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Holographic acoustic elements for manipulation
of levitated objects
Asier Marzo1,2, Sue Ann Seah3, Bruce W. Drinkwater4, Deepak Ranjan Sahoo5, Benjamin Long3

& Sriram Subramanian5

Sound can levitate objects of different sizes and materials through air, water and tissue.

This allows us to manipulate cells, liquids, compounds or living things without touching or

contaminating them. However, acoustic levitation has required the targets to be enclosed

with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to

drive an ultrasonic phased array and show that acoustic levitation can be employed to

translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we

introduce the holographic acoustic elements framework that permits the rapid generation of

traps and provides a bridge between optical and acoustical trapping. Acoustic structures

shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor

beams or containerless transportation. Single-beam levitation could manipulate particles

inside our body for applications in targeted drug delivery or acoustically controlled

micro-machines that do not interfere with magnetic resonance imaging.
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A
coustic waves can exert radiation forces1 and form
acoustic traps at points where these forces converge
permitting the levitation of particles of a wide range of

materials and sizes2 through air3, water4 or biological tissues5.
This is of paramount importance for crystallography6,
cell manipulation7, lab-on-a-chip scenarios8, biomaterials9,
containerless transportation3,10 and even the levitation of living
things11.

With previous acoustic levitators, the trapped particles had to
be enclosed by acoustic elements3,10,12–14. Single-sided (or single-
beam) levitators only exerted lateral trapping forces15,16, pulling
forces17,18 or required the use of an acoustic lens19. Furthermore,
translation3,12–14 and rotation20 of the traps were limited.

Single-axis levitators3,6,10,13 are a common arrangement for
generating acoustic traps. They consist of an acoustic transducer
and a reflector or another transducer above it. This generates a
standing wave between the two elements and the nodes of the
wave act as trap. By changing the phase difference between
the transducers, the traps move in a single dimension without
mechanical actuation. Various configurations for two-
dimensional manipulation have been explored, for example, a
flat array of transducers and a parallel reflector provides
movement within the plane of the array3,13. Alternatively, an
inward-facing circular array of transducers can translate4,12 and
rotate20 a particle within the circle. Three-dimensional (3D)
translation is possible with four arrays placed forming a square14

and recently with two opposed arrays21.
Recent progress has seen custom-made piezoelectric elements

being used to create traps with a single-sided device (acoustic
tweezers)15,16. However, these traps only exert lateral forces and
thus the particles have to rest on a surface. Pulling forces acting
counter to the propagation direction (tractor beams) have been
measured in water using triangular-shaped particles18 and in air
using acoustic bottle beams17. Full 3D trapping with a single-
sided device has been shown theoretically22,23 and a static
underwater 3D trap has recently been reported19. Nonetheless, a
physical acoustic lens was required, introducing considerable
energy loss16 and fixing the position of the trap to the focal point.

Controlled 3D trapping, translation and rotation with a
single-sided array would enable acoustic tweezers to become the
larger-scale counterparts of optical tweezers24, opening up
applications in materials processing, micro-scale manufacturing
and biomedicine.

Here we demonstrate simultaneous 3D acoustic trapping,
translation and rotation of levitated particles using a single-sided
array operating in air. This is achieved by optimally adjusting
the phase delays used to drive an array of transducers; in this
way unprecedented acoustic structures are generated without
resorting to physical lenses, custom transducers or mechanical
actuation. Our approach generates optimum traps at the target
positions with any spatial arrangement of transducers and
significantly enhances previous manipulators3,12,14. We report
three optimum acoustic traps: tweezer-like twin traps, a novel
acoustic phenomenon with the ability to also rotate objects;
twister-like vortex traps, whose levitation capabilities were shown
theoretically22,23 and recently observed experimentally using a
fixed acoustic lens19; and bottle-shaped traps, never proven or
suggested to levitate objects before17. We also introduce the
holographic acoustic element framework based on interpreting
the phase delays as a holographic plate that combines the
encoding of identifiable acoustic elements. The framework
permits the analysis and efficient generation of acoustic traps as
well as comparisons with optical traps. This work brings the
advantages of optical tweezing (that is, single-beam, rotation,
holographic control and multiple particles)24 to the efficiency and
versatility of acoustic levitation and could lead to the

development of powerful tractor beams, 3D physical displays or
acoustically controlled in vivo micro-machines that do not
interfere with magnetic resonance imaging.

