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Abstract In most eukaryotes, the kinetochore protein
complex assembles at a single locus termed the centro-
mere to attach chromosomes to spindle microtubules.
Holocentric chromosomes have the unusual property of
attaching to spindle microtubules along their entire
length. Our mechanistic understanding of holocentric
chromosome function is derived largely from studies in
the nematode Caenorhabditis elegans, but holocentric
chromosomes are found over a broad range of animal
and plant species. In this review, we describe how hol-
ocentricity may be identified through cytological and
molecular methods. By surveying the diversity of organ-
isms with holocentric chromosomes, we estimate that the

trait has arisen at least 13 independent times (four times in
plants and at least nine times in animals). Holocentric
chromosomes have inherent problems in meiosis because
bivalents can attach to spindles in a random fashion.
Interestingly, there are several solutions that have evolved
to allow accurate meiotic segregation of holocentric chro-
mosomes. Lastly, we describe how extensive genome
sequencing and experiments in nonmodel organisms
may allow holocentric chromosomes to shed light on
general principles of chromosome segregation.
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Introduction

The centromere is the chromosomal locus bound
by kinetochore proteins that connect eukaryotic
chromosomes to spindle microtubules during cell
division. In most eukaryotes, kinetochore proteins
assemble at a single location per chromosome. In
these “monocentric” chromosomes, the centromere
is visible as the primary constriction in large meta-
phase chromosomes. In select taxa, kinetochore
proteins bind along the entire length of the chro-
mosomes and microtubules can attach along most
of the poleward facing surface (Dernburg 2001;
Maddox et al. 2004; Guerra et al. 2010). First
described in cytogenetic experiments dating from
1935 (Schrader 1935), these “holocentric” chromo-
somes have also been called diffuse-kinetochore
chromosomes, holokinetic chromosomes, and poly-
kinetic chromosomes. These differences in nomen-
clature may reflect the difficulty of distinguishing
chromosomes with evenly distributed kinetochore
proteins from chromosomes that contain numerous
but discrete microtubule-binding sites (White 1973). For
the rest of this review, we will use the most common
term, i.e., holocentric chromosomes. Although hol-
ocentric chromosomes are found in a minority of
eukaryotes, their prevalence may be underestimated.
Many species are difficult to study cytologically. In
addition, there are a large number of uncharacterized
insect and nematode species whose phylogenetic posi-
tion suggest that they should have holocentric
chromosomes.

The nematode Caenorhabditis elegans is by far
the most well-studied holocentric organism. The
function of kinetochore proteins in this organism
has been reviewed elsewhere (Dernburg 2001;
Maddox et al. 2004). Almost nothing is known
about the biology of other holocentric species.
The primary goal of this review is to survey the
evolution of holocentric chromosomes throughout
eukaryotes, highlighting the fact that this property
has arisen many independent times. A crucial step
in adapting to the holocentric habit is alterations in
meiosis, and we describe how the fundamental
incompatibility between distributed microtubule-
binding sites and crossing-over can be resolved.
Lastly, we show how widespread genome sequenc-
ing can shed light on the function of holocentric
chromosomes.

Identification of holocentric chromosomes

How can we identify and confirm holocentricity?
Ideally, several criteria should be met. In species with
large chromosomes, cytogenetic methods are valuable
and are applicable to any organism in which individual
mitotic or meiotic chromosomes can be observed.
First, all chromosomes in a mitotic metaphase spread
must lack a primary constriction [a classic hallmark of
(sub-)metacentric chromosomes] (Fig. 1a). Second,
during mitotic anaphase, the sister chromatids must
migrate in parallel to the spindle poles, in contrast to
monocentric species in which pulling forces are
exerted on a single chromosomal point and chromo-
some arms trail behind (Fig. 1b). These two criteria are
historically the most common methods used to identi-
fy holocentric species.

Some species are amenable to detailed cytogenetic
manipulations that can diagnose holocentricity more
definitively. If a holocentric chromosome is frag-
mented, each individual fragment retains centromere
activity and can segregate to the poles (Fig. 1c).
Chromosomes can be broken by X-ray irradiation
(Hughes-Schrader and Schrader 1961), or more pre-
cisely by laser dissection (Fuková et al. 2007).
Chromosomal fragments must persist after breakage,
and micronuclei resulting from a failure to segregate
chromosome fragments should not be observed. One
problem of chromosome breakage techniques is that
DNA damage response pathways can induce cell-
cycle checkpoints or apoptosis, disallowing further
studies of such cells. Laser dissection is restricted to
a desired cell cycle phase (breaks are usually induced
during metaphase), which may be beneficial if check-
point activiation or apoptosis are cell-cycle stage
dependent. In select experimental systems such as grass-
hopper spermatocytes, individual chromosomes can be
manipulated using microdissection tips, and this could
serve as an ideal test of holocentricity (Paliulis and
Nicklas 2004). In principle, the ends of mitotic meta-
phase chromosomes should move freely in monocentric
chromsomes, whereas they should be resistant to such
physical stimulus in holocentric chromosomes (Doan
and Paliulis 2009) (Fig. 1d).

