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1 Introduction

Boundary actions derived in the context of three-dimensional gravity with anti-de Sit-
ter (AdS) asymptotics have a relatively long history,1 starting with the classic work of
Coussaert, Henneaux and van Driel [2] a few years before the advent of the AdS/CFT
correspondence [3–5]. Roughly speaking, these authors reduced the classical dynamics of
pure three-dimensional gravity in its Chern-Simons (CS) formulation to that of a Liouville
theory, one of the simplest non-rational two-dimensional conformal field theory (CFT).
This raised the hope that quantum Liouville theory would describe at least part of three-
dimensional quantum gravity and more specifically, that it would yield a description of the
microstates underlying the Bañados-Teitelboim-Zanelli (BTZ) black holes and the associated
Bekenstein-Hawking entropy [6]. Several variations of this reduction have followed, either
generalizing it or differing in the choice of boundary conditions [7–12].

The AdS/CFT correspondence is another approach to quantum gravity with AdS
asymptotics which has met numerous successes and is by now a well-established subject.
In essence, it supports the existence of a holographic conformal field theory at the AdS
conformal boundary, which encodes the information of the gravitational theory at a quantum

1Connections between SL(2,R) Chern-Simons theory and various boundary actions discussed in the
present paper also appeared in earlier work of Verlinde [1], often viewed as a precursor of the AdS/CFT
correspondence.
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level. The precise statement of the correspondence is an equality between the generating
functional of the holographic CFT and the path integral of the gravitational theory [4, 5],

ZCFT [g̃ij , J ] ≡
∫
Gµν(∞)=g̃ij

Φ(∞)=J
DGµν DΦ e−Sgrav[Gµν ,Φ] . (1.1)

Here, Gµν is the dynamical bulk metric while Φ refers to all other bulk fields arising in
a given realization of the correspondence. Their boundary values g̃ij , J are fixed at the
conformal boundary of spacetime and are further identified with the sources of the dual
CFT. In particular, g̃ij sources the CFT stress tensor. However, the equality (1.1) is at
most formal since there is no available nonperturbative definition of its right-hand side, such
that the holographic CFT is often said to define nonperturbative quantum gravity. In the
case of three bulk dimensions, the central charge of the holographic CFT directly relates to
Newton’s constant and the AdS curvature length ` via the Brown-Henneaux formula [13],

c = 3`
2GN

. (1.2)

Therefore, the limit of large central charge corresponds to the classical limit in the gravita-
tional theory, in which case the gravitational path integral reduces to a sum over classical
saddle points,

lim
c→∞

ZCFT [g̃ij , J ] ≈
∑
n

e−Sgrav
[
G

(n)
µν ,Φ(n)

]
, (1.3)

where each field configuration {G(n)
µν ,Φ(n)} is a classical saddle of Sgrav that satisfy the

prescribed boundary conditions. I will refer to (1.3) as the Gubser-Klebanov-Polyakov-
Witten (GKPW) dictionary [4, 5]. In concrete realizations of the AdS/CFT correspondence
derived within string theory, the action Sgrav describing the classical regime of the theory
is that of a supergravity or dimensional reduction thereof. Of particular interest is the
case where all sources except g̃ij are turned off, i.e., when J = 0. With these boundary
conditions and working in the classical limit (1.3), it is consistent to set to zero all bulk
fields Φ such that only pure gravity remains. In that case, the left-hand side of (1.3) reduces
to the generating functional of stress tensor correlation functions at large central charge.
Two-dimensional conformal symmetry is so restrictive that the latter can only depend on
the value of the central charge but is otherwise universal. Explicitly, it is given by the
nonlocal Polyakov action [14], which can alternatively be written as the action of a Liouville
theory. More or less successful derivations of the Polyakov action within AdS3/CFT2 have
been given in [15–21].

The primary goal of the present work is to review the emergence of the Polyakov and
Liouville actions within AdS3/CFT2 by direct application of the GKPW dictionary (1.3),
and to compare it with the Hamiltonian reduction of three-dimensional gravity to flat
Liouville theory in the tradition initiated by Coussaert, Henneaux and van Driel [2]. The
result of this comparative study is that these results are unrelated. In particular, the flat
Liouville action is off-shell with respect to bulk equations of motion, and vanishes if the
latter are imposed.
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Another motivation for the present study is the recent computation due to Cotler
and Jensen of the spectral statistics of BTZ black holes that found agreement with the
predictions of a random matrix ensemble [22]. This raised a conceptual puzzle, since AdS3
gravity is usually understood as being dual to a single CFT rather than some ensemble
of theories [23]. The starting point for their computation is a variant of the Hamiltonian
reduction of AdS3 gravity to (copies of) the Alekseev-Shatashvili action at the conformal
boundary [11]. The BTZ spectral statistics follow from the evaluation of a path integral
weighted by this boundary action. I will explain how the Alekseev-Shatashvili action can
alternatively be obtained from the classical GKPW dictionary (1.3), and show that in
that context it describes curved boundary metrics acting as sources for the CFT stress
tensor. This suggests a possible re-interpretation of the path integral computation yielding
the BTZ spectral statistics as that of an explicit averaging over the boundary geometry,
or equivalently, as a computation in two-dimensional quantum gravity at the conformal
boundary. This potentially resolves the aforementioned conceptual puzzle.

The paper is organized as follows. In order to guide our expectations, I review in
section 2 the role played by the nonlocal Polyakov action as the universal generating
functional of stress tensor correlation functions in any two-dimensional CFT. I also discuss
its relation with the Liouville and Alekseev-Shatashvili actions. In section 3, I review its
holographic derivation within the AdS3/CFT2 correspondence, originally given by Carlip
in the metric formalism [21]. In section 4.1, I provide the analogue derivation in the
Chern-Simons formulation of three-dimensional gravity, thereby bringing to completion the
work of Bañados, Chandia and Ritz [19]. I compare it with the Hamiltonian reduction of
Coussaert, Henneaux and van Driel [2] in section 4.2 and conclude that these approaches
are technically and physically inequivalent. In section 4.3, I discuss a variant Hamiltonian
reduction due to Cotler and Jensen and explain how the resulting boundary action can
alternatively be obtained from the GKPW dictionary (1.3). I end with a discussion of the
results and a few open questions. In particular, I suggest a possible re-interpretation of the
recent agreement found between black hole spectral statistics and ensemble averaging [22].