Results
Universal optimizer. We characterize a 3D trap as a point
towards which the forces converge from all directions. More
explicitly, the Gor’kov potential1 defines a field, the gradient of
which gives the forces exerted on small spheres; therefore, the
Laplacian operator applied to the Gor’kov potential represents the
trapping strength at a certain point. The Gor’kov Laplacian
function at one position in space can be expressed as a nonlinear
infinitely differentiable function with the phase delays
(modulations) applied to the transducers as the only variables.
With this function and the gradient of its variables, we employ a
Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimizer25 to
obtain the phase modulations for the transducers so that when
driven with a reference signal the generated acoustic field exerts
maximum trapping forces on a particle situated at the target
point. Our formulations of the Gor’kov Laplacian and its gradient
enable real-time optimization.

Maximizing the Gor’kov Laplacian at a point sets the phase
modulation of the transducers to generate a focal point at that
position. In theory, a focal point can trap a particle exactly at its
centre, where all the amplitude gradient forces cancel each other
and the velocity gradient forces drag the particle in; amplitude
gradients push the particles from high-amplitude regions to low-
amplitude ones, whereas velocity gradients displace particles
towards regions with high complex gradients of the acoustic field
(see Methods, equation (3)). However, a focal point is only a
theoretical solution; experimentally, dense particles are repelled
by the focal point22and it is not possible to levitate particles
around a focal point in a stable manner (Supplementary Fig. 1
and Supplementary Movie 1). Consequently, our optimizer uses
an objective function that simultaneously maximizes the Gor’kov
Laplacian and minimizes the pressure amplitude at the target
point. These silent acoustic traps are the counterpart of dark
optical traps26. In addition, weights are applied to each
component of the Gor’kov Laplacian to control the trapping
strength in each dimension (see Methods, equation (9)).

This optimization method can be applied to scenarios with
reflectors and any spatial arrangement of acoustic elements.
Therefore, we can use it to control and enhance previously
suggested manipulators. The improvements on the working
volume for some arrangements from the literature3,12,14 are
presented in Fig. 1 as a comparative qualitative representation
(Supplementary Movie 2). This illustrates the benefit of using an
optimization approach over the current positioning algorithms.
More importantly, we show here that the optimization method
can for the first time trap, translate and rotate particles using
single-sided arrays (Fig. 2). Depending on the spatial
arrangement of the array and the weights selected for each
dimension, different acoustic traps are created. For a detailed
description of the arrangements, see Supplementary Figs 2 and 3
and Supplementary Note 1.

Optimal single-beam acoustic traps. The three optimal traps
that emerge as optimum solutions for single-sided arrays are twin
(Fig. 3), vortex (Fig. 4) and bottle (Fig. 5) traps. Experimental
measures of these traps are presented in Supplementary Figs 4–8
and Supplementary Notes 2 and 3.

Acoustic traps can be analysed in terms of the origin of the
exerted forces; namely, radiation forces are generated by
amplitude gradients or velocity gradients1 (see Methods,
equation (3)). In addition, phase singularities can be used to
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characterize the traps. Phase singularities are regions with zero
amplitude and thus where the phase is not defined27.

As a novel method to analyse traps, we introduce the concept
of holographic acoustic elements. The phase modulation applied
to the transducers is interpreted as a holographic plate that when
driven with a reference signal renders an acoustic field. In our
case, the traps are encoded as the combination of two holographic
acoustic elements: a holographic acoustic lens that generates a
focal point at the trap position and an extra element dependent
on the type of trap (Fig. 6). The lens is obtained by making all the
emitted waves coincide in phase at the focal point. By subtracting
this lens from the optimized total plate, the holographic signature
of the trap is obtained. The signature is an interesting feature for

analysing the traps as to some extent it is invariant to
the levitation position and can be compared with existing
holographical optical traps24,26.

