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Abstract: We study the influence of angular momentum on quantum complexity for

CFT states holographically dual to rotating black holes. Using the holographic complex-

ity=action (CA) and complexity=volume (CV) proposals, we study the full time depen-

dence of complexity and the complexity of formation for two dimensional states dual to

rotating BTZ. The obtained results and their dependence on angular momentum turn out

to be analogous to those of charged states dual to Reissner-Nordström AdS black holes.

For CA, our computation carefully accounts for the counterterm in the gravity action,

which was not included in previous analysis in the literature. This affects the complexity

early time dependence and its effect becomes negligible close to extremality. In the grand

canonical ensemble, the CA and CV complexity of formation are linear in the temperature,

and diverge with the same structure in the speed of light angular velocity limit. For CA

the inclusion of the counterterm is crucial for both effects. We also address the problem

of studying holographic complexity for higher dimensional rotating black holes, focusing

on the four dimensional Kerr-AdS case. Carefully taking into account all ingredients, we

show that the late time limit of the CA growth rate saturates the expected bound, and

find the CV complexity of formation of large black holes diverges in the critical angular

velocity limit. Our holographic analysis is complemented by the study of circuit complexity

in a two dimensional free scalar model for a thermofield double (TFD) state with angular

momentum. We show how this can be given a description in terms of non-rotating TFD

states introducing mode-by-mode effective temperatures and times. We comment on the

similarities and differences of the holographic and QFT complexity results.
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1 Introduction

In the growing connection between holography and quantum information theory, quantum

computational complexity was proposed as a new measure to capture more information

about the bulk spacetime than holographic entanglement entropy alone [1]. Quantum

circuit complexity in particular is a measure of how difficult it is to construct a given

target state from a (simple) reference state by applying a set of elementary gates, see e.g.,

[2, 3]. A variety of proposals for the bulk description of the complexity of boundary states

have been advanced. The most studied holographic complexity notions are the so called
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complexity=volume (CV) [4, 5] and complexity=action (CA) [6, 7]. The CV conjecture

states that complexity is dual to the volume of the extremal codimension-1 bulk surface B
anchored to the boundary time slice Σ on which the state is defined,

CV = max
∂B=Σ

[

V (B)

GNℓbulk

]

. (1.1)

Here ℓbulk is an additional length scale associated with the bulk geometry, e.g., see [6,

8]. For simplicity in the main text we will set ℓbulk = ℓ, the curvature radius of the

asymptotically AdS geometry. The CA conjecture proposes instead that complexity is

given by the gravitational action evaluated on a region of spacetime, the Wheeler-DeWitt

(WDW) patch, that is the causal development of a spacelike bulk surface anchored on the

boundary time slice Σ. Explicitly:

CA =
IWDW

π
. (1.2)

The precise form of the gravitational action IWDW in such proposal was carefully worked

out in [9]. In particular this work introduced a counterterm contribution to ensure the full

action is invariant under reparametrizations of the WDW null boundaries.1

The CV and CA conjectures stimulated an extensive effort aimed at investigating

properties of these new gravitational observables and at testing the validity of the propos-

als [4–80]. In parallel, various approaches have been explored to define and understand

the complexity of states in quantum field theory, e.g., following Nielsen’s geometric ap-

proach [81–85] which we review in section 4, the Fubini-Study metric approach for the space

of states [86], path integral optimization [87–95], or CFT notions of complexity [96–102].

Most of this research considered highly symmetric setups, mainly planar or spherically

symmetric, and only few results are available in the literature for less symmetric settings.

Examples include local quenches [103–105] and setups with defects [44, 47, 48]. In this

work we focus on systems with rotation, which are so far less understood, and explore the

influence of angular momentum on quantum complexity in holography and in QFT.

The first estimates of the late time holographic complexity growth rate for rotating

AdS black holes appeared in [7, 16], before a complete understanding of how to treat

the action contributions of null boundaries was developed in [9]. For lower dimensional

black holes, this computation was revisited in [51, 52]. They studied the CV and CA

growth rate in three dimensional warped AdS black holes, which include rotating BTZ as

a subcase. Properties of holographic complexity for exotic BTZ black holes were instead

studied in [106]. For higher dimensional rotating black holes the technical task of evaluating

CV and CA is much harder and has hindered progress until much recently. One main

obstruction resides in obtaining the explicit form of the WDW patch, necessary to evaluate

CA. In fact, the first analysis of the null hypersurfaces foliation of Kerr-AdS appeared

only recently in [107, 108]. A notable exception is given by odd-dimensional Myers-Perry

AdS black holes with equal angular momenta in each orthogonal plane. These exhibit a

1Recently, an alternative proposal to fix the normalization of the null boundaries by requiring the

complexity of the vacuum state to vanish was put forward in [10, 11].
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symmetry enhancement that greatly simplifies the computations as compared to the general

rotating solutions. Their holographic complexity was studied in [109, 110]. For large black

holes, [109, 110] highlighted a direct connection between CA, CV and thermodynamic

volume.2 In particular, it was argued that the complexity of formation is controlled by

the thermodynamic volume rather than the entropy, with a scaling that depends on the

spacetime dimension. For the growth rate at late times, taking the large black hole limit

while keeping fixed the ratio of the radial locations of the inner and outer horizons, it was

shown in [109, 110] that at leading (divergent) order

lim
t→∞

dC

dt
∝ P∆V (1.3)

where ∆V = V+ −V− is the difference between the inner and outer horizon thermodynamic

volume.

In this work we expand the existing studies of quantum complexity for CFT states

dual to rotating black holes, focusing on the two and three dimensional cases. On the

holographic side, we refine and complement previous analysis for the rotating BTZ black

holes and address the higher dimensional case of Kerr-AdS4. Differently from the Myers-

Perry AdS black hole in odd dimension considered in [109, 110], the latter has no symmetry

enhancement. Next to this we study circuit complexity in a two dimensional free scalar

model for a thermofield double (TFD) state with angular momentum.

For the rotating BTZ black hole solution we analyze the full time dependence of com-

plexity and the complexity of formation using the CA, CV and CV2.0 proposals, extending

previous results, which mostly focused on the growth rate. In particular for CA we also

carefully take into account the role of the counterterm action, which was not included in

previous analysis and has been shown to play an essential role in order to reproduce some

expected features of complexity, see e.g., [34]. We find that the counterterm affects the

complexity of formation and the early time evolution of complexity. The effects of the

inclusion of the counterterm are more evident for smaller values of the angular momentum

J , compatibly with results obtained for neutral BTZ [24], while they become negligible as

extremality is approached. The counterterm also turns out to be essential to have a match-

ing behavior of CA and CV viewed as functions of the temperature T and angular velocity

Ω. At the qualitative level our analysis shows that the inclusion of a rotation parameter

in the BTZ solution gives for the corresponding holographic complexity a behavior similar

to the one of higher dimensional charged Reissner-Nordström AdS black holes [24].

In the four dimensional Kerr-AdS case we are able to make partial progress. The recent

analysis [107, 108] of null hypersurfaces allows to give a description of the WDW patch

only in an implicit form. As we show, this however suffices to provide a precise treatment

of the late time limit of the CA growth rate. Carefully taking into account all terms

necessary to give a precise definition of the action on the WDW patch [9], we explicitly

demonstrate that the CA growth rate saturates the bound advanced in [16]. We comment

on the relation of our results with the observations about complexity and thermodynamic

volume highlighted in [109, 110].

2See also [111] for a related observation.

– 3 –



J
H
E
P
1
1
(
2
0
2
1
)
0
3
7

An interesting limit to consider when analyzing spinning black holes is the one of

critical angular velocity, Ω = 1 [112]. We analyze the behavior of the different holographic

complexity measures in this limit. While for BTZ this limit always gives a divergent

behavior, for Kerr-AdS4 the physical parameter space has a richer structure and yields to

divergences in the critical velocity limit only for large black holes.

The holographic setups we analyze are related to thermofield double states of holo-

graphic CFTs. Focusing on the lower dimensional BTZ case, the irrotational double sided

BTZ black hole is dual to the familiar TFD state of boundary CFTs associated to the two

sides of the geometry [113, 114]. Analogously, the rotating BTZ black hole has a dual in the

rotating TFD (rTFD) state prepared with the deformed Hamiltonian β (H + ΩJ) [113].

We complement our holographic analysis with the study of circuit complexity in the

simple model provided by a Gaussian rTFD constructed from two copies of a two dimen-

sional free scalar QFT. To perform our analysis we follow the QFT approach to complexity

first put forward in [84], based on Nielsen’s geometric approach [81–83]. We establish a

correspondence between our rTFD setup and the TFD state that allows us to evaluate

quantum circuit complexity starting from and generalizing the TFD complexity analysis

performed in [85]. Despite dealing with a Gaussian model rather than a strongly coupled

holographic CFT, we find similarities with the results obtained for holographic complexity

in the complexity of formation in particular divergent limits.

This manuscript is organized as follows. In section 2 we study holographic complex-

ity for rotating BTZ solutions. We perform a thorough analysis of the effect of angular

momentum on both complexity of formation and complexity full time evolution, mainly

focusing on the CA and CV proposals. We extend the analysis of the CA growth rate

and CV complexity of formation to Kerr-AdS black holes in section 3. In 4, we parallel

the holographic discussion by studying circuit complexity of a rotating TFD state within a

simple free scalar field model. We summarize and discuss the main findings relating holo-

graphic and QFT complexity measures in section 5. Some technical details are presented

in appendices A and B, and additional plots in appendix C.

Note: part of the analysis for the holographic complexity of rotating BTZ solutions is

contained in Lapo Faggi’s M. Sc. Thesis “Holographic complexity of rotating black holes”

discussed in July 2019 at the University of Florence.

2 Holographic complexity: BTZ

The main goal of this section is to provide a thorough analysis for holographic complexity

for the rotating BTZ solution reviewed in section 2.1. Holographic complexity for charged

BTZ black holes was studied in [24]. The angular momentum provides an extra parameter

against which the holographic proposals CA (section 2.2) and CV (section 2.3) can be

checked. Early results for the late time complexity growth rate in rotating BTZ appeared

in [7, 16], before a consistent prescription for defining the gravitational action in presence

of null boundaries was developed in [9]. The works [51, 52] and [106] –focusing respectively

on warped and exotic AdS3 black holes and thus including rotating BTZ as a subcase–
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partially overlap with ours for what concerns the complexity growth rate. In the CA case,

we carefully take into account the effect of the counterterm [9]. We also analyze other

aspects, as the total complexity and its time evolution, the complexity of formation and

its dependence on the angular momentum, as well as the CV 2.0 proposal [12]. In view

of making contact with the QFT analysis of section 4, we discuss the holographic findings

also in the grand canonical ensemble.

2.1 BTZ black hole

The BTZ black hole metric is [115] (see, e.g., [116] for a review)

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2 (dϕ− ω(r) dt)2 , (2.1)

where

f(r) = −8MGN +
r2

ℓ2
+

16G2
NJ

2

r2
≡ (r2 − r2

+)(r2 − r2
−)

ℓ2 r2
(2.2)

ω(r) =
4GNJ

r2
≡ r+r−

ℓ r2
, (2.3)

and ϕ ∼ ϕ+2π. The metric is stationary, axially symmetric and asymptotically AdS3 with

radius ℓ. M and J denote the ADM mass and angular momentum of the solution, which

we express in terms of the radii r± as3

M =
r2

+ + r2
−

8GN ℓ2
, J =

r+r−
4GN ℓ

. (2.4)

For J < Mℓ and M > 0 the metric describes a black hole with horizons

r± = 2ℓ
√

GNM

√

√

√

√

1 ±
√

1 −
(

J

Mℓ

)2

. (2.5)

The surface r = r+ is an event horizon shielding a causal singularity at r = 0, and

r = r− a Cauchy horizon. In (2.1), ω(r) denotes the angular velocity of the solution, and

the coordinates system is asymptotically non rotating, i.e., ω ∼ 0 for r → ∞. The gtt

component of the metric vanishes at the critical radius rerg ≡ ℓ
√

8GNM =
√

r2
+ + r2

−, with

r− < r+ < rerg. This defines the ergo-region and in its interior ∂t is spacelike: in this

region observers are necessarily dragged along by the black hole rotation.

The BTZ Hawking temperature, entropy and angular velocity of the event horizon are

T =
r2

+ − r2
−

2π ℓ2 r+
(2.6)

S =
π r+

2GN
(2.7)

ΩH ≡ ω(r+) =
r−
ℓr+

. (2.8)

3Given the symmetry of the solution, we here take for simplicity to J ≥ 0.

– 5 –



J
H
E
P
1
1
(
2
0
2
1
)
0
3
7

Since ω(r) → 0 as r → ∞, the latter is also exactly the angular velocity of the rotating

Einstein universe conformal to the AdS boundary. The limiting case J = Mℓ, for which

T = 0 and ℓΩH = 1, describes an extremal black hole, whose Einstein universe at infinity

effectively rotates at the speed of light. The M = J = 0 solution is instead known as the

“zero mass black hole”. Empty global AdS3 is recovered setting J = 0,M = −1/(8GN ),

and in the following we will study variations of holographic complexity with respect to this

vacuum solution. The metric with J 6= 0,M = −1/(8GN ) also parametrizes global AdS3,

but in oblate coordinates.

A useful parametrization of the BTZ geometry is given by the ingoing/outgoing

Eddington-Finkelstein coordinates

{

v = t+ r∗(r)

Φ = ϕ+ r̃(r)
and

{

u = t− r∗(r)

Ψ = ϕ− r̃(r)
, (2.9)

where the tortoise coordinates are defined by

dr∗(r)

dr
=

1

f(r)

dr̃(r)

dr
=
ω(r)

f(r)
. (2.10)

They can be worked out explicitly

r∗(r) =
ℓ2

2(r2
− − r2

+)

(

r+ log
r + r+

|r − r+| − r− log
r + r−
|r − r−|

)

(2.11)

r̃(r) =
ℓ2

2(r2
− − r2

+)

(

r− log
r + r+

|r − r+| − r+ log
r + r−
|r − r−|

)

(2.12)

and satisfy r∗(∞) = r̃(∞) = 0. The ingoing coordinates metric reads

ds2 = −f(r)dv2 + 2 drdv + r2 (dΦ − ω(r)dv)2 (2.13)

and is regular across the outer event horizon. Given ϕ ∼ ϕ+ 2π, we also have Φ ∼ Φ + 2π.

The BTZ black hole causal structure is depicted in the Penrose diagram 1. Since we

are here interested in a time-dependent gravitational system dual to pure states in CFT

undergoing thermalization, we choose to time-evolve forward in both exterior regions [114].

2.1.1 Wheeler-DeWitt patch

The Wheeler-DeWitt patch is defined as the domain of dependence of any bulk

codimension-1 spacelike slice anchored on a given boundary time slice, and is bounded

by null surfaces. For the rotating BTZ these are described by the congruences of null

geodesics v = const. ,Φ = const. and u = const. ,Ψ = const. defined in (2.9), which are

twist-free and “surface forming”, i.e., are generators of a family of null hypersurfaces [117].

The corresponding WDW patch is drawn in figure 1 and is analogous to that of charged

black holes considered in [24]. We choose a symmetric time evolution tL = tR = tb

2 and

focus our attention on tb > 0.4 We denote the future (past) tip of the WDW patch rm1

4Notice we define the boundary time tb at r = ∞, while [51, 52] define it at the cutoff surface r = rmax.

– 6 –
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I

II

III

Figure 1. Penrose diagram of rotating BTZ. Left: the WDW patch of a boundary time slice with

tL = tR (see section 2.1.1 ). rmax denotes the radial bulk cutoff. By symmetry tmin = 0. Right: the

blue slices are the maximal ones of the CV conjecture. The minimal radius rmin is defined through

ṙ|
rmin

= 0. For tb → ∞, the maximal bulk slice is at constant r = r̃min.

(rm2). Using the right-left symmetry one can focus on the right boundary and observe that

the tips lie on the same constant v (respectively u) slices as ( tb

2 , r = ∞) and thus

tb
2

= r∗(rm1) ,
tb
2

= −r∗(rm2) . (2.14)

Given (2.11), these can be solved numerically as a function of boundary time tb, and

also imply

drm1

dtb
=
f(rm1)

2
,

drm2

dtb
= −f(rm2)

2
. (2.15)

Focusing for example on the right future boundary, the normal one-form to the null surface

in Schwarzschild-like coordinates is

kµ = α∂µv =

(

α ,
α

f
, 0

)

. (2.16)

– 7 –
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with α an arbitrary normalization constant. Via the relation ∂λ ≡ kµ∂µ this defines a

parametrization of the null generators of the WDW boundary, which is affine kµ∇µk
ν = 0.

The unit-normalized spacelike vector parametrizing the transverse direction is instead

eµ = (0, 0, 1) (2.17)

and such that eµkµ = 0. Analogous expressions hold for the other null surfaces bounding

the WDW patch.

2.2 Complexity = Action

We start our analysis studying in more details the holographic complexity=action pro-

posal (1.2) of [6, 7], which entails evaluating the action

IWDW = Ibulk + IGHY + Ijoints + Iκ + Ict

=
1

16πGN

∫

dd+1x
√

|g|
(

R+
d(d− 1)

ℓ2

)

+
1

8πGN

∫

regulator
ddy

√

|h|K

+
1

8πGN

∫

joints
dd−1y

√
σ ajoint +

1

8πGN

∫

∂WDW
dλ dd−1y

√
γ κ (2.18)

+
1

8πGN

∫

∂WDW
dλ dd−1y

√
γΘ log (LctΘ) .

This includes: Ibulk, the Einstein-Hilbert action with negative cosmological constant and

IGHY, the Gibbons-Hawking-York term defined on the AdS boundary regulator surface. In

the second line: Ijoints, the contribution of the intersection of the null boundaries of the

WDW patch with other hypersurfaces (which we specify better below), and Iκ, which has

support on the null boundaries of the WDW patch and vanishes when these are affinely

parameterized, as in our case. The term in the last line Ict is known as the counterterm [9].