A more precise method to identify holocentric chro-
mosomes is is to visualize kinetochore proteins by immu-
nofluorescence microscopy. Holocentric chromosomes
will have kinetochore proteins bound along most if not
the entire length of a metaphase chromosome, whereas
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monocentric chromosomes will have a single discrete
focus of localization. Kinetochore proteins such as the
centromere-specific histone variant cenH3 (CENP-A in
human), or members of the NDC80 microtubule-binding
complex can be found from sequence analysis of most
eukaryote genomes, even though many kinetochore pro-
teins evolve too quickly for their orthologs to be detected
by protein sequence similarity (Talbert et al. 2004,
Meraldi et al. 2006). As sequencing becomes cheaper,
kinetochore proteins will be identified from more

putative holocentric organisms, and this approach is
likely to become more widespread. Once a reference
genome is available for a given organism, chromatin
immunoprecipitation followed by sequencing (ChIP-
seq) can reveal whether kinetochore proteins are bound
to a single centromere or to multiple locations on each
chromosome. This method has recently been pioneered
for holocentric organisms inC. elegans (Gassmann et al.
2012). As it is independent of cytology, ChIP-seq will
be an especially useful method in the many organisms
whose chromosomes are too small for reliable cytoge-
netic assays (many deeply diverged single-celled eukar-
yotes fall into this category).

Broad phylogenetic distribution of holocentric
chromosomes

Holocentric chromosomes have radically different pat-
terns of kinetochore protein deposition compared to
monocentric chromosomes and require substantial
changes in chromosome behavior to ensure accurate
meiosis. Given these facts, it is interesting to ask how
often this unusual chromosome structure has arisen
during eukaryotic evolution. Most holocentric organ-
isms were identified using cytology before molecular
methods became available, and only a small subset of
these studies used the more stringent method of chro-
mosome fragmentation. As mentioned above, cytoge-
netic identification of holocentricity is much easier for
large chromosomes. In all, 768 species have been
reported to have holocentric chromosomes (including

Fig. 1 How to diagnose holocentricity. a Monocentric chromo-
somes have a primary constriction. In metacentric chromo-
somes, the primary constriction is approximately equidistant
from both chromosomal ends, whereas the primary constriction
on acrocentric chromosomes is close to one of the ends. In
contrast, holocentric chromosomes lack a primary constriction.
b During anaphase, monocentric chromosome are pulled by
spindle microtubules from a single point where the kinetochore
is assembled. In holocentric chromosomes, the kinetochores are
assembled along the length of the chromosome, and during
anaphase, the two sister chromatids maintain their parallel rela-
tionship. c Upon chromosome fragmention, only two fragments
of a monocentric chromosome will retain kinetochore function
and segregate to the spindle poles. In holocentric chromosomes,
all fragments migrate to the poles. d Micromanipulation of
monocentric chromosome ends during metaphase results in the
movement of just the chromosome end. In contrast, in holocen-
tric chromosomes, where spindle microtubules display pulling
forces over the length chromosome, the entire chromosome will
be perturbed

R
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472 insects, 228 plants, 50 arachnids, and 18 nemat-
odes) (Supplementary Table 1). There are several
cases in which reports of holocentric chromosomes
have been later corrected by more careful cytological
studies, such as the moss Pleurozium schreberi and the
marine alga Spirogyra (Godward 1954; Vaarama
1954; Mughal and Godward 1973; Kuta et al. 1998,
2000). To reduce the possibility of false positives,
we focus on well-substantiated cases in this review,
especially those in clades with more than one holocen-
tric species. As molecular methods are applied to eukar-
yotes with small chromosomes, many additional
holocentric clades may be discovered. We cannot be
sure whether the last common ancestor of all eukaryotes
had mono- or holocentric chromosomes. However, we
infer by parsimony that monocentricity was the ances-
tral state. The sporadic and phylogenetically widespread
occurrence of holocentricity in the tree of life suggests
that the habit evolved from monocentric chromosomes
at least 13 independent times (Fig. 2).We summarize the
evolution of holocentric chromosomes in plants and
animals in separate sections below.