Conventions. Conformal field theory is discussed in euclidean signature with complex
coordinates z, z̄ and integral measure d2z = dz∧dz̄/2i. This allows straightforward analytic
continuation to Lorentzian signature without modification of the formulas. I also use the
shorthand notations T ≡ −2πTzz for the holomorphic component of the stress tensor, and
∂ ≡ ∂z , ∂̄ ≡ ∂z̄ for simplicity. In the gravitational setup, greek indices µ, ν, . . . refer to
three-dimensional spacetime coordinates, while latin indices i, j, . . . refer to two-dimensional
coordinates at the conformal boundary. Similarly, uppercase letters A,B, . . . and lowercase
letters a, b, . . . refer to the corresponding three- and two-dimensional tangent spaces.

2 The Polyakov action and its many forms

In any euclidean two-dimensional conformal field theory, the generating functional W [gij ]
of connected stress tensor correlation functions is defined from the generating functional
Z[gij ] via the standard relation

Z[gij ] = e−W [gij ] , (2.1)

– 3 –
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where the two-dimensional background metric gij plays the role of a source for the stress
tensor Tij . Functional differentiation of W [gij ] yields the connected correlators,

〈Tij(x1) . . . Tmn(xn)〉g0 = − (−2)n√
g(x1) . . .

√
g(xn)

δnW

δgij(x1) . . . δgmn(xn)

∣∣∣
g=g0

+ . . . , (2.2)

where the dots refer to contact terms resulting from functional differentiation of the metric
determinant of the type

δ

δgij(xk)

(
1√
g(xl)

)
. (2.3)

General covariance. Stress tensor correlators are fully constrained by conformal sym-
metry, the only dependence on a given theory occurring through the central charge c [24].
Up to its value, the generating functional W [gij ] is therefore universal. Polyakov’s starting
point for its construction is the anomalous trace of the stress tensor expectation value on a
space with arbitrary background metric gij and curvature R [14],

c

24πR = gij〈Tij〉 = 2
√
g
gij

δW

δgij
, (2.4)

where the last equality follows from the definition (2.2). Integrating this equation while
insisting on keeping manifest general covariance, Polyakov obtained [14]

W [gij ] = c

96π

∫
d2x d2y

√
g(x)

√
g(y)R(x)G(x, y)R(y) (2.5a)

= c

96π

∫
d2x

√
g(x)R(x) 1

�
R(x), (2.5b)

where G(x, y) is the Green function solution to

�G(x, y) = δ(2)(x− y)√
g(x)

. (2.6)

The Polyakov action (2.5) is manifestly nonlocal in the background metric gij . It can be
put in an alternative form through the introduction of an auxiliary variable φ solving

�φ = R, (2.7)

such that the generating functional coincides with the action of a Liouville theory,

W [gij ] = c

48π

∫
d2x

√
g(x)

(1
2(∂φ)2 + φR

)
. (2.8)

We stress that the Liouville field φ is not an independent variable, but rather a nonlocal
functional of the metric through (2.7). Said differently, the Liouville action (2.8) reduces
to the Polyakov action (2.5) only onshell, i.e., when the Liouville field satisfies its own
equation of motion (2.7). The stress tensor expectation value may be computed from (2.8)
by functional differentiation, and is found to coincide with the classical Liouville stress tensor

〈Tij〉 = 2
√
g

δW

δgij
= c

24π

[1
2∂iφ∂jφ−∇i∇jφ+ gij

(
�φ− 1

4(∂φ)2
)]

= T φij . (2.9)
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Consistently, one recovers the trace anomaly which we started from,

gij〈Tij〉 = c

24π R . (2.10)

It is worth mentioning that covariance of (2.7) under a Weyl rescaling

gij 7→ eωgij , (2.11)

implies that φ must transform by a shift φ 7→ φ − ω. It is therefore natural to interpret
φ as the pseudo-Goldstone mode associated to broken Weyl symmetry. The expectation
value (2.10), or equivalently the configuration φ determined through (2.7), labels one of the
broken vacua. Due to explicit breaking of Weyl symmetry by the central charge c, this
pseudo-Goldstone mode acquires a nonzero action (2.8). One can also compute higher-point
correlations by application of (2.2). For the two-point function on the euclidean plane, a
straightforward computation yields

〈Tij(x)Tmn(y)〉plane = − c

48π2

(
δij�

x −∇xi∇xj
)

(δmn�y −∇ym∇yn) lnµ2|x− y|2, (2.12)

where µ is an arbitrary energy scale introduced such that the argument of the logarithm is
dimensionless. Choosing complex coordinates

ds2 = dz dz̄, (2.13)

one recovers in particular the standard expression

〈T (z, z̄)T (w, w̄)〉 = c

2(z − w)4 . (2.14)

Holomorphic factorization. The Polyakov action preserves general covariance which
is however not one of the defining features of two-dimensional conformal field theories.
Rather, one usually insists on holomorphic factorization as one of its basic principles [24].
It turns out that holomorphic factorization and diffeomorphism invariance are actually
incompatible. One can however pass from one formulation to the other by the addition
of local counterterms to the generating functional W [gij ]. Let’s see how this works in
practice. We consider a general expression for the background metric in some coordinates
system (z, z̄),

ds2 = eϕ(z,z̄) (dz + µ(z, z̄) dz̄) (dz̄ + µ̄(z, z̄) dz) ≡ eϕ dŝ2 , (2.15)

where ϕ, µ, µ̄ are arbitrary functions. With this form of the metric, it can be shown that
the Polyakov action (2.5) admits the decomposition [1, 25, 26]

W [gij ] = K [ϕ, µ, µ̄] +W [µ] + W̄ [µ̄] . (2.16)

The first term K [ϕ, µ, µ̄] is known as the Quillen-Belavin-Knizhnik anomaly [27, 28] and is
responsible for the non-factorization of stress tensor correlators in generic backgrounds. Its
explicit expression is

K [ϕ, µ, µ̄] = SL [ϕ, µ, µ̄] +K [µ, µ̄] , (2.17)

– 5 –
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with

SL [ϕ, µ, µ̄] = − c

48π

∫
d2x

√
ĝ

(1
2 ĝ

ij∂iϕ∂jϕ+ ϕR̂

)
, (2.18)

K [µ, µ̄] = c

24π

∫
d2z (1− µµ̄)−1

(
∂µ ∂̄µ̄− 1

2µ(∂̄µ̄)2 − 1
2 µ̄(∂µ)2

)
. (2.19)