It is also localized on the boundary of the WDW patch and is expressed in terms of

Θ, its expansion. This was first proposed in [9] and removes the ambiguity intrinsic to

the parametrization of the WDW null boundaries, but it introduces an arbitrary length

scale Lct. In static background geometries, the role of this counterterm does not influence

significantly the holographic CA, see [24]. Nevertheless, for dynamical spacetimes as the

ones analyzed in [33, 34], the situation is different: there the inclusion of the counterterm in

the total gravitational action is a key ingredient in order to obtain results consistent with

general properties of circuit complexity. For example, in the one-sided geometry of [33],

the counterterm is essential to obtain the expected late time growth rate in d > 3 and

a positive rate in d = 3. In the two-sided case, the counterterm is needed to replicate

the switchback effect [34]. The inclusion of the counterterm also modifies the structure

of divergences of holographic complexity, as first pointed out in [17], and was observed to

play a crucial role in the cancellations occurring for CA in the study of the first law of

complexity [55, 56].

2.2.1 Action evaluation

Let us now evaluate the various contributions to the gravitational action (2.18). We follow

the conventions of [24, 33].

– 8 –
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Bulk term. We first write explicitly

Ibulk =
1

16πGN

∫

WDW
d3x

√−g
(

R+
2

ℓ2

)

= − 1

2GNℓ2

∫

dt dr r . (2.19)

where we used the on-shell relations R = − 6
ℓ2 and R = 6Λ and performed the angular

integration. Exploiting the left-right symmetry of the WDW patch, we divide its right half

in three zones I − III, as labeled in figure 1, each with its own integration extrema. For

instance in region I, for fixed rm1 ≤ r ≤ r+, we have tmin ≤ t ≤ tmax. By symmetry tmin =

0, while tmax can be determined observing that the locations (tmax, r) and (tb/2, r = ∞)

share the same v coordinate. This fixes tmax = tb/2 − r∗(r) in region I. All together, we

obtain

Ibulk = 2
(

II
bulk + III

bulk + IIII
bulk

)

(2.20)

with

II
bulk = − 1

2GNℓ2

∫ r+

rm1

dr r

(

tb
2

− r∗(r)

)

(2.21)

III
bulk =

1

GNℓ2

∫ rmax

r+

dr r r∗(r) (2.22)

IIII
bulk =

1

2GNℓ2

∫ r+

rm2

dr r

(

tb
2

+ r∗(r)

)

, (2.23)

where rm1, rm2 are given implicitly by eq. (2.14) and rmax denotes a radial cutoff introduced

to regularize these expressions. Thus

Ibulk =
1

GNℓ2

{

tb
4

(

r2
m1 − r2

m2

)

+

∫ rmax

rm1

dr r r∗(r) +

∫ rmax

rm2

dr r r∗(r)

}

(2.24)

The UV divergent terms of the bulk action do not contribute to the complexity growth

rate. In fact rm1 and rm2 evolve according to equation (2.15), but rmax is constant in

time. As we shall see the same remains true also for the other contributions to the WDW

action (2.18).

Performing explicitly the integrals in (2.24) we obtain the expression

Ibulk =
1

4GN

{

2 (rm1 + rm2 − 4rmax) − r+ log
(r+ + rm1)(r+ + rm2)

(r+ − rm1)(r+ − rm2)

}

+O

(

1

rmax

)

,

(2.25)

where we used (2.14) and expanded in rmax → ∞. This correctly reduces to the non

rotating BTZ result of [24] for r−, rm1 → 0.

GHY terms. Next we evaluate the GHY term in (2.18) for the timelike cutoff surface

at r = rmax

IGHY =
1

8πGN

∫

r=rmax

d2y
√

−hK . (2.26)

Here K = habKab is the trace of the extrinsic curvature Kab = ∂xµ

∂ya
∂xν

∂yb ∇µnν , and nν the

outward directed normal to the cutoff surface. These read

nµdx
µ =

dr
√

f(rmax)
, K =

2 r2
max − r2

+ − r2
−

ℓ2 rmax

√

f(rmax)
. (2.27)

– 9 –
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Taking into account the right-left symmetry of the problem, and the fact that the time

integration along the cutoff surface r = rmax is restricted by the null boundaries of the

WDW, we have

IGHY =

(

2r2
max − r2

+ − r2
−
)

2GNℓ2

∫

tb
2

−r∗(rmax)

tb
2

+r∗(rmax)
dt = −r∗(rmax)

(

2r2
max − r2

+ − r2
−
)

GNℓ2

=
2 rmax

GN
+O

(

1

rmax

)

. (2.28)

The GHY term only yields a divergent contribution to the total action, and thus does not

contribute to the complexity growth rate.

Joints terms. There are different joints with null surfaces contributing to the ac-

tion (2.18). Null-null joints at the future and past tip of the WDW patch, and time-

null joints formed at the intersection of the WDW patch with the cutoff surface at rmax.

Adopting the conventions of [24, 33], we have the following rules

Time-Null joint: ajoint = ǫ log |n1 · k2| with ǫ = −sign (n1 · k2) sign
(

t̂1 · k2

)

Null-Null joint: ajoint = ǫ log

∣

∣

∣

∣

k1 · k2

2

∣

∣

∣

∣

with ǫ = −sign (k1 · k2) sign
(

k̂1 · k2

)

.

(2.29)

Here ki, ni are respectively null and spacelike normal one-forms outward-directed from the

relevant boundary of the WDW patch. The auxiliary null and timelike vectors k̂i, t̂i are

defined in the tangent space of the appropriate boundary region, pointing outward from it

and orthogonal to the joint.

Let us start from the future null-null joint at the tip of the WDW patch, where t = 0

and r = rm1. This contributes to the total gravitational action (2.18) with

INull−Null
joints =

1

8πGN

∫

r=rm1

dy
√
σ log

∣

∣

∣

∣

kL · kR

2

∣

∣

∣

∣

=
1

4GN
rm1 log

(

− α2

f(rm1)

)

. (2.30)

To obtain this result we used σ = r2 and the following right and left null normals at the

future joint of the WDW patch5

kR µ =

(

α ,
α

f
, 0

)

, kL µ =

(

−α , α
f
, 0

)

. (2.31)

Adding the analogous contribution coming from the bottom joint, we have for null-

null joints

INull−Null
joints =

1

4GN

{

rm1 log

(

− α2

f(rm1)

)

+ rm2 log

(

− α2

f(rm2)

)}

. (2.32)

5Remember that, as shown in figure 1, in region I t increases from the left to the right, r decreases going

up, and f(r) < 0.
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Next, we evaluate the time-null joints term at the cutoff surface. Consider the right

cutoff surface r = rmax and the joint term in its future at t = tb

2 − r∗(rmax). Using the

normal nµ from (2.27) and kµR from (2.31), gives

ITime−Null
joints = − 1

8πGN

∫

r=rmax

dy
√
σ log |n · k|

= − 1

4GN
rmax log

(

α ℓ

rmax

)

+O

(

1

rmax

)

. (2.33)

This divergent term is independent from the boundary time.

The other three time-null joints at the cutoff surface yield identical contributions. All

together, including the null-null terms, we therefore have

Ijoints = − 1

4GN

{

4rmax log

(

α ℓ

rmax

)

− rm1 log

(

− α2

f(rm1)

)

− rm2 log

(

− α2

f(rm2)

)}

+O

(

1

rmax

)

. (2.34)

Counterterms. To evaluate the last contribution to the gravitational action (2.18), let

us consider first the right future null boundary of the WDW patch. The counterterm action

Ict for this contribution evaluates to

IRF
ct =

1

8πGN

∫

dλ dy
√
γΘ log (|Lct Θ|)

=
1

4GN

∫ rmax

rm1

dr log

(

Lct α

r

)

=
1

4GN

{

rmax

[

1 + log

(

Lct α

rmax

)]

− rm1

[

1 + log

(

Lct α

rm1

)]}

, (2.35)

In deriving this expression we used that the normal vector to the surface implicitly defines a

parametrization through ∂λ = kµ∂µ, together with the explicit form of the one-dimensional

induced metric γ = eµeνgµν = r2, which defines Θ = ∂λ log
√
γ. In particular, this yields

dr = αdλ and Θ = α∂r log
√
γ = α

r .

Given the left-right symmetry, the left future null boundary gives an identical contri-

bution. It is also straightforward to check that the past boundaries lead to an analogous

result with rm1 → rm2. Putting everything together:

Ict =
1

2GN

{

2 rmax

[

1 + log

(

Lct α

rmax

)]

− rm1

[

1 + log

(

Lct α

rm1

)]

−rm2

[

1 + log

(

Lct α

rm2

)]}

. (2.36)

The counterterm will thus give a non-vanishing contribution both to CA itself and to its

growth rate. We will analyze in what follows how this counterterm contribution modifies

the results of [52], obtained without the counterterm action later introduced in [9].
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2.2.2 CA results

Combining the results of the previous subsection, (2.25), (2.28), (2.34) and (2.36), the total

holographic complexity for the rotating BTZ black hole reads

CA(tb) =
1

4πGN

{

4rmax

(

1 + log
Lct

ℓ

)

− r+ log
(r+ + rm1)(r+ + rm2)

(r+ − rm1)(r+ − rm2)
(2.37)

− rm1 log
L2

ct(r
2
+ − r2

m1)(r2
m1 − r2

−)

r4
m1 ℓ

2
− rm2 log

L2
ct(r

2
+ − r2

m2)(r2
m2 − r2

−)

r4
m2 ℓ

2

}

+O

(

1

rmax

)

.

As expected, in presence of the counterterm action any dependence from the normalization

α of the null normals to the boundaries of the WDW patch drops. On the other hand, the

result depends on the arbitrary constant Lct.

The time dependence of CA as written in (2.37) is implicitly given by the time de-

pendence of the tip locations, rm1 and rm2, through (2.14) and (2.15). The CA growth

rate can be more directly obtained from the expressions in the previous subsection. As

anticipated, the purely divergent GHY term does not contribute to the complexity growth

rate. The contribution from the bulk term is most easily evaluated using the intermediate

expression (2.24), while the ones of the joints and counterterm action follows from (2.34)

and (2.36). All together this yields the growth rate

dCA

dtb
=

1

4πGN

{

r2
m1 − r2

m2

ℓ2

+
f(rm1)

2
log

(

− α2

f(rm1)

)

− rm1

2
f ′(rm1) − f(rm2)

2
log

(

− α2

f(rm2)

)

+
rm2

2
f ′(rm2)

− f(rm1) log

(

Lct α

rm1

)

+ f(rm2) log

(

Lct α

rm2

)

}

. (2.38)

The first term is the bulk contribution, while the last line is the contribution of the coun-

terterm. The latter combines with contributions from the joints in the second line to give

a result that does not depend on α. Using the explicit expression for f ′(r)

dCA

dtb
=

1

4πGN

{

r2
+r

2
−

ℓ2
r2

m2 − r2
m1

r2
m1r

2
m2

− f(rm1)

2
log

(

−L2
ct f(rm1)

r2
m1

)

+
f(rm2)

2
log

(

−L2
ct f(rm2)

r2
m2

)}

. (2.39)

In the limit J/(Mℓ) → 0, from these expressions one smoothly recovers the non rotating

results [24, 52].6 It is also easy to verify that in a small J/(Mℓ) expansion, these expressions

do not have linear order terms. This is consistent with general results obtained in the study

of the first law of complexity [55, 56, 118].

6[52] used a different regularization of the WDW patch. However, the structure of divergences does not

play a role in the complexity growing rate, and the two results coincide.
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Growth rate. Let us start analysing the late time limit tL = tR = tb

2 → ∞ of the

complexity growth rate. In this limit rm1 → r− and rm2 → r+ (see figure 1) and only the

bulk contribution in the first line of (2.38) survives

lim
tb→∞

dCA

dtb
=
r2

+ − r2
−

4πGNℓ2
. (2.40)

Notice that this clearly vanishes in the extremal limit r+ → r−. In terms of the mass M

and angular momentum J (2.4), the above formula reads

lim
tb→∞

dCA

dtb
=

2

π
(M − ΩHJ) , (2.41)

where ΩH is the angular velocity of the horizon in (2.8).

This limiting value corresponds to saturation of the Lloyd’s computational (upper)

bound conjectured in [7] as well as the one proposed in [16], which for the rotating BTZ

are actually equivalent.7 Nonetheless, both bounds are violated at intermediate times here.

In fact the late time value is approached from above, as for all two-sided black holes studied

in [24] and in contrast with the one-sided black holes of [33]. To show this we can follow

the same strategy as in [24] and decompose the inverse blackening factor as

1

f
=

1

r+ − r−

(

r+

rF (r+)(r − r+)
− r−
rF (r−)(r − r−)

+H(r)

)

, (2.42)

in terms of the strictly positive functions

F (r) ≡ f(r)

(r − r+)(r − r−)
=

(r + r+)(r + r−)

ℓ2 r2
(2.43)

and

H(r) ≡ F (r+)r − F (r)r+

rF (r)F (r+)(r − r+)
− F (r−)r − F (r)r−
rF (r)F (r−)(r − r−)

= ℓ2
(r+ − r−)(r+r− + r(r+ + r−))

2r(r + r+)(r + r−)(r+ + r−)
, (2.44)

which is regular in r+ and r−, and decays as 1/r2 for r → ∞. We then solve up to first

subleading order in the late time limit the equations (2.14) for rm1 and rm2:

rm1 ≃ r−
(

1 + c−e
− 1

2
F (r−)(r+−r−)tb

)

, rm2 ≃ r+

(

1 − c+e
− 1

2
F (r+)(r+−r−)tb

)

, (2.45)

where c+ and c− are positive constants

c− =

(

r+ − r−
r−

)

F (r−)

F (r+)

e
−F (r−)

∫∞

r−
H(r̃)dr̃

, c+ =

(

r+ − r−
r+

)

F (r+)

F (r−)

e
F (r+)

∫∞

r+
H(r̃)dr̃

. (2.46)

7For higher dimensional rotating black holes the two bounds are in general not equivalent. Indeed, for

the 4d Kerr-AdS solution we consider in section 3.1, we find compatibility with the bound of [16] but not

with that of [7].
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Figure 2. π dCA

dtb

with M = 2, ℓ = GN = α = Lct = 1 and (left) J = 0.1, (center) J = 1, (right)

J = 1.999. The CA rate with the counterterm is depicted in blue solid, in red dashed without. In

black dotted the late time value (2.41).

Substituting the above expressions for rm1 and rm2 in (2.38) we find the late time behavior

dCA

dtb
≃ 2

π
(M − ΩJ)

+
(r+ − r−)2

16πGNℓ2
tb
[

c+r+F
2(r+)e− 1

2
F (r+)(r+−r−)tb − c−r−F

2(r−)e− 1
2

F (r−)(r+−r−)tb

]

.

(2.47)

At late times the exponent with smaller coefficient dominates, and thus the asymptotic

value 2.41 is reached from above if F (r+) < F (r−). This is indeed the case here, as

from (2.43) we get F (r+)
F (r−) = r−

r+
. Notice that both the late time limit and this result do not

depend on the presence of the counterterm action. The counterterm only enters in this

expansion at orders that are subleading with respect to our analysis. Indeed, [52] evaluated
dCA
dtb

without the inclusion of the countertem action and also similarly found that the late

time limit is approached from above.

In the opposite limit, at tb = 0, the complexification rate is zero, independently from

the presence of the counterterm. This can be easily tracked to the fact that rm1 = rm2,

making the counterterm contribution vanish.

For intermediate times, we can analyze semi-analitically the effects of the counterterm

on the complexity growth rate, by solving numerically (2.14) for rm1 and rm2. Including

the counterterm, the result depends on Lct but is insensitive to the choice of normalization

α, while the opposite holds if we drop the counterterm. We perform a qualitative compar-

ison between the two cases in figure 2 where we report some sample plots as we fix Mℓ

and vary J .

For small values of J , the presence of the counterterm produces a large negative peak

at early times. This is followed by a rapid growth that at intermediate times generally

yields a larger complexification rate as compared to the case without counterterm. As the

amount of angular momentum increases, the rapid growth overcomes the negative peak

and the complexity starts immediately to increase (the rate of growth becomes everywhere

positive). As the extremal limit J → Mℓ is approached, the effect of the counterterm

becomes less and less important and the counterterm contribution becomes negligible.

The qualitative dependence on the angular momentum closely parallels the dependence

observed for (higher dimensional) charged, non-rotating, AdS black holes [24]. Also notice
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Figure 3. π dCA

dtb

in eq. (2.39) with M = 2, ℓ = GN = 1 and (left) J = 0.1, (center) J = 1, (right)

J = 1.999. In the three panels we explore the dependence on the counterterm scale: Lct = 0.1

(pink), Lct = 1 (blue), Lct = 10 (purple), increasing from the top down. In black dotted the late

time value (2.41).

that approaching the irrotational limit the early time negative peak turns into the negative

divergence characteristic of neutral AdS black holes [24]. The inclusion of the counterterm

is essential to have this divergence (see figure 18 and figure 2 in [24]).

In figure 3 we illustrate the dependence on the counterterm scale Lct in the result of

eq. (2.39). The three panels correspond to those in figure 2 and Lct increases from the top

down. At the qualitative level, a larger counterterm scale effectively acts as a reduction

of the angular momentum J , and viceversa. For instance in the left panel it is manifest

that increasing Lct makes the negative peak at early times deeper. In the right panel, we

see explicitly that the counterterm contribution becomes negligible as the three curves are

essentially superposed.

