently with several other
datasets, IDT features [33] outperform other methods by obtaining 17.2% mAP.
To analyze these results, Fig. 6(left) illustrates the results for subsets of best and
worst recognized action classes. We can see that while the mAP is low, there
are certain classes that have reasonable performance, for example Washing a
window has 62.1% AP. To understand the source of difference in performance
for different classes, Fig. 6(right) illustrates AP for each action, sorted by the
number of examples, together with names for the best performing classes. The
number of actions in a class is primarily decided by the universality of the action
(can it happen in any scene), and if it is common in typical households (writer
bias). It is interesting to notice, that while there is a trend for actions with higher
number of examples to have higher AP, it is not true in general, and actions such
as Sitting in chair, and Washing windows have top-15 performance.

Delving even further, we investigate the confusion matrix for the Combined
baseline in Fig. 7, where we convert the predictor scores to probabilities and
accumulate them for each class. For clearer analysis, the classes are sorted by
the object being interacted with. The first aspect to notice is the squares on
the diagonal, which imply that the majority of the confusion is among actions
that interact with the same object (e.g., Putting on clothes, or Taking clothes
from somewhere), and moreover, there is confusion among objects with simi-
lar functional properties. The most prominent squares are annotated with the
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object being shared among those actions. The figure caption contains additional
observations. While there are some categories that show no clear trend, we can
observe less confusion for many actions that have no specific object of interaction.
Evaluation of action recognition on this subset results in 38.9% mAP, which is
significantly higher than average. Recognition of fine-grained actions involving
interactions with the same object class appears particularly difficult even for the
best methods available today. We hope our dataset will encourage new methods
addressing activity recognition for complex person-object interactions.

4.2 Sentence Prediction

Our final, and arguably most challenging task, concerns prediction of free-from
sentences describing the video. Notably, our dataset contains sentences that have
been used to create the video (scripts), as well as multiple video descriptions
obtained manually for recorded videos. The scripts used to create videos are
biased by the vocabulary, and due to the writer’s imagination, generally describe
different aspects of the video than descriptions. The description of the video by
other people is generally simpler and to the point. Captions are evaluated using
the CIDEr, BLEU, ROUGE, and METEOR metrics, as implemented in the
COCO Caption Dataset [39]. These metrics are common for comparing machine
translations to ground truth, and have varying degrees of similarity with human
judgement. For comparison, human performance is presented along with the
baselines where workers were similarly asked to watch the video and describe
what they observed. We now describe the sentence prediction baselines in detail:

– Random Words (RW): Random words from the training set.
– Random Sentence (Random): Random sentence from the training set.
– Nearest Neighbor (NN): Inspired by Devlin et al. [40] we simply use a 1-

Nearest Neighbor baseline computed using AlexNet fc7 outputs averaged over
frames, and use the caption from that nearest neighbor in the training set.

– S2VT: We use the S2VT method from Venugopalan et al. [41], which is a
combination of a CNN, and a LSTM.

Table 4. Sentence Prediction. In the script task one sentence is used as ground truth,
and in the description task 2.4 sentences are used as ground truth on average. We find
that S2VT is the strongest baseline.

Script Description

RW Random NN S2VT Human RW Random NN S2VT Human

CIDEr 0.03 0.08 0.11 0.17 0.51 0.04 0.05 0.07 0.14 0.53

BLEU4 0.00 0.03 0.03 0.06 0.10 0.00 0.04 0.05 0.11 0.20

BLEU3 0.01 0.07 0.07 0.12 0.16 0.02 0.09 0.10 0.18 0.29

BLEU2 0.09 0.15 0.15 0.21 0.27 0.09 0.20 0.21 0.30 0.43

BLEU1 0.37 0.29 0.29 0.36 0.43 0.38 0.40 0.40 0.49 0.62

ROUGEL 0.21 0.24 0.25 0.31 0.35 0.22 0.27 0.28 0.35 0.44

METEOR 0.10 0.11 0.12 0.13 0.20 0.11 0.13 0.14 0.16 0.24
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Fig. 8. Three generated captions that scored low on the CIDEr metric (red), and three
that scored high (green) from the strongest baseline (S2VT). We can see that while the
captions are fairly coherent, the captions lack sufficient relevance. (Color figure online)

Table 4 presents the performance of multiple baselines on the caption gen-
eration task. We both evaluate on predicting the script, as well as predicting
the description. As expected, we can observe that descriptions made by people
after watching the video are more similar to other descriptions, rather than the
scripts used to generate the video. Table 4 also provides insight into the different
evaluation metrics, and it is clear that CIDEr offers the highest resolution, and
most similarity with human judgement on this task. In Fig. 8 few examples are
presented for the highest scoring baseline (S2VT). We can see that while the lan-
guage model is accurate (the sentences are coherent), the model struggles with
providing relevant captions, and tends to slightly overfit to frequent patterns in
the data (e.g., drinking from a glass/cup).

5 Conclusions

We proposed a new approach for building datasets. Our Hollywood in Homes
approach allows not only the labeling, but the data gathering process to be
crowdsourced. In addition, Charades offers a novel large-scale dataset with diver-
sity and relevance to the real world. We hope that Charades and Hollywood in
Homes will have the following benefits for our community:

(1) Training data: Charades provides a large-scale set of 66,500 annotations of
actions with unique realism.

(2) A benchmark : Our publicly available dataset and provided baselines enable
benchmarking future algorithms.

(3) Object-action interactions: The dataset contains significant and intricate
object-action relationships which we hope will inspire the development of
novel computer vision techniques targeting these settings.

(4) A framework to explore novel domains: We hope that many novel datasets
in new domains can be collected using the Hollywood in Homes approach.
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(4) Understanding daily activities: Charades provides data from a unique
human-generated angle, and has unique attributes, such as complex co-
occurrences of activities. This kind of realistic bias, may provide new insights
that aid robots equipped with our computer vision models operating in the
real world.
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