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Holocene forest dynamics in central 
and western Mediterranean: 
periodicity, spatio-temporal 
patterns and climate influence
Federico Di Rita1, William J. Fletcher  2, Josu Aranbarri3, Giulia Margaritelli4, Fabrizio Lirer4 & 

Donatella Magri1

It is well-known that the Holocene exhibits a millennial-scale climate variability. However, its 

periodicity, spatio-temporal patterns and underlying processes are not fully deciphered yet. Here we 
focus on the central and western Mediterranean. We show that recurrent forest declines from the Gulf 
of Gaeta (central Tyrrhenian Sea) reveal a 1860-yr periodicity, consistent with a ca. 1800-yr climate 
fluctuation induced by large-scale changes in climate modes, linked to solar activity and/or AMOC 
intensity. We show that recurrent forest declines and dry events are also recorded in several pollen and 
palaeohydrological proxy-records in the south-central Mediterranean. We found coeval events also 
in several palaeohydrological records from the south-western Mediterranean, which however show 
generally wet climate conditions, indicating a spatio-temporal hydrological pattern opposite to the 

south-central Mediterranean and suggesting that different expressions of climate modes occurred 
in the two regions at the same time. We propose that these opposite hydroclimate regimes point to 

a complex interplay of the prevailing or predominant phases of NAO-like circulation, East Atlantic 
pattern, and extension and location of the North African anticyclone. At a larger geographical scale, 

displacements of the ITCZ, modulated by solar activity and/or AMOC intensity, may have also indirectly 
influenced the observed pattern.

Understanding the long-term trends and spatial patterns of climate variability in the current interglacial period, 
the Holocene, is crucial to assess the signi�cance of ongoing climate change and future projections. Furthermore, 
taking into account the commonality of processes and mechanisms shared by climate models at all timescales, 
understanding the low frequency (millennial) component of past climate change is ultimately essential for 
improved predictions on all timescales. While it is well-known that the Holocene exhibits a millennial-scale 
climate variability, its periodicity, spatio-temporal patterns and underlying processes are not fully deciphered yet.

•	 Periodicity: since the pioneering studies of Bond et al.1 in the North Atlantic region, the nature of climate 
variability was associated to a quasi-periodic 1500-year cycle (1470 ± 500, Bond cycle), which was tentatively 
attributed to solar activity, ocean current intensity variations, tidal forcing, atmospheric processes linked 
to the North Atlantic Oscillation (NAO), or modi�cations of the geomagnetic �eld1–3. In Europe and in the 
Mediterranean regions, the Bond cycles have been o�en associated to millennial scale warm/cold and humid/
arid climate shi�s documented in many marine and continental records4–6. According to Magny et al.5 these 
recurrent climatic events coincided with decreases in solar activity and deglacial outbursts in the North Atlan-
tic area during the interval 11,700–7000 cal BP, and to a possible combination of NAO-type circulation and 
solar forcing from ca. 7000 cal BP onwards. Debret et al.7, detected a new pervasive low-frequency millennial 
scale oscillation of 1600–1800 yr a�er 6 ka in several records from the North Atlantic region.
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•	 Spatial pattern: the spatial pattern of the impact of millennial-scale climate cycles over the Mediterranean 
Basin is another intriguing issue. Recent studies have shown climate oscillations that were not always clearly 
recorded across the entire Mediterranean Basin or exhibited opposite trends in di�erent regions8,9. Magny et 
al.5 reveal North-South palaeohydrological contrasts in the central Mediterranean during the Holocene and 
suggest a latitudinal divide at ca. 40°N. �ey also suggest possible latitudinal shi�s in the limit between the 
contrasting hydrological sectors of the Mediterranean in response to changing NAO. Fletcher et al.9 highlight 
contrasting hydrological signals between the western and south-eastern sectors of the Mediterranean and 
suggest that prevailing or predominant phases of NAO-like circulation conditioned the climate pattern of the 
Mediterranean a�er 6000 cal BP by modulating the long-term trend of intensity and position of the westerlies. 
Di Rita and Magri10, reviewing the patterns of a forest decline event between 4500 and 4000 cal BP in many 
sites of the central Mediterranean south of 43°N, attribute it to the expansion or northward displacement of a 
North African high-pressure cell, inducing arid climate. �is forest decline corresponds to a transition from 
positive to negative NAO culminating around 4.2 ka cal BP11.

•	 Climate processes: the recognition of the 4.2 ka event in proxy records from North America, through the 
Middle East to China, and from Africa, parts of South America to Antarctica12 suggests that past environ-
mental changes in the Mediterranean may re�ect the in�uence of climate dynamics at the global scale. Similar 
considerations were also advanced by Roberts et al.13, who suggest that the Little Ice Age (LIA)/Medieval 
Climate Anomaly (MCA) hydroclimatic pattern in the Mediterranean was determined by a combination of 
di�erent climate modes along with major physical geographical controls, and not by NAO forcing alone. In 
the south-central Mediterranean, the current hydrological regime is characterized by summer drought and 
winter precipitation, also in�uenced by the NAO variability (e.g.14), although Trigo et al.15 argue that the pre-
cipitation regime in some sectors of the south-central Mediterranean (e.g., Sicily) cannot be explained by the 
NAO pattern. However, in south-central Mediterranean a correlation of the precipitation with the NAO index 
has been documented16,17. Brandimarte et al.17, have found that during the last century, although the Italian 
Peninsula is generally negatively correlated with NAO, Eastern Sicily and Northern Africa show a positive 
correlation. López-Moreno et al.16 have demonstrated an important instability in the in�uence of positive 
and negative phases of the NAO on Mediterranean precipitation variability and droughts of the past cen-
tury, re�ecting interdecadal changes in the position of the main pressure centres that characterize the NAO. 
�ey also underline the importance of considering other climate teleconnections to explain the precipitation 
anomalies in di�erent sectors of the Mediterranean region, including East Atlantic pattern (EA), ENSO, and 
Western Mediterranean Oscillation (WeMO), which are considered among the dominant climate modes cur-
rently acting in the Mediterranean18.