Complexity variation. Next we study holographic complexity variations with respect

to the Neveu-Schwarz vacuum of the boundary theory, dual to global AdS3. Since we

are considering a double sided BTZ geometry we subtract twice the gravitational action

computed on the WDW patch in vacuum AdS3

∆CA(tb) ≡ CA(tb) − 2CAdS
A . (2.48)

Physically this quantity describes how difficult it is to prepare the thermofield double state

at the boundary time tb/2, describing two entangled copies of the boundary CFT, with

respect to preparing the vacuums of the same unentangled copies. At tb = 0 this defines

the complexity of formation.8

The AdS3 result reads [18, 24]

CAdS
A =

1

4πGN

{

2 rAdS
max

(

1 + log
Lct

ℓ

)

+ π ℓ

}

. (2.49)

The regulator surface rAdS
max is in principle different from the BTZ one, rmax. To relate the

two, one uses the standard holographic procedure, writing the two metrics in a Fefferman-

Graham (FG) expansion [119, 120] and imposing the same UV cutoff. This exercise shows

8Another option is to consider variations with respect to the Ramond vacuum in the boundary theory,

corresponding to the zero mass BTZ geometry. For the neutral non-rotating case, [18] found a vanishing

complexity of formation. Here subtracting the zero mass BTZ result would only shift the complexity of

formation by ℓ
2GN

, i.e., at tb = 0 we would have CA − 2CA|J=M=0 = ∆CA + ℓ
2GN

.
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Figure 4. π∆CA(tb) with M = 2, ℓ = GN = α = Lct = 1 and (left) J = 0.1, (center) J = 1,

(right) J = 1.999. CA with the counterterm is depicted in blue solid, in red dashed without.

that the two cutoffs, rmax in BTZ and rAdS
max in AdS, differ by a linear term in the FG cutoff.

Such a linear correction does not yield any finite term to CA in the limit where the cutoff

is removed. Thus for our purpose we can simply identify rAdS
max = rmax.

Subtracting (twice) the AdS3 result from (2.37) then renders a finite variation

∆CA(tb) = − 1

4πGN

{

2πℓ+ 2 (rm1 + rm2) log
Lct

ℓ
+ r+ log

(r+ + rm1)(r+ + rm2)

(r+ − rm1)(r+ − rm2)

+ rm1 log
(r2

+ − r2
m1)(r2

m1 − r2
−)

r4
m1

+ rm2 log
(r2

+ − r2
m2)(r2

m2 − r2
−)

r4
m2

}

, (2.50)

where we dropped all terms that vanish as we take the UV cutoff to zero.

As for the rate of complexification, we can solve numerically the equations defining

the joint terms (2.14) obtaining the following results. In figure 4, we plot the complexity

variation (2.50), as we vary the ratio J/(Mℓ). These reflect what observed in analyzing the

growth rate. At late times, for any value of J , ∆CA grows linearly, with a slope that does

not depend on the counterterm. The early time behavior depends instead on the value of

J . For small enough angular momentum ∆CA initially decreases before increasing mono-

tonically in time, while for larger values of the angular momentum immediately increases.

The exact evolution depends also on the presence of the counterterm, or lack thereof. This

also produces a finite difference in the complexity variation at tb = 0, i.e., the complexity of

formation. This contrasts with the non-rotating case where the counterterm contribution

vanishes at tb = 0 [24].

Complexity of formation. Focusing on the complexity of formation, we can study

semi-analytically its dependence on the angular momentum J , see figure 5. The J = 0

complexity of formation is just the non-rotating BTZ value [18]

∆CJ=0
A (tb = 0) = − ℓ

2GN
, (2.51)

independently from the inclusion of the counterterm action. As a function of J , the

complexity of formation initially decreases, with the counterterm giving a larger nega-

tive ∆CA(0). As J increases the complexity of formation value increases, turns positive

and diverges in the extremal limit J → Mℓ (or r+ → r−) as

∆CA(tb = 0) ∼ − 1

2πGN

(

r− log
8(r+ − r−)

r−
+ πℓ+ 2 r− log

Lct

ℓ

)

. (2.52)
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Figure 5. π∆CA(tb = 0) with M = 2, ℓ = GN = α = Lct = 1 as a function of J . In blue solid

with the counterterm, in red dashed without. In the extremal limit J → Mℓ, the complexity of

formation diverges.

The divergence comes from both bulk and joint terms, while the counterterm only provides

a finite contribution. Again, the extremal limit behavior is analogous to the one of charged

black holes [24] telling us that according to this measure the boundary CFT state with

T = 0, ℓΩH = 1 is infinitely more complex than at finite temperature and angular velocity.

Finally, let us remark that despite the complexity of formation is quickly increasing as

one approaches the extremal limit, for fixed J near extremality the growth in time of ∆CA

remains finite and in fact slower than for smaller values of J (see again figure 2).

Grand canonical ensemble. For later comparison with the TFD model of section 4,

we here also consider the grand canonical ensemble and study the results in terms of the

thermodynamic variables (T,ΩH). These are related to the horizons radii by

r+ =
2πℓ2T

1 − (ℓΩH)2
, r− =

2πℓ3 T ΩH

1 − (ℓΩH)2
. (2.53)

Notice in the grand canonical ensemble the difference in free energies ∆G between

rotating BTZ and AdS is

∆G ≡ GAdS −GBTZ = −1

8
+

(πℓT )2

2
(

1 − ℓ2Ω2
H

) , (2.54)

with BTZ (AdS) being the dominant phase when ∆G > 0 (< 0) [121]. This specifies a

region in the (T,ΩH) parameter space where rotating BTZ is the dominant gravitational

solution. In the following figures we plot (T,ΩH) within the entire parameters range,

including the region where AdS would dominate the grand canonical ensemble.

In figure 6, we plot the CA growth rate, complexity variation and complexity of forma-

tion. The complexity growth rate increases with ΩH . In particular, the limiting value (2.40)

diverges when ℓΩH → 1, as it is apparent substituting (2.53) into (2.40). This is the criti-

cal angular velocity limit, in which the Einstein universe conformal to the AdS boundary

rotates at the speed of light [112]. For fixed angular velocity ℓΩH , the complexity of for-

mation is linear in the temperature. However, the slope changes sign in CA and is only
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Figure 6. Above: time dependence of (left) π dCA

dtb

and (right) π∆CA for ℓ = GN = T = 1 and

ΩH = 0.1 (dotted magenta), ΩH = 0.5 (solid olive), ΩH = 0.9 (dashed green).

Below: complexity of formation π∆CA(tb = 0) for ℓ = GN = 1 and (left) ΩH = 0.1 (dotted

magenta), ΩH = 0.5 (solid olive), ΩH = 0.9 (dashed green), (right) T = 0.1 (dotted gray), T = 1

(solid blue), T = 10 (dashed red).

positive for large enough angular velocity ℓΩH . For ℓ T → 0 all curves tend to:

∆CA(tb = 0) ∼ − ℓ

2GN
, (2.55)

independently of ΩH . This correctly coincides with the complexity of formation of BTZ

first evaluated in [18].

At fixed ℓ T , ∆CA(tb = 0) diverges for ℓΩH → 1. In this limit r−, r+ and rm1 = rm2

go to infinity, but as apparent from eq. (2.53) their differences r+ − r−, etc. are finite. For

the tips location we have explicitly:

rm1 = rm2 ≈ πℓ2T

1 − ℓΩH
. (2.56)

Substituting into eq. (2.50), we obtain the leading divergence in the critical velocity limit

ℓΩH → 1

∆CA(tb = 0) ∼ ℓ2T

2GN (1 − ℓΩH)
log

ℓ2

4L2
ct(1 − ℓΩH)

. (2.57)

The linearity of the complexity of formation in the temperature is stable against vari-

ations of the counteterterm scale Lct, as illustrated in the left panel of figure 7. There we

also see that without the counterterm contribution the dependence would not be linear,
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Figure 7. The plots illustrate the dependence on the counteterterm and its scale of the complexity

of formation π∆CA(tb = 0) for ℓ = GN = 1. (Left) ΩH = 0.5 and in solid lines, Lct = 0.1, 1, 10

increasing from the top down, (right) T = 1. In red dashed in both plots, the complexity of

formation without the counterterm.

see dashed red curve. The right panel instead illustrates that interestingly in the critical

limit ℓΩH → 1 the complexity of formation is positively divergent with the counterterm

action included, while it diverges negatively otherwise. Indeed, for the latter we can derive

in this limit

∆CA(tb = 0) − ∆CCT
A (tb = 0) ∼ − ℓ2T

2GN (1 − ℓΩH)
log

4π2ℓ2T 2

α2(1 − ℓΩH)
. (2.58)

2.3 Complexity = Volume

The growth rate of CV for the rotating BTZ black hole was analyzed in [51] as a subcase

of warped AdS3 black holes. In this section we extend the existing results considering the

total complexity and its time evolution, as well as the complexity of formation and its J

dependence.

2.3.1 Volume evaluation

In order to compute complexity according to the CV proposal (1.1) we look for the maximal

codimension-1 spacelike slice in the bulk that ends on a time-slice on the boundary where

the CFT lives, see figure 1. As before, we choose a symmetric time evolution tL = tR = tb

2

and exploit the left-right symmetry of the extremal slice. The maximal hypersurface in the

bulk shares the same axial symmetry of the Eddington-Finkelstein metric (2.13). We can

therefore use a parametrization of the form:

xµ (λ , Φ) = (v(λ) , r(λ) , Φ) , (2.59)

and the volume functional, expressed in terms of the induced metric h, thus reads

V =

∫

dλ

∫

dΦ
√
h = 2π

∫

dλ r
√

2v̇ṙ − f(r)v̇2 . (2.60)

Except for the explicit expression of the blackening factor f(r), (2.60) has the same form

as in AdS-Schwarzschild black holes analyzed in [24]. In the rest of this section we will

therefore just review the main steps entering the CV analysis and refer to [24] for the details.
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Noticing that the volume functional does not depend explicitly on v and gives rise to

a conserved quantity E, and using the freedom in fixing the parametrization λ, one arrives

to the following equations for the extremal hypersurface

E = r2 (fv̇ − ṙ) ,

r2ṙ2 = f(r) +
E2

r2
.

(2.61)

From these and given the left-right symmetry of the problem, we get the volume

V = 2π

∫

dλ = 4π

∫ rmax

rmin

dr

ṙ
= 4π

∫ rmax

rmin

r2

√

f(r)r2 + E2
dr . (2.62)

The range of integration goes from the regulator surface at the asymptotic boundary to

the minimal radius rmin, identified by ṙ|rmin
= 0, see figure 1. From (2.61) one can check

that this is related to the constant E as9

E = −
√

−f(rmin)r2
min. (2.63)

rmin and E are in turn related to the boundary time tb as

tb
2

=

∫ ∞

rmin

E

f(r)
√

f(r)r2 + E2
dr . (2.64)

This follows from the definition of the ingoing null coordinate v and equations (2.61)

tb
2

+ r∗(∞) − r∗(rmin) =

∫ v∞

vmin

dv =

∫ ∞

rmin

[

E

f(r)
√

f(r)r2 + E2
+

1

f(r)

]

dr (2.65)

noticing that r∗(∞) − r∗(rmin) =
∫∞

rmin
dr/f(r). We do not report the explicit expression

here, but eq. (2.64) can be integrated in terms of elliptic integrals of the third kind.

For our proposes here we can replace the upper limit of integration with rmax, as this

only gives corrections to V that vanish in the limit where the regulator is removed, and

use the resulting expression to rewrite the volume as

V = 4π

∫ rmax

rmin

[
√

f(r)r2 + E2

f(r)
+

E

f(r)

]

dr − E

(

tb
2

+ r∗(∞) − r∗(rmin)

)

. (2.66)

Evaluating the time derivative while keeping in mind that both E and rmin depend on the

boundary time tb then yields

dV

dtb
= −2πE = 2π

√

−f(rmin)r2
min . (2.67)

9Notice that r− < rmin < r+ and thus f(rmin) < 0.
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Figure 8. dCV

dtb

with M = 2, ℓ = GN = 1 for J = 0.1 (purple dotted), J = 1 (green solid) and

J = 1.9 (blue dashed).

2.3.2 CV results

Having computed the volume, the expression for CV only requires to fix the arbitrary scale

ℓbulk appearing in equation (1.1). We set it to be equal to the AdS radius ℓ, as common in

the literature [18]. We then have

CV =
4π

GNℓ

∫ rmax

rmin

r2

√

f(r)r2 + E2
dr (2.68)

and
dCV

dtb
= −2πE

GNℓ
=

2π

GNℓ

√

−f(rmin)r2
min . (2.69)

Eq. (2.68) can also be evaluated explicitly in terms of elliptic integrals.

Growth rate. Let us start from the time dependence of the rate of complexification.

At generic values of tb, this can be studied semi-analytically, inverting numerically equa-

tion (2.64) to extract rmin(tb). From figure 8 we observe first of all a dependence on the

value of the angular momentum that is qualitatively similar to the one of CA. The growth

rate decreases as we increase J .

On the other hand there are also substantial differences with CA. First of all the rate

of growth is always positive, that is, the maximal slice keeps increasing in volume as time

evolves. The other main difference concerns the late time growth rate. As we are now

going to discuss in some details, in the case of CV the asymptotic value of the growth rate

is given by the same function of M,ΩH and J as for CA, but this value is now approached

from below.

At late times the maximal surface will be almost tangent to a special bulk slice of

constant radius r = r̃min [5]. The value of r̃min can be obtained following the same strategy

as in [24]. Starting from (2.63) we can define

W (r) ≡
√

−f(r)r2 , (2.70)
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so that rmin will be the larger positive root of the equation10

E2 −W 2(r) = 0 , (2.71)

For tb = 0, by symmetry, the extremal hypersurface coincides with the slice t = 0 and in

this case rmin = r+, with E = 0. As time increases, the negative E will decrease, and so

will do rmin until the two roots coincide for rmin = r̃min.11 The corresponding late time

values are

r̃2
min =

r2
+ + r2

−
2

, Ẽ2 =

(

r2
+ − r2

−
)2

4ℓ2
. (2.72)

Notice that this also implies that r̃min represents an extremal point for W (r). Expand-

ing (2.68) around the extremum W (r̃min), we thus obtain the following late time rate of

complexification

dCV

dtb
=

π

GNℓ2

(

r2
+ − r2

−
)

− 4π
(

r2
+ + r2

−
)

GNℓ2
(

r2
+ − r2

−
)

(

r2
min − r̃2

min

)

+ . . . . (2.73)

The limiting value, which expressed in terms of M , ΩH and J takes the form

dCV

dtb
∼ 8π (M − ΩHJ) . (2.74)

This is approached from below, as opposed to CA, and smoothly reduces to the non-rotating

result [24] for J → 0.

Complexity variation. The rate of growth of CV is UV-finite, but the total complexity

diverges as

CBTZ
V ∼ 4π

GN
rmax + . . . . (2.75)

This is the same divergence one finds for (twice) global AdS3,12

CAdS
V =

2π

GN

∫ rmax

0

r√
ℓ2 + r2

=
2π

GN
(rmax − ℓ) . (2.76)

Subtracting twice the constant AdS value

∆CV = CBTZ
V − 2CAdS

V (2.77)

gives a finite result, which we plot as a function of boundary time in figure 9 (left).

10Explicitly, the two roots are r1,2 =

√

(

r2
+

+r2
−

)

±
√

(r2
+

−r2
−

)2−4E2ℓ2

2
.

11A way to understand this is to look at (2.64). Despite rmin being a root of the factor
√

E2 − W 2(r)

appearing at the denominator, for finite tb the integral converges, since the integrand goes like 1/
√

r − rmin

for r → rmin. However, at late time, tb → ∞, the integral has to diverge. Since r+ > rmin > r−, this is

only possible if the two roots coincide in this limit, so that the integrand goes like 1/(r − rmin).
12Again, in principle one should be careful and appropriately match the cutoffs for these two different

spacetimes. In the same way as for CA, also here this procedure turns out to only give negligible corrections,

i.e., corrections vanishing in the limit where the cutoff is removed. Therefore we set rBTZ
max = rAdS

max = rmax.
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Figure 9. (Left) ∆CV(tb) for J = 0.1 (purple dotted), J = 1 (green solid) and J = 1.9 (blue

dashed). (Right) ∆CV(tb = 0) as a function of J . In both plots M = 2, ℓ = GN = 1.

Complexity of formation. For tb = 0, this defines the CV complexity of formation and

since the radial integration runs all the way to the bifurcation surface rmin = r+, it can

also be evaluated explicitly:

∆CV(tb = 0) =
4πr+

GN

{

ℓ

r+
+K

(

r2
−
r2

+

)

− E

(

r2
−
r2

+

)}

(2.78)

in terms of complete elliptic integrals.

In the extremal limit J → Mℓ (or r+ → r−), this yields a logarithmic divergence

∆CV(tb = 0) ∼ 4πr−
GN

(

−1

2
log

r+ − r−
8r−

+
ℓ

r−
− 1

)

. (2.79)

The leading term is (2π)2 the one of CA discussed above, and analogous to the divergence

observed in the extremal limit for charged black holes [24]. A plot showing the dependence

on the angular momentum J of the complexity of formation is reported in figure 9 (right).

As for CA, dCV
dtb

∼ 0 near extremality. Thus, even though the complexity of formation

increases rapidly as we approach the extremal limit, at fixed values of J near extremality

∆CV increases only slightly in time (see figure 9). Finally, we notice that CV, and in

particular the complexity of formation, is always positive, which was not the case for CA.

In appendix A, for later reference with the Kerr-AdS discussion of section 3.3, we

present a slightly different computation in which we evaluate the CV complexity of forma-

tion in Boyer-Lindquist-like coordinates [112].

Grand canonical ensemble. We plot in figure 10 the CV growth rate, complexity

variation and complexity of formation in terms of the thermodynamic variables (T,ΩH).

As for CA, for fixed angular velocity ℓΩH , the complexity of formation is linear in the

temperature. This is apparent in the CV result (2.78) over which we have analytic control

and which yields:

∆CV(tb = 0) =
4πℓ

GN

{

1 +
2πℓ T

1 − ℓ2 Ω2
H

[

K
(

ℓ2 Ω2
H

)

− E
(

ℓ2 Ω2
H

)]

}

. (2.80)
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Figure 10. Above: time dependence of (left) dCV

dtb

and (right) ∆CV for ℓ = GN = T = 1 and

ΩH = 0.1 (dotted purple), ΩH = 0.5 (solid green), ΩH = 0.9 (dashed blue).