Twin traps emerge when equal weights are specified in v-shape
arrangements or a large x axis weight is used for other
arrangements. These traps have two finger-like cylindrical regions
of high amplitude, which tweeze the particle with amplitude
gradients in the x direction. Velocity gradients constrain in
the other two axes. A plane phase singularity (that is, two-
dimensional) occurs between the cylinders in the x plane. The
holographic signature has a p-phase difference between the two
halves of the array. By rotation of the reference co-ordinate
system or the holographic signature, the tweezer structure and the

a

c

b

Figure 1 | Schematic rendering of the working volume of previously suggested manipulators. The magenta volume represents the area within

which the particles can be translated in a controlled manner. To the left of the arrow the previous working volume is shown and to the right the

working volumes using our approach. (a) With our method an acoustic reflector on top and transducers on the bottom can move objects in 3D, previously it

was only possible in the z plane3,13. (b) Ring-shaped arrangements can now translate particles inside the tube formed when various rings are placed

together, before it was only possible inside a single ring4,12. (c) Ochiai et al.14 four-array manipulator expands its working volume, can work with only

two arrays and a low density of transducers.

a

b c d e 

f

Figure 2 | Pictures of one-sided levitation in mid-air. Expanded polystyrene particles ranging from 0.6 to 3.1mm diameter are levitated above single-sided

arrays. The acoustic transducers (10mm diameter) are driven at 16Vpp and 40 kHz. (a–c) The particles can be translated along 3D paths at up to

25 cm s� 1 using different arrangements and without moving the array. (c–e) The traps are strong enough to hold the spheres and counteract gravity

from any direction. (f) Asymmetric objects, such as ellipsoidal particles, can be controllably rotated at up to 128 r.p.m. Scale bars represent 2mm

for the particle in a and 20mm for the rest.
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clamped particle can be rotated. Twin traps are shown in
operation in Fig. 2 and have never been reported theoretically or
experimentally in acoustics or optics.

Vortex traps emerge when equal weights are used in a
hemispherical cap or a flat array. The xy section of the trap
shows a high-amplitude ring that generates lateral trapping forces
with amplitude gradients. Along the z axis, the trapping force is
due to velocity gradients and the phase is a 3D corkscrew
spiralling around a line phase singularity (that is, one-
dimensional). The holographic signature is a helicoidal pattern.
A particle trapped in this vortex trap spins around its own axis
following the signature direction due to transfer of angular
momentum28,29. In our experiments, only small particles could be
trapped (diameter o0.12l¼ 1mm), see Supplementary Fig. 9,
Supplementary Note 4 and Supplementary Movie 3 for
further details. Vortex traps in acoustics have been shown
theoretically22,23 and recently experimentally using a fixed
acoustic lens19. We note that the acoustic vortex trap that
emerges from our optimizer is equivalent to an optical vortex26

(Supplementary Note 5 and Supplementary Fig. 10).
Bottle traps emerge in all the arrangements when large weights

are applied to the direction of propagation (z axis). These traps
create a high-amplitude cage around the levitation point and all
the forces result from amplitude gradients. A point phase
singularity (that is, zero-dimensional) is found at the trap centre.
Here the holographic signature is a circular region of p-phase
difference. Bottle traps have been reported in acoustics17 but their
ability to levitate particles was never suggested or proved; in
optics, they have been generated by intersecting two laser beams
with different modes30.

Twin traps and vortex traps have a similar working volume
for the same arrangements (Supplementary Fig. 11 and
Supplementary Note 6) and this is comparable to the working
volume of a standard single-axis levitator. The z axis range with
the tested single-sided arrays was up to 40mm. This range is
sufficient for many applications and could be increased by using
more powerful transducers, a different host medium or if it not
were necessary to defy gravity (for example, underwater
applications). Bottle traps were limited in working volume since
the lateral forces were weak, and the bottle shape was not
maintained when the trap was generated off-centre.

Particles could be transported horizontally at up to 26 cm s� 1

(Supplementary Tables 1 and 2 and Supplementary Note 7), this
speed being limited by the update rate of our custom electronics
(Supplementary Note 1). Vortex and twin traps achieved similar
horizontal transport speeds and much higher vertical speeds than
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Figure 3 | Twin trap generated with a flat 20�20 array 12 cm above

the centre. Amplitude field (a,d), phase field (b,e) and amplitude

isosurfaces of 2 kPa (c,f).
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Figure 4 | Vortex trap generated with a flat 20� 20 array 12 cm above

the centre. Amplitude field (a,d), phase field (b,e) and amplitude

isosurfaces of 2 kPa (c,f).
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Figure 5 | Bottle trap generated with a flat 20�20 array 12 cm above the

centre. Amplitude field (a,d) and phase field (b,e). Amplitude isosurface of

1.3 kPa: full (c) and sliced to see the interior (f).

Twin (p)

Vortex (p)

Bottle (p)

Focus (p)

– =

Phase modulation:

–π to π

Vortex sig.

Bottle sig.

