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Holocene global mean surface 
temperature, a multi-method 
reconstruction approach
Darrell Kaufman  1 ✉, Nicholas McKay  1, Cody Routson  1, Michael Erb1, 

Christoph Dätwyler  2, Philipp S. Sommer  3,4, Oliver Heiri5 & Basil Davis3

An extensive new multi-proxy database of paleo-temperature time series (Temperature 12k) enables 
a more robust analysis of global mean surface temperature (GMST) and associated uncertainties 
than was previously available. We applied five different statistical methods to reconstruct the GMST 
of the past 12,000 years (Holocene). Each method used different approaches to averaging the 
globally distributed time series and to characterizing various sources of uncertainty, including proxy 

temperature, chronology and methodological choices. The results were aggregated to generate a multi-

method ensemble of plausible GMST and latitudinal-zone temperature reconstructions with a realistic 

range of uncertainties. The warmest 200-year-long interval took place around 6500 years ago when 
GMST was 0.7 °C (0.3, 1.8) warmer than the 19th Century (median, 5th, 95th percentiles). Following the 
Holocene global thermal maximum, GMST cooled at an average rate −0.08 °C per 1000 years (−0.24, 
−0.05). The multi-method ensembles and the code used to generate them highlight the utility of the 
Temperature 12k database, and they are now available for future use by studies aimed at understanding 
Holocene evolution of the Earth system.

Introduction
During the two millennia prior to the 20th Century, global mean surface temperature (GMST) cooled at a rate 
of roughly −0.15 °C per 1000 years1. Not well known, however, is: when did the multi-millennial cooling begin, 
and has recent global warming exceeded the maximum GMST of the Holocene? �e only previous GMST recon-
struction for the Holocene based on multi-proxy data2 showed maximum warmth around 7000 ± 2000 years 
ago (7 ± 2 ka BP, where ‘BP’ is relative to 1950) followed by multi-millennial global cooling. �is cooling trend 
occurred while the atmospheric concentrations of greenhouse gases were increasing. Liu et al. (ref. 3) coined the 
term “Holocene temperature conundrum” to highlight the contradiction between the cooling indicated by proxy 
evidence versus the warming simulated by global climate models, a trend reinforced in the most recent generation 
of climate models4.

A more extensive database of paleo temperature time series is now available5, enabling a more robust recon-
struction of the evolution of Holocene GMST and associated uncertainties than was available previously. More 
accurate constraints on the timing and magnitude of GMST are important for understanding how energy imbal-
ances (climate forcings) are enhanced or diminished by feedbacks in the Earth system. �e GMST reconstruction 
is also needed to place recent global climate change into the longer-term context of natural climate variability.

�e Holocene temperature reconstructions generated in this study are the basis of the current paper, which 
is an ‘Analysis’ article type used by Scienti�c Data to highlight data reuse, including the statistical methods and 
supporting source code used to derive the conclusions. �is Analysis complements the Temperature 12k data 
descriptor5, which explains the methods used to assemble the database and summarizes the major features of the 
underlying records. �e database is the most comprehensive global compilation of previously published Holocene 
proxy temperature time series currently available. It comprises a quality-controlled collection of high-resolution 
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time series (average sample spacing of 164 years) with well-established time scales (average of 1.0 age control 
points per 1000 years) that was selected from a much larger collection of temperature-sensitive proxy records. 
�e multi-proxy database includes a total of 1319 paleo-temperature records from 470 terrestrial and 209 marine 
sites where ecological, geochemical and biophysical proxy indicators have been used to infer past temperature 
changes. Among the variety of proxy types, alkenones and isotopes are the dominant sea-surface temperature 

SCC DCC GAM CPS PAI

Method includes:

Binning 100 yr 100 yr None 100 yr 100 yr

Time series aligning
Mean temperature of 5–3 
ka subtracted from each 
data point

Mean of each record iteratively 
adjusted to minimize 
di�erences among records 
within a latitude zone

Mean temperature of 5–3 
ka subtracted from each 
data point

Mean of random 3000-year-
long period (<7 ka) iteratively 
adjusted to minimize di�erences 
within a latitude zone

Not applicable

Variance standardizing Not applicable Not applicable Not applicable
±1 SD over random 3000-year 
period

Rank-based normalization

Target variance scaling Not applicable Not applicable Not applicable
2k reconstructions based on the 
same CPS procedure

2k temperature �eld 
reconstruction

Uncalibrated proxies No No No Yes Yes

Total records 761 782 761 824 824

Local gridding Yes No Yes No No

30° zonal bands Yes Yes Yes Yes Yes

Ensemble members 500 500 500 500 500

Uncertainties include:

Temperature calibration 
(Table 2)

Normal distribution Auto-correlation model Normal distribution Auto-correlation model Auto-correlation model

Chronology ±5% BAM GIBBS BAM BAM

Time-series alignment 
window

No (constant) Yes (variable) No (constant) Yes (variable) No (constant)

Target variance Not applicable Not applicable Not applicable
CPS-based 1000-year 
reconstruction

Field reconstruction over 
1000 yr

Mid-Holocene (6.5–5.5 ka) global mean temperature relative to 1800–1900:

Median (°C) 0.50 0.50 0.44 1.08 0.42

5th, 95th percentiles 0.20, 0.84 0.19, 0.79 0.10, 0.77 0.40, 1.84 0.22, 0.72

Table 1. Major features of the �ve reconstruction methods and their uncertainty estimates. SCC: Standard 

Calibrated Composite; DCC: Dynamic Calibrated Composite; GAM: General Additive Model; CPS: Composite 

Plus Scale; PAI: Pairwise Comparison.