Below: ∆CV(tb = 0) for ℓ = GN = 1 and (left) ΩH = 0.1 (dotted purple), ΩH = 0.5 (solid green),

ΩH = 0.9 (dashed blue), (right) T = 0.1 (dotted pink), T = 1 (solid brown), T = 10 (dashed

orange).

Contrary to the CA proposal, ∆CV(tb = 0) is however everywhere positive and increasing

with T . At fixed ℓ T , the CV complexity of formation is also divergent in the limit of

critical angular velocity ℓΩH → 1, as can be obtained expanding (2.80)

∆CV(tb = 0) ∼ 2π2ℓ

GN

ℓ T

1 − ℓΩH

(

log
8

1 − ℓΩH
− 2

)

. (2.81)

This is precisely the same divergence structure as for CA (2.57).

CV 2.0 proposal. Here we will briefly consider an alternative proposal for complexity

advanced in [12], the so called CV 2.0 conjecture. This conjecture proposes that complexity

of a state should be dual to the spacetime volume of the WDW patch multiplied by the

pressure13

CV 2.0 = P VWDW, (2.82)

where the pressure is identified with the cosmological constant according to P = − Λ
8πGN

,

as proposed by [123–125].

13Another CA 2.0 proposal was advanced in [122]. This simply coincides with the one considered here in

the case of pure Einstein gravity.
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We can immediately evaluate CV2.0 and its growth rate using our results for CA. In

fact for vacuum solutions the volume of the WDW is proportional to Ibulk in (2.19)

CV 2.0 = −Ibulk

2
= − 1

8GN

{

2 (rm1 + rm2 − 4rmax) − r+ log
(r+ + rm1)(r+ + rm2)

(r+ − rm1)(r+ − rm2)

}

,

(2.83)

from which follows the growth rate

dCV 2.0

dtb
=
r2

m2 − r2
m1

8GNℓ2
. (2.84)

The late time limit

lim
tb→∞

dCV 2.0

dtb
=
r2

+ − r2
−

8GNℓ2
(2.85)

agrees with the one found in [12], and in particular equals

dCV 2.0

dtb
= P (V+ − V−) , (2.86)

where

V± = πr2
± (2.87)

are the thermodynamic volumes associated with the outer and inner horizons. The late

time limit is reached from below. In fact, as time increases rm1 tends to r− from above

while rm2 tends to r+ from below, see figure 1. One can check this explicitly using the late

time expansion for rm1 and rm2 given in (2.45).

The divergence of CV 2.0 exactly cancels when subtracting two copies of AdS3 CV 2.0

complexity

∆CV 2.0 (tb) =CBTZ
V 2.0 (tb) − 2CAdS

V 2.0 = −1

2

[

IBTZ
bulk (tb) − 2IAdS

bulk

]

=
1

8GN

{

2πℓ− 2 (rm1 + rm2) + r+ log
(r+ + rm1)(r+ + rm2)

(r+ − rm1)(r+ − rm2)

}

.
(2.88)

We study this difference and the growth rate semi-analytically. Sample plots are shown

in fig 11. Comparing with figure 8, we see that the results for CV complexity and CV2.0

are qualitatively similar. The late time limit, although different in the two cases because

of the overall relative factor in the definitions, is reached from below. Moreover, both

quantities grow monotonically with the boundary time. In the near extremal limit the

CV 2.0 complexity tends to a constant in time, as in the CA and CV conjectures. Also

the complexity of formation ∆CV 2.0(tb = 0) as function of the angular momentum J (see

figure 11) resembles the results for CV (see figure 9), is always positive and diverges in the

extremal limit.

3 Holographic complexity: Kerr-AdS

In this section we extend part of the above holographic analysis to four-dimensional Kerr-

AdS black holes. The axial, rather than spherical, symmetry of the solution complicates
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Figure 11. (Left) dCV 2.0

dtb

, (center) ∆CV 2.0(tb) and (right) ∆CV 2.0(tb = 0) as a function of J for

M = 2, ℓ = GN = 1. In the left and center panels: J = 0.1 (purple solid), J = 1 (green dashed)

and J = 1.999 (blue dotted).

the explicit evaluation of holographic complexity. Indeed, as we comment below, even the

null hypersurfaces foliation of Kerr-AdS spacetimes needed to construct the WDW patch

was only worked out recently and is only known in implicit form [107]. In section 3.2 and

section 3.3 we study respectively the CA growth rate and CV complexity of formation in

this higher dimensional setup.

3.1 Kerr-AdS black hole

The 3+1-dimensional Kerr-AdS metric in Boyer-Lindquist coordinates reads (see e.g. [126])

ds2 = − ∆

ρ2

(

dt− a

Ξ
sin2 θdϕ

)2

+
ρ2

∆
dr2 +

ρ2

∆θ
dθ2 +

∆θ

ρ2
sin2 θ

(

adt− r2 + a2

Ξ
dϕ

)2

(3.1)

with

∆ = (r2 + a2)

(

1 +
r2

ℓ2

)

− 2mr , ρ2 = r2 + a2 cos2 θ ,

∆θ = 1 − a2

ℓ2
cos2 θ , Ξ = 1 − a2

ℓ2
,

(3.2)

where m, a denote respectively the mass and rotational parameters.

There is a singularity with the topology of a ring at r = 0, θ = π
2 , where ρ2 = 0, and

the spacetime structure is fixed by the positive zeros of ∆. Defining

mextr(a) ≡ ℓ

3
√

6





√

(

1 +
a2

ℓ2

)2

+
12

ℓ2
a2 +

2a2

ℓ2
+ 2





√

√

√

√

√

(

1 +
a2

ℓ2

)2

+
12

ℓ2
a2 − a2

ℓ2
− 1 ,

(3.3)

the value of m for which ∆ = 0 has a double positive root, the geometry describes a naked

singularity for m < mextr, an extremal black hole for m = mextr and a black hole with outer

event horizon r = r+ and inner Cauchy horizon r = r− for m > mextr. Notice there is also

a parameter singularity at |a| = ℓ, where Ξ vanishes. In the following, we will consider the

black hole solution with m > mextr and |a| < ℓ, and also study the complexity behavior in

the critical limit |a| → ℓ. In this limit, the three dimensional Einstein universe at infinity

where the dual CFT is defined rotates at the speed of light [112, 126, 127] (see also below).

In figure 12, we depict two fixed θ diagrams of the Kerr-AdS4 black hole.
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Figure 12. Fixed θ projection diagrams of Kerr-AdS4.

In terms of the metric parameters (m, a), the mass M and angular momentum J read14

M =
m

GN Ξ2
, J = aM , (3.4)

while the entropy S, temperature T and angular velocity of the event horizon ΩH are

S = S+ = π
r2

+ + a2

GN Ξ
(3.5)

T = T+ =
r+

4π
(

r2
+ + a2

)

(

1 +
a2

ℓ2
+ 3

r2
+

ℓ2
− a2

r2
+

)

(3.6)

ΩH =
aΞ

r2
+ + a2

. (3.7)

It is also often useful to re-express the metric in the ADM form

ds2 = −N2dt2 +
ρ2

∆
dr2 +

ρ2

∆θ
dθ2 +

Σ2 sin2 θ

ρ2 Ξ2
(dϕ− ωdt)2, (3.8)

where

N2 =
ρ2∆ ∆θ

Σ2
(3.9)

Σ2 = (r2 + a2)2∆θ − a2∆ sin2 θ (3.10)

ω =
aΞ

Σ2

[

∆θ(r2 + a2) − ∆
]

, (3.11)

14As for BTZ we restrict for clarity, and without loss of generality, to J, a ≥ 0 .
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N being the lapse function and ω the angular velocity. At the outer horizon

ω(r+) = ΩH , (3.12)

while asymptotically

Ω∞ ≡ ω(r → ∞) ∼ − a

ℓ2
. (3.13)

Contrarily to the asymptotically flat case (i.e., ℓ → ∞) and to rotating BTZ of section 2.1,

the boundary at infinity is rotating. This feature leads to define the angular velocity as

the difference

Ω+ ≡ ΩH − Ω∞ =
a

ℓ2
r2

+ + ℓ2

r2
+ + a2

, (3.14)

which is the angular velocity of the rotating Einstein universe at infinity [112, 126]. Notice

the latter rotates at the speed of light ℓΩ+ = 1 either at the critical value a = ℓ or if

r2
+ = a ℓ. This critical limit was throughly studied in [112].

In addition to the above mentioned constraints: 1) m > mextr and 2) a < ℓ, we

here further restrict the analysis to satisfying everywhere 3) ℓΩ+ < 1, which in fact also

automatically implies 1) - 2). It is only in this case in fact that a timelike Killing vector

can be globally defined outside the outer horizon, and the black hole is in thermodynamic

equilibrium with rotating thermal radiation all the way to radial infinity [112]. Relatedly,

as soon as this bound is violated, the black hole exhibits superradiant instability. That

is the black hole is unstable to losing energy and angular momentum in gravitational and

scalar modes that are reflected and amplified in the AdS potential [128, 129]. In dual terms,

3) represents the speed of light upper bound to the rotation of the boundary state, and is

necessary to define a consistent thermodynamics. In figure 13, we depict in filled green the

allowed region in the space of solutions satisfying 1)–3), in terms of both the (a,m) (left

panel) and
(

r+

ℓ ,
r−

r+

)

(central panel) variables. This region is bounded by the intersection

of the speed of light critical curves: a = ℓ in dotted orange and r2
+ = a ℓ in solid red.

In particular, extremal black holes always rotate faster than the speed of light and are

hence unstable towards radiating away their angular momentum. Notice also that, within

the solutions satisfying 1)–3), large Kerr-AdS black holes with r+ ≫ ℓ have r− ≪ r+. In

figure 13 (right panel) we also depict how the allowed (a,m) region maps to the (J,M)

space. It is worth noticing that the a = ℓ curve maps to M,J → ∞. Finally notice that

the set of solutions with m = 0, a < ℓ parametrize empty AdS4 in oblate coordinates. We

thus include also this set of solutions in the allowed green region in the figure (figure 13

left panel). These solutions correspond to complex values of the
(

r+

ℓ ,
r−

r+

)

variables and are

thus not depicted in the center panel of figure 13.

In order to study holographic complexity we choose, as for the BTZ black hole, to time

evolve forward in both exterior regions in a symmetric fashion, i.e., we pick time to flow

upward on both sides of the Kerr-AdS black hole diagram in figure 12 with tL = tR = tb

2 .

3.1.1 WDW patch

The WDW patch is a codimension-0 region bounded by null hypersurfaces defined by a

constraint equation Φ(x) = constant with null normal, i.e. gαβ∂αΦ∂βΦ = 0. We need null
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Figure 13. In filled green the allowed region satisfying conditions 1)–3) in the space of parameters,

both in the (a,m)-plane (left),
(

r+

ℓ
, r

−

r+

)

-plane (center), and (J,M)-plane (right) for ℓ = 1. In the

left panel, we also include the empty AdS4 line of solutions with m = 0 in oblate coordinates. In

dashed blue the extremality curve, in dotted orange the parameter singularity a = ℓ, in solid red

the other instability bound r2
+ = a ℓ.

hypersurfaces that penetrate the horizon, and hence look for a suitable set of Eddington-

Finkelstein-like coordinates

v = t+ r∗(r, θ), u = t− r∗(r, θ) . (3.15)

The hypersurfaces we are seeking are then those defined by v = const and u = const.

Taking for concreteness v, the null condition reads

∆(∂rr
∗)2 + ∆θ(∂xθr

∗)2 =
(r2 + a2)2

∆
− a2 sin2 θ

∆θ
. (3.16)

To solve this PDE [107] recently adapted to AdS the approach of [130] for null hypersurfaces

in asymptotically flat Kerr geometry.15 In particular, one introduces an auxiliary function

ζ = ζ(r, θ) and defines

Q2 ≡ (r2 + a2)2 − a2ζ∆ (3.17)

P 2 ≡ a2
(

ζ ∆θ − sin2 θ
)

. (3.18)

The PDE (3.16) is then solved by

∂rr
∗ =

Q

∆
∂θr

∗ =
P

∆θ
(3.19)

provided d2r∗ = 0 for consistency, which in turn implies the auxiliary function ζ must have

a differential of the form

dζ =
1

µ

(

−dr

Q
+
dθ

P

)

. (3.20)

with µ = µ(r, θ).

This in principle allows solving for the relevant hypersurfaces and induced metric,

but the solution is implicit away from the special limit m = 0 [107]. Nonetheless, as we

15Note the extra Ξ factor appearing in [107].
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will see, to obtain the CA late time growth rate we do not need to explicitly solve the

equation for r∗.

The null normal one forms associated to the null hypersurfaces defined by (3.15) are

readily obtained. Focusing on the future part of the WDW patch and choosing them to be

outward directed from the boundary of the WDW patch, we get

kRµ = ∂µv =

(

1,
Q

∆
,
P

∆θ
, 0

)

, kLµ = −∂µu =

(

−1,
Q

∆
,
P

∆θ
, 0

)

. (3.21)

The associated null vectors implicitly define a parametrisation along the null direction of

the WDW in terms of the null generator λ, i.e., ∂λ ≡ kµ∂µ.

Similarly one can define two spacelike vectors linked to the spacelike intrinsic coordi-

nates yA on the boundary of the WDW patch

eµ
A =

∂xµ

∂yA
. (3.22)

Noticing that (3.20) implies that ζ is constant along the null generators, kµ∂µζ = 0, one

could take

eµ
ζ = µ

(

0,−P 2Q∆

Σ2
,
PQ2∆θ

Σ2
, 0

)

. (3.23)

Given the symmetry of the solution, one can take the second intrinsic coordinate to just

coincide with φ,16

eµ
φ = (0, 0, 0, 1) (3.24)

These are both orthogonal to kµ and define the non-degenerate transverse metric associated

to the WDW patch

γAB = gµνe
µ
Ae

ν
B =

(

µ2ρ2P 2Q2

Σ2 0

0 Σ2 sin2 θ
Ξ2ρ2

)

(3.25)

with determinant
√
γ =

µPQ sin θ

Ξ
. (3.26)

The last piece of information we will need for our analysis concerns the future and past

null-null joints of the WDW patch. In this axially symmetric solution, we expect them

to be θ-dependent, meaning that at each instant of boundary time tb the codimension-

2 intersection is not a round sphere. We then parametrize the joints radial location as

rm1 = rm1(θ) and rm2 = rm2(θ), respectively for the future and past joints. Analogously

to the BTZ case of eq. (2.14), these are defined by

tb
2

+ r∗(∞, θ) = r∗ (rm1, θ) ,
tb
2

− r∗(∞, θ) = −r∗ (rm2, θ) , (3.27)

16There are some subtleties with the regularity of this choice at the horizon, and in principle one would

need to define a shifted angular variable similarly to the one defined for BTZ in (2.9) (see [107]). This

however does not have any bearing on the result of our analysis.
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where r∗(∞, θ) denotes the r → ∞ limit of r∗. Differentiating with respect to the boundary

time tb and using (3.19), we obtain

∂rm1

∂tb
=

∆

2Q

∣

∣

∣

∣

rm1

(3.28)

∂rm2

∂tb
= − ∆

2Q

∣

∣

∣

∣

rm2

. (3.29)

Notice that at late times rm1 → r−, rm2 → r+, and since ∆(r±) = 0, these vanish.

3.2 Late time CA growth rate

In this section we evaluate the late time limit of the complexity=action growth rate and

show that it matches the extension of Lloyd bound to settings with angular momentum

advanced in [16]. Our result is derived using the gravitational action prescription developed

in [9], which appeared after [16] and which, in particular, carefully takes into account the

contribution of null-null joints.

We first evaluate the bulk term and null-null joints, which are the only non-zero contri-

butions to the late boundary time derivative of the gravitational action. We then explain

why the other terms are irrelevant.

Bulk term. In complete analogy to what we did in section 2.2.1, we write

Ibulk =
1

16πGN

∫

WDW
d4x

√−g
(

R+
6

ℓ2

)

= − 3

4GN ℓ2Ξ

∫

dθ dr dt ρ2 sin θ , (3.30)

and exploit the left-right symmetry of the WDW patch and split each half in three regions,

so that

Ibulk = 2
(

II
bulk + III

bulk + IIII
bulk

)

(3.31)

with

II
bulk = − 3

4GN ℓ2Ξ

∫ π

0
dθ sin θ

∫ r+

rm1

dr
(

r2 + a2 cos2 θ
)

(

tb
2

+ r∗(∞, θ) − r∗(r, θ)

)

(3.32)

III
bulk =

3

2GN ℓ2Ξ

∫ π

0
dθ sin θ

∫ rmax

r+

dr
(

r2 + a2 cos2 θ
)

(r∗(r, θ) − r∗(∞, θ)) (3.33)

IIII
bulk =

3

4GN ℓ2Ξ

∫ π

0
dθ sin θ

∫ r+

rm2

dr
(

r2 + a2 cos2 θ
)

(

tb
2

− r∗(∞, θ) + r∗(r, θ)

)

. (3.34)

Here rmax = rmax(θ) is a time independent UV cutoff that regularizes the bulk integral (see

appendix B). The UV-divergent contribution to Ibulk, i.e., III
bulk, is then time independent

and the CA growth rate is UV-finite. II
bulk and IIII

bulk depend on tb both directly, through

the appearance of tb in the integrand, and via the time dependence of the WDW tips,

which represent the extrema of the radial integral. However, the contribution from the

latter vanishes (see (3.27)–(3.29)). Therefore for the bulk action growth rate we obtain

dIbulk

dtb
= − 1

4GN ℓ2Ξ

∫ π

0
dθ sin θ

{

r3
m2(θ) − r3

m1(θ) + 3a2 cos2 θ [rm2(θ) − rm1(θ)]
}

, (3.35)

which at late time approaches

lim
tb→∞

dIbulk

dtb
= −r3

+ − r3
− + a2 (r+ − r−)

2GN (ℓ2 − a2)
. (3.36)
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Null-null joints. Next we evaluate the contribution of joints at the 2-dimensional top

and bottom corners of the WDW patch. For the future null-null joint at r = rm1, we have

INull−Null
joints =

1

8πGN

∫

rm1

d2y
√
γ log

∣

∣

∣

∣

kL · kR

2

∣

∣

∣

∣

. (3.37)

The two intrinsic variables are given by φ and ζ, the integration in φ can thus be performed

straight away. Using (3.21), which yields

kL · kR

2
=

1

2

(

1

N2
+

Q2

∆ρ2
+

P 2

∆θρ2

)

=
1

N2
, (3.38)

one thus have

dINull−Null
joints

dtb
=

1

4GN

[

∂

∂tb

∫

dζ
√
γ log

(

− 1

N2

)]∣

∣

∣

∣

r=rm1

, (3.39)

were we noticed that at the joint, r = rm1, N2 is negative.