More detailed palaeoenvironmental and palaeoclimate marine and continental records, as well as modelling 
studies are needed to test the millennial scale periodicities and explore possible in�uences of di�erent general 
atmospheric circulation patterns. In the Mediterranean, palaeovegetation records provide a remarkably sensitive 
proxy to reconstruct changes in atmospheric conditions linked to the di�erent modes of climate variability, espe-
cially those in�uencing the palaeohydrological regime and seasonality of precipitation, which induce changes in 
vegetation composition and structure, as well as in plant distributions.

In this study, we discuss the periodicity, spatio-temporal patterns and possible climate mechanisms in�uenc-
ing the forest development in the south-central Mediterranean, based on a 5500-year long palaeovegetational 
record from a marine core drilled in the Tyrrhenian Sea, compared with other records from the central and 
western Mediterranean (Fig. 1).

�e climate of the Gaeta area is typically Mediterranean with a high spatial variability of weather conditions 
also due to local cyclogenesis. �e most intense, deepest, and most persistent cyclones are observed in wintertime, 
frequently associated with wet and/or severe weather conditions, triggered by the major North Atlantic synoptic 
systems19. Besides, the climate of the area is strongly in�uenced by the Tyrrhenian Sea and by the complex orog-
raphy of the Italian Peninsula.

Our aim is to:

•	 test for the occurrence of fundamental periodicities in the Gaeta pollen record, through REDFIT and wavelet 
transform analyses;

•	 characterise spatio-temporal patterns of vegetation dynamics, including the phasing of millennial-scale vari-
ability between the central and western Mediterranean;

•	 evaluate the role of past modes of climate variability in determining millennial-scale vegetation changes in 
the Mediterranean region.

Results
Vegetation history. Over the last 5500 years, the vegetation history along the Gulf of Gaeta (Fig. 2) was 
characterized by repeated changes in the forest cover, vegetation structure and �oristic composition6,20, which 
can be summarized as follows:

•	 From 5500 to 4750 cal BP the forest cover was composed of mixed temperate and Mediterranean forests, 
dominated by deciduous and evergreen Quercus.

•	 From 4750 to 4100 cal BP, a forest decline, culminating at around 4200 cal BP, was mainly related to a decrease 
in evergreen Quercus.

•	 From 4100 and 2900 cal BP, a new forest development shows a remarkable increase in evergreen and decidu-
ous elements (mainly Quercus, Ostrya/Carpinus orientalis, and Fagus).
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•	 From 2900 to 2300 cal BP, the forest vegetation declined once more, as indicated by an abrupt decrease in 
arboreal pollen (AP), reaching their minimum percentages between 2800 and 2600 cal BP.

•	 From 2300 to 1150 cal BP the pollen diagram suggests a remarkable forest expansion, partly due to the devel-
opment of natural tree populations, including Pinus, and partly enhanced by arboricultural taxa Castanea, 
Olea, Vitis and Juglans, especially during and a�er the Roman times.

•	 From 1150 to 150 cal BP, a general forest decline is recorded. �is trend was not progressive and steady; AP 
percentages display two forest decreases, from 1150 to 800 BP and from 400 to 150 BP, with an interven-
ing moderate forest vegetation development from 800 to 400 BP related to a new oak-dominated woodland 
expansion.

•	 In the last two centuries, a new arboreal vegetation expansion was mostly related to an increase in Pinus, Cas-
tanea, Olea, Vitis and Juglans, which, together with other anthropogenic pollen indicators, highlight exten-
sive agricultural practices and a marked human impact on the territory. On the whole, Pinus does not seem 
over-represented in the Gaeta record, in contrast to most marine sequences, as it increases mostly during the 
last centuries in relation to historically documented plantations.

Human impact became increasingly important in the record of the Gulf of Gaeta during the last two thousand 
years, probably playing a major role in the progressive general opening of the forest (Fig. 2). It is worth noting 
that a reliable representation of cereal pollen in marine pollen records is complicated by its low dispersal, mask-
ing both the real amount of regional cereal cultivation and the extent of human activities. Nonetheless, the main 
forest �uctuations displayed in the AP record correspond to the main historical climate �uctuations (e.g. LIA) 
and NAO index oscillations20. �is suggests that climate may have been a main factor pacing the centennial- to 
millennial-scale phases of forest development and decline6.