Archive Type Proxy Type

Temperature uncertainty (°C)

Summer Winter Annual

marine sediment alkenone 1.7

marine sediment δ18O 2.1

marine sediment Mg/Ca 1.9 1.9 1.9

multiple archives TEX86 2.3

marine sediment foraminifera 1.3 1.4 1.3

marine sediment dinocyst 1.7 1.2 1.2

multiple archives diatom 1.1

marine sediment radiolaria 1.2

multiple archives pollen 2.0 3.0 2.1

multiple archives GDGTa 2.9

multiple archives stable isotopes default

lake sediment variousb default

lake sediment chironomid 1.4

glacier ice variousc default

midden macrofossils default

wood tree ring width default

Table 2. Uncertainties used for proxy-based temperatures in this study. �e individual studies used to derive 
these values are in Supplemental Table 1. aMBT'5Me, MBT’'-CBT, MBT-CBT, MBT/CBT, Branched GDGT 
Fractional Abundance. bBSi, TOC, chlorophyll, particle size, Mg/Ca, diatom, alkenone. cmelt-layer frequency, 
borehole, gas, isotope di�usion, bubble frequency.
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proxies, whereas pollen and chironomids are the most common terrestrial temperature proxy types. Most of the 
records (97%) are available as quantitative temperature reconstructions calibrated to °C, whereas the remaining 
42 records represent non-quantitative temperature-sensitive proxy records.

�ere is no currently accepted best approach to reconstructing GMST based on multi-proxy data. Multiple 
statistical procedures have been developed to generate time series of paleoclimate variables over large regions 
and to quantify their uncertainties. Because each one is based on di�erent assumptions and procedures, they 
can result in di�erent reconstructions (e.g., refs. 1,6). Here, we apply �ve di�erent statistical methods to the 
Temperature 12k database to reconstruct global and latitudinal temperatures over the past 12,000 years. �e 
analysis quanti�es the extent to which the overall result depends on the choice of reconstruction procedures. �e 
resulting multi-method ensemble of plausible temperature histories captures the integrated uncertainties associ-
ated with multiple sources of errors and methodological choices.

Results
Global mean surface temperature reconstructions. Composites. �e �ve reconstruction methods 
used in this analysis are all variations on compositing (aka, ‘stacking’) aimed at quantifying the average temporal 
patterns in the underlying proxy data. �e major features of each method are listed in Table 1. �ey result in time 
series (index) rather than spatially resolved �eld reconstructions. Two of the methods — composite plus scale 
(CPS) and pairwise comparison (PAI) — generate composites by standardizing the temperature variance across 
proxy time series, then restoring it to a target value at the aggregated level. �e term “scaling” is used in this paper 
to refer to matching the variance of a composite to that of a target, a technique commonly used for large-scale 
climate reconstructions that rely on proxy data that have not been calibrated to temperature, including those 
focusing on the past millenium1,6,7. In contrast, three of the methods — standard calibrated composite (SCC), 
dynamic calibrated composite (DCC), and generalized additive model (GAM) — generate composites using 
the native variance of the calibrated proxy data, without scaling. �ese methods apply to the 97% of the proxy 
records in the database that are presented in units of °C. Each of the methods requires many choices involving the 
speci�c procedures and formulas that are used to generate the reconstructions and their associated uncertainties. 
Generally, when there was no clear justi�cation otherwise, we chose di�erent alternative procedures for analo-
gous steps among methods, with the goal of expanding the range of plausible outcomes.

Among the procedures applied consistently across all �ve methods was the area-weighting of latitude-zone 
composites to generate the global composite of proxy records. Speci�cally, the GMST was calculated as the mean 
of the six 30° latitude averages, each weighted by the proportion of Earth’s surface area represented by that band 
(0.067, 0.183, and 0.25 for the high, middle, and low latitude bands, respectively, assuming a spherical Earth). �is 
approach reduces the spatial bias of sample sites in the Northern Hemisphere while providing insights into the 
Holocene evolution of the latitudinal temperature gradient (cf. ref. 8).

Uncertainties. For each method, a 500-member ensemble of plausible reconstructions was generated to facilitate 
a probabilistic analysis of uncertainties. Ensembles were generated for all methods by sampling uncertainties 
related to chronology and proxy-inferred temperatures for the individual records. In addition, ensembles for 
some methods re�ect di�erent choices for selecting the time window over which to align temperatures. �e two 
methods that rely on variance scaling also incorporate uncertainties in the reconstruction target. For the proxy 
temperature errors, we followed previous paleoclimate syntheses aimed at large-scale reconstructions (e.g., ref. 2) 
by applying a single uncertainty estimate to each proxy type. �ese global proxy uncertainties (Table 2) are based 
on values reported in the literature, along with the output of Bayesian-formulated calibrations for four of the 
marine proxy types (Supplemental Table 1).