Using (3.23) to change integration variable from ζ to θ and the fact that the entire

time dependence comes from the dependence on tb of the joint location rm1(θ), we arrive to

dINull−Null
joints

dtb
=

1

8GN

∫

dθ sin θ
∆

Q

∂

∂r

(

Σ2

Q∆θΞ
log

(

− 1

N2

)

)∣

∣

∣

∣

∣

r=rm1

. (3.40)

In the late time limit rm1 → r− and the expressions appearing in (3.40) are thus

evaluated at the innner horizon, implying in particular ∆(rm1) → ∆(r−) = 0. With this

in mind, it is then easy to convince oneself that in the late time limit the only terms that

survive are those where the derivative acts on the ∆ factor contained within the lapse

function N (see (3.9), (3.10) and (3.17)). In particular, the derivative acting on the log

term yields ∆′/∆. Using the explicit expressions one can then check that

Σ2

Q∆θΞ

∣

∣

∣

∣

∣

r=r−

=
(r2

− + a2)2

Ξ
(3.41)

and the numerator of this expression simplifies with the 1/Q|r=r− in front of the derivative

in (3.40). The remaining ∆ simplifies with the one coming from the derivative of the log

factor and one is left with ∆′/Ξ and the angular integral. Performing the integration in θ

and adding the contribution for the past null-null joint, one then gets

lim
tb→∞

dINull−Null
joints

dtb
=

∆′(r+) − ∆′(r−)

4GN Ξ
=

2r3
+ − 2r3

− +
(

a2 + ℓ2
)

(r+ − r−)

2GN (ℓ2 − a2)
. (3.42)

Vanishing contributions. We now show that all remaining terms in the WDW ac-

tion (2.18), namely the GHY terms at the regularized boundary, the null-timelike joint

contributions, and the counterterm do not contribute to the CA growth rate at late time.

In particular, while the GHY and joints are time-independent, and hence give a vanishing

growth rate at any time, the counterterm growth rate only vanishes as tb → ∞.
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First, we consider the GHY term associated to the cutoff surface near the right bound-

ary. Schematically this reads

IGHY =
1

8πGN

∫ 2π

0
dϕ

∫ π

0
dθ

∫ tmax

tmin

dt
√

|h|K
∣

∣

∣

∣

∣

r=rmax

. (3.43)

The integrand and the cutoff surface are time-independent. The integral in t similarly

gives a factor that does not depend on tb, as the range of integration only depends on the

choice of rmax

tmax − tmin =

[

tb
2

+ r∗(∞, θ) − r∗(rmax, θ)

]

−
[

tb
2

− r∗(∞, θ) + r∗(rmax, θ)

]

= 2 [r∗(∞, θ) − r∗(rmax, θ)] , (3.44)

so that
dIGHY

dtb
= 0 . (3.45)

With a completely similar reasoning, given the time-null joints lie on the cutoff surface

at rmax, we have

dITime−Null
joints

dtb
= 0 . (3.46)

Finally let us consider the counterterm action

Ict =
1

8πGN

∫

∂WDW
dλ d2y

√
γΘ log (LctΘ) , (3.47)

with Θ = ∂λ log
√
γ, and take for concreteness the right future boundary of the WDW-

patch. The integration runs over ζ, φ and the null coordinate λ, which can be expressed in

terms of the auxiliary null vector Ñµ associated with kµ, such that Ñµkµ = −1. For the

right future boundary of the WDW patch under consideration, in particular

dλ = −Ñµdx
µ = −N2

2
(dt− dr∗) . (3.48)

Given the independence of the integrand from φ one can perform the corresponding

integration. Using the condition of being on the boundary of the WDW patch, dv =

dt+ dr∗ = 0, with (3.20) and (3.48) we can change the remaining integration variables to

r∗ and θ using

dλ = N2dr∗ , (3.49)

dζ =
1

µQ2

(

−∆dr∗ +
Σ2

P∆θ
dθ

)

. (3.50)

This gives an integral of the form

Ict =
1

4GN

∫

dθ dr∗ ∆ρ2 sin θ

ΞQ
Θ log (LctΘ) , (3.51)
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where the time dependence is implicitly contained in the extremum of integration corre-

sponding to the tip of the WDW, i.e., in r∗(rm1, θ). Taking the time derivative with (3.27),

we obtain
dIct

dtb
=

1

8GN

∫

dθ
∆ρ2 sin θ

ΞQ
Θ log (LctΘ)

∣

∣

∣

r=rm1

. (3.52)

For us here it is then enough to notice that in the late time limit rm1 → r− and the

integrand vanishes because of the ∆ factor. Therefore

lim
tb→∞

dIct

dtb
= 0 . (3.53)

Complexification rate. Combining the non-vanishing bulk contribution (3.36) and the

null-null joint one (3.42), we obtain the late time CA growth rate

lim
tb→∞

π
dCA

dtb
=
r3

+ − r3
− + ℓ2 (r+ − r−)

2GN (ℓ2 − a2)
= (M − Ω+J) − (M − Ω−J) . (3.54)

In writing the second equation we used the relations ∆(r±) = 0, the definitions (3.4)

and (3.14), and the analogue quantities defined at the inner horizon. Similarly to the lower

dimensional BTZ case studied in the previous section, the limit (3.54) saturates the bound

of [16] (but not the one of [7] here). While in the BTZ case we were able to show that the

limiting value was approached from above and the bound violated at intermediate times,

we cannot draw a conclusion with our analysis of Kerr-AdS. Nonetheless, we expect the

bound to be generically violated, as this is what happens in the irrotational limit [24].

In the critical limit a → ℓ, in which the conformal boundary rotates at the speed of

light, the late time limit (3.54) diverges. This is apparent from the intermediate expression

in eq. (3.54) since r− < r+ (see central panel of figure 13), and mimics the behavior we

observed in BTZ. Notice though that for small black holes with r+ < ℓ the growth rate late

time limit does not diverge in the speed of light limit, which corresponds in this regime

to r2
+ → a ℓ.

The works [109, 110] studied holographic complexity for odd-dimensional Myers-Perry

black holes with equal angular momenta in each orthogonal plane. For large black holes,

they highlighted a direct connection between CA, CV and thermodynamic volume. For the

growth rate at late times, taking the large black hole limit with r−/r+ held fixed, it was

shown in [109, 110] that at leading (divergent) order T+S+ − T−S− ∝ P (V+ − V−) and

lim
tb→∞

dCA/V

dtb
∝ P∆V (3.55)

where ∆V = V+ − V− is the difference between the inner and outer horizon thermody-

namic volume.

Using T+ = T in (3.6), S+ = S in (3.5) and analogous ones to define T− and S− at

r−, the limiting value for the Kerr-AdS complexity growth rate (3.54) can be rewritten in

the following form

(M − Ω+J) − (M − Ω−J) = T+S+ − T−S− − P (V+ − V−) , (3.56)
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in terms of pressure

P =
3

8πGNℓ2
, (3.57)

and thermodynamic volumes

V± =
4π

3

(

r±(r2
± + a2)

Ξ
+ aGN J

)

. (3.58)

Explicitly, and factorizing common factors we have:

T+S+ − T−S− =
r+ℓ

2

2GN Ξ (ℓ2 − r+r−)

(

2
r2

+

ℓ2
+ 1 − r3

+r−
ℓ4

+
r−
r+

− 2
r3

−
r+ℓ2

− r4
−
ℓ4

)

(3.59)

2P∆V =
r+ℓ

2

2GN Ξ (ℓ2 − r+r−)

(

2
r2

+

ℓ2
+ 2

r+r−
ℓ2

− 2
r2

−
ℓ2

− 2
r3

−
r+ℓ2

)

. (3.60)

As apparent in figure 13, the large black hole limit r+/ℓ ≫ 1 can here only be taken con-

sistently in the regime r−/r+ ≪ 1. In particular, to remain within the allowed parameters

region we need to take r+/ℓ ≫ 1 while taking r−/r+ to zero as r−/r+ ∼ ℓ4/r4
+ or faster.

Taking this limit then implies that the only divergent term inside the parenthesis of both

expressions is 2
r2

+

ℓ2 , giving at leading order

T+S+ − T−S− = 2P∆V (3.61)

compatibly with the claim (3.55) in [109, 110].

3.3 CV complexity of formation

In this section we evaluate the complexity of formation according to the CV proposal, that

by symmetry is the volume of the t = 0 slice of Kerr-AdS 3.1. Such maximal volume slice

anchored on the tb = 0 surface on the boundary intersects the bifurcation surface, and is

straightforward to evaluate.

In Boyer-Lindquist coordinates, the regularized volume of the maximal t = 0 slice

of 3.1 gives

CV(tb = 0) =
4π

GN ℓ

∫ π

0
dθ sin θ

∫ rmax

r+

dr
ρ

Ξ

√

(r2 + a2)2

∆
− a2 sin2 θ

∆θ
. (3.62)

We follow the standard holographic procedure to fix the UV cutoff δ in Fefferman-Graham

coordinates, which corresponds to a θ-dependent IR bulk cutoff rmax in Boyer-Lindquist

coordinates (see appendix B, eq. (B.9)):

rmax =
ℓ2

δ
− δ

4

(

1 +
a2

ℓ2
sin2 θ

)

+
m

3 ℓ2
δ2 + . . . . (3.63)

From this we evaluate the complexity of formation, i.e. the additional complexity arising in

preparing the rotating entangled thermofield double state with two copies of the boundary

CFT, as compared to preparing the individual vacuum states of the two copies. In these
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Figure 14. ∆CV(tb = 0) as a function of m and a, for GN = ℓ = 1. From the bottom up

m = 1, 3, 5, 10, 20.

coordinates in which the boundary asymptotic metric has rotation, the natural vacuum

to consider is the solution 3.1 with m = 0, that is AdS4 in oblate coordinates. We thus

consider the variation

∆CV(tb = 0) =
4π

GN ℓ

∫ π

0
dθ sin θ

{

∫ rmax

r+

dr
ρ

Ξ

√

(r2 + a2)2

∆
− a2 sin2 θ

∆θ

−
∫ rm=0

max

0
dr

ρ

Ξ

√

(r2 + a2)2

∆|m=0
− a2 sin2 θ

∆θ

}

. (3.64)

Once we take δ → 0, the difference between rmax and rm=0
max and the θ-dependence in (3.63)

have no influence on ∆CV (see appendix B). We can thus use a unique θ-independent cutoff

rmax in both expressions and perform the integration numerically.

To make further contact with the BTZ case for which we mainly focused on the co-

ordinates system (2.1), we need to consider Schwarzschild-like coordinates. This is the

situation in which the boundary CFT background metric is not rotating and all rotation

is in the states. We saw for BTZ in appendix A this accounts for an additional finite

contribution in ∆CV(tb = 0), as compared to Boyer-Lindquist-like coordinates. For Kerr-

AdS we verify explicitly in appendix B that, differently from BTZ, ∆CV(tb = 0) evaluated

in Schwarzschild-like coordinates subtracting twice the complexity of a fixed time slice in

global AdS coincides precisely with the result obtained in eq. (3.64).

We plot the results in figure 14 as a function of the parameters a and m. The behavior

of ∆CV(tb = 0) has analogies with the one observed for the BTZ black hole (see figure 9),

but the comparison requires some care. In particular from figure 14 one can observe a

divergent behavior in the limit a → ℓ, which is qualitatively similar to the one observed

in the BTZ case in the limit J/M → ℓ. Notice however that in the allowed region of

parameters for Kerr-AdS, the limit a → ℓ can only be taken for large enough values of m,

as for smaller m the bound r2
+ < a ℓ is stronger than the bound a < ℓ (see figure 13). This

is reflected in figure 14 by the lower mass curve ending at some finite value of a, as well as

in the in the plots of the complexity of formation as a function of M and J in figure 15. In

terms of these variables for any finite M the only relevant bound is r2
+ < a ℓ, as shown in

figure 13. These differences between Kerr-AdS and BTZ, reflect the fact that the multiple
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Figure 15. ∆CV(tb = 0) as a function of M and J , for GN = ℓ = 1. From the bottom up

M = 1, 2, 3, 5, 10, 20, 50, 100, 200. As made explicit in the left panel, J spans the full range allowed

by the condition ℓΩ+ < 1, or equivalently r+ <
√
aℓ, which provides the most stringent bound

for any finite M . In the right panel ∆CV(tb = 0) is plotted as a function of the dimensionless

combination J/Mℓ = a/ℓ. Each curve stops at the limiting point r+ =
√

Jℓ/M , corresponding to

the superimposed green dotted curve. ∆CV(tb = 0) remains finite, but as J/Mℓ approaches 1 it

rapidly increases as a function of M .

conditions one has to impose on the Kerr-AdS parameters to avoid super-luminal rotation

translate into the single bound J/M ≤ ℓ for the rotating BTZ black hole.

In the limit of large odd-dimensional Myers-Perry black holes r+/ℓ ≫ 1 with equal

angular momenta in each orthogonal plane and at fixed ratio r−/r+, [109, 110] found the

complexity of formation is controlled by the thermodynamic volume rather than by the

entropy, with a scaling that depends on the spacetime dimensionality D. In particular they

verified that for r+

ℓ ≫ 1 (see eq. (4.20) in [110])

∆CV(tb = 0) ∼ S log
ΩH

T
+ f̃

(

r−
r+

)

V
D−2
D−1 . (3.65)

Here f̃ is a function of the fixed ratio r−

r+
and V the thermodynamic volume. [109, 110] were

able to determine the V dependence of ∆CV of large odd-dimensional Myers-Perry black

holes by studying this quantity both in the non-rotating limit r−

r+
≪ 1, where V

D−2
D−1 ∼ S ∼

( r+

ℓ

)D−2
, and in the extremal limit r−

r+
∼ 1, where V ∼ S

D+1
D−1 ∼

( r+

ℓ

)D+1
. Our findings

are compatible with (3.65), but we are not able to verify independently this scaling for the

D = 4 Kerr-AdS solution. This is because within the region of parameters space covered

by the physical solutions (see center panel of figure 13), taking r+

ℓ ≫ 1 consistently forces

also r−

r+
≪ 1, i.e. it automatically implies the irrotational limit. In this region, the r+

ℓ

scaling is everywhere fixed: V 2/3 ∼ S ∼
( r+

ℓ

)2
, and one cannot distinguish between the

two thermodynamic variables.

Grand canonical ensemble. To express expliclty the complexity of formation in terms

of the thermodynamical variables T and Ω+, we use equations (3.6) and (3.14). From these

we observe first of all that there exist two branches of small and large black holes, as well

as a minimal value of the temperature that can be attained within the physical space of

solutions (see figure 16). This minimal value ranges between
√

3/(2π) ≥ ℓ Tmin > 1/(2π)

for 0 ≤ ℓΩ+ < 1.
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Figure 16. At fixed angular potential, here Ω+ = 0.5 and ℓ = 1, for each value of T there are a

small and large black hole branch. Within the physical parameter space of figure 13, there exists a

minimum value of the temperature for such black hole solutions.

For both branches, we plot the CV complexity of formation at fixed ℓΩ+ (left panels)

and fixed ℓ T (right panels) in figure 17. As for BTZ (see figure 10), ∆CV(tb = 0) of

large black holes is always positive, increases with the temperature and diverges in the

critical angular velocity limit ℓΩ+ → 1. However, as opposed to BTZ, the dependence on

the temperature is not linear, and fixed ℓ T curves approach different values as ℓΩ+ → 0.

The CV complexity of formation for small black holes instead behaves very differently: it

decreases and goes to zero as ℓ T → ∞ and it only decreases slightly as ℓΩ+ varies from 0

to 1 at fixed ℓ T .

4 Circuit complexity: rotating TFD state

After working out different holographic measures of complexity in rotating black hole set-

tings, we would like to study the corresponding complexity in the boundary theory. For

concreteness we focus on the holographic dual of rotating BTZ, i.e. the rotating TFD

state [113, 114, 131]

|rTFD〉 =
1

√

Z (β,Ω)

∑

n

e−β(En+ΩJn)/2e−i(En+ΩJn)t |En, Jn〉L |En, Jn〉R , (4.1)

describing an entangled state of the two identical CFT2 on the right and left asymptotic

boundaries of the black hole geometry. Here En and Jn label energy and momentum

eigenstates, β matches the inverse Hawking temperature of the dual black hole and Ω

is the angular velocity. In writing the dynamics in (4.1), we have taken a symmetric

time tR = tL = t/2, as to match the holographic model, and evolved with the deformed

Hamiltonian on both sides. Another possibility would be to evolve with the undeformed

Hamiltonian only, that is

|rTFD〉 =
1

√

Z (β,Ω)

∑

n

e−β(En+ΩJn)/2e−iEnt |En, Jn〉L |En, Jn〉R . (4.2)

We will consider the two options in what follows.
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Figure 17. ∆CV(tb = 0) for GN = ℓ = 1 in the grand canonical ensemble for large black

holes (upper panels) and small black holes (lower panels). (Left) Temperature dependence for

Ω+ = 0.1, 0.5, 0.9 from the bottom up. (Right) Angular velocity dependence for T = 0.9, 1, 1.1 from

the bottom up.

In both cases, turning-off the potential Ω, one obtains

|TFD〉 =
1

√

Z (β)

∑

n

e−βEn/2e−iEnt |En〉L |En〉R , (4.3)

representing the TFD state dual to the (non-spinning) BTZ black hole [113, 131].