Twin sig.

Figure 6 | Holographic signatures of the three optimal traps. Phase

modulations of the transducers for generating each of the traps (left),

their decomposition into a focusing element (centre) and the holographic

signatures (sig., right).
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a traditional standing wave created with a two-sided device. Twin
traps are not symmetric around the z axis leading to faster
transport speeds in the y direction than in the x direction. Bottle
traps were limited in transport speed because of their relatively
weak lateral forces. Other systems have reported maintained
speeds of up to 4.9 (ref. 3), 3.2 (ref. 23) and 7 cm s� 1 (ref. 20).
The accuracy of particle repositioning (Supplementary Tables 3
and 4 and Supplementary Note 8) was at least 0.4mm (l/21) and
up to 0.05mm (l/171) depending on the trap and axis, which is
comparable to that achieved in previous devices12.

Forces of the order of mN were generated on particles due to
the trapping forces, this is comparable to previous levitation
systems12,17. The trapping forces are presented as spring
constants in Supplementary Fig. 12, Supplementary Tables 5
and 6, and Supplementary Note 9. Twin and vortex traps had
lateral forces comparable to a standing wave generated with a
traditional single-axis device but the z-direction forces were
around 30 times weaker. Bottle traps had z-direction forces seven
times stronger than twin and vortex traps, potentially leading to a
greater z range, but their low lateral forces diminished their
manoeuvrability. That is, it was possible to levitate particles at
relatively large distances form the array, but not to reach those
positions moving the particle from the central position. In
general, pressure amplitude gradients were seen to generate much
stronger forces than velocity gradients. The strength of the traps
affected negatively the speed of transport but this was caused by
the update rate of the electronics. Strong trapping forces require
smaller step sizes for stable transport (Supplementary Tables 7
and 8 and Supplementary Note 7) and thus faster updates of the
phases.

Holographic acoustic framework. The holographic acoustic
element framework can also be used as a fast method to generate
traps at different positions, rotate and spin particles as well as to
create multiple levitation points (Fig. 7). Any trap can be
generated at different locations by adding its signature to the
phase delays that generate a focal point at the desired position,
thus moving the trap is like refocusing the holographic acoustic
lens. Rotating the holographic signature of a twin trap makes the
trap structure and the trapped particles to rotate. Vortex traps
transfer angular orbital momentum to the levitated particle with
the same direction as the signature. And, when a holographic
signature is added to a plate that generates multiple focal points,
these points get transformed into traps that are of the same type
as the added signature.

Discussion
Until now, only standing waves3,10,14,20,21 or Bessel beams4,12

were capable of translating levitated particles. On the other hand,
single-sided arrays required an acoustic lens and generated
static traps19. Here we have presented an optimization method
that creates optimal traps at the desired positions with different
array geometries. It can directly control previous manipulators
offering better results in terms of working volume. More
importantly, the method can be applied to single-sided arrays
and generates some unprecedented acoustic structures (that is,
twin traps).

The introduction of three acoustic structures for the
translation and rotation of levitated particles will find
applications in tractor beams, containerless handling of matter
and tangible displays. Our systems use inexpensive low-power
transducers but high-power versions could enable longer range
3D transportation, orientation and assembly of heavier objects.
Single-sided devices potentially enable in vivo manipulation since
the device could be applied directly onto the skin with the
manipulation taking place inside the body; similar to an
ultrasound scanner but for manipulating particles (that is, drug
capsules, kidney stones or micro-surgical instruments). This is a
significant advantage over two-sided opposed arrangements,
which require the target area to be sandwiched by the arrays;
also, single-beam traps do not have repeated patterns that could
accidentally trap other particles or generate undesired secondary
maxima.

We also introduced the holographic acoustic framework that
allows the traps to be generated without iterative methods. A
direct link between optical and acoustic trapping has now been
established and we expect this to yield further advances in both
fields.