Reference period. �e mean temperature of the 1800–1900 bin of each composite was used as the pre-industrial 
reference period, that is, the mean 19th Century temperature was set to anomaly of 0 °C. In practice, the mean 
temperature of the entire record was �rst removed from each ensemble member, which avoids the issue of di�er-
ent reconstructions using di�erent internal reference periods. �en the ensemble median at 1800–1900 was sub-
tracted for each method separately, which avoids the issue of some individual records not including data within 
the 1800–1900 bin. �e mean temperature of the 19th Century, in turn, is essentially equivalent to the reference for 
pre-industrial times as stipulated by the Intergovernmental Panel on Climate Change (IPCC), namely 1850–1900. 
On the basis of the PAGES 2k multi-method ensemble median reconstruction1, the di�erence between the GMST 
of our reference century and the IPCC’s half century is –0.03 °C, essentially negligible for our purposes.

Similarities and differences among reconstructions. In Fig. 1, the median ensemble member for 
each of the �ve reconstruction methods is shown (columns) with uncertainty bands representing 90% of the 
ensemble members for each of the six latitudinal zone composites (rows). At the multi-millennial to millen-
nial scale, the di�erent methods all yielded similar overall shapes according to latitude, including the relative 
magnitude of warming during the �rst two millennia, the timing of peak warmth, and the relative magnitude 
of the multi-millennial cooling trend that followed. At the multi-centennial scale, the reconstructions from the 
di�erent methods show similarities as well. At 60–90°N, for example, the initial peak temperature at around 10 ka 
is followed by a reversal around 8.5 ka, which is exhibited in all but the smoother SCC reconstruction; this is suc-
ceeded by a second temperature maximum around 7 ka. �e major di�erences among the methods is the greater 
range of temperatures both within and among the latitudinal zones that are reconstructed by PAI and CPS, the 
two methods that rely on variance scaling. �ese two methods also generated the most contrasting uncertainty 
bands, which re�ects the di�erent procedures used to calculate them (Methods). �e reconstruction methods dif-
fer slightly in the number of records that are represented at each time step (Fig. 1), which also re�ects the di�erent 
procedures and associated limitations (Methods).
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In Fig. 2, the median of the ensembles for each method is shown along with the distribution of the combined, 
multi-method, 2500-member ensemble for each of the six latitudinal zones. �is �gure further illustrates the sim-
ilarities and di�erences among the outcomes of the reconstruction methods as described above. It also displays 
the annually resolved temperatures over the past 2000 years from the multi-method temperature-�eld recon-
struction of Neukom et al. (ref. 9), which was based on the PAGES 2k temperature database10.

Consensus global temperature reconstruction. In Fig. 3, the median of the ensembles for the GMST 
reconstruction from each of the �ve methods is shown along with the combined distribution of the 2500 ensem-
ble members. Because we do not have an objective means to determine which of the �ve reconstruction methods 
is most accurate, we combine the ensemble members from all methods to generate this consensus GMST recon-
struction, the same approach used by PAGES 2k Consortium (ref. 1) and Neukom et al. (ref. 9) in their 2000-year 
GMST reconstructions. �is 2500-member, multi-method ensemble incorporates uncertainties and di�erences 
that arise from di�erent reconstruction procedures and choices. We recommend that future users of this recon-
struction use the full ensemble when considering the plausible evolution of Holocene GMST. When representing 
the multi-method reconstruction as a single time series, the median of the ensemble may be the best, along with 
the 90% range of the ensemble to represent the uncertainty.

Timing and magnitude of peak Holocene global temperature. The combined 2500-member, 
multi-method ensemble was analyzed to determine the timing and magnitude of the peak GMST. To bracket the 
likely range of the temporal resolution of the GMST reconstruction, we focus on intervals of 1000 and 200 years, 
and quantify the di�erence in their magnitude and timing of peak warmth (Fig. 4). �e distribution of ensemble 
members shows that, on average, the warmest millennium of the Holocene was centered on 6.5 ka and was 0.6 °C 
(0.3, 1.5) warmer than the 1800–1900 reference period (based on the median of the individual ensemble mem-
bers, with 5th and 95th percentiles). �e warmest 200-year-long interval was also centered on 6.5 ka and was 0.7 °C 

Fig. 1 Reconstructed mean annual temperature for each of the �ve methods (columns) and six 30° latitude 
bands (rows). Colored lines are ensemble medians. �e uncertainties for each method take into account 
di�erent sources of errors as described in Methods and listed in Table 1. �e methods include Standard 
Calibrated Composite (SCC), Dynamic Calibrated Composite (DCC), Composite Plus Scale (CPS), Pairwise 
Comparison (PAI) and Generalized Additive Model (GAM). Temperature anomalies are relative to 1800–1900. 
�e number of proxy records represented within each 100-year time step is shown in the sixth column (sample 
depth). Light-grey vertical bars are the number of records calibrated to temperature and the dark-grey bars 
are the number of non-calibrated proxy records. �e actual number of records used di�ers slightly among the 
reconstruction methods depending on limitations of each.
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(0.3, 1.8) warmer than the 19th Century. �erefore, there is little di�erence in the timing and magnitude of peak 
warmth when evaluated for either the centennial or the millennial time scale.