It is a local functional of the metric components and thus only contributes to contact
terms. It can be subtracted from the effective action W [gij ] in order to achieve holomorphic
factorization at the expense of losing diffeomorphism invariance. The nonlocal chiral
functional W [µ] is given by

W [µ] = c

24π

∫
d2z

∂̄f

∂f
∂2 ln ∂f , (2.20)

where the variable f is implicitly related to µ through the Beltrami equation

µ = ∂̄f

∂f
. (2.21)

The effective action W [µ] suitably generate all connected correlation functions of the chiral
stress tensor component, as explicitly demonstrated in appendix A. It is also shown to
satisfy the anomalous chiral diffeomorphism Ward identity,(

∂̄ − µ∂ − 2∂µ
) δW

δµ(z, z̄) = c

12π ∂
3µ , (2.22)

whose solution gives the well-known stress tensor expectation value in a background geometry
µ related to complex plane by the (quasi)conformal mapping f ,

〈T 〉µ = π
δW [µ]
δµ

= c

12 S[f, z] , S[f, z] ≡ ∂3f

∂f
− 3

2

(
∂2f

∂f

)2

. (2.23)

Note that any nonzero holomorphic function f(z) is associated with a vanishing source
µ = 0 as can be seen from (2.21) although the stress tensor expectation manifestly depends
on f(z). This extra freedom relates to the existence of inequivalent but conformally related
flat geometries naturally covered by the complex coordinate w = f(z). To make this more
explicit, we write the stress tensor in the coordinate system w,

〈T(ww)〉 =
(
∂z

∂w

)2
〈T(zz)〉 = − c

12 S[z, w] . (2.24)

In particular, the identity f(z) = z yields the zero vacuum energy of the plane while
f(z) = i ln z yields the constant Casimir energy of the cylinder,

〈T 〉plane = 0 , 〈T 〉cyl. = − c

24 . (2.25)

The effective action (2.20) also arises in a slightly different context as the action for
the two-dimensional quantum gravity of Polyakov in the lightcone gauge [29, 30]

ds2 = dzdz̄ + µ(z, z̄)dz̄2 , (2.26)

– 6 –
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where µ(z, z̄) is the only gravitational degree of freedom left after gauge fixing. This
directly follows from the preceding discussion, and simply amounts to a re-interpretion of
the Polyakov action (2.5) as describing dynamical gravity in two dimensions rather than
generating the stress tensor correlations of a CFT with the metric acting as a non-dynamical
background source.

It is often useful to write the effective action W [µ] in terms of the variable F defined
as the ‘inverse’ of f ,

F (f(z, z̄), z̄) = z , (2.27)

such that it takes the alternative form

W [µ] = − c

24π

∫
d2w

∂∂̄F ∂2F

(∂F )2 = c

24π

∫
d2w

∂̄F

∂F

∂3F

∂F
− 2

(
∂2F

∂F

)2
 , (2.28)

and where the integration variables are (w, w̄) ≡ (f, z̄). Interestingly, this coincides with
the geometric action of a particle on the vacuum coadjoint orbit of the Virasoro group [31],
where the variable F (f) introduced is viewed as a coordinate on the Virasoro group while
w̄ is interpreted as the time evolution parameter. In that context (2.28) is known as the
Alekseev-Shatashvili action.

As an aside, let me mention that the parametrization of µ in terms of a Beltrami
differential is particularly well suited for the classification of inequivalent complex or
conformal structures that a two-dimensional background manifold can be endowed with.
More precisely, inequivalent conformal structures µ are those for which the solution f

to Beltrami equation (2.21) is not continuous everywhere, in which case f is called a
quasiconformal mapping. The space of inequivalent conformal structures is the Teichmuller
space. For more details on this and related topics, interested readers should consult the
excellent reviews [32–35].

From the plane to the cylinder. The chiral generating functional W [µ] given in (2.20)
is defined on the plane. However, we know that correlators on the plane and cylinder are
related by the conformal mapping

z = e−iw , w = ϕ+ iτ , ϕ ∈ [0, 2π) , τ ∈ R , (2.29)

where ϕ, τ are coordinates covering the cylinder. It should therefore be possible to rewrite
W [µ] such that it manifestly becomes the generating functional of stress tensor correlators
on the cylinder. The discussion around (2.24) tells us that the identity f(z) = z is naturally
associated with the plane while the exponential map f(z) = i ln z describes the cylinder, or
respectively F (w) = w and F (w) = e−iw in terms of the inverse variable F defined in (2.27).
In order to move to a description naturally suited to the cylinder, it is a good idea to apply
a change of variables2 F 7→ φ such that the identity φ(w) = w now describes the cylinder,

F (w, w̄) = e−iφ(w,w̄) , φ(ϕ+ 2π, τ) = φ(ϕ, τ) + 2π . (2.30)
2Note that φ should not be confused with the Liouville field in (2.8).

– 7 –
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Applying this change of variables to (2.28), we obtain

W [µ] = − c

24π

∫
d2w

(
∂∂̄φ ∂2φ

(∂φ)2 − ∂̄φ ∂φ
)
. (2.31)

Interestingly, this is the geometric action of a particle moving on the first exceptional
coadjoint orbit of the Virasoro group [31]. In another paper [36], I have checked that this
generating functional correctly reproduces the one- and two-point functions of the stress
tensor on the cylinder, by expanding

φ(w, w̄) = w + δφ(w, w̄) , (2.32)

and treating δφ(w, w̄) as an infinitesimal source for the stress tensor, but a general argument
applying to all correlators for arbitrary background source geometry is still missing. For
the purpose of the present work, the expression (2.31) of the chiral generating functional
will be sufficient.

Besides the plane and cylinder described above, the chiral generating functional has
been given for compact Riemann surfaces of arbitrary genera in [37] and references therein.
I will not consider these cases here.

3 Holographic derivation in metric formulation

Having reviewed the generating functional of stress tensor correlations in two-dimensional
CFT, we can now turn to its holographic derivation from AdS3 gravity in the classical limit,
i.e., in the limit of large central charge. The GKPW dictionary (1.3) instructs us to compute
the (suitably renormalized) onshell gravitational action with arbitrary Dirichlet conditions
at the spacetime conformal boundary. Much of the material presented in this section was
made available in the early days of the AdS/CFT correspondence [38, 39], although the
story leading to the holographic Polyakov action was completed only later by Carlip [21].

