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Holocene aridification of India

Camilo Ponton,1,2 Liviu Giosan,2 Tim I. Eglinton,3,4 Dorian Q. Fuller,5 Joel E. Johnson,6

Pushpendra Kumar,7 and Tim S. Collett8
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[1] Spanning a latitudinal range typical for deserts, the
Indian peninsula is fertile instead and sustains over a
billion people through monsoonal rains. Despite the strong
link between climate and society, our knowledge of the
long-term monsoon variability is incomplete over the
Indian subcontinent. Here we reconstruct the Holocene
paleoclimate in the core monsoon zone (CMZ) of the Indian
peninsula using a sediment core recovered offshore from the
mouth of Godavari River. Carbon isotopes of sedimentary
leaf waxes provide an integrated and regionally extensive
record of the flora in the CMZ and document a gradual
increase in aridity-adapted vegetation from �4,000 until
1,700 years ago followed by the persistence of aridity-
adapted plants after that. The oxygen isotopic composition
of planktonic foraminifer Globigerinoides ruber detects
unprecedented high salinity events in the Bay of Bengal
over the last 3,000 years, and especially after 1,700 years
ago, which suggest that the CMZ aridification intensified
in the late Holocene through a series of sub-millennial
dry episodes. Cultural changes occurred across the Indian
subcontinent as the climate became more arid after �4,000
years. Sedentary agriculture took hold in the drying central
and south India, while the urban Harappan civilization
collapsed in the already arid Indus basin. The establishment
of a more variable hydroclimate over the last ca. 1,700 years
may have led to the rapid proliferation of water-
conservation technology in south India. Citation: Ponton,

C., L. Giosan, T. I. Eglinton, D. Q. Fuller, J. E. Johnson, P. Kumar,

and T. S. Collett (2012), Holocene aridification of India, Geophys.

Res. Lett., 39, L03704, doi:10.1029/2011GL050722.

1. Introduction

[2] From June to September, India receives over 80% of
its annual precipitation [Gadgil, 2003]. The Arabian Sea
branch of the monsoon delivers moisture primarily to the
western Indian coast (Figure 1), where the Western Ghats
range limits the penetration of rains toward the interior. The

Bay of Bengal monsoon branch brings rain to most of the
Indian peninsula (see auxiliary material).1 Historical records
and reconstructions spanning the last millennium show that
variability in summer monsoon precipitation led to droughts,
some associated with widespread famine and social dis-
turbances, that were significantly more severe and longer
lasting than anything encountered in the measured record
[Cook et al., 2010; Sinha et al., 2011a]. The strong rela-
tionship between climate and society in India provides
impetus for developing a more predictive understanding of
the monsoon [Ashfaq et al., 2009]. Long paleo-synoptic
reconstructions would help explore the areal complexity of
the monsoon, but high-resolution Holocene climate recon-
structions for the Indian peninsula are conspicuously absent
[Prasad and Enzel, 2006].
[3] Modern records from the core monsoon zone (CMZ),

the region of central India that is considered representative
for both the mean behavior as well as for fluctuations of the
monsoon over the peninsula [Sinha et al., 2011a, and refer-
ences therein], show that interannual variability of summer
rainfall is negatively correlated with El Niño-Southern
Oscillation (ENSO) indices and strongly influenced by cha-
otic intraseasonal oscillations, leading to periods of increased
(active) and reduced (break) precipitation [Gadgil, 2003;
Sinha et al., 2011a]. High resolution speleothem-based pre-
cipitation reconstructions in the CMZ covering the last
�1,400 years [Sinha et al., 2011a, 2011b] also suggest that
extended periods of break monsoon in the CMZ have been
associated with most of the major droughts in the Indian
subcontinent. Sinha et al. [2011b] argue that the immediate
cause for such extensive droughts is the monsoon’s persis-
tence in a predominantly active or break mode for decades
to centuries. Longer Holocene monsoon reconstructions are
available from the Arabian Sea region (Figure 2). Precipi-
tation proxy data from a stalagmite in coastal Oman shows a
gradual decrease in precipitation [Fleitmann et al., 2003]
that is coeval with the weakening of summer monsoon
winds reconstructed offshore Oman [e.g., Gupta et al., 2003]
and has been interpreted to reflect the southward migration of
the Intertropical Convergence Zone (ITCZ) [Fleitmann et al.,
2007]. Although implied, it is not certain that these records
can explain the hydroclimate of the Indian peninsula because
of the heterogeneity of the monsoon expression at regional
scales [see, e.g., Cook et al., 2010; Sinha et al., 2011a,
2011b].
[4] Complete Holocene monsoon reconstructions from the