Methods
Characterizing a Levitation Point. The acoustic radiation force (F) exerted on a
small spherical particle can be calculated from the gradient of the Gor’kov
potential1 U:

F ¼ �=U ð1Þ

We characterize a levitation point as a maximum of the Laplacian operator
(convergence of the gradient) applied to the Gor’kov potential, that is, a point
towards which all the forces converge.

r2U ¼ Uxx þUyy þUzz ð2Þ

where Ua ¼
@U
@a
, Uaa ¼

@2U
@a2

and a¼ x, y, z are the Cartesian axes.

a

=

+

=

+

b c

=

+

=

+

Phase delay of the transducers: –π to π

Figure 7 | The holographic method permits the creation of traps at different positions by combining a holographic signature with a holographic

focusing element. Colour represents the phase modulation of the transducers. The traps are generated at the focal point of the holographic lens. (a)

Rotating a particle by combining the rotated signature of a twin trap with a focusing lens. (b) A vortex trap will transfer orbital angular momentum to the

particle with the same direction as the signature. (c) Multiple traps can be obtained by adding a signature to the phase modulation that generates focal

points at the target locations.
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The Gor’kov potential, U, in terms of the complex acoustic pressure (p) and its
spatial derivatives is given by:

U ¼ K1 pj j2
� �

�K2 pxj j2 þ py
�

�

�

�

2
þ pzj j2

� �

ð3Þ

K1 ¼
1

4
V

1

c20r0
�

1

c2prp

 !

ð4Þ

K2 ¼
3

4
V

r0 � rp

o2r0 r0 þ 2rp

� �

0

@

1

A ð5Þ

where V is the volume of the spherical particle, o is the frequency of the emitted
waves, r is the density and c is the speed of sound (with the subscripts 0 and p
referring to the host medium and the particle material, respectively). In
equation (3), the first term relates to the amplitude gradient and establishes that
particles are moved from regions with high amplitude towards regions with low
amplitude; the second term relates to the velocity gradient and establishes that
particles are dragged into regions with large modulus of the gradient of the
complex field.

If an acoustic transducer emits with a constant frequency and amplitude, then
the complex pressure that the jth transducer creates at a point can be expressed as:

pj ¼ eij
j

Mj ð6Þ

where jj is the phase delay of the transducer and Mj is a complex number that is
constant for a given transducer and point in space. Owing to linearity, this also
holds true for the spatial derivatives of the pressure, for instance p

j
x ¼ eij

j

M
j
x .

To predict theMj constants and their spatial derivatives, several methods can be
used; namely, the matrix method, finite differences or experimental measures. We
employ a far-field model of a circular piston source:

Mj ¼ P0J0 kr sin yj
� � 1

dj
eikdj ð7Þ

where P0 is a constant defined by the transducers power, J0 is a zeroth-order Bessel
function of the first kind, k is the wavenumber k ¼ o

c0
, r is the radius of the piston,

dj is the distance between the transducer and the point, and yj is the angle between
the transducer normal and the point. The piston model was adequate as the
simulations matched the experiments for both the complex acoustic field
(Supplementary Figs 4–8 and Supplementary Note 3) and the predicted levitation
positions (Supplementary Tables 9 and 10 and Supplementary Note 10).

The total acoustic field (p) generated by N transducers is the addition of the

individual fields, that is, p ¼
PN

j¼1 pj . This also holds true for its spatial derivatives,

for instance px ¼
PN

j¼1 p
j
x .

Therefore, the Laplacian of the Gor’kov potential can be expressed as a function
of the phase delay of the transducers, r2U ¼ f j1; . . . ;jNð Þ.

Objective function. For a stable levitation trap, the Laplacian of the Gor’kov
potential (which we termed the Gor’kov Laplacian) must be maximized and the
modulus of the pressure (amplitude) must be minimized. Therefore, the objective
function to minimize is:

O j1; . . . ;jj
� �

¼ wp pj j �r2U ð8Þ

which can be expanded with the addition of individual weights for the
Cartesian axes:

O j1; . . . ;jj
� �

¼ wp pj j �wxUxx �wyUyy �wzUzz ð9Þ

where wx, wy and wz are weights used to accentuate or damp the trapping forces in
particular directions; large weights are proportions of 1,000 to 1. wp is used to
specify the balance between maximizing the Gor’kov Laplacian and minimizing the
amplitude; here a value of 1 is used.

Efficient evaluation of the objective function and its gradient. Each term of the
objective function can be explicitly expressed in terms of the pressure and its spatial
derivatives:

Uaa ¼ 2K1 pa � pa þ p � paað Þ�K2

X

n

pna � pna þ pa � pnaað Þ ð10Þ

pj j ¼ p � p ð11Þ

where n 2 x; y; zf g and the operator ‘ � ’ is defined as:

a � b ¼ < að Þ< bð ÞþI að ÞI bð Þ ð12Þ

The objective function can be differentiated with respect to the phase of the jth
transducer by applying the following formula:

@ pf � pg
� �

@jj
¼ I pf

� �

< pjg

� �

þ< p
j
f

� �

I pg
� �

�< pf
� �

I pjg

� �

�I p
j
f

� �

< pg
� �

ð13Þ

where f, gA{, x, y, z, xy, xz, yz, xx, yy, zz, xxy, xxz, xyy, xzz, yzz, xxx, yyy, zzz}. That
is, pf and pg can be the complex pressure or any of its spatial derivatives.