The unrenormalized action that is appropriate when imposing Dirichlet conditions on
the metric at a boundary surface ∂M is3

S = 1
2κ2

∫
M
d3x

√
|G| (R− 2Λ) + 1

κ2

∫
∂M

d2x
√
|γ|K , κ2 = 8πGN , (3.1)

where the boundary surface ∂M is characterized by the induced metric γij , the outward-
pointing normal vector nµ and the extrinsic curvature K = ∇µnµ.

Solution space. As is customary, we choose to write the metric in Fefferman-Graham
gauge

ds2 = Gµν dx
µdxν = `2

(
dρ2

4ρ2 + gij(ρ, x)
ρ

dxidxj
)
, (3.2)

where the AdS curvature radius ` is related to the cosmological constant via Λ = −1/`2. I
will set ` = 1 in the following. It is well-known that any solution of Einstein’s equations

3I use conventions where the AdS curvature is negative, which therefore differ from those adopted in [39].
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with a negative cosmological constant locally admits an expansion in powers of ρ, where
ρ = 0 is the location of the spacetime conformal boundary [40]. In three dimensions, this
expansion truncates [15],

gij = g
(0)
ij + ρg

(2)
ij + ρ2g

(4)
ij , g

(0)
ij ≡ g̃ij . (3.3)

In the limit where the spacetime boundary ∂M is the conformal boundary at infinity, the
leading term g̃ij is fixed by the Dirichlet condition imposed on the metric field Gµν , and is
interpreted as the background geometry acting as a source for the stress tensor of a dual
CFT. In the following, indices i, j will always be raised and lowered with g̃ij and its inverse.
The subleading terms are partially determined by Einstein’s equations,

g
(2)
ij = 1

2
(
tij − R̃ g̃ij

)
, ∇̃itij = 0, g̃ijtij = R̃, (3.4a)

g
(4)
ij = 1

4g
(2)
im g̃mn g

(2)
nj , (3.4b)

where R̃ is the Ricci curvature of g̃ij . The indeterminacy in this solution is parametrized
by the divergencefree tensor tij whose trace is however fixed. Up to an overall constant this
is just the dual CFT stress tensor in the generally covariant formulation [38, 39].

Location of the cutoff surface. In most of the AdS/CFT literature, the cutoff boundary
surface ∂M is placed at a constant radial coordinate ρ = ε, where the cutoff regulator
ε is eventually sent to zero. However, a complete treatment that eventually yields the
expected Polyakov action at the conformal boundary requires one to consider a more general
‘distorted’ location of the cutoff boundary surface ∂M [21]. Understanding this point
requires to look at the anomalous Weyl symmetry and its holographic realization in the bulk.
Since the Polyakov action ultimately comes from the Weyl anomaly, a proper treatment of
Weyl transformations is crucial.

A well-known fact, premonitory of the AdS/CFT correspondence itself, is that bound-
ary Virasoro symmetries are realized in the bulk by diffeomorphisms acting nontrivially
at the cutoff boundary surface ∂M [13]. Similarly, there exists bulk diffeomorphisms,
called Penrose-Brown-Henneaux (PBH) diffeomorphisms, acting as Weyl rescalings at the
conformal boundary [41, 42],

g̃′(x) = e2ω(x)g̃(x) . (3.5)

As reviewed in appendix B, a diffeomorphism can always be traded for a change of coordi-
nates, in this case given by [42]

ρ = ρ′e−2ω(x′) +
∞∑
k=2

a(k)(x′)(ρ′)k , xi = x′i +
∞∑
k=1

ai(k)(x
′)(ρ′)k . (3.6)

All functions a(k), a
i
(k) are completely determined from the requirement that this change of

coordinates preserves the Fefferman-Graham gauge (3.2), but we won’t need their explicit
expression. If the cutoff boundary is located at ρ = ε, in the new coordinate system it is
therefore located at

ρ′ = εe2ω(x′) +O(ε2) . (3.7)

– 9 –
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Hence, one way of allowing Weyl transformations to act within the solution space is to leave
a certain freedom in the location of the cutoff surface. Dropping the primes, the location of
the cutoff surface ∂M is chosen to satisfy

ρ = εe2ω(x) +O(ε2) ≡ e2H(x) , (3.8)

where ω(x) is an additional degree of freedom. As it shifts under Weyl rescalings, we can
rightfully expect it to be the Liouville field of the dual CFT.

Importantly, the introduction of the new degree of freedom ω renders the action principle
well-defined even when the conformal factor of the boundary metric is allowed to fluctuate,
i.e., when only the conformal class of the boundary metric is kept fixed. For this to hold ω
must satisfy a boundary Liouville equation. This will be demonstrated later in this section
after discussing the counterterms necessary to render the onshell action finite. As a result,
PBH diffeomorphisms act within the solution space as they should.4

Onshell action. We can now evaluate the onshell action. Using Einstein’s equations and
explicitly performing the ρ integration, the bulk term reduces to

1
2κ2

∫
M
d3x

√
|G| (R− 2Λ) = − 1

κ2

∫
ρ≥e2F (x)

d3x
√
|g| ρ−2 (3.9a)

= − 1
κ2

∫
ρ≥e2F (x)

d3x
√
|g̃|
[
ρ−2 − R̃

4ρ +O(ρ0)
]

(3.9b)

= 1
κ2

∫
d2x

√
|g̃|
[
−ρ−1 − 1

4 log ρ R̃+O(ρ)
]
ρ=e2H(x)

. (3.9c)

The normal vector to the cutoff surface ∂M characterized by the equation (3.8), is explicitly
given by

nρ = −2ρ
(
1 +Gij∂iH∂jH

)−1/2
= −2ρ+O(ρ2) , (3.10a)

ni = Gij∂jH
(
1 +Gij∂iH∂jH

)−1/2
= ρ g̃ij∂jH +O(ρ2) , (3.10b)

such that the extrinsic curvature can be expressed as

K = ∇µnµ = 1√
|G|

∂µ

(√
|G|nµ

)
= 2 + ρ

(
�̃H + 1

2R̃
)

+O(ρ2) . (3.11)

On the other hand, the induced metric γij at ∂M reads

γij = Gij + ∂iH∂jH = ρ−1g̃ij + g
(2)
ij + ∂iH∂jH +O(ρ) , (3.12a)√

|γ| =
√
|g̃|
(
ρ−1 + 1

2(∂H)2 − 1
4R̃+O(ρ)

)
. (3.12b)

Plugging this back into the action (3.1), we find

Sreg = 1
2κ2

∫
d2x

√
|g̃|
[
2ρ−1 − 1

2 ln ρ R̃+ 2(∂H)2 + 2�̃H +O(ρ)
]
ρ=e2H

. (3.13)

4Troessaert proposed a similar construction that differs from the present description in that the cutoff
surface is kept fixed at ρ = ε at the expense of relaxing the FG gauge conditions [43].
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ρ = 0ρ = ε

ρ = e2H(x)

Σ ∂Σ

∂M

Figure 1. Schematic representation of the gravitational setup. The manifoldM under consideration
is bounded by a cutoff boundary surface ∂M close to spatial infinity (ρ = 0), and by potential
Cauchy surfaces Σ. The cutoff surface at ρ = e2H(x) is the image of the surface at ρ = ε under a
Penrose-Brown-Henneaux diffeomorphism.