Holocentric chromosomes evolved at least four
independent times in plants

All known holocentric plant species belong to the
flowering plants (phylum Angiosperma) and include
both monocots and eudicots (Fig. 2). The holocentric
monocots predominantly belong to the rush grasses
(family Juncaceae) and sedges (family Cyperaceae)
(Luceño et al. 1998; Kuta et al. 2004). These include
the snowy woodrush Luzula nivea (Juncaceae), the
most well-studied holocentric plant. Not all genera in
Cyperaceae and Juncaceae are holocentric. For exam-
ple, localized centromeres were reported in the aquatic

Fig. 2 Holocentricity has evolved at least 13 times in animals
and plants. A depiction of the phylogenetic relationship of
species with reported holocentric chromosomes and their close
relatives with monocentric chromosomes is shown (Bremer
2002; Grimaldi and Engel 2005; Mitreva et al. 2005; De Ley
2006; Bradley et al. 2009; Regier et al. 2010; Maddison). The
most parsimonious estimates are that holocentricity has evolved
13 times (red circles) and monocentricity has evolved from a
holocentric ancestor two times (black circles). The clades that
consist of species with holocentric chromosomes are depicted
by red names, whereas clades that consist of species with
monocentric chromosomes are depicted by black names. The
green names represent clades for which no karyotype data exists

b

582 D.P. Melters et al.



grass genus Scirpus (Nijalingappa 1974). Flowering
perennial herbs from the genus Chionographis (family
Melanthiaceae) (Tanaka and Tanaka 1977) also con-
tain holocentric chromosomes.

Holocentric eudicots are limited to two genera:
Drosera or sundews (family Droseraceae) and
Cuscuta or dodders (family Convulvulaceae) (oddly,
both are parasitic in nature). Cuscuta contains three
subgenera, Cuscuta subgenus Cuscuta, Cuscuta sub-
genus Grammica, and Cuscuta subgenus Monogyna.
Only the subgenus Cuscuta and one species in the
subgenus Grammica are holocentric, offering an
attractive opportunity for comparative genomics
(Pazy and Plitmann 1994; Sheikh and Kondo 1995;
Guerra et al. 2010).

Holocentric chromosomes are likely
to have evolved at least nine independent times
in animals

In the Animal Kingdom, holocentric chromosomes
have been found in two phyla: Nematoda and
Arthropoda. We estimate that holocentric chromosomes
arose once in the Nematoda and eight times in
Arthropoda.

The most well-known group of holocentric species
can be found in the Secernentea class of the nemat-
odes, which includes C. elegans. Other nematodes
are usually described as holocentric because of their
phylogenetic relationship to C. elegans rather than
because of karyotypic evidence. The parasitic round-
worms Trichinella and Trichuris (order Trichurida)
(Mutafova et al. 1982; Spakulová et al. 1994) have
been described as having monocentric chromosomes,
whereas conflicting experimental data is available for
Onchocerca volvulus, the causative agent of river blind-
ness (Procunier and Hirai 1986; Hirai et al. 1987; Post
2005).

Holocentric chromosomes are found in many clades
within the phylum Arthropoda (invertebrate animals
with an exoskeleton). Notably, true bugs (Hemiptera)
include the first well-characterized holocentric chromo-
somes. Diffuse binding of spindle microtubules along
chromosomes was noted as early as 1935, and mitotic
segregation of chromosome fragments was used to con-
firm holocentricity in scale insects soon afterward
(Schrader 1935; Hughes-Schrader and Ris 1941;
Hughes-Schrader and Schrader 1961). We have

estimated a pattern for how the distribution of holocentric
arthropods could have arisen from a monocentric ances-
tor, inferring by parsimony that the ancestor of all arthro-
pods was monocentric (Fig. 2).

Holocentricity in the class Insecta (insects) is rela-
tively common, being found in mayflies (order
Ephemeroptera), dragonflies (order Odonata), angel
insects (order Zoraptera), earwigs (order Dermaptera),
caddisflies (order Trichoptera), moths and butterflies
(order Lepidoptera), and the superorder Paraneoptera
(encompassing lice, thrips, and true bugs). Large clades
of monocentric insects are nested between these orders
(it should be noted that insect phylogenetic relationships
are still debated) (Grimaldi and Engel 2005; Regier et al.
2010). Therefore, we propose that the ancestor of most
insect orders was holocentric, and that monocentricity
returned twice during evolution of modern insects
(Fig. 2). A second instance of holocentric chromosome
evolution occurred during the divergence of Trichoptera
and Lepidoptera from a monocentric ancestor. An iso-
lated report of a monocentric hemipteran insect may
represent a further reversion to the ancestral monocen-
tric habit (Desai 1969; Desai and Deshpande 1969).

In contrast to Insecta, the class Arachnida (scorpions,
spiders, mites and ticks) has few families or subfamilies
with holocentric chromosomes. Holocentric arachnids
include some spiders (order Araneae), microwhip scor-
pions (order Palpigradi), isolated mites and ticks
(genuses Prostigmata and Radiicephalidae), and prim-
itive scorpions (order Scorpiones). Holocentricity is also
found in centipedes (class Chilopoda, closely related to
arachnids). Karyotypic studies of mites and ticks sug-
gest that many species may be monocentric, so we
assume that holocentric chromosomes evolved twice in
this order (Oliver 1972, 1977; Oliver et al. 1974). It is
reasonable to assume that holocentric chromosomes
arose at least six independent times during arthropod
evolution and at least nine times overall in animals
(Fig. 2).