Figure 1. Location of the sites mentioned in the text. Gulf of Gaeta record (red dot), sites shown in Fig. 5 
(yellow dots: Sidi Ali23; Hachlaf28, site MD95-20439, Gorgo Basso34, Biviere di Gela35, Urgo Pietra Giordano36, 
Trifoglietti37, core RAPiD-12-1K43, and Hólmsá41); and other sites mentioned in the text (green dots: ODP 
site 97626, Folgefonna42, site MD04-27974, Lago Alimini Piccolo10, Lago Grande di Monticchio38, Lago 
Battaglia39 and Lago dell’Accesa40). Map produced using Corel Draw Suite X8 (https://www.coreldraw.com). 
�e background map (DEM 30 m; Lambert Azimuthal Equal Area projection) was retrieved from Advanced 
Spaceborne �ermal Emission and Re�ection Radiometer (ASTER) Global Digital Elevation Model (GDEM). 
ASTER GDEM is a product of NASA and METI and is distributed by NASA LP DAAC (https://lpdaac.usgs.
gov/dataset_discovery/aster). �e �nal map was generated using the so�ware QGIS version 2.18.15 ‘Las Palmas’ 
(QGIS Development Team, 2017. QGIS Geographic Information System. Open Source Geospatial Foundation 
Project https://www.qgis.org/it/site/).

https://www.coreldraw.com
https://lpdaac.usgs.gov/dataset_discovery/aster
https://lpdaac.usgs.gov/dataset_discovery/aster
https://www.qgis.org/it/site/
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REDFIT and wavelet transform analyses. �e REDFIT spectral analysis applied to the Gaeta AP per-
centages exhibits a prominent peak in spectral power exceeding the 95% signi�cance level of the con�dence 
interval, corresponding to a periodicity of 1865 years (Fig. 3).

�e Wavelet transform analysis applied to the detrended AP time series of the last 5500 years highlights the 
dominance of a low frequency millennial oscillation (Fig. 4). �e portion of frequencies exceeding the 99% sig-
ni�cance level of the variance shows a bandwidth ranging from ca 2050 to 1670 years (ca. 1860 ± 190 years), 
consistent with the 1865-years periodicity peak obtained from the REDFIT analysis. Due to the low frequency of 
this periodic component relative to the length of the series, only a small part of the signi�cant area falls inside the 
“cone of in�uence”. �is means that the edge-padding with zero values may reduce the potential for detection of 
periodic components and suggests caution in the interpretation of the wavelet result. However, in light of the sin-
gle dominant periodicity and excellent agreement with the REDFIT analysis, we consider the result to be robust.

Discussion
Periodicity. �e millennial scale periodicity centred at ca. 1860-yr, detected by the statistical analyses of the 
Gaeta AP frequencies, is consistent with the ca. 1800-yr cycle recognized in several palaeoclimate and palaeoen-
vironmental records around the world (e.g.7,21–23). An 1823-yr cycle, originating from extreme oceanic tides asso-
ciated with orbital coincidences, was held responsible for cooling at the sea surface by increasing vertical mixing 
in the oceans, so modulating global climate24. It would in�uence both the Ice-Ra�ed Debris (IRD) events, whose 
spectral analysis shows a high-power density in a broad band centred at about 1800 years1, and the climate events 
corresponding to the collapse of the Akkadian civilization (4.2 ka cal BP) and the LIA24. However, the global cli-
matic implications of the tidal forcing have not been widely accepted25.

Other authors have found a quasi-periodic ~1800-yr cycle. Debret et al.7 found statistically strong perio-
dicities centred at 1700 and 1800 years, accompanied by periodicities of 1400 and 1500 years, in several pale-
oclimate records from the North Atlantic region during the last 6000 years, following the establishment of a 
cyclical internal oceanic forcing in�uenced by the �ermohaline Circulation (THC). Soon et al.22, through a 
cross-wavelet analysis applied to three main solar activity proxy time series (nitrate concentration, 10Be and 14C) 
show a strongly modulated and time-dependent signal for a ~1800-yr climate cycle (1885 years), together with a 
climate cycle of 1500-yr. �e authors suggest that these cyclicities may correspond to fundamental solar modes 
in�uencing the global climate and producing an internal threshold response of the global THC to solar forcing. In 
the Mediterranean Basin, a direct counterpart of the periodicity found in the Gaeta pollen record is represented 
by the 1750-yr cycle (1740 ± 80 years) found by Fletcher et al.9 in recurrent episodes of forest declines in the 
MD95-2043 core from the Alboran Sea during the last 6000 years (Fig. 5).

�e similarity of the periodicity found by Debret et al.7 and Fletcher et al.9 with the Gaeta record suggest 
the existence of common forcing in�uencing climate variability in the North Atlantic and western to central 
Mediterranean areas.

Opposite spatio-temporal patterns in western and central Mediterranean. �e MD95-20439 and 
Gaeta pollen records show opposite patterns in the vegetation development/decline during the last millennia, sug-
gesting that a common climate forcing was expressed di�erently in di�erent sectors of the Mediterranean (Fig. 5).