The power-law divergence associated with the first term is eliminated by the addition of a
boundary counterterm to the action [38],

Sct = − 1
κ2

∫
∂M

d2x
√
|γ| . (3.14)

This counterterm is a local functional of the boundary intrinsic geometry, and therefore
does not alter the variational principle with Dirichlet conditions imposed on γij . This
is interpreted as a UV regularization in the dual theory, which preserves full boundary
diffeomorphism invariance. Expanding the function H(x) in powers of the cutoff regulator
ε as in (3.8), we finally obtain

Sreg + Sct = 1
2κ2

∫
d2x

√
|g̃|
[
−HR̃+ (∂H)2 + 1

2R̃+ 2�̃H +O(ρ)
]

(3.15a)

= 1
2κ2

∫
d2x

√
|g̃|
[
−1

2 ln ε R̃− ωR̃+ (∂ω)2 + 1
2R̃+ 2�̃ω +O(ε)

]
. (3.15b)

It may look like there is still a logarithmic UV divergence in the limit ε→ 0, but the integral
of the Ricci curvature is topological in two dimensions and we simply discard it, since we
haven’t been careful about boundary and corner terms at Σ and ∂Σ anyways (see figure 1).
In higher dimensions, one would need to introduce a logarithmically divergent counterterm
that depends explicitly on the cutoff regulator ε. Counterterms of this sort explicitly break
Weyl invariance, a fact closely related to the appearance of a Weyl or conformal anomaly.
Similarly dropping the total derivative term, we end up with the renormalized action

Sren = lim
ε→0

(Sreg + Sct) = 1
2κ2

∫
d2x

√
|g̃|
[
(∂ω)2 − ωR̃

]
. (3.16)
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We recognize the Liouville action (2.8) that we were after, with ω playing the role of
the Liouville field. The action is not yet fully onshell since ω is a dynamical mode not
constrained by any sort of boundary condition. Solving its equation of motion 2�̃ω = −R̃,
and plugging it back into the action yields

W [g̃ij ] ≡ Sonshell
ren = c

96π

∫
d2x

√
|g̃| R̃ �̃−1R̃ , (3.17)

where we have replaced Newton’s constant by the central charge using (1.2). This is exactly
the expected result, which explicitly demonstrates the validity of the GKPW dictionary (1.3).
Note that the Liouville equation

�̃ω = −1
2R̃ , (3.18)

in fact directly follows from the requirement of a well-posed action principle when only the
conformal class of metrics [γij ] is kept fixed at the boundary. Indeed, allowing boundary
variations of the form δγij = δσ γij and imposing Einstein’s equations, we find

δ (S + Sct) = 1
2κ2

∫
∂M

d2x
√
|γ| (2−K) δσ . (3.19)

Looking at the explicit expression for K given in (3.11), we see that the Liouville equa-
tion (3.18) is precisely what we need to enforce in order to have a well-posed action principle
with arbitrary δσ, i.e., when only the conformal class [γij ] is kept fixed. This is a highly
desirable feature since the conformal classes [g̃ij ] are the only available structures at infinity.
It also fits with the holographic picture where the objects of interest are conformal field
theories defined at conformal infinity. The problem of finding such an action principle is
relatively old and has been discussed in several papers without complete success [43–45].
We see that it is realized for free in the present setup, which incidentally yields the correct
stress tensor generating functional.

It is also worth contrasting the above derivation due to Carlip to some earlier classic
work in which the conformal mode ω was not taken into account (see e.g. [39]). Indeed,
setting ω(x) = 0 such that the boundary cutoff surface lies at a fixed radial coordinate
ρ = ε, one finds the renormalized onshell action

Snaive
ren = 1

4κ2

∫
d2x

√
|g̃| R̃ . (3.20)

This cannot be correct however, since this yields a vanishing stress tensor vacuum expectation
value (vev)

〈Tij〉naive ∼ δSnaive
ren
δg̃ij

∼ R̃ij −
1
2R̃ g̃ij = 0 , (3.21)

for any two-dimensional metric g̃ij . As already emphasized, the integral (3.20) is topological
in two dimensions. In particular, (3.21) does not reproduce the trace anomaly. Note that the
stress tensor vev is successfully derived in [39], however not by straightforward application
of the GKPW dictionary (1.3). Indeed, the authors compute it via

〈Tij〉 ∼
∫
d2x

δ(Sreg + Sct)
δGµν

δGµν

δg̃ij

∣∣∣
onshell

∼ c tij , (3.22)
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where arbitrary field variations are applied before onshell evaluation. Although the difference
is subtle, this is not equivalent to evaluating the action onshell and only then take its
variation with respect to the boundary metric.

4 Holographic derivation in Chern-Simons formulation

In this section I present a holographic derivation of the Polyakov action in the Chern-
Simons formulation of three-dimensional gravity with negative cosmological constant. This
derivation will closely follow the one given in section 3 in the metric formalism. In
particular, manifest covariance with respect to the boundary geometry will be kept at all
times. Importantly, this derivation is not equivalent to the classic Hamiltonian reduction to
a boundary flat Liouville theory [2], nor to the more recent derivation of two chiral copies
of the Alekseev-Shatashvili action [11]. I will further comment on these various approaches
in sections 4.2 and 4.3.