Ideally, one would like to evaluate complexity for this state in a holographic CFT2, but

a general definition of complexity in QFT (and CFT) is still lacking and the majority of

results available so far concerns Gaussian states in free theories (see e.g., [84–86, 101, 105,

132–148]).17 In order to make a qualitative comparison with the holographic results, we

will follow the approach of [85] and consider as a toy model that of a free scalar field. As

we will show explicitly, it is then easy to give an effective description of the rotating TFD

state (4.1) in terms of the non-rotating one (4.3), and make use of the available Gaussian

state results [85]. This is analogous to what happens for the charged TFD studied in [142],

which can also be given an effective description in terms of (4.3).

Rotating TFD. We consider a simple model where right and left degrees of freedom

are described by two identical copies of a (1+1)-dimensional free scalar QFT on a circle of

17An interesting approach based on the Euler-Arnold formalism to study complexity in chaotic quantum

systems was developed in [149, 150].
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length L, each with Hamiltonian

H =

∫ L
2

− L
2

dx

[

π2

2
+
m2

2
φ2 +

1

2
(∂xφ)2

]

=
∑

k

ωk

(

a†
kak +

1

2

)

, (4.4)

and angular momentum operator

J = −
∫ L

2

− L
2

dx π∂xφ =
∑

k

pk

(

a†
kak +

1

2

)

. (4.5)

In writing the r.h.s. of these expressions we have used the mode decompositions at t = 0

φ =
∑

k

1√
2Lωk

(

eipkxak + e−ipkxa†
k

)

π = −i
∑

k

√

ωk

2L

(

eipkxak − e−ipkxa†
k

)

(4.6)

with pk = 2π
L k and ωk =

√

p2
k +m2. For each mode, modulo the shift in the zero-point

energy, both H and J are proportional to the particle number operator Nk = a†
kak,

Nk |n〉k = nk |n〉k , |n〉k =
(a†

k)n

√
n!

|0〉 . (4.7)

Mode-by-mode we can therefore simultaneously label Hamiltonian and momentum eigen-

states in terms of the particle number eigenstates |n〉k

H |n〉k = Ek,n |n〉k = ωk

(

n+
1

2

)

|n〉k , J |n〉k = Jk,n |n〉k = pk

(

n+
1

2

)

|n〉k . (4.8)

Given the free QFT structure, which yields modes factorization, the TFD state can

be written as the product of TFD states of single right-left couples of harmonic oscillators,

each labeled by the mode number k

|rTFD〉 =
⊗

k

|rTFD〉k . (4.9)

Making the eigenvalues structure explicit, the single mode states then take the form

|rTFD〉k =
1

√

Zk(β,Ω)

∑

n

e−( β

2
+it)(En+ΩJn) |n〉k,L |n〉k,R (4.10)

=
1

√

Zk(β,Ω)

∑

n

e−( β

2
+it)(ωk+Ω pk)(n+ 1

2 ) |n〉k,L |n〉k,R , (4.11)

with normalization factor

Zk(β,Ω) =
e− β

2
(ωk+Ω pk)

1 − e−β(ωk+Ω pk)
. (4.12)

Defining for every single mode an effective inverse temperature and time as

βk = β

(

1 + Ω
pk

ωk

)

, tk = t

(

1 + Ω
pk

ωk

)

, (4.13)
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it is then immediate to see that the rotating TFD state can be effectively written as a TFD

state with no rotation

|rTFD〉k =
1

√

Zk(βk,Ω = 0)

∑

n

e
−
(

βk
2

+itk

)

ωk(n+ 1
2 ) |n〉k,L |n〉k,R . (4.14)

We shall notice that as long as |Ω| < 1 the effective inverse temperature (4.13) is non-

negative, and only vanishes in the limiting case where |Ω| → 1 with m → 0. Also, t = 0

maps to tk = 0, and this will be important when computing the complexity of formation. A

completely similar reasoning goes through if we choose to time-evolve with the undeformed

Hamiltonian as in (4.2). The only difference being that the effective representation (4.14)

would only involve an effective inverse temperature, but not an effective time. This simple

identification, valid for each mode k, allows to borrow and adapt the results of [85] for

non-rotating TFD states.

Before reviewing the results of [85], let us mention that a similar identification can be

performed in the charged, non-rotating, case [142]. There however the absolute value of

the chemical potential, through the identification of the effective temperature, sets a lower

bound for the mass parameter m. This in particular prevents from taking the m → 0 limit

in the charged case.

TFD complexity. We have shown that single mode rotating TFD states admit an effec-

tive description in terms of non-rotating TFD states. Here we briefly review the complexity

analysis of [85] for the TFD state (4.3).

The analysis of [85] follows and extends the work of [84], which adapted Nielsen’s

approach to complexity [81–83] to free scalar fields. The latter starts with a continuum

representation of the unitary transformation

U(σ) = ~P exp

[

− i

∫ σ

0
ds
∑

I

Y I(s)KI

]

with U(0) = ✶, and U(1) = UT , (4.15)

acting on states and connecting the reference and target states

|ψT〉 = U(1) |ψR〉 . (4.16)

The unitary is constructed in terms of a basis of Hermitian operators KI , the gate’s gener-

ators, applied along the circuit parametrized by s as specified by the control functions Y I .

For practical reasons, the set of generators is normally taken to be finite and to realize a

closed algebra. Nielsen’s approach then assigns a cost to each circuit through a functional

D[U ] =

∫ 1

0
ds F

(

U(s), Y I(s)
)

(4.17)

specified in terms of a local cost function F , and defines the complexity of going from a

reference to a target state as the cost associated to the circuit that minimizes the func-

tional, namely

C(UT) = min
U

D[U ]. (4.18)
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In this approach U(σ) defines a trajectory in the space of unitaries, with Y I(σ) the com-

ponents of its tangent vector. The problem of computing complexity is then analogous to

solving for the motion of a particle in the geometry emerging from the group structure

provided by the gate set, with Lagrangian specified by F .

In [85], the target state was the non-rotating TFD state, which is the product of single

modes TFD states, each corresponding to a TFD state of a pair of harmonic oscillators at

fixed k

|TFD〉 =
⊗

k

|TFD〉k =
⊗

k

1
√

Z(β)

∑

n

e−( β

2
+it)ωk(n+ 1

2 ) |n〉k,L |n〉k,R . (4.19)

Following [84], the reference state was chosen to be a completely unentangled state obtained

as the ground state of (two copies of) a ultralocal Hamiltonian where the spatial derivative

term is absent. That is, the ground state of an Hamiltonian with a fixed frequency µ for

all modes

H =
∑

k

µ

(

a†
kak +

1

2

)

. (4.20)

To connect the TFD state to the reference state, [85] considered circuits built with gates KI

quadratic in the canonical variables associated to each of the entangled pairs of harmonic

oscillators making the TFD state. Introducing a UV regulator in the field theory yields a

finite number of such gates. A simple way to regularize the theory in the setup at hand

is to consider a finite number of modes Ñ .18 In such a case, in the analysis of [85] the

relevant group structure turns out to be Sp(2Ñ ,R). The construction of the generators

also introduces an arbitrary gate scale µg, which together with the reference state scale µ

and the mode frequency ωk characterize the complexity model.

The cost function on which [85] focused their analysis is the so called κ = 2

Fκ=2 =
∑

I

∣

∣

∣Y I
∣

∣

∣

2
(4.21)

which is independent of the specific basis for the gates generators. Importantly, for this

cost function, when the reference and gate scales are set equal, µg = µ, the optimal circuit

does not mix modes with different k, and the minimal length circuit for each mode is

generated by repeatedly applying a single generator [85]. In geometrical terms, in this case

the optimal circuit computing complexity for each k corresponds to a straight-line geodesic

on Sp(2,R). The resulting complexity evaluated in [85] is

Cκ=2 =
1

4

∑

k

log2

(

f
(+)
k +

√

(

f
(+)
k

)2
− 1

)

+ log2

(

f
(−)
k +

√

(

f
(−)
k

)2
− 1

)

(4.22)

with

f
(±)
k =

1

2

(

µ

ωk
+
ωk

µ

)

cosh 2αk ± 1

2

(

µ

ωk
− ωk

µ

)

sinh 2αk cosωkt , (4.23)

αk =
1

2
log

(

1 + e−βωk/2

1 − e−βωk/2

)

. (4.24)

18Notice that our regularization procedure is slightly different from the one adopted in [85], where the

UV regularization comes from putting the theory on a spatial lattice.
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Let us reiterate that the mode factorization for the circuit allows to obtain the TFD

complexity as the sum of complexities evaluated for each mode separately. This is crucial

in view of using the effective description of the rotating TFD (4.13)–(4.14) to evaluate

complexity in terms of the non-rotating TFD results. In the rest of our work we will thus

only consider the situation where the gate scale is set equal to the reference scale.

In [85], the basis-dependent cost function

F1 =
∑

I

∣

∣

∣Y I
∣

∣

∣ (4.25)

was also considered to evaluate the length of the straight-line circuit. That is, [85] did

not solve explicitly for the optimal circuit for the F1 cost function, but simply evaluated

the length of the straight-line circuit with this measure. Nonetheless, this still provides an

upper bound on computational complexity of the TFD state. Interestingly, [85] found that

the straight-line circuit provides a qualitative matching with the holographic complexity

results for the TFD state when working in the so called physical basis.19

In what follows we will then only explore the corresponding result for the F1 cost:

C1 =
1

2

∑

k

√
2

∣

∣

∣

∣

∣

log

(

f
(+)
k +

√

(

f
(+)
k

)2
− 1

)

cos θ
(+)
k + log

(

f
(−)
k +

√

(

f
(−)
k

)2
− 1

)

cos θ
(−)
k

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

log

(

f
(+)
k +

√

(

f
(+)
k

)2
− 1

)

sin θ
(+)
k + log

(

f
(−)
k +

√

(

f
(−)
k

)2
− 1

)

sin θ
(−)
k

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

log

(

f
(+)
k +

√

(

f
(+)
k

)2
− 1

)

cos θ
(+)
k − log

(

f
(−)
k +

√

(

f
(−)
k

)2
− 1

)

cos θ
(−)
k

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

log

(

f
(+)
k +

√

(

f
(+)
k

)2
− 1

)

sin θ
(+)
k − log

(

f
(−)
k +

√

(

f
(−)
k

)2
− 1

)

sin θ
(−)
k

∣

∣

∣

∣

∣

,

(4.26)

with

tan θ
(±)
k =

1

2

(

µ

ωk
+
ωk

µ

)

cotωkt± 1

2

(

µ

ωk
− ωk

µ

)

1

tanh 2αk sinωkt
. (4.27)

We will also be interested in the complexity of formation, the difference between the

rotating TFD state complexity at t = 0 and that of two copies of the vacuum state20

∆C ≡ C(|rTFD(0)〉 − C(|0〉L |0〉R) , (4.28)

This takes a particular simple form for the two cost functions we are considering and is

independent from the reference scale µ, namely

∆C1 = 2
∑

k

|αk| , ∆Cκ=2 = 2
∑

k

α2
k . (4.29)

This concludes our summary of the main results of [85] that we will use next to evaluate

the complexity of rotating TFD states making use of the effective description (4.13)–(4.14)

of the single mode rotating TFD in terms of a non rotating TFD state.

19In this basis the KI are constructed with the canonical variables associated to the single harmonic

oscillator Hamiltonian, retaining the original left and right splitting of the TFD construction, see [85].
20The vacuum states and the corresponding complexity are simply recovered taking β → ∞.
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4.1 Complexity of formation

In this subsection we analyze the complexity of formation of the rotating TFD state for

the two cost functions described above. Using the effective description (4.13)–(4.14), the

complexity of formation reads

∆C1 = 2

N/2
∑

k=−N/2

|αk|, ∆Cκ=2 = 2

N/2
∑

k=−N/2

α2
k (4.30)

with

αk =
1

2
log

(

1 + e−βkωk/2

1 − e−βkωk/2

)

= arctanh e−βkωk/2 ≥ 0 . (4.31)

Notice we have written the above formulae making explicit a UV cutoff on momenta.

These are actually UV-finite quantities, and N can be taken to infinity. However, we are

not able to sum the series analytically in general and thus we use a large, but finite, N

to evaluate them and produce plots. The sum runs on positive and negative momenta,

which contributions are related by α−k(Ω) = αk(−Ω). For simplicity and without loss of

generality, we will also henceforth assume 0 ≤ Ω < 1.

In view of comparing with the holographic results, we will be particularly interested

in the conformal limit m → 0. In this limit the complexity of formation exhibits a IR

divergence due to the zero mode

α0 =
1

2
log

(

1 + e−β m/2

1 − e−β m/2

)

∼ −1

2
log β m , (4.32)

In the remainder, to evaluate complexity numerically and produce plots for the conformal

limit, we will introduce a IR regulator by using a small but non-vanishing mass. Finally,

in the rest of our analysis we will consider the compact spatial dimension of the system

L to be fixed. We will measure dimensional quantities with respect to the scale set by L,

which we therefore simply set to L = 1.

Dependence on T . At low temperature the complexity of formation is dominated by

the zero-mode, which is the least suppressed as T → 0

∆C1 ∼ 2 arctanh e− m
2T , ∆Cκ=2 ∼ 2 arctanh2 e− m

2T . (4.33)

As the temperature increases, the contributions of the other modes become relevant. As

opposed to the non-rotating case, for each positive-negative mode pair labeled by k > 0,

we have αk < α−k at finite T , and the larger Ω the more important is the negative

mode contribution with respect to the positive one. This can be seen from the explicit

expression (4.31) and the definition of the effective inverse temperature (4.13). In fact,

the angular velocity Ω translates into a smaller effective temperature for positive modes

as compared to negative ones. The effect is apparent for m = 0, where we can write for

positive (negative) modes

αk = arctanh e− π|k|(1±Ω)
T . (4.34)
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Figure 18. Complexity of formation for different values of Ω as a function of the temperature T ,

with L = 1, N = 20000 and m = 10−6. From the bottom up Ω = 0.1 (green), Ω = 0.5 (violet) and

Ω = 0.8 (blue). The left panels illustrate how for sufficiently large temperatures the complexity

of formation agrees well with the analytic expression (4.38) and (4.39) (dashed lines). The right

panels show that for sufficiently low temperatures the Ω-independent zero-mode contribution (4.33)

(dashed black) dominates the sum over modes.

The resulting dependence on the temperature for a small value of the mass is reported in

figure 18. There we observe that after an intermediate temperature regime, the complexity

of formation shows a transition to a linear regime at high temperature. In the conformal

limit m → 0 we are able to extract the high temperature behavior analytically. We isolate

the contribution coming from the zero mode, and remove the momenta cutoff from the

sum, i.e., we work with the full N = ∞ series

∆C1 ∼ log

(

4T

m

)

+ 2
∞
∑

k=1

{

arctanh

[

e− πk(1+Ω)
T

]

+ arctanh

[

e− πk(1−Ω)
T

]}

. (4.35)

We then re-express the series using the Euler-MacLaurin formula

b
∑

k=a

fk =

∫ b

a
dkf(k) +

p
∑

j=1

Bj

j!

{

∂(j−1)

∂k(j−1)
f(k)

∣

∣

∣

k=b
− ∂(j−1)

∂k(j−1)
f(k)

∣

∣

∣

k=a

}

+Rp, (4.36)

where Bj are Bernoulli numbers, Rp the remainder and p a positive integer. Rather than

using the explicit expression for the reminder, we use the fact that Rp satisfies the gen-

eral bound

|Rp| ≤ 2ζ(p)

(2π)p

∫ b

a

∣

∣

∣

∂p

∂kp
f(k)

∣

∣

∣, (4.37)
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where ζ is the Riemann zeta function. We then select a value of p such that the r.h.s.

shows no divergences as T → ∞, which ensures that Rp is not divergent either. The

remaining terms in the Euler-MacLaurin formula can then be evaluated explicitly and the

structure of divergences in T obtained. In the case at hand, with p = 2, the finite sum

gives a divergence logarithmic in T , which combines with an analogous one coming from

the integral to cancel the log T coming from the zero mode contribution to ∆C1. The only

remaining divergent term comes from the integral, and gives

∆C1 ∼ π

2

T

1 − Ω2
+ log

1

m
+O(1). (4.38)

In writing this expression we kept explicit the zero-mode logarithmic divergence in m → 0.

With an identical strategy, we can isolate the high-temperature divergence structure for

the Fκ=2 cost function in (4.30), which in the conformal limit can be written as

∆Cκ=2 ∼ 1

2
log2

(

4T

m

)

+ 2

N/2
∑

k=1

{

arctanh2
[

e− πk(1+Ω)
T

]

+ arctanh2
[

e− πk(1−Ω)
T

]}

. (4.39)

The analysis is similar, with the α2
k contributions resulting in a richer structure of di-

vergences. Using the Euler-MacLaurin formula, the integral still gives both the leading

divergence and subleading ones. The latter combine with analogous terms coming from

the finite sum and the resulting expression is

∆Cκ=2 ∼ 7ζ(3)

2π

T

1 − Ω2
− 1

2
log2 T −

(

log2
[

1

π2(1 − Ω2)

]

+
11 + 9 log 2

6

)

log T

+ log T log
1

m
+

1

2
log2 1

m
+ 2 log 2 log

1

m
+O(1),

(4.40)

where again we isolated the zero-mode divergences. The leading divergence is again linear in

T with the same Ω dependence for the linear coefficient for both costs. The linear behavior

also matches the one observed for both the CA and CV holographic prescriptions, see

eq. (2.80) and figure 6, 10. Next to the leading linear divergence, the Fκ=2 cost has a

number of subleading divergences which are completely absent for the F1 cost. There is

also a mixed log T logm term originating from the zero-mode.

For finite values of m, as shown in 19, the leading divergence of the complexity of

formation remains linear in T and with the same slope obtained in the conformal case in

eq. (4.38) and (4.40).