Figure 2. Pollen diagram of selected taxa from the Gaeta of Gaeta record (central Tyrrhenian Sea).
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�e forest declines in the MD95-2043 record from the Alboran Sea have been explained with a NAO-related 
mechanism influenced by internal oscillations in interglacial Atlantic Meridional Overturning Circulation 
(AMOC) strength9. �is may have determined changes of intensity and direction of the zonal winds represented 
by westerlies and the related hydroclimatic cycle of the western Mediterranean9, where a synchronism of Atlantic 
cooling phases (Bond events) and winter rain maxima was found at sub-millennial to centennial timescales with 

Figure 3. REDFIT spectral analysis of the Arboreal Pollen (AP) percentages of the Gulf of Gaeta record (black 
line). �e time series is �tted to an AR1 red noise model (orange line). �e 95% con�dence levels of the χ2 and 
Monte Carlo tests are reported on the graph with a green line and a red line, respectively. �e PAST 3.1 so�ware 
program was used64.

Figure 4. Wavelet transform of the AP percentages of the Gulf of Gaeta pollen record. �e data were previously 
detrended and smoothed (a) using PAST 3.1 so�ware program64. �e wavelet transform was performed using 
the on-line interactive wavelet plot of the University of Colorado (http://paos.colorado.edu/research/wavelets/). 
�e dashed lines shown by the Wavelet Power Spectrum (b) and Global Wavelet (c) graphs mark the 99% 
signi�cance level of the variance. �e black solid line in the Wavelet Power Spectrum (b) indicates the cone of 
in�uence.

http://paos.colorado.edu/research/wavelets/
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Figure 5. Palaeoclimate proxy records from the south-western Mediterranean, south-central Mediterranean, 
North Atlantic/Northern Europe, and NAO index. Hachlaf: Arboreal Pollen record28; Sidi Ali: detrended values 
[3rd order polynomial] of carbonate data23; W Iberia: cumulative probability density plots of radiocarbon 
dates from �oods and extreme �uvial event units27; MD95-2043: temperate and Mediterranean forest record, 
with three-point running mean in red9; Bandpass �lter applied to the MD95-2043 (1750-yr �lter) and Gulf of 
Gaeta (1860-yr �lter) pollen records; Gulf of Gaeta (SW104_C5-C5): Arboreal Pollen record, with three-point 
running mean in blue6,20; Biviere di Gela: Arboreal Pollen record, with three-point running mean in bold35; 
Urgo Pietra Giordano: Arboreal Pollen record36; Gorgo Basso: Arboreal Pollen record34; Lake Trifoglietti: 
Arboreal Pollen record37; Tunisia: cumulative probability density plots of radiocarbon dates from �oods and 
extreme �uvial event units27; core RAPiD-12-1K: upper ocean density strati�cation proxy43, with three-point 
running mean in bold; Hólmsá (Iceland): loess grain size record41; NAO index calculated from Lake SS1220, 
Greenland11; NAO index calculated from Uamh an Tartair, NW Scotland32; NAO index calculated from Grotte 
de Piste, Morocco33. Yellow bands correspond to generally arid time intervals; blue bands indicate wet periods.
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negative NAO-like conditions (23 and references therein). Similar oscillations recorded in the North African dust 
inputs, measured from the Alboran Sea core ODP site 976, con�rm that the south-western Mediterranean region 
experienced intense centennial-scale changes in zonal winds26. �is pattern is also re�ected in the hydrological 
dynamics found in the CaCO3 record from Lake Sidi Ali in Morocco23 and in the curve of �oods and �uvial 
activity in western Iberia27 (Fig. 5). Recurrent hydrological changes can be also inferred by the arboreal pollen 
record from Hachlaf in the Middle Atlas28, which shows a good correspondence with the changes in forest cover 
of the MD95-2043 record (Fig. 5). In continental Iberia, a remarkable resilience of the pine-dominated vegetation 
to millennial scale climate �uctuations may have partly masked this pattern in pollen records29. Consistent with 
present day NAO impacts described by Marshall et al.30, the Mediterranean northern borderlands experienced 
wet climate during phases of negative NAO-like conditions, as demonstrated in central-northern Italy for exam-
ple by high lake levels from Lago dell’Accesa and phases of glacier advancements in the Apennines31.

Conversely, at Gaeta the main forest decline events, suggesting phases of decreased precipitation, corre-
spond to phases of negative or declining positive values of NAO index20, as it appears from the three curves of 
NAO index reconstruction represented in Fig. 511,32,33. Other pollen records from the south-central Mediterranean 
con�rm the Gaeta pattern. �e Sicilian sites of Gorgo Basso34, Biviere di Gela35, and Urgo Pietra Giordano36 show 
a remarkable consistency with the forest openings found at Gaeta at 4750–4100, 2900-2300, 1150-800, and 400-
150 cal BP (Fig. 5). Although in the original publications these phases of forest decline were mostly interpreted 
as e�ects of human activity, the regional synchronicity of the vegetation dynamics points to a concomitant, or 
even predominant, in�uence of climate. �e pollen record from Trifoglietti in S Italy37 precisely matches the 
openings at 2900-2300, 1150-800, and 400-150 cal BP, while the forest decline at 4750-4100 cal BP appears slightly 
earlier, being found at 5200-4500 cal BP (Fig. 5). At Lago Grande di Monticchio, the 4.2 ka event is not clearly 
visible, but a slight decline occurs at 2900-2400 cal BP and a reduction in forest is found at 1100 cal  BP38. By 
contrast, the 4700-4100 cal BP event is clearly visible in tree records from the marine core MD04-2797CQ from 
the Siculo-Tunisian Strait4, and from the coastal sites of Lago Alimini Piccolo10 and Lago Battaglia39. Besides, the 
decreases in �oods and �uvial activity from Tunisia27 generally match the forest openings in the pollen records 
from the south-central Mediterranean (Fig. 5).