�e distribution of peak global temperatures during the Holocene can also be compared with recent tempera-
tures. �e GMST of the past decade (2011–2019) averaged 1 °C higher than 1850–190011. For 80% of the ensemble 
members, no 200-year interval during the past 12,000 years exceeded the warmth of the most recent decade. 
For the other 20% of the cases, which are primarily from the CPS reconstruction, at least one 200-year interval 
exceeded the recent decade. �is comparison is conservative in context of temperatures projected for the rest of 
this century and beyond, which are very likely to exceed 1 °C above pre-industrial temperature12. Such projections 
place the temperature of the last decade into a long-term context that is more comparable with the Holocene 
GMST reconstruction. Furthermore, if the reconstruction is in�uenced by a Northern Hemisphere summer bias 
(discussed below), then the peak warmth would be overestimated and the recent warming would therefore stand 
out even more in comparison.

Nonetheless, comparing average temperatures between intervals of di�erent durations can be problematic 
because shorter intervals tend to capture more variability (including maximum warmth) than when time series 
are averaged over longer intervals. In addition, age inaccuracies that exceed the scale of the sample binning can 
lead to smoothing when records are averaged. And even well-dated proxy time series based on marine and lake 
sediments are o�en smoothed by biological and physical processes that disturb the sediment-water interface, 
thereby time-averaging the paleo-environmental signal, which can further reduce the variability represented by 
the proxy record13. �e relatively minor warming during the 20th Century in our reconstructions can probably 
be attributed to these processes and to the likelihood that samples within the 20th Century bin are biased toward 
the early part of the century because recovering the very top of an aquatic sedimentary sequence with high water 
content can be challenging14.

Cooling trend following peak warmth. �e multi-method ensemble was further analyzed to determine 
the rate of cooling following the global Holocene thermal maximum. For this analysis we used the ensemble 
members from each of the six latitude zones so the trends in the two hemispheres could be treated separately. 
A least-squares linear regression was used to quantify the temperature trend between 6.0 and 0.1 ka in each 
ensemble member, where 0.1 ka is represented by the 1800–1900 time step. �e results show (Fig. 5) that, for 

Fig. 2 Reconstructed mean annual temperatures from the Temperature 12k database using di�erent 
reconstruction methods for each of the six 30° latitude bands. Colored lines are the ensemble medians of each 
of the �ve reconstruction methods (abbreviations de�ned in Fig. 1 caption). Gray shading represents every 5th 
percentile of the 2500 ensemble members from all methods; the 5th and 95th percentiles are indicated by dotted 
lines. �e �ne blue line is the median latitude-band 2000-year, multi-model temperature �eld reconstruction 
from Neukom et al. (ref. 9), which was based on data from PAGES 2k Consortium (ref. 10). Latitude-band 
temperatures from ERA-20C (ref. 26) (black) are also shown. Temperature anomalies are relative to 1800–1900.
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Fig. 3 Global mean surface temperature from the Temperature 12k database using di�erent reconstruction 
methods. �e �ne black line is instrumental data for 1900–2010 from the ERA-20C reanalysis product26. �e 
inset displays an enlarged view of the past 2000 years. See Fig. 2 for additional explanation.

Fig. 4 Magnitude and timing of peak temperatures from all 2500 members of the multi-model ensemble. 
(a) Warmest 1000-year (red) and 200-year-long (blue) intervals of the Holocene (colors), along with the 
temperature of the 1100-year period centered on 6 ka (black outline). Temperature relative to 1800–1900 
reference period. (b) Timing of warmest 1000-year (red) and 200-year-long (blue) intervals. Values represent 
the mid-point of the time window. Dotted vertical lines are medians. Medians and 90th percentile ranges are 
listed in the legends.
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the Northern Hemisphere, 100% of the 2500 ensemble members cooled following 6 ka, with an area-weighted 
average rate of −0.10 °C per 1000 years (−0.41, −0.07). For the Southern Hemisphere, 90% of the ensemble 
members cooled, with an area-weighted average rate of −0.04 °C per 1000 years (−0.11, 0.01). For the global 
reconstruction, 100% of the ensemble members show a cooling trend, with an average rate of −0.08 °C per 1000 
years (−0.24, −0.05).

Discussion
Among the �ve reconstruction methods, CPS stands out prominently with its large temperature changes (Fig. 3), 
especially in the Northern Hemisphere (Figs. 1 and 2). For example, the median ensemble member of the CPS 
reconstruction shows that GMST warmed by about 3.9 °C between 12 and 10 ka compared to about 1.1 °C for the 
other methods. �e median GMST during the period centered on 6 ka, the long-standing mid-Holocene target 
for paleoclimate modeling experiments (e.g., ref. 15) was 1.1 °C warmer than the 19th Century in the CPS recon-
struction compared to about 0.4–0.5 °C for the other methods (Table 1).