Holocentric chromosomes face a kinetochore
geometry problem in meiosis

The aim of meiosis is to reduce the chromosome
number so haploid gametes are produced from a dip-
loid parent cell. Reduction of chromosome number in
meiosis happens because a single round of DNA replica-
tion is followed by two rounds of cell division. Correct
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chromosome segregation in meiosis requires changes in
kinetochore geometry and differences in release of sister
chromatid cohesion relative to mitosis. Holocentric chro-
mosomes create unique problems during meiosis that
organisms with monocentric chromosomes do not face.
We review several diverse mechanisms that have arisen
in holocentric organisms to allow correct distribution of
chromosomes during meiosis.

The way a chromosome divides is based on its
geometry. In mitosis, both monocentric and holocen-
tric chromosomes have kinetochores whose spindle-
microtubule capture surfaces face in opposite direc-
tions, so sister chromatids are separated at anaphase
(Paliulis and Nicklas 2004; John 1990). Although
mitosis in holocentric chromosomes is straightfor-
ward, there is potential for major problems in meiosis.
In prophase I, recombination and sister chromatid
cohesion link homologous chromosomes together as
a bivalent (Fig. 3a). Bivalents with a single chiasma

(recombination site) are cruciform (Fig. 3a). In mono-
centric chromosomes, sister kinetochores fuse and
face in the same direction in meiosis I. In anaphase I,
cohesion between sister-chromatid arms is released
while centromeric cohesion is protected, so the sister
chromatids remain together and homologues are sepa-
rated. In meiosis II, sister kinetochores face opposite
spindle poles, so sister chromatids separate in anaphase
II when centromeric cohesion is released (Paliulis and
Nicklas 2005; John 1990). Holocentric chromosomes
can theoretically attach to the meiosis I spindle at many
positions along their length. Therefore, if a holocentric
bivalent has no modification to its chromosome struc-
ture or kinetochore positioning, its microtubule capture
surfaces will face in all directions (Fig. 3b). Depending
on how cohesion is released, chromosomes could seg-
regate randomly or not at all. Obviously, holocentric
organisms require special adaptations to allow correct
segregation of one chromatid to each gamete.

Fig. 3 Mitosis and meiosis with monocentric and holocentric
chromosomes. a In mitosis, sister kinetochores of monocentric
chromosomes face opposite spindle poles. This leads to separa-
tion of sister chromatids in anaphase of mitosis. In meiosis I,
sister kinetochores are fused and face in the same direction. This
leads to homologous-chromosome separation in anaphase I. In
meiosis II, the sister kinetochores face in opposite directions in
metaphase, and sister chromatids separate in anaphase II. b In

mitosis, kinetochores are distributed along the length of the
holocentric chromosome arm, so chromosomes connect to the
spindle all along their entire length. In anaphase, because the
spindle-attachment sites face in opposite directions, sister chro-
matids separate from one another. In meiosis I, if there is no
alteration of chromosome structure or attachment surface posi-
tion, attachment sites can face in all directions, leading to prob-
lems in chromosome segregation
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Holocentric meiosis in Caenorhabditis elegans

The nematode C. elegans is the holocentric organism
in which meiosis has been best studied. C. elegans
bivalents tend to have a single chiasma placed closer
to one end of the chromosome than the other (the end
is chosen randomly). Therefore, they are cruciform in
late prophase I and outwardly resemble monocentric
chromosomes at the same stage (Monen et al. 2005;

Albertson and Thomson 1993) (Fig. 4a). Holocentric
chromosomes in mitosis do not have a single centro-
mere to act as a site for maintenance of sister chroma-
tid cohesion. In C. elegans, cohesion is maintained
distal to the chiasma, meaning that this structure has
an important role in ensuring that homologues sepa-
rate in anaphase I, but sister chromatids stay together
until anaphase II. Before nuclear envelope breakdown
of meiosis I, bivalents condense very tightly, so the