peninsula are limited to low resolution records and do not
yield clear evidence for increased precipitation correspond-
ing to stronger monsoon winds in the early Holocene
[Prasad and Enzel, 2006]. Illustrating this uncertainty, an
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alternative hypothesis [Staubwasser and Weiss, 2006]
grounded in the analysis of modern intraseasonal active-
break monsoon dynamics proposes instead that the monsoon
weakened only over the northernmost part of its domain
over the Himalayas and their foothills, while the Indian
Peninsula actually experienced an increase in monsoon
intensity during the Holocene. However, an increase in
precipitation is evident primarily in southern India and may
reflect instead the Holocene progressive latitudinal south-
ward shift of the summer ITCZ precipitation [Fleitmann
et al., 2007].
[5] To constrain monsoon variability and its effects on

the Indian peninsula, we produced Holocene climate records
for both the continental and oceanic realms of the Bay of
Bengal monsoon branch. Terrigenous and marine compo-
nents were analyzed from sediment core NGHP-01-16A
(16°35.5986′N, 082°41.0070′E; 1,268 m water depth)

recovered close to the Godavari River mouth, the largest
non-Himalayan Indian river (see auxiliary material). The
Godavari catchment (312,812 km2, maximum elevation
920 m, Figure 1; see auxiliary material) integrates monsoon
rainfall from the CMZ at the interior of the Indian peninsula
and is not affected by meltwater that augments the discharge
of Himalayan rivers [Immerzeel et al., 2010]. We sampled
hemipelagic sediments accumulating at rates higher than
0.3 m/1000 years throughout the Holocene (see auxiliary
material for details on sedimentation). The cored region
experiences a large seasonal range of salinity (�24–34 psu
and �2‰ change in d

18O of sea water) as the monsoon
freshwater plume in the Bay of Bengal disperses after the
summer (see auxiliary material).

2. Methods

[6] The age model for core NGHP-16A was based on 14C
Accelerator Mass Spectrometry (AMS) measurements on
11 samples of mixed planktonic foraminifera (see details
in auxiliary material). Stable isotope analyses of oxygen
were performed using standard techniques (see auxiliary
material) on planktonic foraminifera Globigerinoides
ruber (white) at a temporal resolution of �33 years with an
analytical reproducibility better than 0.1‰ based on rep-
licate measurements of carbonate standard NBS-19.
Compound-specific carbon isotope analyses were per-
formed on n-alkanoic acids (see auxiliary material) at an
average sampling interval of �220 years. Solvent-soluble

Figure 1. (a) Physiographic map of the Indian peninsula
and adjacent ocean regions. Red dots show locations for
core 16A, Qunf [Fleitmann et al., 2003] and site 723A
[Gupta et al., 2003]. Black arrow is schematic for Westerly
winds. White arrows indicate general directions of the Ara-
bian Sea and Bay of Bengal branches of summer monsoon.
White contours are surface salinity for June-September (in
psu; see auxiliary material). Color shaded regions approxi-
mate the areal extent of past early cultures (see auxiliary
material) with the corresponding modern provinces of India
and Pakistan. The Indus Civilization domain is indicated
by a yellow mask; Southern Neolithic is indicated by a white
mask; Deccan Chalcolithic is indicated by a gray mask; and
shifting cultivation domain is indicated by a red mask. (b)
Average d

13C of bulk terrestrial biomass in modern-day
India (reprinted from Galy et al. [2008], with permission
from Elsevier).