�ere are few published proxy-based reconstructions of Holocene GMST for comparison (Fig. 6). For the 
period of 12 to 10 ka, Shakun et al.’s (ref. 16) multi-proxy GMST reconstruction of the last deglacial transition 
shows a warming of about 1.3 °C. Similarly, Snyder’s (ref. 17) 2 Myr global temperature transformation of the 
marine oxygen-isotope record also indicates a warming of about 1.3 °C over this period. Both of these studies 
suggest that the early Holocene warming is exaggerated in the CPS reconstruction, by about a factor of three. For 
the mid Holocene (6.5–5.5 ka), Marcott et al.’s (ref. 2) reconstruction shows a GMST approximately 0.6 °C warmer 
than the 19th Century (Fig. 6), and another proxy-data compilation focused on the mid-Holocene (6 ka) shows 
average land and sea-surface temperatures that are essentially indistinguishable from pre-industrial (Fig. 1c in 
ref. 15). Both of these studies suggest that the mid Holocene warmth is exaggerated in the CPS reconstruction. 
�e recent pollen-based Holocene temperature reconstruction for North America and Europe18 also implies less 
mid-Holocene warming, although comparing global with regional reconstructions can be problematic.

Although it is an outlier, we do not have irrefutable evidence to exclude the CPS reconstruction, and cannot 
rule out the possibility that the other reconstruction methods underestimate the overall variance. �e outcome of 
the CPS method depends on the validity of the target used for scaling, which is di�cult to verify. �e high ampli-
tude of temperature changes reconstructed by CPS might re�ect chronological and other uncertainties that aver-
age out century-scale temperature variance during the compositing, thereby increasing the relative magnitude 
of millennial-scale variance in the composite. When the composite is then scaled to the reconstructions of the 
past two millennia, which have more realistic century-scale variance, the millennial-scale variance (and thus the 
long-term trends) are arti�cially in�ated. Nonetheless, as an independent approach, CPS contributes to a more 
complete sampling of the uncertainty space. We therefore retain CPS as one-��h of the multi-method ensemble, 
and we focus on the median rather than the mean as the best representation of the ensemble central tendency. 
Excluding CPS from the ensemble does little to in�uence the median GMST reconstruction. For example, the 
mid-Holocene (6.5–5.5 ka) ensemble median is only 0.05 °C cooler when excluding the CPS members; namely, 
the �ve-method median is 0.51 °C (0.19, 1.35) versus 0.46 °C (0.17, 0.79) when excluding CPS members.

Reconstructing past temperature from proxy data relies on important assumptions that di�er among proxy 
types and the methods used to convert proxy values to past temperatures, and can lead to biased or spurious 
results when violated19–21. �e general similarity between our GMST reconstruction and boreal summer inso-
lation might re�ect a bias that can arise when proxy types that are sensitive to summer conditions are scaled 

Fig. 5 Temperature trends from 6.0 ka to 0.1 ka based on linear regression of multi-method ensemble members. 
(a) Global mean. (b) Hemispheric means based on area-weighted averages of three zonal bands for each 
hemisphere. �e distribution of values for all 2500 ensemble members is shown, with median values marked as 
vertical lines. Medians and 90th percentile ranges are listed in the legends.
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to represent mean annual temperatures. �is e�ect has been suggested for previous mean annual temperature 
estimates based on pollen22 and br-GDGTs23 among other proxy types, and was considered a possible explanation 
for the Holocene temperature conundrum3. �e extent to which our GMST reconstruction is summer biased is 
di�cult to ascertain, but the available evidence suggests that any such bias is limited. First, although the recon-
structions in this analysis are based on site-level records that represent both annual and seasonal (summer or win-
ter) temperatures, �gure 8 of the Temperature 12k data descriptor5 shows that the global z-score composite that 
combines annual and seasonal records (n = 813) is indistinguishable from the composite based on annual records 
only (n = 612). Second, if the proxies are summer biased and if insolation was the dominant control on tempera-
ture, as simulated by climate models (e.g., ref. 24), then we would expect a long-term Holocene warming trend in 
the Southern Hemisphere, especially in the subtropics, which is not supported by our temperature reconstruc-
tions. Finally, a summer bias would be expected to in�uence di�erent proxy types di�erently, yet z-score com-
posites for each of the major proxy types in the Temperature 12k database show a similar shape (Fig. 4 in ref. 5).  
Similarly, we tested the in�uence of individual major proxy types by successively leaving one out of the GMST 
reconstructions and found that the overall pattern is not dependent on any one type. Moreover, temperature 
estimates based on pollen (the most abundant proxy type in the Temperature 12k database), which generally 
rely on conventional calibration methods keyed to modern training sets, are supported by temperature estimates 
from inverse modelling, an independent method that relies on a vegetation model to infer climate variables from 
a given vegetation community25.

Another potential issue in reconstructing GMST is the possible spatial bias of the sampling network. In this 
paper, the temperature histories of six 30°latitude bands were reconstructed separately and then averaged together 
with area weighting to mitigate the predominance of Northern Hemisphere proxies in the network. While this 

Fig. 6 (a) Multi-method median global mean surface temperature reconstruction from this study compared 
with previous reconstructions, and (b) locations of proxy data sites. Uncertainty bands are ± 1 SD and 16–84% 
range of the Temperature 12k multi-method ensemble. �e reconstruction of Marcott et al. (ref. 2) was binned 
into 120 year means, centered on the same years as the Temperature 12k reconstruction, and shi�ed to match 
our reference period of 1800–1900 (∆T = 0 °C). �e reconstruction of Shakun et al. (ref. 16) for the early 
Holocene was aligned to that of Marcott et al.’s (ref. 2) over their period of overlap.
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approach places increased emphasis on the relatively sparse Southern Hemisphere records, it keeps the Southern 
Hemisphere signal from being swamped by the more abundant Northern Hemisphere records. When processed 
this way, the general distribution of the Temperature 12k proxy network has been shown to accurately represent 
the GMST, as well as the average temperature of each of the six latitude bands (�gures 9 and 10 in ref. 5).