�e late Holocene vegetation changes recorded in Mediterranean sites are mostly explained by human activ-
ity, which is taken for granted since agro-pastoral and silvicultural practices, forest clearance, �res and human 
settlements are documented up to present time. For example, a dramatic lowering of lake level at Lake Preola in 
Sicily40, coeval to a decline in forest vegetation also recorded in the other Sicilian sites, was interpreted as a possi-
ble e�ect of human activity due to overexploitation of water resources for cultivation36, despite the contemporary 
occurrence of the well-known 4.2 ka “Bond 3” climate event. Our data suggest that near-coeval forest �uctuations, 
recorded over wide Mediterranean regions, were cadenced by well-known climate �uctuations, identi�ed also by 
independent climate proxies at a global scale, thus emphasizing the role of climate on the vegetational landscape.

�e Gaeta record shows an excellent correspondence with proxy records of wind strength and precipitation 
at high North Atlantic latitudes (Fig. 5). During intervals of prevailing strong westerly �ow, a northward shi� of 
Atlantic storm tracks resulted in both greater wind intensities over Iceland (grain size record from the Hólmsá 

Figure 6. Tentative reconstruction of atmospheric con�gurations over Europe and North Africa in 
correspondence with negative (le�) and positive (right) NAO index. Blue arrows indicate the direction and 
intensity of storm tracks. Possible positions of the Azores High, North African High, Central European High, 
and Icelandic Low are also indicated, together with low pressure areas with precipitations. �e Gaeta record is 
represented by a red dot, sites shown in Fig. 5 by yellow dots and other sites mentioned in the text by green dots. 
�e background map (Mollweide projection) was retrieved from Natural Earth, a free vector and raster map data 
of public domain (http://www.naturalearthdata.com). �e �nal map was generated using both Corel Draw Suite 
X8 (https://www.coreldraw.com) and QGIS version 2.18.15 ‘Las Palmas’ (QGIS Development Team, 2017. QGIS 
Geographic Information System. Open Source Geospatial Foundation Project https://www.qgis.org/it/site/).

http://www.naturalearthdata.com
https://www.coreldraw.com
https://www.qgis.org/it/site/
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loess pro�le in southern Iceland41) and higher winter precipitation in Norway (past glacier �uctuations in north-
ern Folgefonna42). �ese millennial-scale �uctuations also match the upper ocean density strati�cation in the 
subpolar North Atlantic core RAPiD-12-1K, where increased (decreased) strati�cation occurred during intervals 
of inferred weak (strong) zonal �ow43 (Fig. 5). In support of this climatic teleconnection, besides the Gaeta record, 
we found a statistically signi�cant ~1800-year cycle also in the south-central Mediterranean pollen record from 
Biviere di Gela35 and in the density di�erence record from North Atlantic core RAPiD-12-1K43, whose REDFIT 
analyses are reported in Supplementary Fig. S1. Summarizing, during intervals of positive NAO index there was 
increased moisture both in the south-central Mediterranean and at high North Atlantic latitudes, as indicated by 
forest expansions and other climate proxies. At the same time, dry conditions, determining openings of forests, 
are recorded in south-western and in north-central Mediterranean (Fig. 6).

�e precipitation patterns found in the Mediterranean may be explained in di�erent ways, involving the 
Atlantic climate system and/or the subtropical atmospheric circulation, acting in di�erent seasons.

Atlantic climate processes. The alternation of forest increases and declines in the south-central 
Mediterranean may represent the e�ect of periodic variations and latitudinal/longitudinal displacement of the 
North Atlantic pressure centers and the westerlies, with consequent changeable penetration of storm tracks into 
the Mediterranean region, in relation to the prevailing or predominant phases of NAO-like circulation (Fig. 6).

A weakened westerly �ow (NAO negative), resulting in a convergence of winter Atlantic storm tracks into 
central-western Europe may have promoted increased winter precipitation and forest development in the western 
Mediterranean (Fig. 6). At the same time, a weakened westerly �ow may have led to a reduction of the Icelandic 
winds and precipitation over western Norway and of forest development and precipitation in the south-central 
Mediterranean. Although a correlation of a negative NAO index with decreased humidity in the south-central 
Mediterranean is not always predicted by recent climatological data15, the consistency of the Gaeta pollen record 
with the NAO index curves and proxies is a valuable hint in support of this hypothesis for the past. Based on mod-
ern data, a positive correlation between NAO and precipitation was documented by Brandimarte et al.17 in eastern 
Sicily, ca. 3 degrees south of the Gulf of Gaeta. In the past, this positive correlation may have in�uenced more 
northerly regions, as latitudinal �uctuations of contrasting hydrological sectors may be expected in response to 
changing NAO5 and the spatial centres of climate impact may vary over time.