Figure 2. (a) Indian monsoon d
18O record from Qunf

Cave, Oman [Fleitmann et al., 2003]. (b) Indian monsoon
upwelling record [Gupta et al., 2003]. (c) The d

13C plant
wax from core 16A. Black line is the weighted average of
n-alkanoic acids C26–C32. Dashed line is C28, the most abun-
dant homologue in most samples. Error bar represents the
maximum propagated error (1s error; see auxiliary
material) in the estimate of % C4 plant cover (secondary axis
on the far right). Grey line is the mean June-July-August
insolation at 30°N [Laskar et al., 2004]. (d) Calibrated radio-
carbon ages (1s error) in core 16A.

PONTON ET AL.: HOLOCENE ARIDIFICATION OF INDIA L03704L03704

2 of 6



organic matter was extracted from freeze-dried sediments
using a microwave accelerated reaction system. The
resulting total lipid extract was saponified and the acid
fraction purified and then methylated using methanol of
known isotopic composition. A Gas Chromatograph with
isotope ratio monitoring Mass Spectrometer (GC-irMS)
was used to obtain the d

13C measurements on the isolated
n-alkanoic acids. All samples were analyzed in triplicate;
d
13C values were determined relative to a reference gas
(CO2) of known isotopic composition, introduced in pul-
ses during each run. GC-irMS accuracy and precision are
both better than 0.3‰. Results were corrected for d13C of
the methyl derivative based on isotopic mass balance to
derive d

13C values for the original n-alkanoic acids (see
auxiliary material).

3. Monsoon Variability in the Core Monsoon
Zone

[7] The carbon isotopic composition of terrestrial plant
biomass is primarily a function of the plant’s specific pho-
tosynthetic pathway and isotopic composition of atmo-
spheric CO2 [Farquhar et al., 1989], with environmental
conditions exerting a minimal influence. These isotopic
signatures also manifest themselves in vascular plant epi-
cuticular wax lipids [e.g., Tipple and Pagani, 2010]. Leaf
wax d

13C records (i.e., for C26 to C32 n-alkanoic acids;
hereafter d

13Cwax; see auxiliary material) have been used
extensively to reconstruct past changes in the balance of C3

vs. C4 vegetation [Feakins et al., 2005; Eglinton and
Eglinton, 2008]. C4 vegetation is favored by aridity, high
temperature, and low atmospheric CO2 conditions over C3

plants. Given the minimal variability in annual sea surface
temperature in the northern Indian Ocean region [Govil and
Naidu, 2010; Anand et al., 2008; Rashid et al., 2007; Govil
and Naidu, 2011] and increasing CO2 over the Holocene,
our leaf wax d

13C record reflects the integrated rainfall
variations or aridity in the Godavari river catchment where
natural vegetation cover is a mixture of savanna, tropical
grassland, and tropical forest [Asouti and Fuller, 2008].
Modeled bulk organic carbon d

13C values corresponding to
this modern biome mixture vary from ca. �12 to �26‰
(Figure 1) [Galy et al., 2008]. In our core, d13Cwax (Figure 2)
exhibits a large range of variation (��23‰ to ��30‰).
[8] Based on prior d

13C measurements of n-alkanoic
acids isolated from different plant species [Chikaraishi
et al., 2004], we calculated isotopic end members of
�37.7 � 1.8‰ and �21.1 � 1.4‰ for C3 and C4 plants
(see auxiliary material), respectively. Using a simple iso-
topic mass balance we estimate that the proportion of C4

vegetation cover in central India increased from approxi-
mately 50% to more than 75% during the Holocene
(Figure 2). The average error in the changes in abundance of
C3 vs. C4 plants (see auxiliary material) based on the
Chikaraishi et al. [2004] species survey amounts to �6.3%,
uncertainty which is considerably less than the changes in
our record (Figure 2). Although there is significant carbon
isotopic variability within C4 and especially C3 plants and
their corresponding waxes [Freeman and Collarusso, 2001;
Chikaraishi et al., 2004; Tipple and Pagani, 2010], which
limits the ability to place tight constraints on changes in the
proportion of C4 plants, the magnitude of change during
the Holocene reflects a significant shift in vegetation type.