Chern-Simons gravity. The Chern-Simons formulation of three-dimensional gravity
was introduced in [46, 47]. To properly describe it, we need a first order formulation of
gravity in tetrad and spin connection variables. The tetrad eA

µ with indices A = 0, 1, 2 is a
set of local orthonormal frame fields satisfying

Gµν = ηABe
A
µe

B
ν , (4.1)

where ηAB is the flat Lorentzian metric of the tangent space,

ηAB =

0 1 0
1 0 0
0 0 1

 . (4.2)

Indices are raised and lowered with this metric. The antisymmetric spin connection one-form
ωAB = −ωBA is a connection that is compatible with the metric Gµν ,

∇µeA
ν = −ω A

µ B e
B
ν , (4.3)

with curvature two-form given by

RAB = dωAB + ωA
C ∧ ωCB . (4.4)

In terms of these variables, the bulk Einstein-Hilbert action can be written

SEH = 1
2κ2

∫
M
εABC

(
eA ∧RBC − Λ

3 e
A ∧ eB ∧ eC

)
, (4.5)

where εABC is the totally antisymmetric Levi-Civita symbol with ε012 = 1. The resulting
equations of motion are Einstein’s equations together with the vanishing of the torsion

TA ≡ deA + ωA
B ∧ eB = 0 , (4.6)
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which can be used to algebraically solve ωAB in terms of the tetrad eA. A crucial feature in
three dimensions is that we can dualize the spin connection,

ωA ≡
1
2 εABC ω

BC ←→ ωAB = −εABC ωC . (4.7)

We can then introduce two chiral Chern-Simons connection valued in the sl(2,R) = so(2, 1)
algebra,

A = AAJA =
(
ωA + eA

`

)
JA , Ā = ĀAJ̄A =

(
ωA − eA

`

)
J̄A , (4.8)

where the algebra generators are taken to satisfy

[JA, JB] = εABCJA , Tr [JAJB] = 1
2ηAB , (4.9)

and can be represented by the matrices

J0 = 1√
2

(
0 1
0 0

)
, J1 = 1√

2

(
0 0
1 0

)
, J2 = 1

2

(
1 0
0 −1

)
. (4.10)

The Einstein-Hilbert action (4.5) essentially coincides with the difference of two chiral
sl(2,R) Chern-Simons actions,

SCS[A]− SCS[Ā] = SEH + 1
2κ2

∫
∂M

eA ∧ ωA , (4.11)

with
SCS[A] = k

4π

∫
Tr
[
A ∧ dA+ 2

3 A ∧A ∧A
]
, k = `

4GN
. (4.12)

The resulting equations of motion are the vanishing of the field-strengths,

F [A] = F [Ā] = 0 , F [A] = dA+A ∧A . (4.13)

They are equivalent to Einstein’s equations and the torsionfree constraint written in first
order variables.

Boundary geometry in tetrad variables. As described above, there is a one-to-one
correspondence between the CS connections A, Ā and the first order variables eA, ωA. It is
therefore natural to also describe the boundary geometry in terms of a two-dimensional
tetrad ẽa with index a = 0, 1 and associated (dualized) spin connection one-form ω̃ satisfying

g̃ij = ẽ0
i ẽ

1
j + ẽ0

j ẽ
1
i , (4.14)

and
dẽ0 + ω̃ ∧ ẽ0 = 0 , dẽ1 − ω̃ ∧ ẽ1 = 0 . (4.15)

The last set of equation is the requirement that the spin connection ω̃ be torsionfree. In
terms of the spin connection, the scalar curvature is given by

R̃ = −2ε̃ij∂iω̃j . (4.16)
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4.1 Covariant approach

I will now describe the emergence of a Polyakov action at the conformal boundary in a way
that closely parallels the derivation in the metric formalism described in section 3. Since
the Polyakov action is manifestly covariant with respect to the boundary metric g̃ij , it is
best to keep this covariance manifest throughout our computations. In order to achieve
this, I will adopt the covariant description of Bañados, Chandia and Ritz [19]. We choose
coordinates (r, xi) where r is a radial coordinate approaching r → ∞ at the conformal
boundary and xi are arbitrary coordinates on constant-r surfaces. For our purposes, it will
be sufficient to consider an ansatz of the form

A = h−1ah+ h−1dh , h = erJ2 , (4.17a)
Ā = h̄−1āh̄+ h̄−1dh̄ , h̄ = e−rJ2 . (4.17b)

where a, ā are purely transverse and r-independent connections. This ansatz automatically
solves the ‘constraints’ Fri = 0. Using e−rJ2J0e

rJ2 = e−rJ0 and e−rJ2J1e
rJ2 = erJ1, (4.17)

reduces to

A = e−ra0J0 + era1J1 +
(
a2 + dr

)
J2 , (4.18a)

Ā = erā0J̄0 + e−rā1J̄1 +
(
ā2 − dr

)
J̄2 . (4.18b)

The associated bulk metric Gµν , obtained after extracting eA from (4.8) and making use
of (4.1), contains a cross terms drdxi unless a2 = ā2, which we choose to impose as an
additional restriction. In this case the tetrad and spin connection are found to be

e0 = 1
2
(
e−ra0 − erā0

)
, e1 = 1

2
(
era1 − e−rā1

)
, e2 = dr , (4.19)

and

ω0 = 1
2
(
e−ra0 + erā0

)
, ω1 = 1

2
(
era1 + e−rā1

)
, ω2 = 1

2
(
a2 + ā2

)
. (4.20)

Introducing the radial coordinate ρ = e−2r, the associated bulk metric is

ds2 = 2e0e1 + e2e2 = dρ2

4ρ2 + 1
2
(
−ρ−1 ā0a1 + a0a1 + ā0ā1 − ρ a0ā1

)
. (4.21)

In order to make the correspondence with the Fefferman-Graham expansion (3.2) more
explicit, we identify the boundary tetrad and spin connection

ẽ0 = − ā
0

2 , ẽ1 = a1

2 , ω̃ = a2 = ā2 , (4.22)

together with components of the subleading term in the metric,

g
(2)a
i ≡ g(2) j

i ẽ
a
j , g(2)0 = a0 , g(2)1 = −ā1 . (4.23)

The bulk metric (4.21) then takes the form

ds2 = dρ2

4ρ2 +
(
ρ−1g̃ij + g

(2)
ij + ρ

4g
(2)
ik g

(2)k
j

)
dxidxj . (4.24)