Another possible explanation for the aridity phases in the south-central Mediterranean involves the exten-
sion and location of the North African anticyclone, o�en neglected in palaeoclimatic models, but well-known to 
meteorologists for the torrid temperatures and dryness it may induce especially in summer (cf. Spring/Summer 
2012 and 2017). At 4.2 ka cal BP, a weak NAO circulation (NAO negative) appears to correspond to a prolonged 
position of the North African anticyclone on the south-central Mediterranean10,20, which in turn may have 
represented an important atmospheric blocking for the westerly storm track (Fig. 6). �is interaction between 
NAO circulation and North African anticyclone dynamics may have enhanced the climate contrast between the 
south-central Mediterranean and the regions in northern-central and western Mediterranean. Similar atmos-
pheric con�gurations possibly occurred also during other negative NAO phase intervals, such as the 2.8 ka cal 
BP and the LIA. �e establishment of atmospheric blockings in North Atlantic and North Africa during negative 
NAO phases, highlighted by the model of Shabbar et al.44, seems to support this atmospheric con�guration.

An interaction between NAO phases and North African high pressures is re�ected in Saharan dust records of 
Mediterranean Northwest Africa: Zielhofer et al.45 show a strong relationship between late Holocene dust peaks, 
positive NAO, and Saharan air circulation, concomitant with western Mediterranean arid phases. A combined 
activity of NAO circulation and extension/migration of the North African anticyclone accounting for the aridity 
phases in the western Mediterranean, may explain the observed opposite climate pattern.

�e structure and climate impact of the NAO may be also signi�cantly in�uenced by the East Atlantic (EA) 
pattern, which can modulate the precipitation over Europe and play a role in the positioning of the primary North 
Atlantic storm track and jet streams46,47. A�er the NAO, the EA represents the dominant mode of winter precip-
itation variability in the Mediterranean region, and, unlike the NAO, the EA accounts for opposed precipitation 
patterns between the west and south-central Mediterranean sectors48. �e interplay of NAO and EA with the same 
phase may account for similar precipitation patterns between Northern Europe and south-central Mediterranean 
and opposite precipitation patterns between south-central Mediterranean and western Mediterranean49, as those 
recorded in Fig. 5. NAO-EA con�guration phases may have been in�uenced also by solar activity, since solar 
irradiance was suggested to determine the sign of the EA phase, with negative (positive) phases associated with 
low (high) solar irradiance, as probably occurred during LIA (and MCA)49. �us, the decreases in precipitation 
recorded in central Mediterranean, most of which correspond to solar grand minima50 and negative NAO index 
(Fig. 5), may represent phases of both negative NAO and EA, so supporting the di�erent precipitation spatial 
patterns.

A di�erent distribution of the local cyclogenesis may also account for this pattern. �ere are two types of 
cyclogenesis in the Mediterranean: one acting in Winter, which is strongly dependent on North Atlantic synoptic 
activity in�uenced by NAO, and the other mostly acting in summer, with local precipitation cells developed in 
relation to air-sea temperature contrasts19. �e Gulf of Genoa, in the central Mediterranean, represents by far the 
most active area in the whole Mediterranean Basin in winter, between November and February. In contrast, one 
of the most active areas of Summer cyclogenesis is located in the Iberian Peninsula. �is opposite cyclogenesis 
seasonality may have determined di�erent responses of vegetation in the western and central Mediterranean 
in the past and may represent a topic for future palaeoclimate research.
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Subtropical and global climate processes. Climate factors in�uencing the tropical and subtropical 
regions may have also played a role in determining the observed climatic pattern, especially the ITCZ latitudinal 
shi�s.

Strong covariation between ITCZ position and NAO records reveals a tight coupling between these two syn-
optic weather and climate phenomena over decadal-to-centennial timescales51. Southward migrations of the 
ITCZ occur when the North Atlantic region is relatively cold, during Bond events corresponding to negative 
NAO index, owing to enhanced high-latitude ice cover and a slowdown of the AMOC51,52. In correspondence 
with the Atlantic cooling phases, for example during the 4.2 ka event and the LIA, corresponding to Bond events 
3 and 0, respectively, the ITCZ migrated southward determining planetary climate changes53–55, revealed also by 
the deforestation events in the Gaeta pollen record (Fig. 5).

In addition, the recurrence of a ca. 1800-year cycle in many records around the world22 points to global cli-
mate factors as possible forcing for the observed precipitation pattern of the Mediterranean. Two main candidates 
may be the external forcing by solar activity changes and the internal long-term ocean/atmosphere feedbacks of 
the THC/AMOC.

Solar activity, which shows inherent periodic changes at millennial to decadal time scales, is able to modulate 
both NAO and the position of the ITCZ56. In the central Mediterranean, these cycles in�uence both hydrological 
and environmental conditions57, which in turn a�ect vegetation58,59. At a millennial scale, fundamental solar 
cycles are found at 2300-yr (Hallstattzeit cycle) and 1000-yr (Eddy cycle). However, Soon et al.22 suggest the 
possibility that also a ca. 1800-yr cycle may be related to solar forcing, possibly representing a fundamental cycle 
connected to intrinsic variations in solar radiative and charged particle output.

Soon et al.22 also speculate that the 1800-yr cycle may be of derived nature, representing an internal threshold 
response of the THC/AMOC circulation to external solar forcing, able to promote signi�cant climate �uctuations 
around the globe. A recent model documents positive feedbacks between the AMOC and the NAO, which shows 
a coupled variability and quasi-synchronous interactions60. In the central Mediterranean Basin, the in�uence of 
AMOC is evoked to explain climatically-driven environmental changes related to the advection of moisture, pos-
sibly resulting from variability in the strength and latitudinal trajectory of the westerlies, most of which chrono-
logically consistent with forest declines in the south-central Mediterranean pollen sites considered in this work31.