The range of variation for d13C composition among indi-
vidual C26 to C32 n-alkanoic acid homologues also
decreased from early to late Holocene (see auxiliary
material). We speculate that this trend is also a response to
increased aridity, and may reflect the narrower range of d13C
values expressed by C4 plants [Freeman and Collarusso,
2001] or a reduction in plant diversity [Rommerskirchen
et al., 2003]. Crassulacean acid metabolism (CAM) plants,
which can utilize both C3 and C4 carbon fixation pathways
and have an intermediate d13C range, are common in central
India [Asouti and Fuller, 2008] and may lead to an under-
estimation of C4 cover, but also represent aridity-adapted
vegetation. Additionally, anthropogenic contributions to the
C4 signal through cultivation cannot be completely dis-
counted but are likely to have been small until the 19th
century when massive and permanent deforestation of the
Eastern Ghats took place [Hill, 2008]. Prior to this large
scale deforestation, the shifting cultivation style typical for
the Eastern Ghats (Figure 1a) where most C3 flora occurs in
the Godavari watershed, did not favor large changes in C3

vs. C4 plants (see auxiliary material). Early farming in the
Deccan (Figure 1a) replaced C4-dominated savannah and
adjacent woodland with C4 cultivated plants, but also
affected the Western Ghats C3 forests, which comprise only
a small part of the Godavari’s headwaters. Rice, a C3 plant
that was cultivated in coastal regions after 3,000 years ago,
would have ameliorated rather than accentuated the trend
toward C4 flora dominance in the late Holocene.
[9] The inferred change in vegetation structure is compa-

rable in magnitude to a major glacial to interglacial ecosys-
tem alteration (cf., �20% shift toward more C4 plants in the
Himalayas from the Last Glacial Maximum to early Holo-
cene [Galy et al., 2008]). Our own d13Cwax measurements on
glacial-age samples at �26 ka BP show 13C-enriched values
(�22.3‰; see auxiliary material), implying that the vegeta-
tion cover in the Godavari catchment was similarly popu-
lated with C4 plants (>85%). After a humid early Holocene
when the proportion of C4 plants oscillated significantly,
there was a marked change towards more positive d

13Cwax

values that persisted until ca. 1,700 years ago, reflecting the
increasing aridification of central India. This increase in
aridity is most evident after 4,000 BP (Figure 2) when the
d
13C values for all C26 to C32 n-alkanoic acid homologues
shift to values beyond their previous range of variability.
The last �1,700 years appear to be anomalously arid with an
apparent dominance of C4 vegetation. The Holocene aridi-
fication of central India supports the view that changes in the
seasonality of Northern Hemisphere insolation associated
with the orbital precession, led to progressively weaker
monsoons [Fleitmann et al., 2007]. In concert with previous
reconstructions in the Arabian Sea region [Fleitmann et al.,
2003; Gupta et al., 2003] and northern Bay of Bengal
[Kudrass et al., 2001], this aridification of the core monsoon
zone shows that the Indian monsoon displayed a largely
coherent response during the Holocene.
[10] We explored further the changes in aridity for the

last 4,500 years by examining the oxygen isotope compo-
sition of planktonic foraminifer Globigerinoides ruber
(d18Oruber) from core NGHP-01-16A (Figure 3). After
applying a positive correction for the effects of post-glacial
ice-sheet decay varying between 0 and 0.07‰ (see
auxiliary material), d18Oruber should record surface water
conditions in the Bay of Bengal. The relatively low d