Dependence on Ω. The dependence on the angular velocity is reported in figure 20

for different values of the temperature and a fixed mass close to the conformal limit, and

in figure 21 for different values of the mass at fixed temperature. The plots show a clear

divergent behavior in the critical limit Ω → 1. Again, we can extract the divergences

analytically in the m → 0 limit. As apparent from (4.35) and (4.39), the divergence

structure is linked to the one for the high-temperature limit. The main differences are that

when taking Ω → 1 only the second arctanh terms in (4.35) and (4.39) will be divergent,

and that the zero mode contribution is independent from Ω while was diverging in T . Thus
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Figure 19. Complexity of formation for different values of m as a function of the temperature

T , with L = 1, N = 20000 and Ω = 0.3. From the top down m = 10−6 (orange), m = 10 (red)

and m = 100 (blue). The large T behavior is linear with a slope matching the one obtained in the

massless limit and reported in eq. (4.38) and (4.40) for ∆C1 and ∆Cκ=2 respectively (dashed black).

0.0 0.2 0.4 0.6 0.8 1.0
Ω

200

400

600

800

ΔC1

0.0 0.2 0.4 0.6 0.8 1.0
Ω

200

400

600

800

1000

ΔCK=2

Figure 20. Complexity of formation as a function of the angular velocity Ω. For any curve, L = 1,

N = 20000 and m = 10−6. From the bottom up: T = 10 (solid green), T = 50 (solid pink)

and T = 100 (solid orange). Dashed curves represent the Ω → 1 divergences plus the zero-mode

divergence obtained analytically in (4.41) and (4.42). Notice that the complexity of formation

evaluated with the two costs approach the limiting value from opposite directions.
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Figure 21. Complexity of formation as a function of the angular velocity Ω for different values of

m. For all curves L = 1, N = 20000 and T = 100. From the top down m = 10−6 (orange), m = 10

(red) and m = 100 (blue). The divergent behavior as Ω → 1 is apparent for both cost functions.
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the recombination of the various contributions and the final result are slightly different from

the high temperature case. In particular, for Ω → 1 one gets

∆C1 ∼ π

4

T

1 − Ω
+

1

2
log (1 − Ω) + log

(

1

m

)

+O(1) (4.41)

and

∆Cκ=2 ∼7ζ(3)

4π

T

1 − Ω
− 1

2
log2

(

1

1 − Ω

)

−
[

log
T

π
+

11 + 15 log 2

12

]

log

(

1

1 − Ω

)

+
1

2
log2 1

m
+ (log T + 2 log 2) log

1

m
+O(1).

(4.42)

The leading divergence is thus the same for the two cost functions.

Comparing to the holographic analysis, we can see that the leading divergence in this

case differs from the holographic one. In particular, for both CA and CV we have found a

divergence with an additional logarithmic factor (see (2.57) and (2.81)) of the form

∆C(tb = 0) ∼ Tℓ

1 − ΩHℓ
log

1

1 − ΩHℓ
. (4.43)

Dependence on m. To conclude, we briefly comment on the dependence on the mass

parameter. As already pointed out the complexity of formation diverges in the conformal

limit m → 0 with a behavior set by the zero mode. At leading order

∆C1 ∼ log
4T

m
, ∆Cκ=2 ∼ 1

2
log2 4T

m
. (4.44)

As the mass is increased, the complexity of formation monotonically decreases and ap-

proaches zero. This is illustrated in the logarithmic plots in figure 22, where we can see

that at large m, ∆C decreases exponentially in m/T with a slope that is larger for smaller

values of Ω. This can be understood as the rotating TFD state and its complexity getting

increasingly close to the direct product of two copies of the vacuum state as the mass

gets larger.

4.2 Time dependence

In this subsection we analyze the evolution of circuit complexity. We will consider how

complexity varies as compared to its initial, t = 0 value

δC(t) ≡ C(|rTFD(t)〉) − C(|rTFD(0)〉) . (4.45)

As described above, C(|rTFD(t)〉) is evaluated using the results of [85] summarized

in (4.22)–(4.24) and (4.26), (4.27) and the effective description for the rotating TFD state

outlined at the beginning of this section. At the practical level this boils down to evaluate

these expressions by plugging in for each mode the effective inverse temperature and time

of eq. (4.13). As it was the case for the complexity of formation, also δC(t) is a UV-finite

quantity, but we employ a cutoff N/2 in the sum over momenta as in (4.30) in order to

numerically evaluate δC(t) and produce the plots. We shall notice that away from t = 0
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Figure 22. Complexity of formation as a function of the mass m. Plots have been produced with

L = 1 and N = 20000. Three values of the temperature are reported, T = 1 (dotted-dashed lines),

T = 10 (solid lines) and T = 50 (dotted lines), but are indistinguishable. For each T from the

bottom up Ω = 0.1 (green), Ω = 0.5 (violet) and Ω = 0.8 (blue). The logarithmic scale shows how

the complexity of formation decreases exponentially in m/T , with a coefficient fixed by Ω.

C(|rTFD(t)〉) depends on the reference state scale µ. We will set it to one for the rest of

the section, and produce additional plots to illustrate the µ dependence in appendix C.

In figures 23, we analyze the time dependence in the near conformal limit, at fixed

angular velocity and as the temperature increases. For both cost functions, we observe an

oscillatory behavior, with the amplitude of the oscillations increasing with the temperature.

At low temperature, the zero-mode dominates the sum giving δC(t). As apparent in the left

panels of figure 23 δC(t) is indistinguishable from the zero-mode alone. As the temperature

increases, the contribution of the various modes becomes relevant. The zero-mode still sets

the overall shape for the time dependence, but the superposition of the other modes yields

the oscillatory behavior reported in the central and right panels in figure 23. The periodicity

of the oscillation can be understood form (4.22)–(4.24) and (4.26), (4.27), combined with

the effective mode-by-mode redefinition of time according to (4.13). For illustration, let

us focus on the simple massless case, disregarding here the zero mode divergence. When

Ω = 0, oscillations are governed by half the circle length: the argument of the trigonometric

functions governing the time evolution is of the form 2π|k|t/L, and the absolute values

appearing in the cost functions effectively halve the periodicity. For non-vanishing values

of Ω, the positive and negative k modes have periodicity respectively:

t ∼ t+
L

2|k|
1

1 ± Ω
. (4.46)

As already observed for the complexity of formation, next to having different periodicity,

positive and negative modes contribute with different amplitudes. As T increases, negative

modes with a given k have larger amplitudes as compared to the corresponding positive k

modes. The net effect is that for the cases reported in figure 23, the oscillatory behavior

that can be resolved by the eyes corresponds to the contribution of the lower negative

k modes (see also appendix C). Indeed, one can check that the periodicity of the larger

spikes showing in the central and right panels of figure 23 matches (within the zero mass

approximation) the one for negative modes in (4.46). Of course also the value of the angular

velocity affects the amplitude of the oscillations. This is illustrated in figure 24, which is to

– 49 –



J
H
E
P
1
1
(
2
0
2
1
)
0
3
7

10 20 30 40 50
t

0.2

0.4

0.6

0.8

1.0

δC1(t)

5 10 15 20
t

2

4

6

8

δC1(t)

5 10 15 20
t

-40

-30

-20

-10

10

δC1(t)

5 10 15 20
t

0.5

1.0

1.5

2.0

2.5

3.0

3.5

δCK=2(t)

5 10 15 20
t

5

10

15

20

25

δCK=2(t)

5 10 15 20
t

50

100

150

200

250

δCK=2(t)

Figure 23. Evolution of the complexity of the rotating TFD with the initial t = 0 value subtracted,

δC(t) ≡ C(|rTFD(t)〉) − C(|rTFD(0)〉) for different temperatures. Here L = 1, N = 1200, Ω = 0.6

and m = 10−6. The temperature is increased from left to right: T = 0.1, 10, 100. The dashed black

curve in each panel is the zero-mode contribution, which dominates the low-temperature regime.
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Figure 24. δC(t) for the same variables as in the central panels of figure 23 except a for lower

value of the potential Ω = 0.2. This reflects in a shorter periodicity and lower amplitudes.

be compared with the central panels of figure 23, and which shows the amplitude increases

as we raise the value of Ω.

There are some marked differences between the behavior of the Fκ=2 and the F1 as

the temperature is increased. While the contribution of the different modes is always non-

negative for the Fκ=2, and thus the oscillatory behavior is always bounded form below

by the value of the zero-mode, for the F1 these contributions can also be negative. In

particular, single mode contributions with small enough |k| can take negative values and the

number of such modes increases with the temperature. This together with the dominance

of the (positive) zero mode contribution at lower temperature yields a picture where the

F1 can be negative as the temperature is increased. We shall remark that this is not in

contradiction with the form of the F1, as here we are looking at variations of complexity

with respect to its initial value. Therefore this only indicates that for large enough T
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Figure 25. Evolution of δC(t) as the mass parameter is increased. From left to right m = 0.1, 1, 10

both in the upper and lower panels. Here L = 1, N = 1200, Ω = 0.6 and T = 10, as in the central

panels of figure 23 (where m = 10−6). At lower values of the mass, the zero-mode contribution

(dashed black line) is still dominant and sets an overall oscillating behavior on top of which one

can observer a pattern similar to the one in figure 23. As the mass increases this regular oscillatory

pattern is destroyed.

complexity can decrease as time passes. Indeed a similar observation was made in the

non-rotating case [85].

So far we discussed the behavior of complexity in the small mass limit. A finite

mass mitigates the positive versus negative modes amplitude suppression effect, which is

practically absent for large enough values of m. Similarly, the difference in periodicity

which in the massless limit takes the form (4.46) gets attenuated by a finite mass and

removed in the large mass limit. This can be seen in figure 25. We see that for smaller

values of the mass parameter the oscillatory pattern of the lower |k| modes can still be

resolved. Also, the zero-mode, which still gives the dominant contribution for small enough

values of m, provides the enveloping oscillatory behavior with period π/m. As the mass

parameter is increased, the zero and lower |k| modes get comparable amplitudes and close-

by periodicities making it hard to identify regular patterns.

Alternative time evolution. Another natural way of evolving the TFD state is with

the undeformed Hamiltonian, as in (4.2). The result is reported in figure (26). The

main difference with respect to the previous case lies in the fact that in the mode by

mode mapping of the rotating TFD into the neutral one only involves the definition of

a k-dependent effective temperature, but not of time. A direct consequence is that the

periodicity of oscillations is now set by L/2, as for Ω = 0. Negative and positive modes

with the same |k| now oscillate with the same frequency, and the potential Ω only affects

the amplitudes. Also the role of the zero-mode remains completely unchanged as compared

to the evolution with the deformed Hamiltonian considered above.
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Figure 26. δC(t) evolution with undeformed Hamiltonian. F1 (left) and Fκ=2 (right) for L = 1,

N = 1200, Ω = 0.6 and m = 10−6, T = 10. The dashed black curve represents the zero-mode

contribution.

5 Discussion

In this work we studied various aspects of holographic complexity for states with rota-

tion dual to AdS black holes, and extended the QFT complexity analysis to a rotating

thermofield double state of a 2d free boson.

For the case of rotating BTZ black holes, we carried out a thorough study, refining

existing results and analysing in detail the role of the counterterm action in CA [9] and

the full time dependence of the holographic complexity proposals.

The effects of rotation are in many respects analogous to those of charge, observed for

(higher dimensional) Reissner-Nordström AdS black holes in [24]. Both with the CA and

CV prescriptions (and with CV 2.0, which substantially parallels CV) the complexification

rate vanishes at tb = 0 and reaches asymptotically the expected late time limit [7, 16]

lim
tb→∞

dC

dtb
∼ (M − ΩHJ) . (5.1)

This vanishes for extremal black holes (see (2.40)). While with CV (and CV 2.0) the growth

rate is always positive and increases monotonically between these two values, figure 8, for

CA the intermediate evolution is richer, figure 2. At fixed ℓM , for small values of the

angular momentum J , dCA/dtb develops a negative peak at early times, as observed for

charged black holes [24]. The negative peak is followed by a phase where dCA/dtb becomes

positive and overshoots the late time value, which is then approached from above. Therefore

the CV and CA growth rate reach the late time value from opposite directions, in agreement

with what observed for two-sided black holes, including charged ones [24].

This general behavior is largely independent from the counterterm action. Indeed,

for finite rotation parameter J (at fixed ℓM), the qualitative behavior of dCA/dtb is the

same with or without counterterm (see figure 2). The choice of the counterterm scale Lct

gives however quantitive differences. As illustrated in figure 3, the counterterm acts as

an effective reduction (enhancement) of the angular momentum for small (large) values

of Lct/ℓ. In general we also observe that the role of the counterterm becomes less and

less pronounced as one approaches the extremal limit, J → Mℓ. In the opposite J → 0
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limit, where the effect of the counterterm is most pronounced, we smoothly recover the

neutral case results of [24]. In particular the counterterm is essential to obtain the early

time negative divergence in the irrotational limit.

The time dependence of the complexity variation ∆C(tb) ≡ C(tb) − 2CAdS directly

follows from dC/dtb, except for its initial value, the complexity of formation. Comparing

figure 4 and 9, we see that while the CA variation can assume negative values, for CV

it is always non-negative. In both cases, ∆C(tb) diverges in the extremal limit J → Mℓ.

The complexity of formation ∆CA(tb = 0) depends on the counterterm. This is best

appreciated looking at the dependence from the temperature ℓ T , while working at fixed

potential ℓΩH (figure 6). From figure 7 it is clear that tuning the value of the counterterm

scale Lct one can change the value (and the sign, for large enough ℓ T ) of the complexity

of formation. Another key observation one can draw from figure 7 is that the inclusion

of the counterterm is essential to obtain for CA the same linear in T behavior as for CV

(see figure 10). Without, the CA complexity of formation approaches linearity in T only

at high enough temperature.

We shall notice that the linear in T behavior of the complexity of formation of the

rotating BTZ black hole is in tension with the hypothesis of a third law of complexity

advanced in [24]. In fact, as we take ℓ T → 0 (keeping ℓΩH fixed), we do not obtain a

divergent complexity of formation, but a finite result. In particular, for both CA and CV,

the zero temperature limit reduces to the corresponding finite complexity of formation of

neutral BTZ [18].21 This contrasts with what observed for spherical Reissner-Nordström

AdS4 black holes, where ∆CA(tb = 0) diverges logarithmically as ℓ T → 0 at fixed chemical

potential µ [24]. A similar logarithmic divergence was also found for higher dimensional

rotating black holes. In particular for odd-dimensional Myers-Perry AdS black holes with

equal angular momenta, [110] found that for fixed ℓΩH and r+ ≫ ℓ, both the CA and CV

complexity of formation exhibit a logarithmic divergence as ℓ T → 0. Notice that this limit

cannot be studied for Kerr-AdS4. As we discuss in section 3.3, within the physical space

of solutions satisfying ℓΩ+ < 1, there exists a minimum positive temperature value that

can be attained, and it is therefore not possible to study the ℓ T → 0 limit.

The limit ℓΩH → 1 at fixed ℓ T is an interesting one to study, as it corresponds to

the critical angular velocity limit, in which the Einstein universe conformal to the AdS

boundary rotates at the speed of light [112]. In this limit for BTZ, both the complexity

growth rate and the complexity of formation diverge. The late time limit of the complexity

growth rate diverges as

lim
tb→∞

dC

dtb
∼ (ℓ T )2

1 − ℓΩH
(5.2)

both for the CA and CV proposals, independently from the counterterm. The complexity

of formation diverges as well. In particular the leading divergence has the schematic form

∆C(tb = 0) ∼ ℓ T

1 − ℓΩH
log

1

1 − ℓΩH
(5.3)

21We do instead have a logarithmically divergent behavior in the extremal limit J → Mℓ, or equivalently

r+ → r−. This however implies the simultaneous limit ℓ T → 0 and ΩHℓ → 1.
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for both CV and CA prescriptions (though with different prefactors, see (2.57) and (2.81)).

It is also interesting to notice that the CA divergence is always positive, independently

from the choice of Lct. Without the inclusion of the counterterm, one would instead get

a divergence with the same structure but opposite sign, as made explicit in eq. (2.58) and

figure 7.

We were able to analyze how part of these results carry over to the Kerr-AdS4 black

hole and how they compare to some of the findings obtained in [109, 110] for higher odd-

dimensional Myers-Perry AdS black holes with equal angular momenta. The reduced sym-

metry of Kerr-AdS, as compared to these setups, makes evaluating holographic complexity

for all times computationally challenging. Using the results of [107] for null hypersurfaces

foliation of Kerr-AdS, we were able to work out the late time limit of the CA growth rate.

Carefully taking into account all terms for the action defined on the WDW patch, we ex-

plicitly showed that this is given by the difference in internal energies between the inner

and outer horizons, as first advanced in [16]

lim
tb→∞

dC

dtb
∼ (M − Ω+J) − (M − Ω−J) . (5.4)

While for the BTZ case there was no obstruction to taking the extremal black hole limit,

here the limit sits outside the allowed region of parameters, as depicted in figure 13. Moving

in the physical region one first gets to another interesting limiting value, ℓΩ+ = 1, which

separates the region of solutions with sub-luminal rotation from the super-luminal ones.

As explained in the text, in terms of the parameters defining the geometry, this translates

into either the critical value J/M ≡ a = ℓ, for black holes with r+ ≥ ℓ, or into r2
+ = a ℓ,

for black holes with r+ < ℓ. We find that at fixed mass, the complexity growth rate only

diverges in the limit a → ℓ, where the metric exhibits a parametric divergence. On the

contrary, the late time complexification rate remains finite as r2
+ → a ℓ (see discussion

around eq. (3.54)). A similar behavior was observed for the complexity of formation that

we were able to evaluate with the CV proposal. Again, at fixed mass one finds a divergent

complexity of formation only for black holes with r+ ≥ ℓ. That is, the result diverges only

when the critical angular velocity limit Ω+ℓ = 1 is reached via a → ℓ. This is shown in

figure 14 and figure 15. In the grand canonical ensemble variables T and Ω+, there are

two branches of small and large black holes, and these exist for temperatures T > Tmin,

with
√

3/(2π) ≥ ℓ Tmin > 1/(2π) for 0 ≤ ℓΩ+ < 1. The CV complexity of formation of

large black holes has similarities with that of BTZ: it increases with the temperature and

positively diverges in the critical limit ℓΩ+ → 1. The main difference rests in the non

linear dependence on the temperature. Small black holes have instead a distinct behavior:

∆CV (tb = 0) goes to zero as ℓ T → ∞ and it is approximately constant in ℓΩ+.