Using equations (10)–(13) we can assemble the objective function
(equation (9)) and its gradient for a given point in space (that is, the required
levitation point). Our algorithm is highly efficient as evaluating the target function
(equation (9)) or its gradient at one point has time complexity O(N) where N is the
number of transducers. In addition, the employed optimizer (BFGS) presents
superlinear convergence.

Once the complex constants M
j
f for the desired levitation point have been

calculated, the Gor’kov Laplacian and its gradient can be evaluated as follows: First,
calculate the pressure and its spatial derivatives that each transducer creates at the

target point given the transducer phase delay, p
j
f ¼ eij

j

M
j
f . Second, calculate the

total pressure and its spatial derivatives, pf ¼
PN

j¼1 p
j
f . Third, evaluate the objective

function (equation (9)) using equations (10)–(12) and the previously calculated pf.
And finally, calculate the gradient of the objective function by taking the derivative
of the objective function over each of its variables j1; . . . ;jjð Þ. This can be done
by applying equation (13) to each term of equations (10) and (11) using the

previously calculated pf and per transducer p
j
f .

BFGS optimization. The BFGS algorithm is an iterative method for unconstrained
nonlinear optimization. Contrary to Newton’s method, it does not require the
time-consuming calculation of the inverse Hessian matrix. At every step, the
optimizer needs to evaluate the function to minimize and its gradient.

For the linear search strategy, we employed the Armijo–Camino rule with a¼ 1,
b¼ 0.5 and s¼ 0.0001. We also tried Basin Hop (temperature¼ 0.1; step
size¼ 120) to ensure that the global minimum was found but it was not necessary.
In our experiments with 400 transducers, B9,000 iterations were sufficient to
converge on a solution starting from a random set of phase delays.

BFGS optimizers25,31 with Basin Hop32 have been successfully used before to
solve the structure of condensed matter33, proteins34,35 or atoms
configurations32,36. Now, this powerful and versatile approach also brings marked
improvements to acoustic levitation.
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18. Démoré, C. E. et al. Acoustic tractor beam. Phys. Rev. Lett. 112, 174302 (2014).
19. Baresch, D., Thomas, J. L. & Marchiano, R. Observation of a single-beam

gradient force acoustical trap for elastic particles: acoustical tweezers. Preprint
at http://arxiv.org/abs/1411.1912 (2014).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9661

6 NATURE COMMUNICATIONS | 6:8661 | DOI: 10.1038/ncomms9661 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://arxiv.org/abs/1411.1912
http://www.nature.com/naturecommunications


20. Foresti, D. & Poulikakos, D. Acoustophoretic contactless elevation, orbital
transport and spinning of matter in air. Phys. Rev. Lett. 112, 024301 (2014).

21. Omirou, T., Marzo, A., Seah, S. A. & Subramanian, S. in Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems, 309–312
(New York, NY, USA, 2015).

22. Baresch, D., Thomas, J. L. & Marchiano, R. Spherical vortex beams of high
radial degree for enhanced single-beam tweezers. J. Appl. Phys. 113, 184901
(2013).

23. Silva, G. T. & Baggio, A. L. Designing single-beam multitrapping acoustical
tweezers. Ultrasonics 56, 449–455 (2015).

24. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2013).
25. Liu, D. C. & Nocedal, J. On the limited memory BFGS method for large scale

optimization. Math. Program. 45, 503–528 (1989).
26. Curtis, J. E. & Grier, D. G. Structure of optical vortices. Phys. Rev. Lett. 90,

133901 (2003).
27. Nye, J. F. & Berry, M. V. Dislocations in wave trains. Proc. R. Soc. Lond. A 336,

165–190 (1974).
28. Hefner, B. T. & Marston, P. L. An acoustical helicoidal wave transducer with

applications for the alignment of ultrasonic and underwater systems. J. Acoust.
Soc. Am. 106, 3313–3316 (1999).
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