Fig. 4 Solutions to the problem of holocentric chromosomes in
meiosis. a During meiosis in the nematode C. elegans in both
the oocyte and spermatocyte the kinetochore forms a cup-
shaped structure in meiosis I. In oocytes, the spindles form a
sheet around the bivalents, whereas in spermatocytes the spindle
binding is restricted to the ends of the bivalents. In meiosis II,
the sister chromatids separate similarly as in meiosis I. b In
some insects, holocentric chromosomes in mitosis behave as

monocentric chromosomes in meiosis. Kinetochore activity is
limited to one end of the chromosome (randomly chosen). c In
inverted meiosis, sister chromatids separate in the first meiotic
division. It is speculated that this separation happens because
chiasmata are terminalized in prophase of meiosis I, such that
chromosomes are arranged in metaphase I with sister chromatids
facing opposite poles. In anaphase I, all chromatids separate.
Then, homologous chromatids re-pair prior to meiosis II
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short arms of the cruciform are no longer visible and
the bivalent takes on a capsule shape (Schvarzstein et
al. 2010). Each end of the bivalent (Fig. 4a) faces a
spindle pole and moves toward that pole in anaphase.
The kinetochore proteins CENP-C, KNL-1, BUB-1,
HIM-10, NDC-80, Nuf2, and MIS-12 form a cup
around each end of the bivalent (Monen et al. 2005).
Intriguingly, this structure is independent of the
centromere-specific histone HCP-3 (the ortholog of
cenH3/CENP-A/Cid). In oocytes, lateral interactions
between the bivalent and spindle microtubules, which
form a sheath around each bivalent, facilitate congres-
sion to the metaphase plate (Monen et al. 2005). The
chromokinesin KLP 19, which forms a ring around the
equator of the bivalent, exerts a polar ejection force
that aids congression (Wignall and Villeneuve 2009).

Because both oocyte and spermatocyte meiosis can be
visualized in C. elegans, interesting mechanistic differ-
ences between the two have been observed. In spermato-
cytes, spindle-attachment is restricted to each end of a
bivalent, as microtubules are embedded in focused areas
on each chromosome (Albertson and Thomson 1993;
Shakes et al. 2009; Wignall and Villeneuve 2009).
Despite this limited attachment, kinetochore proteins
appear to form a cup around each entire half-bivalent as
they do in oocytes (Shakes et al. 2009; Wignall and
Villeneuve 2009). In spermatocytes, each chromosome
end acts functionally as a kinetochore, binding to spindle
microtubules and allowing congression to the metaphase
plate (Shakes et al. 2009). Anaphase chromosome sepa-
ration occurs because cohesion distal to the chiasma is
released (Fig. 4a). In oocytes, homologue segregation
appears to be driven by growth of microtubules between
separating homologues (Dumont et al. 2010). In sperma-
tocytes, however, homologues move toward their associ-
ated spindle pole along microtubules attached to the
“kinetochore” at each end of the bivalent (Shakes et al.
2009).

Restriction of kinetochore activity in the true bugs
(Hemiptera)

Meiosis in the true bugs (Hemiptera: Heteroptera)
resembles that of C. elegans spermatocytes, in that
kinetochore activity is restricted to a small region of
a chromosome (notably, meiosis in Hemiptera has
been mainly studied in spermatocytes) (Fig. 4b).
Electron microscopy shows that the mitotic holocentric

kinetochore in the milkweed bug Oncopeltus fasciatus
has a layered appearance with visible kinetochore plates,
while in meiosis, the areas of kinetic activity are more
diffuse (Comings and Okada 1972). After crossover,
bivalents condense very strongly and terminalize their
chiasmata so they take on a capsule shape similar to that
of C. elegans chromosomes (Wolfe and John 1965).
Kinetochore activity in meiosis is restricted to the ends
of the capsule-shaped bivalent, and chromosome cohesion
is lost in a two-step pattern. This ensures that homologous
chromosomes separate in anaphase I and sister chromatids
separate in anaphase II, leading to the formation of hap-
loid gametes. Mechanisms for forming the temporary
kinetochore and for differential retention of cohesion
between anaphase I and II are not well understood. It will
be interesting to determine if bugs use a similar mecha-
nism to C. elegans for selecting which end of the chro-
mosome faces the spindle pole and has kinetochore
activity. One interesting finding is that the chromosome
end chosen to act as a temporary kinetochore can switch
between the two meiotic divisions, as seen in Triatoma
infestans (Heteroptera) (Pérez et al. 1997). Amazingly,
meiosis II in T. infestans can feature sister chromatids
with kinetochores at opposite ends (Pérez et al. 2000).

Inverted meiosis

An alternative solution to the problem of holocentric
chromosomes in meiosis is to invert the meiotic divi-
sions, so that sister chromatids separate in meiosis I and
homologues separate in meiosis II (Fig. 4c). Inverted
meiosis appears in both animals and plants, including a
suborder of true bugs (Homoptera), some dragonflies
and damselflies, some arachnids, and woodrushes of the
genus Luzula (Viera et al. 2009). It is best studied in the
true bugs (Homoptera), where most species have at least
one sex with inverted meiosis (John 1990). In meiotic
prophase of these species, chromosomes recombine,
and chiasmata are terminalized as in the Heteroptera
(Hughes-Schrader 1944; John and Claridge 1974; John
1990) (Fig. 4c). In inverted meiosis, chromosomes align
differently than in cases of restricted kinetochore activ-
ity. Sister chromatids face opposite poles and separate
from one another in anaphase I (Fig. 4c). All cohesion
appears to be lost between chromatids by telophase I
(Hughes-Schrader 1944; John 1990). Homologous
chromatids re-pair prior to the second meiotic division
and separate from one another in anaphase II. The
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molecular mechanisms underlying inverted meiosis
have not been studied.