�e evolution of Holocene temperature reconstructed by the �ve methods are generally similar, although the 
amplitude of change is higher for CPS. �e multi-method median reconstruction is very similar to the only other 
available multi-proxy, Holocene GMST reconstruction2 (Fig. 6). Our reconstruction, which is based on much 
more proxy data and multiple statistical methods, reinforces the mismatch between higher-than-pre-industrial 
GMST as represented by the proxy data versus the lower-than-pre-industrial GMST as simulated by climate mod-
els3. Understanding what caused this mismatch will undoubtedly be the focus of subsequent studies.

Methods
Input data. Holocene proxy temperature. The temperature reconstructions are based on v.1.0.0 of the 
Temperature 12k database5. For the majority of the 679 sites in the database, time-series data are available for 
either di�erent proxy types or di�erent seasons, or both. �e analyses presented in this study are based on the 
subset of records that includes all proxy types, but only one seasonal record for each proxy type at a site. In other 
words, for proxy types with both annual and seasonal paleo-temperature time series, only the annual time series 
was used (‘Season General’ = ‘annual’ OR ‘summerOnly’ OR ‘winterOnly’). Included are 813 out of the 1339 
records of which approximately half (612) represent mean annual temperature and the others represent either 
summer or winter temperature.

Two-thousand-year proxy temperature. �e two reconstruction methods that rely on variance scaling (CPS and 
PAI) require a target for calibrating the normalized composite (in SD units) to temperature (in °C). We applied 
a di�erent scaling procedure to the two reconstruction methods to highlight their di�erences. Unsurprisingly, 
the choice of scaling method has a large in�uence on the outcome of the reconstructions, and explains most 
of the di�erence between CPS and PAI, including the uncertainty bands. Both methods rely on a global data-
base of proxy temperature records covering the past 2000 years (ref. 10) to bridge between the Holocene and the 
instrumental records. �e variance in PAI is scaled to 100-year mean composites from the past 1000 years in 
the temperature �eld reconstruction calculated using multiple methods (ref. 9). For CPS, we emulated the same 
CPS methodology used for the past 12k for the six latitudinal bands in the PAGES 2k database, and then scaled 
those annually resolved 2k composites to zonal means from 1901–2000 calculated from the ERA 20C reanalysis26.

Uncertainty estimates. Proxy-based temperatures. Quantifying  uncertainties associated with 
proxy-derived paleo-temperatures is challenging21, and there are no standard procedures for their calculation or 
reporting. Some studies characterize uncertainties based on measurement errors, some report apparent calibra-
tion uncertainty estimates, while others report more rigorously cross-validated uncertainty values (e.g., based on 
leave-one-out cross-validation, bootstrapping, split sampling). For this reason, we follow previous paleo-climate 
syntheses aimed at large-scale reconstructions (e.g., ref. 2) by applying a single uncertainty estimate to each proxy 
type. We surveyed the literature to compile published errors, while striving for global coverage (Supplemental 
Table 1). Final error values used for individual proxy types (Table 2) are an estimate of the standard deviation, 
usually reported as the root mean square error of prediction, or the standard deviation of modern residuals rel-
ative to an inference method applied within a calibration dataset. �ey were adopted from previous large-scale 
calibration datasets and compilations of proxy-based temperature inferences, or they were calculated as averaged 
values of errors from multiple, usually regional calibration datasets (Supplemental Table 1). For marine records 
based on alkenones (UK’37), Mg/Ca, TEX86, and δ18O, we also included uncertainties represented by ensembles 
derived from resampling in a Bayesian framework (see ref. 5 for details). �e values range from around ±1.2 °C 
for various marine microfossil assemblages (diatoms, radiolaria, dinocysts) to around ±3 °C for non-marine 
GDGTs and pollen-based winter temperatures. �e median uncertainty across all proxies and seasons is ±1.7 °C. 
For proxy types not included in our literature review, we simply used the relatively conservative 75th percentile of 
all values across the proxies and seasons (±2.1 °C). For the 42 non-calibrated proxy records (e.g., water isotopes), 
we used ±1 SD of the Holocene values as an assumed error on the standardized time series.

Chronology. Age control is a fundamental variable underlying paleoclimate time series. A comprehensive treat-
ment of the age uncertainty would require recalculating the age model for each record using a uniform approach. 
While this has been done for many records in the Temperature 12k database, the process has not yet been com-
pleted for all records. Here, we apply three alternative approaches to accounting for the likely e�ect of age errors, 
as described for each of the methods below.

Reconstruction method 1: Standard calibrated composite (SCC). �is procedure assumes that the 
temperature variance is accurate for all proxy time series. Calculations rely on values in °C rather than standard-
ized SD units. �e non-calibrated records in the Temperature 12k database were not used.