This already almost exactly describes the solution space of pure gravity in Fefferman-Graham
gauge, except that we still have to derive the constraints on g(2). These will follow from the
equations of motion.
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Solution space. Starting from the ansatz (4.17), the equations of motion (4.13) are

da1 − a2 ∧ a1 = 0 , dā0 + a2 ∧ ā0 = 0 , (4.25a)
da0 + a2 ∧ a0 = 0 , dā1 − a2 ∧ ā1 = 0 , (4.25b)
da2 + a0 ∧ a1 = 0 , da2 + ā0 ∧ ā1 = 0 , (4.25c)

which are just da+a∧a = 0 = dā+ ā∧ ā expanded in sl(2,R) basis. With the identifications
made in (4.22)–(4.23), the first set of equations can be rewritten

dẽ0 + ω̃ ∧ ẽ0 = 0 , dẽ1 − ω̃ ∧ ẽ1 = 0 . (4.26)

This means that ω̃ is indeed the torsionfree connection compatible with the metric g̃ij . The
remaining equations can be combined into

dω̃ + εab ẽ
a ∧ g(2)b = 0 , (4.27a)

dg(2)a − εab ω̃ ∧ g(2)b = 0 . (4.27b)

Writing
g(2)a = 1

2
(
ta − R̃ẽa

)
, (4.28)

we recover the trace and divergence constraints (3.4a) on the holographic stress tensor,
expressed in frame components,

dta − εabω̃ ∧ tb − dR̃ ∧ ẽa = 0 , ẽiat
a
i = R̃ . (4.29)

Thus far we find perfect agreement with the metric formulation.

Action principle. We now turn to the definition of a suitable action principle for the
Chern-Simons theory that will yield the desired solution space described above. We want to
treat the induced boundary geometry as a fixed but otherwise arbitrary background source
for the dual CFT. This is achieved by imposing the following boundary conditions on the
CS connections at ∂M,

δ(A0 − Ā0) = δ(A1 − Ā1) = δ(A2 + Ā2) = 0 , (a2 = ā2) . (4.30)

Taken together, these boundary conditions fix the induced boundary geometry {ẽa , ω̃} at
the cutoff surface ∂M. The appropriate action to consider is then [19]

S[A, Ā] = SCS[A]− SCS[Ā] + k

8π

∫
∂M

A0 ∧ Ā1 +A1 ∧ Ā0 −A2 ∧ Ā2 . (4.31)

Note that the boundary term A0∧Ā1 actually vanishes in the limit where the cutoff boundary
∂M is sent to infinity, as can be seen from (4.18). Onshell variation of the action yields

δS[A,Ā] (4.32)

=− k

8π

∫
∂M

(A0 +Ā0)∧δ(A1−Ā1)+(A1 +Ā1)∧δ(A0−Ā0)+(A2−Ā2)∧δ(A2 +Ā2) ,

and we conclude that the action is stationary for bulk solutions satisfying the boundary
conditions (4.30).
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Onshell action. As in the metric formalism, we want to evaluate the onshell action
as we later identify it with the generating functional of the dual CFT after appropriate
renormalization. Direct evaluation of the bulk Lagrangian gives

Tr[A ∧ dA+ 2
3A ∧A ∧A] = Tr [da ∧ drJ2] = d (Tr [rdaJ2]) = 1

2d (rdω̃) , (4.33)

such that

SCS[A] = k

8π

∫
∂M

rdω̃ = − k

8π

∫
∂M

d2x
√
−g̃ rεij∂iω̃j = k

16π

∫
∂M

d2x
√
|g̃| rR̃ , (4.34a)

SCS[Ā] = −SCS [A] . (4.34b)

At this point it is useful to check the consistency between the computations done in metric
and Chern-Simons formulations. According to (4.11), the difference between SCS[A]−SCS[Ā]
and SEH should be given by

1
2κ2

∫
∂M

eA∧ωA = 1
2κ2

∫
∂M

2e2r ẽ0∧ẽ1−rdω̃= 1
2κ2

∫
∂M

d2x
√
|g̃|
(

2e2r− r2R̃
)
. (4.35)

Recalling that ρ = e−2r and putting together (3.9), (4.34) and (4.35), we find that equa-
tion (4.11) is indeed satisfied. On the other hand, evaluation the boundary term in (4.31)
simply yields

A0 ∧ Ā1 +A1 ∧ Ā0 −A2 ∧ Ā2 = e2ra1 ∧ ā0 − dr ∧ ω̃ +O(e−2r) (4.36a)
= 4e2rẽ0 ∧ ẽ1 + rdω̃ − d(rω̃) +O(e−2r) . (4.36b)

Therefore, up to corner terms at ∂Σ the total regulated onshell action is

Sreg = k

4π

∫
∂M

d2x
√
|g̃|
[
2e2r + rR̃+O(e−2r)

]
. (4.37)

Like in the metric formalism, the leading divergence is cured by adding the intrinsic action
counterterm (3.14). Evaluating the integrand at the boundary location r = −H(x) =
−1

2 ln ε− ω(x) +O(ε) and taking the limit ε→ 0, we end up with the renormalized onshell
action

Sren = lim
ε→0

(Sreg + Sct) = − k

4π

∫
d2x

√
|g̃|
[
(∂ω)2 + ωR̃

]
, (4.38)

where topological terms have again been dropped. This slightly differs from the result (3.16)
in metric formalism, but we are not done yet. As before, the generating functional W [g̃ij ]
given in (3.17) is obtained after elimination of the Liouville field ω, yielding

W [g̃ij ] ≡ Sonshell
ren = c

96π

∫
d2x

√
|g̃| R̃ �̃−1R̃ . (4.39)

The Polyakov action is once again recovered. Note that the agreement with the result of
section 3 is not completely trivial since the boundary terms used in metric (second order)
and Chern-Simons (first order) formulations differ.
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4.2 Standard Hamiltonian reduction

It is worth contrasting the above derivation of the holographic generating functional with
the classic Hamiltonian reduction of three-dimensional gravity to a flat Liouville theory
with nonzero potential [2]. See also the detailed review [48].

Restricted phase space. The setup of the Hamiltonian reduction crucially differs from
that of the preceding subsection in that the boundary geometry is taken to be flat. Sources
for the dual stress tensor are turned off. Also, the boundary ∂M is taken to lie a constant
r-surface, i.e, ω(x) = 0. As a preliminary step, a particular coordinate system (r, t, ϕ) is
chosen where t is timelike and ϕ is spacelike and periodic. Coordinates z = t + ϕ and
z̄ = t− ϕ will also be used. Still adopting the general ansatz (4.18), the purely transverse
connection is restricted to the form

a =
√

2 (L(z, z̄)J0 + J1) dz , (4.40a)

ā =
√

2
(
J0 + L̄(z, z̄)J1

)
dz̄ , (4.40b)

such that the bulk metric reads

ds2 = dρ2

4ρ2 − ρ
−1
(
dz − ρ L̄(z, z̄)dz̄

)
(dz̄ − ρL(z, z̄)dz) . (4.41)

The boundary geometry of this restricted ansatz is clearly flat. Note also that is not a
classical solution unless ∂̄L = 0 = ∂L̄.