Restricted kinetochore activity and inverted meiosis
can coexist in the same cell. In the Heteroptera, auto-
somes restrict kinetic activity (Comings and Okada
1972; Wolfe and John 1965), while sex chromosomes
undergo inverted meiosis (Schrader 1935; Pérez et al.
2000; Viera et al. 2009). The sex chromosomes of
Heteroptera differ from autosomes of Homoptera.
Either they lack a pairing partner (in XX–X0 sex
determination), or the X and Y chromosomes do not
recombine. Thus, in meiosis I, the sex chromosomes
align on the spindle and behave like holocentric chro-
mosomes in mitosis, separating sister chromatids
(Schrader 1935; Pérez et al. 2000; Viera et al. 2009).
In meiosis II in organisms with XX–X0 sex determi-
nation, the lone X moves to one spindle pole in ana-
phase II (Schrader 1935). In organisms with XX–XY
sex determination, sister chromatids of the X and Y
chromosomes separate in anaphase I. In meiosis II, the
X and Y chromatids re-pair, align on the metaphase
plate, then separate in anaphase II (Pérez et al. 2000;
Viera et al. 2009). Again, little is known about pro-
teins that regulate these behaviors.

Other meiotic adaptations in holocentric organisms

In some Homoptera, formation of gametes in males
does not require meiosis at all. In species with haploid
males and diploid females, males form sperm via
typical mitotic divisions and females have inverted
meiosis (Hughes-Schrader and Tremblay 1966).
Other Homoptera (e.g., Phenacoccus) have diploid
males who generate haploid sperm starting with a
mitotic division. To achieve this, one haploid set of
chromosomes is inactivated and maintained as hetero-
chromatin (the haploid chromosome sets are separately
marked by imprinting). During meiosis II, the active
chromosome set segregates to one end of the cell and
is incorporated into a sperm, while the inactive chromo-
some set is sequestered in a separate nucleus and even-
tually ejected (Hughes-Schrader 1935).

Meiosis in some holocentric organisms remains poor-
ly characterized. In addition, it remains unclear why very
different meiotic adaptations exist and why the closely
related clades (e.g., the two suborders of Hemiptera)
utilize such different mechanisms. Molecular

characterization of meiosis in holocentric organisms is
likely to illuminate these questions.

Genomic tools to study genomes of holocentric
species

For most species with holocentric chromosomes, the
DNA sequence underlying the kinetochore is unknown.
Recently, the chromosomal localization of the
centromere-specific histone cenH3 was determined in
the nematode C. elegans by ChIP-chip analysis
(Gassmann et al. 2012). It was found that ~50% of the
genome can be associated with cenH3, showing that
particular DNA sequences are unlikely to control
cenH3 incorporation (furthermore, up to 90% of the
nucleosomes in these centromeric regions may contain
conventional H3). Importantly, the distribution of
cenH3-containing regions was inversely correlated with
genes transcribed in the germline and early embryo
when the pattern of cenH3 incorporation is established
(Gassmann et al. 2012). This suggests that transcription
excludes cenH3 incorporation.

The chromosomes of most animal and plant species
are monocentric, and the centromeres of these species are
usually characterized by high-copy tandem repeat arrays
(Henikoff et al. 2001; Melters et al., in preparation). The
genome of C. elegans contains few tandem repeats
(Hillier et al. 2007), but this is not the case for all genomes
of species with holocentric chromosomes (Table 1), e.g.,
in the snowy woodrush L. nivea and its close relative L.
elegans (Nagaki et al. 2005; Heckmann et al. 2011). In
contrast to C. elegans, a high-copy 178-bp tandem
repeat was found in the genome of L. nivea (Haizel et
al. 2005). This repeat formed at least five distinct arrays
per chromosome when studied by FISH. Whether
cenH3 is preferentially localized to these large tandem
repeat arrays remains to be determined.

With advances in genome sequencing technology,
the genomes of dozens of holocentric species are
available. Bioinformatic tools can find and analyze
high-copy tandem repeats from shotgun genome
sequences (Alkan et al. 2011; Melters et al., in prepa-
ration). One recent study surveyed tandem repeats in
282 animal and plant species, including 32 holocentric
species (11 arthropods and 21 nematodes) (Melters et
al., in preparation). The genomic abundance of tandem
repeats in these 32 species differs greatly. The majority
has only low-copy tandem repeats similar to C.
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elegans, but some holocentric species have high-copy
tandem repeats with an overall genomic abundance
comparable to that of the monocentric Arabidopsis
thaliana and human genomes. These may represent

cases like L. nivea in which tandem repeats have
spread to several locations along each chromosome.