Aligning the time series. Many of the Holocene temperature records were originally published as temperature 
anomalies relative to di�erent reference periods, rather than as absolute temperatures. To place all time series 
on a comparable scale, they were adjusted relative to the multi-millennial interval common to the most records, 
namely between 5 and 3 ka. Records that do not overlap with this interval (n = 21) were excluded. �e time series 
were aligned by subtracting the mean temperature over this window from each data point within each time series. 
In other words, temperatures at this pre-compositing step were all expressed as relative to the 5–3 ka mean.
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Compositing. �e resulting time series were binned in 100-year intervals, and then gridded spatially using an 
equal-area grid (4000 total grid cells, each with area = 127,525 km2, following methods in ref. 8) to reduce the 
in�uence of clustered sites, especially in northern high latitudes. �e binned time series within each grid cell were 
averaged. �e gridded data were then averaged into six 30° latitudinal (zonal) bands.

Ensembling with uncertainties. An ensemble of time series was generated by sampling uncertainties in proxy 
values and chronology, which were added to each temperature data point for each record prior to binning and 
averaging. For temperature uncertainties, a random number was drawn from a normal distribution according to 
the proxy-speci�c values in Table 2. For age uncertainty, the age of each sample within a time series was multi-
plied by a random number drawn from a normal distribution with a mean of 1 and a standard deviation of 0.05 
(i.e., ±5% age uncertainty). To preserve the stratigraphic order of the time series, the same random value was 
applied to all samples. �e above process was repeated for 500 iterations to generate a probabilistic distribution 
for each zonal composite.

Reconstruction method 2: Dynamic calibrated composite (DCC). This procedure is similar 
to the SCC except, instead of using a single time window to align the records, this method applies a dynamic 
record-aligning procedure and it uses di�erent approaches to characterizing the uncertainties.

Aligning the time series. �e mean temperatures of each record were adjusted iteratively to optimally minimize 
the mean o�set between each record and all other records within each latitudinal band over the past 12,000 years. 
�is allowed time series with minimal or no overlap to be included in the composite, so all of the calibrated 
records in the database were used.

Compositing. No spatial gridding was applied, but the records were averaged within latitudinal bands.

Ensembling with uncertainties. For this method, errors in the proxy temperatures were either drawn from 
the posterior outputs of Bayesian temperature calibrations, where available in the database (n = 149, ref. 5), or 
simulated from the uncertainties summarized for each proxy type. For the simulation, the uncertainties were 
assumed to be auto-correlated, with an AR1 coe�cient of 0.71, such that 50% of the variance in the uncertainties 
is auto-correlated. �is model re�ects the contribution of correlated bias, as well as uncorrelated uncertainties. 
Age uncertainties were simulated using the Banded Age Model (BAM)27, with a Poisson model and symmetric 5% 
over- and under-counting probabilities. Although BAM is designed for layer-counted age modelling, it produces 
reasonable �rst-order estimates of age uncertainty, and only requires the original ages as input. To demonstrate 
this, we compared the BAM-based ensembles produced here to 108 proxy datasets with age models produced by 
Bacon28. �e root mean square error (RMSE) of the ensemble members was calculated relative to the median of 
each age ensemble over the past 12,000 years. �e Bacon models had a median (mean) RMSE of 198 (216) years, 
whereas the BAM models produced here had a median (mean) RMSE of 251 (260) years. We �nd that BAM pro-
duces age ensembles with uncertainty ranges that are comparable to, but slightly larger than Bacon for these data-
sets. Although BAM does not accurately represent the full uncertainty structure, it ultimately produces similar, 
and slightly more conservative, results. Before compositing, DCC randomly selected separate temperature and 
age ensemble members, thereby e�ectively propagating these uncertainties through the subsequent compositing 
steps.

Reconstruction method 3: Generalized additive model (GAM). �is method is closely related to 
SCC, but instead of computing the mean of the records within every 100-year interval, it �ts a generalized additive 
model (GAM) through the ensemble. �is model is then used to predict the temperature anomaly at a given time, 
as well as to generate the ensemble that re�ects the uncertainties in the proxy records.

Ensembling with uncertainties. For proxy temperature uncertainties, we applied the proxy-speci�c values in 
Table 2 using a normal distribution. For chronological uncertainties, we assumed a standard deviation of 250 
years at 12 ka, which decreased linearly to 50 years at 0 yr BP (1950). �e ensemble was then generated using a 
GIBBS sampling algorithm29, a method commonly used for Bayesian inference (e.g., ref. 30). �is algorithm is 
based on normal distributions for the individual samples (de�ned by the reported age and the associated age 
uncertainty) but each distribution is truncated such that the randomly sampled ages cannot be younger than the 
age of the previous (younger) sample nor older than the age of the consecutive (older) sample, thereby preserving 
the stratigraphic order of the time series.