Although much work is still required to characterize fully the nature of these intricate climate interac-
tions, growing evidence suggests that the periodicity of ca. 1800-yr found in Gaeta (Figs 3–5) and in other 
Mediterranean records (Figs 5 and S1) may be a prominent expression of the global climate.

Conclusion
�e new detailed and chronologically well-constrained pollen record from the Gulf of Gaeta, in the Tyrrhenian 
Sea, has revealed a recurrent pattern of forest dynamics with a cyclicity of approx. 1860 years. �e vegetation 
development at Gaeta is consistent with other pollen records from the south-central Mediterranean, a region 
especially sensitive to climate change, being under the in�uence of both the North Atlantic circulation and the 
high-pressure system of North Africa. In fact, some of the forest declines previously attributed to anthropogenic 
impact may be linked to this slow-changing component of moisture availability for plant growth. At the same 
time, the Gaeta record shows a striking antiphase correspondence with the pollen record from core MD95-2043 
in the Alboran Sea, in south-western Mediterranean. �is contrasting pattern is con�rmed by other climate proxy 
records from the south-central and south-western Mediterranean, respectively, including carbonate in sediments 
and �uvial activity, which show alternate wet and dry phases during the last 6000 years. At much higher latitudes, 
in Iceland and Norway, a succession of environmental changes and periodicity similar to the Gaeta record have 
also been observed.

�e correspondence in the series of events of such di�erent records suggests that the explanation of the recur-
rent palaeoenvironmental changes at Gaeta may have implications well beyond site-speci�c interests. �us, we 
have reached the following conclusions:

•	 Periodicity: the Gaeta record contributes to a growing body of evidence supporting the existence of a ca 1800 
yr climate �uctuation during the mid- to late Holocene. Although it is necessary to document in di�erent 
paleoenvironmental frameworks the nature of this climate periodicity, the convergence of many di�erent 
sources of evidence towards a 1800-yr cycle strongly suggests that the recurrent vegetation changes in the 
Gaeta record may have been induced by large-scale changes in climate modes, linked either to changes in 
solar activity and/or AMOC intensity, in�uencing the water availability needed for forest expansions.

•	 Spatio-temporal pattern: the evidence for millennial scale variability in the Gaeta vegetation encompasses 
the late Holocene, despite a widespread human activity on the territory, which induced a general decline in 
the forest cover without completely obliterating recurrent vegetation dynamics driven by natural factors at a 
regional scale. Although the human impact has exerted an ever-increasing pressure on the natural landscape, 
the �uctuations in the forest vegetation appear strongly cadenced by climate changes identi�ed also in other 
proxy records. �e same patterns are detected not only in marine pollen records, but also in lacustrine sites, 
and in other palaeohydrological independent proxy-records from the south-central Mediterranean, latitudi-
nally ranging from Tunisia to southern Italy. �ese records clearly show dry intervals in correspondence with 
speci�c well-known climate events, including the 4.2 ka event, the Medieval Climate Anomaly and the Little 
Ice Age, but also highlight the relevance of other climate spells, o�en neglected in the literature including, 
for example, a deforestation coeval to the so-called “Bond 2” event around 2.8 ka cal BP. �e clearly opposed 
trends observed in several palaeohydrological records from the south-western Mediterranean, indicating 
generally wet climate conditions during the dry spells found in the Gaeta record, suggest that di�erent expres-
sions of climate modes occurred in the south-western and south-central Mediterranean at the same time. 
Complex spatial patterns of atmospheric circulation may have acted over the Mediterranean regions.
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•	 Climate processes: a clear temporal correspondence between phases with negative (positive) NAO index and 
forest declines (increases) in the Gaeta pollen record indicates that the prevailing or predominant phases of 
NAO-like circulation were prominent factors inducing hydrological variations in the south-central Med-
iterranean, through changes in zonal winds and di�erent storm track penetration. However, the observed 
contrasting hydrologic regimes and vegetation dynamics point also to more complex con�guration of the 
atmospheric circulation, including the EA pattern and its interplay with the NAO, as well as the North Afri-
can anticyclone dynamics. At a larger geographical scale, considering the tropical engine, displacement of 
the ITCZ may also have indirectly in�uenced the recurrent changes observed in the palaeoenvironmental 
records.

�e new palaeoenvironmental data from the south-central Mediterranean con�rms a higher latitudinal and 
longitudinal complexity of atmospheric circulation patterns than generally supposed, and an intricate interaction 
of several forcing factors. A consequence of this complexity is that it may not be appropriate to include tout-court 
“the Mediterranean” in the models of past climate variability, because, in the past as at present, the expression of 
atmospheric patterns was di�erent in the south-western and south-central Mediterranean.

Part of the challenge for the future research on millennial scale climate variability of the Mediterranean is 
unravelling the seasonal components and linkages between temperate (wintertime) systems and the tropical 
(summertime) systems. Although di�erent parts of the Mediterranean show contrasting moisture signals, they 
may also be re�ecting subtle di�erences in the seasonal timing of precipitation generation, which new models 
will have to be able to predict, also in the light of the strong seasonal feature of the Mediterranean cyclogenesis 
centers.