High-copy tandem repeats have also been studied
experimentally in holocentric organisms (Table 1).

Table 1 List of species with holocentric chromosomes and literature reports of tandem repeats and the chromosomal localization of the
tandem repeat if known

Species Common name Length (bp) Localization References

Juncaceae; Monocots

Luzula flaccida Pale woodrush 127 Interspersed Collet (1984)

Luzula flaccida Pale woodrush 190 N/A Collet (1984)

Luzula flaccida Pale woodrush 184 N/A Collet (1984)

Luzula nivea Snowy woodrush 178 Interspersed Haizel et al. (2005)

Lepidoptera; Insecta

Mamestra brassicae Cabbage moth 234 Subtelomeric Mandrioli et al. (2003)

Spodoptera frugiperda Fall armyworm 189 N/A Lu et al. (1994)

Hemiptera; Insecta

Myzus persicae Peach potato aphid 169 Subtelomeric Spence et al. (1998)

Myzus persicae Peach potato aphid 189 Subtelomeric Mandrioli et al. (1999)

Ixodidae; Arachnida

Rhipicephalus microplus Southern cattle tick 149 Subtelomeric Hill et al. (2009)

Rhicicephalus microplus Southern cattle tick 178 Subtelomeric Hill et al. (2009)

Rhicicephalus microplus Southern cattle tick 177 Subtelomeric Hill et al. (2009)

Rhicicephalus microplus Southern cattle tick 216 Subtelomeric Hill et al. (2009)

Ascarididae; Nematoda

Ascaris suum Pig roundworm 123 Subtelomerica Niedermaier and Moritz (2000);
Streeck et al. (1982)

Ascaris lumbricoides Roundworm 121 N/A Müller et al. (1982)

Parascaris univalens Roundworm 5 Subtelomerica Niedermaier and Moritz (2000);
Teschke et al. (1991)

Parascaris univalens Roundworm 10 Subtelomerica Niedermaier and Moritz (2000)

Rhabditida; Nematoda

Steinernema glaseri Roundworm 174 N/A Grenier et al. (1996)

Heterorhabditis bacteriophora Roundworm 168 N/A Grenier et al. (1996)

Heterorhabditis indicus Roundworm 174 N/A Abadon et al. (1998)

Panagrellus redivivus Roundworm 155 N/A de Chastonay et al. (1990)

Panagrellus redivivus Roundworm 167 N/A de Chastonay et al. (1990)

Ostertagia circumcincta Red stomach worm 218 N/A Callaghan and Beh (1996)

Aphelenchida; Nematoda

Bursaphelenchus xylophilus Pine wood nematode 160 N/A Tarès et al. (1993)

Tylenchida; Nematoda

Meloidogyne hapla Root-knot nematode 169 N/A Piotte et al. (1994)

Meloidogyne incognita Root-knot nematode 295 N/A Piotte et al. (1994)

Meloidogyne chitwoodi Root-knot nematode 180 N/A Castagnone-Sereno et al. (1998)

Meloidogyne arenaria Root-knot nematode 172 N/A Castagnone-Sereno et al. (2000);
Mestrović et al. (2005)

a Species with chromatin diminution (Müller et al. 1996)
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These tandem repeats were often localized to subtelo-
meric regions (Spence et al. 1998; Malik and Henikoff
2009; Mandrioli et al. 2003; Hill et al. 2009). With the
restricted kinetochore activity in meiosis observed in
some holocentric species, it is tempting to ask if tan-
dem repeat arrays have a role in specifying centromere
activity in meiosis.

Evolutionary implications of holocentric
chromosomes

In theory, holocentric chromosomes encourage rapid
karyotype evolution. Fission of a holocentric chromo-
some should create two fragments that both retain cen-
tromere activity. Similarly, fusion of holocentric
chromosomes would not create the problems faced by
a dicentric chromosome in a monocentric organism.
These predictions are based on mitotic chromosome
segregation, and some types of meiotic adaptation
(e.g., kinetochore restriction) may be fatally affected
by chromosome fission. In general, holocentric clades
do not show the predicted increase in karyotypic diver-
sity (Panzera et al. 1996; Gokhman and Kuznetsova
2006). In contrast, sedges (genus Carex), scale insects
(genus Apiomorpha), and scorpions from the family
Buthidae have extremely labile karyotypes (Cook
2000; Hipp 2007; Schneider et al. 2009). Carex has
inverted meiosis, and Buthidae have achiasmate meiosis
(Davies 1956; Schneider et al. 2009). These features
may have allowed karyotypes to change without com-
promising holocentric meiosis (Schneider et al. 2009).