18O
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values of our record and the lack of a clear trend in the
d
18O time series is not surprising for this region reflecting
large fluvial discharge and the preformed waters of these
fluvial sources [Breitenbach et al., 2010]. Freshwater from
Godavari, augmented by several other large rivers, together
with direct precipitation over the Bay and the water
exchange with adjacent regions of the Indian Ocean act to
buffer local variability [Schott and McCreary, 2001] (see
auxiliary material). Relatively stable sea surface conditions
characterize the interval between �4,500 and 3,000 years
BP (Figure 3) with variability between ��2.3‰ and
�3.3‰. However, after 3,000 years BP, and especially
over the last 1,700 years, d

18Oruber values vary between
��1.4‰ and �3.3‰ exhibiting marked positive

excursions. Similar to other tropical regions, Holocene sea
surface temperature (SST) fluctuations in the northern
Indian Ocean were small (up to 2.5°C) after �8,000 years
BP (see Anand et al. [2008] and Govil and Naidu [2010]
for eastern Arabian Sea, Rashid et al. [2007] for the
Andaman Sea, and Govil and Naidu [2011] for the western
Bay of Bengal) accounting for a maximum of 0.56‰
change in d

18Oruber (see auxiliary material). Thirteen
excursions of sub-millennial duration occurring in our late
Holocene record are beyond the variance that can be
explained by temperature variations. Simulations with a
fully coupled atmosphere-ocean global climate model
[LeGrande and Schmidt, 2009] also suggest that changes in
precipitation sources over the Bay of Bengal were minimal
in the last 6,000 years compared to earlier in the Holocene.
[11] In this context, we interpret the positive d

18Oruber

excursions after 3,000 years BP to reflect increased salinity
events in the Bay of Bengal during drier intervals reminis-
cent of the extended droughts documented for the last mil-
lennium [Cook et al., 2010; Sinha et al., 2011a]. The lack of
a corresponding increase in variance in the d

13Cwax record
over the late Holocene may reflect the buffering of short
term terrestrial sedimentary signals within the Godavari
watershed and/or sluggish recovery of C3 continental flora in
a variable hydroclimatic regime. Records from cores with
lower sedimentation rates from the northern Bay of Bengal
and the Andaman Sea as well as eastern Arabian Sea also
argue for higher salinities in the late Holocene [Kudrass
et al., 2001; Rashid et al., 2007; Govil and Naidu, 2010].
The d18Oruber excursions are particularly prominent between
�1,700 and 1,300 years BP, coincident with the Holocene
monsoon minimum in the wind proxy reconstruction in the
Arabian Sea [Anderson et al., 2010] (Figure 3). Considering
that the background d

18Oruber over the last 1,300 years
indicates surface salinities as low as in the middle Holocene
or lower, it is reasonable to assume that the levels of pre-
cipitation were high outside these dry episodes, consistent
with the increase in monsoon winds in the Arabian Sea
during the same interval [Anderson et al., 2010]. In the
eastern Arabian Sea, small annual mean SST variability (less
than 1°C) reconstructed on G. ruber contrasts with the
increased seasonality indicated by coeval temperature record
on G. bulloides over the past �4,000 years [Anand et al.,
2008], lending further support to the idea that d

18Oruber

excursions primarily reflect changes in monsoon variability.
Recent foraminifer-based records of Govil and Naidu [2011]
and Chauhan et al. [2010] suggests increased monsoon
variability after ca. 3,500 and 2,200 years BP respectively
whereas a speleothem record from NE India [Adkins et al.,
2011; Breitenbach, 2010] shows increased monsoon vari-
ance in the last �2,000 years. Taken together, these recon-
structions suggest that monsoon variability increased
coherently over the Indian peninsula in the late Holocene,
although at sub-millennial timescale the variability may have
been anti-phased between the peninsula and northeastern
India [Sinha et al., 2011b].
[12] A recent reconstruction of the Australian-Indonesian

monsoon shows a relatively dry early to middle Holocene
and an increase in precipitation during the past �2,500
years [Mohtadi et al., 2011]. The out-of-phase behavior of
rainfall in central India in the Northern Hemisphere versus
Indonesia in the Southern Hemisphere is in agreement with
a primary orbital control on the monsoon in the Indian