In [109, 110] a direct connection between CA, CV and thermodynamic volume was

highlighted for odd-dimensional Myers-Perry AdS black holes with equal angular momenta

in each orthogonal plane. We found that our Kerr-AdS4 computation of the holographic

complexity growth rate is indeed compatible with the claim of [109, 110] that at leading

order for large black holes with r+ ≫ ℓ

lim
tb→∞

dC

dtb
∝ P∆V (5.5)
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with ∆V = V+ − V− the difference between the inner and outer horizon thermodynamic

volume. In the large black hole limit r+ ≫ ℓ, the same authors also found that the

complexity of formation is controlled by the thermodynamic volume rather than by the

entropy, with a scaling that depends on the spacetime dimensionality D (see (3.65)). Our

result is compatible with this claim, but unfortunately we cannot test it independently.

This is because in the large black hole limit, within the region of parameters covered by the

physical Kerr-AdS4 solutions we considered, the scaling of the entropy and thermodynamic

volume is everywhere fixed, just as it happens for non-rotating and charged black holes.

In the last part of this work we employed Nielsen’s approach to study QFT com-

plexity in presence of rotation. We examined circuit complexity for thermofield double

states of 2d free scalar fields on a circle with non-vanishing momentum along the compact

spatial direction

|rTFD〉 =
1

√

Z (β,Ω)

∑

n

e−β(En+ΩJn)/2e−i(En+ΩJn)t |En, Jn〉L |En, Jn〉R . (5.6)

We adapted and extended the analysis of the non-rotating TFD state of [85]. At the

technical level, we showed how factorization into momentum modes can be used to provide

an effective description of (5.6) in terms of non-rotating TFD states. In particular one can

draw a mode-by-mode correspondence between the rotating and non-rotating TFD by a

mode dependent redefinition of temperature and time. This is similar to what happens for

the charged TFD state analyzed in [142], with an important difference. In the charged case,

for the effective description to make sense, one needs to impose on the mass parameter of

the model a lower bound, which is set by the chemical potential [142]. An angular velocity

Ω does not set such a bound instead, as long as Ω < 1.

Notice that given our analysis follows from the one in [85], the same caveats apply. In

particular although we evaluated complexity for the Fκ=2 and the F1 cost functions, the

straight line circuit used in both cases was proven to be optimal only for the Fκ=2. Thus

for the F1 our result only provides a upper bound on the value of circuit complexity.

The presence of a potential affects differently positive and negative mode contributions

to complexity. As compared to the Ω = 0 case, where positive and negative k pairs

contribute equally, a non-vanishing Ω enhances the amplitude of negative k modes and

suppresses that of positive ones. The angular potential plays a similar role in the time

evolution of the rotating TFD state (5.6). It gives different periodicity to negative and

positive modes, enlarging the period of the oscillations for the negatives modes as compared

to positive ones (see eq. (4.46)). Overall, the time dependence of the complexity variation

δC(t) ≡ C(|rTFD(t)〉)−C(|rTFD(0)〉) of both cost functions exhibits an oscillatory behavior

(see figure 23 and 25). The zero-mode sets the overall shape, and the superposition of

the other modes yields the oscillations. Their amplitude is amplified as we increase the

temperature or the angular potential. While we cannot directly compare to the charged

TFD state analyzed in the decompactified limit in [142], our results are fully compatible

with the non-rotating TFD state on a circle studied in [85] (see figure 6 there). There the

high temperature behavior, as shown in the rightmost panels of our figure 23 at Ω 6= 0,

was interpreted as a saturation resulting from the presence of many modes non-trivially

contributing to the circuit complexity sums at high temperatures.
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In studying the time dependence we also observed that from the point of view of the

CFT another natural way of evolving the TFD state is with the undeformed Hamiltonian, as

in eq. (4.2). This leads to a different oscillatory pattern of δC(t), the main difference being

that the potential Ω now only affects the amplitudes, but not the periodicity (see fig 26).

It would be interesting to explore how different time evolutions are implemented in the

dual out-of-equilibrium black hole description, and how such choices affect the holographic

complexity evolution.

Despite the clear differences between a free QFT and a strongly coupled chaotic CFT,

the rotating TFD model can be taken as a toy-model for a qualitative comparison with

the holographic results obtained in the BTZ analysis. In fact, we can identify similarities

between the holographic and QFT results in particular limits. The complexity of forma-

tion at high temperature increases linearly with the temperature both in the QFT model

(eq. (4.38) and (4.40))and in the BTZ holographic calculations for any of the complex-

ity measures analyzed ((2.80) and figure 6, 10). The overall coefficient is proportional to

1/(1−Ω2) both for circuit complexity and CV. Also in the speed of light rotation limit, the

complexity of formation diverges in all considered cases. However, the leading divergence

differs: for the QFT case it goes like 1/(1 − Ω), while in the holographic results it has an

additional logarithmic factor (see eq. (5.3) above).

Finally, both CA and circuit complexity in the scalar model have arbitrary scales

intrinsic to their definition. Although it is not clear yet how these scales are related on the

two sides of the duality, we can make the following observation. In the QFT model the

complexity of formation is independent from the arbitrary scale µ entering the definition of

the reference state, exactly as in the neutral TFD case analyzed in [85]. On the other hand

here, in contrast with the non-rotating BTZ case, the holographic complexity of formation

evaluated with CA directly depends on the counterterm scale Lct. This contradicts the

suggestion that µ and Lct should be connected [34], as was also argued based on different

arguments in [56].
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A BTZ: complexity of formation in Boyer-Lindquist

In view of the study of 4d Kerr-AdS in section 3.3, we would now like to comment on a

slightly different computation in which we work with BTZ in Boyer-Lindquist-like coordi-
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nates and evaluate the CV complexity formation. These coordinates are defined by [112]

ds2 = −∆R

R2

(

dT − a

Ξ
dΦ

)2

+
R2

∆R
dR2 +

1

R2

(

a dT − R2 + a2

Ξ
dΦ

)2

, (A.1)

with

∆R ≡ (R2 + a2)

(

1 +
R

ℓ2

2
)

− 2M̃R2 (A.2)

Ξ ≡ 1 − a2

ℓ2
. (A.3)

This metric is related to (2.1) via the change of coordinates [112]

T = t (A.4)

R2 = Ξ r2 − a2 − 2 a2M̃

Ξ
(A.5)

Φ = φ− a

ℓ2
t (A.6)

and parameters identifications

J =
a M̃

2GN Ξ2
(A.7)

M = − 1

8GN

(

1 − 2M̃

Ξ2

(

1 +
a2

ℓ2

))

. (A.8)

Notice that in these coordinates M̃ = 0 parametrizes global AdS3.

To evaluate CV in these coordinates we perform the integral

CV =
4π

GNℓΞ

∫ Rmax

R+

dR

√

(a2 +R2)2

∆R
− a2 , (A.9)

where R+ is the largest root of ∆R = 0 and maps to r+ in (2.1):

R2
± ≡ 1

2
ℓ2





(

2M̃ − 1 − a2

ℓ2

)

± 1

2

√

(

1 +
a2

ℓ2
− 2M̃

)2

− 4a2

ℓ2



 . (A.10)

Subtracting twice global AdS in these coordinates, that is the M̃ = 0 solution, we have

∆CV =
4π

GNℓΞ

∫ Rmax

R+

dR

√

(a2 +R2)2

∆R
− a2 − 4π

GNℓ

∫ Rmax

RAdS
min

dR
Rℓ

√

Ξ(ℓ2 +R2)
(A.11)

in terms of a IR cutoff Rmax, which we can take to be same in both spacetimes. For RAdS
min

in AdS, we would naturally set RAdS
min = 0. Notice ∆CV evaluated in BL coordinates in this

way differs by a finite term from (2.78), evaluated in standard coordinates. That is

∆CV =
4π

GNℓΞ

∫ Rmax

R+

dR

√

(a2 +R2)2

∆R
− a2 − 4π

GNℓ

∫ Rmax

0
dR

Rℓ
√

Ξ(ℓ2 +R2)

= − 4πiℓ

GN (1 − R2
+R2

−

ℓ4 )

{

√

−1 +
R2

+R
2
−

ℓ4
− R−

ℓ
(1 +

R2
+

ℓ2
)E

(

sin−1 x,
1

x2

)

}

(A.12)
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Figure 27. In blue eq. (2.78) and in red dashed the BL result (A.12).

with

x =
R−(ℓ2 +R2

+)
√

−(R2
+ −R2

−)(ℓ4 −R2
+R

2
−)

. (A.13)

This expression can be written in explicitly real form using elliptic integrals identities and

is plotted in figure 27.

To reproduce instead the result (2.78), it is enough to formally extend the AdS integral

to the complex value RAdS
min =

√
−a2, which we obtain setting r = 0 and M̃ = 0 in A.5. In

this way we find

∆CV =
4π

GN Ξ

∫ Rmax

R+

dR

√

(a2 +R2)2

∆R
− a2 − 4π

GNℓ

∫ Rmax

√
−a2

dR
Rℓ

√

Ξ(ℓ2 +R2)

=
4πℓ

GN

{

1 − iℓ
R−(ℓ2 +R2

+)

(ℓ4 −R2
+R

2
−)
E

(

sin−1 x,
1

x2

)

}

, (A.14)

which after the appropriate parameters identifications can be verified to coincide

with (2.78).

B Kerr-AdS: UV cutoff and complexity of formation

Here we study the boundary UV cutoff and CV divergences for the Kerr-AdS geometry. In

the last paragraph, we also verify that the complexity of formation evaluated with respect

to a rotating boundary metric by subtracting twice the complexity of the m = 0 solution

coincides with that evaluated with respect to a non-rotating frame by subtracting twice

the complexity of the global AdS vacuum.

UV cutoff. First we bring the Boyer-Lindquist metric (3.1) in Fefferman-Graham

form [119, 120],

ds2 =
ℓ2

z2

(

dz2 + gij(x, z)dxidxj
)

, (B.1)

with

gij(x, z) = g
(0)
ij (x) + z2g

(1)
ij (x) + z3g

(3/2)
ij (x) + . . . (B.2)
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through the asymptotic change of coordinates [151]

r =
ℓ2

z
− 1

4

(

1 +
a2

ℓ2
sin2 θ̄

)

z +
m

3 ℓ2
z2 +O(z3) (B.3)

θ = θ̄ − a2

16 ℓ6
∆θ̄ sin(2θ̄) z4 +O(z6) . (B.4)

We also write explicitly the Taylor expansion (B.2) for z → 0 of the non-vanishing compo-

nents of gij(x, z), which reads

gtt = −1 − 1

2 ℓ2

(

∆θ̄ +
a2

ℓ2

)

z2 − 4m

3 ℓ4
z3 +O(z4) (B.5)

gθ̄θ̄ =
1

∆θ̄

{

ℓ2 +
1

2

(

2 − 3∆θ̄ − a2

ℓ2

)

z2 +
2m

3 ℓ2
z3

}

+O(z4) (B.6)

gtϕ =
a sin2 θ̄

Ξ

{

1 − 1

2 ℓ2

(

∆θ̄ − a2

ℓ2

)

z2 − 4m

3ℓ2
z3

}

+O(z4) (B.7)

gϕϕ =
sin2 θ̄

Ξ

{

ℓ2 − 1

2

(

∆θ̄ − a2

ℓ2

)

z2 − 2m

3 ℓ2 Ξ

(

2 − 3∆θ̄ − 2
a2

ℓ2

)

z3

}

+O(z4) . (B.8)

Given these results, as per the standard holographic procedure, we set the UV cutoff

z = δ in FG coordinates, which via (B.3)–(B.4) corresponds to the θ-dependent BL cutoff:

rmax =
ℓ2

δ
− δ

4

(

1 +
a2

ℓ2
sin2 θ

)

+
m

3 ℓ2
δ2 + . . . . (B.9)

Volume divergences. To obtain the divergences for the volume of the t = 0 slice of

Kerr-AdS we follow the general analysis for AAdS spacetimes carried out in [19].

We describe the codimension-1 submanifold via the embedding Xµ = Xµ(τ, σa), where

Xµ = {z, xi} and {τ, σa} are intrinsic coordinates on the submanifold. In the τ = z gauge,

the induced metric h on the bulk t = 0 surface has components

hzz ≡ ℓ2

z2

(

1 + h(1)
zz z

2 + . . .
)

=
ℓ2

z2
(B.10)

hθ̄θ̄ ≡ ℓ2

z2

(

h
(0)

θ̄θ̄
+ h

(1)

θ̄θ̄
z2 + . . .

)

=
ℓ2

z2
gθ̄θ̄ (B.11)

hϕϕ ≡ ℓ2

z2

(

h(0)
ϕϕ + h(1)

ϕϕz
2 + . . .

)

=
ℓ2

z2
gϕϕ (B.12)

where h
(0)
ab is the induced metric on the boundary time slice. We then introduce a cutoff

at z = δ and evaluate explicitly the divergent terms worked out in [19]

V =
ℓ3

2

∫ π

0
dθ̄

∫ 2π

0
dϕ
√

h(0)

[

1

δ2
+

(

Ra
a − R

2

)

log
δ

ℓ

]

+ . . . . (B.13)

Here Ra
a = h(0)abRab, and Rab denotes the projection of the boundary Ricci tensor Rij [g(0)]

into the time slice, while R[g(0)] is the boundary Ricci scalar. These are related through [19]

Ra
a =

R
2

− h(0)abh
(1)
ab (B.14)
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and hence

V =
ℓ3

2

∫ π

0
dθ̄

∫ 2π

0
dϕ
√

h(0)

[

1

δ2
− h(0)abh

(1)
ab log

δ

ℓ

]

+ . . . (B.15)

=
πℓ3√

Ξ

∫ π

0
dθ̄

sin θ̄
√

∆θ̄

[

ℓ2

δ2
+ (2∆θ̄ − 1) log

δ

ℓ

]

+ . . . (B.16)

=
2πℓ6

a
√

Ξ δ2
sin−1 a

ℓ
+ 2πℓ3 log

δ

ℓ
+ . . . (B.17)

The divergence structure of V thus depends on the parameter a but it is completely inde-

pendent form the mass parameter m.

Schwarzschild-like coordinates. To make further contact with the BTZ case for which

we mainly focused on the coordinates system (2.1), we need to consider Schwarzschild-like

coordinates. This is the situation in which the background boundary metric is not rotating

and all rotation is in the states. We saw for BTZ in section 2.3 and appendix A this accounts

for an additional finite contribution in ∆CV(tb = 0). Instead of evaluating this contribution

by performing a complicated change of coordinates to such coordinates system, here we

can simply consider the implicit coordinate transformation [112]

T = t (B.18)

Φ = ϕ+
at

ℓ2
(B.19)

y cos Θ = r cos θ (B.20)

y2 =
1

Ξ

[

r2∆θ + a2 sin2 θ
]

(B.21)

that brings the m = 0 Kerr-AdS4 metric in Boyer-Lindquist coordinates to global AdS4

ds2 = −
(

1 +
y2

ℓ2

)

dT 2 +
dy2

1 + y2

ℓ2

+ y2
(

dΘ2 + sin2 ΘdΦ2
)

. (B.22)

Notice this maps y = 0 in global AdS to complex (purely imaginary) rmin ≡
√

−a2, θ = π
2

in BL coordinates. This same change of coordinates can be in principle applied to bring

the Kerr-AdS metric to an asymptotically non rotating frame, and we can thus evaluate

the complexity of formation of excited rotating thermofield double states on R × S2 as

∆CSchw
V (tb = 0) =

4π

GN ℓ

∫ π

0
dθ sin θ

∫ rmax(ymax)

r+

dr
ρ

Ξ

√

(r2 + a2)2

∆
− a2 sin2 θ

∆θ

− 4π

GN

∫ π

0
dΘ sin Θ

∫ ymax

0
dy

y
√

ℓ2 + y2
, (B.23)

where

r2
max(ymax) =

Ξy2
max − a2 sin2 θ

∆θ
. (B.24)

This coincides identically with ∆CV(tb = 0) (3.64), as follows from the independence of the

divergences on m analyzed above and the structure of the AdS term, which has vanishing

contribution from the lower integration extremum y = 0.
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Figure 28. Positive (left) and negative modes (right) contributions to the complexity variation

δC(t) for the Hamiltonian evolutions H + ΩJ (first two rows) and H (last two rows). Both positive

and negative modes sum include the zero mode contribution (in dashed black). The plots have been

produced choosing L = 1, N = 200, µ = 1, m = 10−6, Ω = 0.6, T = 10 as in the central panels of

figure 23 and in figure 26.

C Circuit complexity: modes and µ dependence

Mode analysis. In figure 28 we show separately negative and positive modes contribu-

tion to the complexity variation δC(t). The plots explicitly illustrate the different period-

icity of negative and positive modes, as reported in (4.46), and the enhancement of the
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Figure 29. Complexity variation δC(t) obtained time-evolving with H + ΩJ (first two rows) and

H (last two rows). The plots have been produced choosing L = 1, N = 200, m = 10−6, Ω = 0.6,

T = 10, as in the central panels of figure 23. The left panels show the result for µ = 0.1, and

the right panels for µ = 10. While the periodicity of the oscillations is independent from µ, the

amplitude is clearly affected by it.

negative mode amplitudes over the positive ones, as discussed in the main text. For the

time evolution with H only (last two rows), there is no difference in the periodicity of

negative and positive modes, but the amplitude enhancement persists.

Dependence on µ. In figure 29 we report sample plots illustrating how the value of the

reference state scale µ influences the picture of the complexity time evolution.
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