Aligning and compositing the time series. All records within a grid cell were combined into a single time series 
by aligning the mean of the temperature ensemble with the overlapping time series ensemble of each of the 
records, starting with the longest time series. �e combined records within a grid cell were adjusted to a mean of 
zero between 5 and 3 ka. Grid cells whose ensemble was based on fewer than 100 samples over this period were 
excluded. For each grid cell, a linear GAM with a penalized B spline31 was �tted through the ensemble of sample 
ages and temperatures. �is model, which assumes a normal distribution, was then used to predict the expected 
value of the temperature anomaly for every 100 years, but only if there were more than 100 samples in the input 
ensemble within the 300-year interval around the target age. In addition, an ensemble of 500 members was gener-
ated as random samples from the posterior of the model. �e grid boxes in each of the 30° latitude bands (for the 
expected values and for each of the sampled posteriors) were then averaged to generate the zonal reconstructions. 
�ese expected values are shown as solid lines in Figs. 1 and 2, and the spatially averaged samples from the poste-
riors have been used to derive uncertainty intervals.
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Reconstruction method 4: Composite plus scale (CPS). �is procedure is widely used for index 
reconstructions of climate variables (e.g., ref. 1,7). It recognizes that the temperature variance in proxy records, 
which invariably contain non-climatic noise, is signi�cantly reduced when calibrated against instrumental time 
series and averaged to generate reconstructions (e.g., ref. 32). To help recover the lost variance, composites can be 
scaled to approximate that of a target with an accurate representation of variance.

Standardizing. Each time series was �rst standardized to have a mean of zero and a variance of ±1 SD (i.e., 
z-scores) over a random 3000-year-long interval younger than 7 ka. �e mean of each time series was then iter-
atively adjusted to optimally minimize the mean o�set between each standardized observation record and all of 
the other records within each latitudinal band.

Compositing. �e resulting time series were then binned in 100-year intervals and then averaged, without geo-
graphic gridding, to generate each zonal composite.

Scaling. The mean and variance of each composite extending back to 12 ka was scaled to match that of a 
1000-year-long target for the zone. �e target was reconstructed by applying the same procedure described to the 
data from PAGES 2k Consortium10, with 50 ensemble members, and a reference period of 100 years during the 
past 2000 years for aligning the time series. �e last millennium (1000–2000 CE) was used for scaling because the 
data density is very low in the �rst millennium for zonal bands south of 30° N latitude. �e targets were them-
selves calibrated over the 20th Century using the ERA-20C reanalysis product26 as an instrumental-based target. 
Each ensemble member in the 12k composite was scaled to a randomly selected target for the past 1000 years.

Ensembling with uncertainty. An ensemble of 500 composites was generated for each zone by repeating the 
above procedure while sampling across uncertainties in both chronology and temperature, following the same 
procedure as DCC, including a combination of Bayesian posteriors and the auto-correlation model for the 
temperature.

Reconstruction method 5: Pairwise comparison (PAI). �is procedure recognizes that proxy data are 
not a perfect representation of temperature, and that random and systematic errors can lead to uncertainties in 
calibrating proxy data to temperature. PAI relaxes the assumption that the proxy data are linearly related to tem-
perature and instead relies on the relative ranking of proxy values33.

Compositing. Each of the proxy time series was binned in 100-year intervals to simplify the computational 
demand by using evenly spaced temporal data, and to balance the in�uence of records, as PAI e�ectively weights 
each record as a function of the number of observations. �e PAI code of Hanhijärvi et al. (ref. 33) was used to 
compare the order of successive data points in each proxy time series, regardless of the units or reference periods, 
and to calculate the relative agreement of this ordering for all proxy records. �e strength of this agreement was 
used to reconstruct the relative changes in temperature through time. �e regularization parameter value was set 
to 1 and optimized until the log likelihood changed by less than 10−6%.

Scaling. �e mean and variance of each composite was scaled to match that of a 1000-year-long zonal target. �e 
2k target was extracted from the global temperature �eld reconstruction of Neukom et al. (ref. 9), which is based 
on the PAGES 2k Consortium (ref. 10) dataset and is represented by a multi-method ensemble.

Ensembling with uncertainty. An ensemble of 500 composites was generated for each zone by repeating the 
above procedure while sampling across uncertainties in both chronology and temperature, using the same 
procedure as DCC. To take into account scaling uncertainties, each 12k zonal composite was paired with, and 
scaled to, a di�erent 2k zonal target randomly selected from the multi-method ensemble of temperature �eld 
reconstructions.

Data availability
�e Temperature 12k database5 used to reconstruct the GMST is available in Linked Paleo Data format (LiPD) 
through the World Data Service (NOAA) Paleoclimatology34. �e LiPD framework comprises JSON formatted, 
standardized files that are machine-readable in multiple programming languages for querying and data 
extraction. Proxy temperature records for the past 2000 years were compiled by the PAGES 2k Consortium10 
and are available at: https://www.ncdc.noaa.gov/paleo/study/21171. �e ERA-20C instrumental data reanalysis 
product is available at https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-20c.

�e primary outcomes for this study, including the ensemble temperature reconstructions for each method by 
latitude zone and globally are available as individual CSV �les and merged as a netCDF �le at �gshare35 and at 
NOAA Palaeoclimatology36 (https://www.ncdc.noaa.gov/paleo/study/29712). A CSV �le with the multi-method 
ensemble median and 5th and 95th percentiles for the latitudinal and global reconstructions is also available at 
both data repositories. Also available is the new ensemble of proxy time series generated for this paper by using 
BAM for age models and sampling uncertainties in the temperature domain, as described in Methods.

Code availability
�e code for working with the LiPD data �les, including basic functions in three programming languages, is 
available on GitHub (https://github.com/nickmckay/LiPD-utilities). �e code used to compute the temperature 
reconstructions, including the ensembles and the composites, and to the code for generating Figs. 2–6, is available 
at: https://github.com/nickmckay/Temperature12k under a MIT license37.
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