Figure 3. (a) d13C plant wax record from core 16A as the
weighted average of n-alkanoic acids C26–C32. Error bar
represents the maximum propagated error (1s error; see
auxiliary material) in the estimate of % C4 plant cover.
Vertical black dashed lines identify steps in the aridification
at ca. 4,000 and 1,700 years BP. (b) Calibrated radiocarbon
ages (1s error) in core 16A. (c) d18O measured on Globi-
gerinoides ruber from core 16A; values are corrected for
ice volume effects. (d) Number of settlements based on
archaeological data expressed as totals over culturally
defined time intervals (see auxiliary material). In solid gray,
sites from the Deccan Plateau (Andhra Pradesh, Karnataka,
Maharashtra). In solid black, Indus (Harappan) sites from
the dry Baluchistan, Sindh, Gujarat, Cholistan and lower
Punjab. In dashed black, sites from rainier upper Punjab
and Haryana. The drought-prone regime in the late Holo-
cene (after 1,700 years BP) coincides with the flourishing
of water tank construction.
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Ocean. Our terrestrial and oceanic records further suggest
that aridification intensified in the CMZ in the late Holo-
cene through a series of sub-millennial dry episodes. We
note that these episodes occurred preferentially in late
Holocene when the intensity of Northern Hemisphere
summer insolation reached its minimum. El Niño fre-
quency/intensity also increased in late Holocene [e.g., Moy
et al., 2002]. However, understanding how the CMZ dry
episodes relate to changes in Northern Hemisphere climatic
state or to coupled ocean-atmosphere zonal modes, such
as El Niño–Southern Oscillation, would require complete
Holocene climate reconstructions from this region at sub-
decadal resolution.

4. Aridification and Cultural Change

[13] The dramatic effects of monsoon variability on the
well-being of the peninsular population over the historical
period are well-documented [Cook et al., 2010]. Regardless
of the exact mechanisms leading to aridification of central
India during the Holocene, our new data suggest that this
symbiotic human-monsoon relationship may have existed
since prehistory. The significant aridification recorded
after ca. 4,000 years ago may have spurred the widespread
adoption of sedentary agriculture in central and south India
capable of providing surplus food in a less secure hydro-
climate [Asouti and Fuller, 2008]. Archaeological site
numbers and the summed probability distributions of cali-
brated radiocarbon dates from archaeological sites, which
serve as proxies of agricultural population, increase mark-
edly after 4,000 BP in peninsular India (Figure 3; see
auxiliary material) for cultures of Southern India and the
Deccan Plateau. In contrast, the same process of drying eli-
cited the opposite response (Figure 3) in the already arid
northwestern region of the subcontinent along the Indus
River (Figure 1a). From �3,900 to 3,200 years BP, the
urban Harappan civilization entered a phase of protracted
collapse. Late Harrapan rural settlements became instead
more numerous in the rainier regions at the foothills of the
Himalaya and in the Ganges watershed [Madella and Fuller,
2006]. During the Iron Age, after ca. 3,200 years BP,
adaptation to semi-arid conditions in central and south India
appears to have been well established with �60% of sites in
areas with <1000 mm of rainfall today and a significant
number of sites (18%) in areas with <600 mm (see auxiliary
material). Later, the rapid increase in rainwater harvesting
structures that occurred after 1,700 BP in the semi-arid
regions of south India [Gunnell et al., 2007] points to an
expansion of the cultural adaptation to an additional increase
in aridity (Figure 3). Although tentative, these correlations
between hydroclimate and cultural changes in the Indian
subcontinent suggest distinct societal responses to climate
stress and underline the importance of understanding the
history of the monsoon in a dynamic context at synoptic
scales both for interpreting the past, but also for providing
the long-term context for the short instrumentally observed
variability.
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