Materials and Methods
Sampling. �e record from the Gulf of Gaeta is composed of the two cores SW104_C5 (40°58′24.993″N, 
13°47′03.040″E; 108 cm long) and C5 (40°58′24.953″N, 13°47′02.514″E; 710 cm long), recovered at a distance of 
15 km from the Campanian coast (central Tyrrhenian Sea) at 93 m below sea level and ca. 10 m from each other, 
during the AMICA2013 oceanographic cruise onboard the R/V Urania of CNR6 (Figs 1 and 2). �e stratigraphic 
correlation of the two cores was based on magnetic susceptibility signals and was facilitated by the recognition of 
a distinct common peak in magnetic susceptibility of the two cores, found at 61 and 48 cm depth in SW104_C5 
core and C5 core, respectively, corresponding to the tephra layer of the Vesuvius eruption dated at 19066.

Chronology. �e chronology of the sedimentary record is mostly based on 210Pb and 137Cs radionuclides 
measurements for the uppermost 60 cm and the identi�cation, supported by geochemical analyses, of �ve tephra 
layers at the depths of 53, 319, 403, 414 and 437 cm, namely: Vesuvius (1906 AD), Vateliero-Ischia (2.4–2.6 ka BP), 
Capo Miseno (3.7–3.9 ka BP), Astroni3 (4.1–4.3 ka BP), and Agnano M. Spina (4.42 ka BP)6. Radiocarbon dating 
is not available because of low carbon content in the sediments. �e age-depth model takes also into account 
reliable time-constrained biostratigraphic events speci�c to the Tyrhenian Sea, such as the peak in abundance of 
Globorotalia truncatulinoides le� coiled (1718 ± 10 yr AD) and the acme interval of Globigerinoides quadrilobatus 
(base 3.7 ± 0.048 ka BP, top 2.7 ± 0.048 ka BP). Other chronological tie points to set the age-model were also 
derived from the comparison of the δ18OG.ruber of our cores and the C90 core from the close Gulf of Salerno. �e 
good visual correlation between the δ18OG.ruber signal from our site with data from the southern Tyrrhenian Sea, 
Gulf of Taranto, Adriatic Sea, and the eastern Mediterranean strongly support the robustness of the proposed 
age-model6,20.

Pollen analysis. Pollen analysis was carried out on the uppermost 512 cm of the composite sequence, mostly 
composed of �ne-grained light grey hemipelagic sediments. A total of 100 samples were chemically treated with 
HCl (37%), HF (40%) and NaOH (20%). �e main percentage sum is based on terrestrial pollen excluding aquat-
ics and non-pollen palynomorphs. Excluding pollen of aquatics, fern spores and other non-pollen palynomorphs 
(NPPs), an average number of ca. 200 pollen grains of terrestrial plants per sample was counted. Pollen assem-
blage zones were visually determined. �e computer program Psimpoll 4.2761 was used to plot the pollen diagram.

Statistical analyses. A REDFIT spectral analysis62 and a Wavelet transform63 were applied to time series 
based on the Arboreal Pollen percentage values from the Gaeta record, in order to detect the possible occurrence 
of a fundamental tempo in the forest cover extent variability. REDFIT allows direct processing of unevenly spaced 
time series and, hence, the usual prerequisite of data interpolation is not required. �e REDFIT spectral analysis 
was carried out on the raw percentages of the Arboreal Pollen (AP) using PAST 3.13 so�ware64, through a Welch 
method with an oversampling factor of 3 and one data segment. �e time series was �tted to an AR1 red noise 
stochastic model, and the signi�cance of the frequency peak was tested using both a χ2 test and a Monte Carlo 
simulation.

�e Wavelet transform is a technique used for the identi�cation of spectral signatures in palaeoclimate time 
series, with the particular advantage of describing non-stationarities, i.e. discontinuities and changes in frequency 
or magnitude through time63. �is procedure requires continuous data with even spacing of points. For this rea-
son, prior to wavelet analysis the AP percentages of the Gaeta record were detrended using a smoothing spline 
method with PAST 3.1. �e new time series was obtained by interpolating the smoothed AP record every 50 
years, a time interval representing the mean time resolution of the original AP record. �is does not increase the 
number of degrees of freedom that make the cycles more statistically signi�cant than they actually are, so avoid-
ing temporal autocorrelation in the data. �e Morlet method was chosen for the continuous wavelet transform. 
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�e data series was zero-padded in order to avoid boundary e�ects and spectral leakage produced by the �nite 
length of the time series.

Data availability. �e data from Hachlaf29; Sidi Ali23; W Iberia �oods and extreme �uvial events27; MD95-
2043: temperate and Mediterranean forest record9; Biviere di Gela35; Urgo Pietra Giordano36; Gorgo Basso34; Lake 
Trifoglietti37; Tunisia: �oods and extreme �uvial events27; core RAPiD-12-1K upper ocean density strati�cation 
proxy43; Hólmsá (Iceland) loess grain size record41; NAO index from Lake SS1220, Greenland11; NAO index 
from Uamh an Tartair, NW Scotland32, and NAO index from Grotte de Piste, Morocco33 were recovered from the 
original publications.

�e pollen data from the Gulf of Gaeta (SW104_C5-C5)6,20 are available from the corresponding author on 
reasonable request.
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