The holocentric chromosome characteristic is also like-
ly to affect the evolution of centromere DNA sequences
and of the kinetochore proteins that bind to them. Despite
the essential function of centromeres in chromosome
segregation, centromere DNAs and many kinetochore
proteins evolve very rapidly (Talbert et al. 2004, Meraldi
et al. 2006). Henikoff et al. (2001) and Malik and
Henikoff (2009) have proposed a female meiotic drive
hypothesis to explain this paradox. Asymmetric meiosis
in females generates only one functional egg cell from
four gametes, and centromere DNA sequence polymor-
phisms that encourage segregation into the surviving
egg cell will have a huge selective advantage.
Correspondingly, kinetochore proteins such as cenH3
would coevolve to equalize binding between all centro-
meres in a population, ensuring that unequal centromere
DNA/kinetochore protein interactions do not cause

chromosome segregation errors. Tandem repeats are
likely to facilitate rapid evolution of centromere DNA
in monocentric chromosomes. A sequence polymor-
phism that shows preferential segregation could spread
from one chromosome to another by gene conversion
because tandem repeats on all chromosomes have similar
sequences.

Genomic evidence suggests that many holocentric
chromosomes lack tandem repeats and have cenH3 bind-
ing sites distributed over a wide variety of unique sequen-
ces (C. elegans is the exemplar of such organisms)
(Gassmann et al. 2012; Melters et al., in preparation). If
cenH3 binds to such a diverse range of sites, it
may be much more difficult for holocentric chromosomes
to acquire DNA sequence changes that favor segregation
into the surviving egg cell during femalemeiosis. Changes
in centromere DNA evolution might relax the pressure on
cenH3 to evolve rapidly, a prediction that should be
testable in holocentric clades. Interesting, Caenorhabditis
cenH3 continues to show signs of positive selection
despite the fact that it binds to diverse DNA sequences
in holocentric chromosomes (Zedek and Bureš 2012).

Another factor that is likely to influence centromere
DNA evolution is the mechanism of kinetochore assem-
bly during meiosis in holocentric organisms. We do not
know if particular DNA sequences are important for
assembling the cup-shaped kinetochore protein struc-
tures seen in C. elegans meiosis, and chromosome seg-
regation is cenH3 independent in meiosis (Monen et al.
2005). Similarly, inverted meiosis seems to feature spin-
dle attachment sites that are spread along the length of
meiotic chromosomes and may assemble on unique
sequences in many holocentric organisms. Only in hol-
ocentric organisms such as L. nivea, which has tandem
repeats underlying cenH3 binding sites, is it possible for
centromere DNA to evolve rapidly in the samemanner as
it does in monocentric chromosomes (Haizel et al. 2005).
Luzula has inverted meiosis with distributed kinetochore
activity. Centromere repeat evolution may well be differ-
ent in inverted meiosis organisms when compared with
holocentric organisms that restrict kinetochore activity
to particular chromosome regions (especially if these
regions contain high-copy tandem repeats).

Final remarks

How do holocentric chromosomes inform our general
understanding of the chromosome segregationmachinery?
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Given the extreme meiotic adaptations necessary for
organisms to adopt holocentric chromosomes, it is surpris-
ing and fascinating that distributed kinetochores have aris-
en so many times during eukaryotic evolution. It is likely
that kinetochore location is controlled epigenetically in
almost all eukaryotes (Stimpson and Sullivan 2010).
Convergent evolution of holocentric chromosomes in
extremely disparate eukaryotes suggests that cenH3
recruitment and maintenance can be altered relatively
easily to greatly alter the placement of kinetochore proteins
on mitotic chromosomes. Recent results from A. thaliana
suggest that meiotic kinetochores have a unique assembly
pathway, possibly because sister kinetochores must be
mono-oriented towards the same side of the spindle
(Ravi et al. 2011). Meiosis in holocentric organisms has
several different solutions to the problem of kinetochore
geometry, further suggesting that centromere assembly in
meiosis can be altered without affecting the nature of
mitotic cenH3 recruitment.

A flurry of recent papers describing cenH3 from deep-
ly diverged eukaryotes shows how inexpensive genome
sequencing is changing our ability to address questions in
comparative cell biology (Maruyama et al. 2008; Dawson
et al. 2007; Dubin et al. 2010; Brooks et al. 2011). It will
be very interesting to ask whether holocentric chromo-
somes are seen in any single celled eukaryotes whose
genomes are too small for classical cytology. Similarly, it
is now much easier to generate molecular reagents and to
inactivate genes in non-model organisms (for example,
with TALE nucleases) (Bogdanove and Voytas 2011).
These tools should allow investigators to make great
inroads in our understanding of centromere assembly
and meiotic adaptations in organisms with holocentric
chromosomes.
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