WZNW model. The chiral Chern-Simons action takes the explicit form

SCS[A] = k

4π

∫
M
d3xTr[∂r(AϕAt) +ArȦϕ −AϕȦr − 2AtFrϕ] , (4.42)

where dots refer to ∂t derivatives, while primes will refer to ∂ϕ derivatives. Onshell variation
of this action yields

δSCS[A] = − k

4π

∫
∂M

dtdϕTr[At δAϕ −Aϕ δAt] . (4.43)

The boundary conditions adopted by Coussaert, Henneaux and van Driel is At = Aϕ at ∂M,
which makes SCS[A] stationary without any additional boundary term. On the connection
Ā one imposes Āt = −Āϕ at ∂M. The restricted phase-space (4.40) does satisfy these
conditions. Importantly, they are completely distinct from the boundary conditions (4.30)
used in the preceding subsection to allow fixed but otherwise arbitrary boundary geometries.

The component At manifestly plays the role of a Lagrange multiplier for the constraint
Frϕ = 0, solved by

Ar = G−1∂rG , Aϕ = G−1∂ϕG , ∀G ∈ SL(2,R) . (4.44)

Here I have assumed trivial spacetime topology such that A and Ā do not possess holonomies.
On the constraint surface Frϕ = 0, the quantity

Tr[A ∧ dA+ 2
3A ∧A ∧A]− d3xTr [∂r(AϕAt)] (4.45)
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is actually completely independent of the value taken by At. Without any loss of generality,
it can therefore be evaluated using

A = G−1dG , (dA+A ∧A = 0) . (4.46)

This allows to directly express the action in terms of the group element G as

SCS[A] =− k

12π

∫
M

Tr
[
(G−1dG)3

]
+ k

4π

∫
∂M

dtdϕTr
[(
At−G−1∂tG

)
G−1∂ϕG

]
. (4.47)

Using the boundary condition At = Aϕ = G−1∂ϕG, this reduces to a chiral Wess-Zumino-
Novikov-Witten (WZNW) model

SCS [A] = − k

12π

∫
Tr
[
(G−1dG)3

]
− k

2π

∫
dtdϕTr

[
G−1∂̄GG−1∂ϕG

]
. (4.48)

Flat Liouville theory. We now come to the well-known reduction of the chiral WZNW
actions (4.48) to that of a flat Liouville theory with nonzero potential. Since the boundary
geometry is flat, this Liouville theory cannot possibly be related to the one described in
previous sections. In fact, we will see that it is still off-shell and further vanishes when the
bulk equations of motion are imposed.

In the original work of Coussaert, Henneaux and Van Driel, the Liouville theory was
obtained by first combining the chiral WZNW models into a single non-chiral WZNW
model through field redefinitions. These field redefinitions make it very difficult to interpret
the result in terms of gravitational variables and corresponding boundary conditions.
Fortunately, another derivation of the same result has been given in [7, 10] which sidesteps
the non-chiral WZNW model. Here, I simply reproduce the computations presented in [10].
As a first step, we write

G = g(t, ϕ) · h(r) , (4.49)

with h given in (4.17), such that

at = aϕ = g−1∂ϕg . (4.50)

We then write a Gauss parametrization of the group element g,

g = e
√

2σJ1e−φJ2e
√

2τJ0 , (4.51)

where σ, φ, τ are functions of the boundary coordinates z, z̄. With this decomposition, the
transverse connection a reads

at = aϕ =
√

2
(
τ ′ − τφ′ − e−φτ2σ′

)
J0 +

√
2e−φσ′J1 −

(
φ′ + 2e−φτσ′

)
J2 . (4.52)

In turn, the ansatz (4.40) imposes the boundary conditions

σ′ = eφ , φ′ = −2τ , (4.53)

while the free function L is identified with

L(z, z̄) = τ ′ + τ2 = 1
4(φ′)2 − 1

2φ
′′ = −1

2S[σ, ϕ] . (4.54)
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Plugging in the Gauss decomposition (4.51), the WZNW action (4.48) reduces to [10]

SCS[A] = − k

4π

∫
dtdϕ

(
φ′ ∂̄φ− 4e−φσ′ ∂̄τ

)
. (4.55)

The boundary conditions on σ given in (4.53) further reduce the second term to a total
derivative, such that (4.55) is the action of a massless chiral field φ. The chiral fields φ
and φ̄ can be combined into a single Liouville field φL through a Backlund transformation
whose details can be found in [7, 10], resulting in

SCS[A]− SCS[Ā] = − k

2π

∫
dtdϕ

(1
2∂φL∂̄φL + 2eφL

)
. (4.56)

This is the famous result of the Hamiltonian reduction of three-dimensional gravity to flat
Liouville theory with potential term, first obtained in [2].

The main difference between the boundary Polyakov action of the preceding sections
and the flat Liouville action (4.56) is that the latter is still off-shell. Indeed, classical bulk
solutions satisfy the additional condition

at = g−1∂tg =
√

2
(
τ̇ − τ φ̇− e−φτ2σ̇

)
J0 +

√
2e−φσ̇J1 −

(
φ̇+ 2e−φτ σ̇

)
J2 , (4.57)

compatible with (4.52) if and only if

∂̄σ = ∂̄φ = ∂̄τ = 0 . (4.58)

In that case, the boundary actions (4.55) and (4.56) simply vanish, in agreement with
the findings of the previous sections that the gravitational onshell action vanishes for flat
boundary geometries. In addition, the free function L reduces to the Schwarzian derivative of
a ‘holomorphic’ function σ(z), which is indeed the appropriate expression for the expectation
value of the chiral component of a CFT stress tensor in a flat background geometry,

L(z) = −1
2S[σ, z] . (4.59)

4.3 Another Hamiltonian reduction

In this subsection I would like to briefly discuss a variant of the Hamiltonian reduction
due to Cotler and Jensen [11], and clarify its relation with the other approaches discussed
previously. This will set the basis for the ideas to be developed in the discussion that heavily
rely on the results presented in [11].

The setup is the same as that of section 4.2. In particular, the action considered is
again (4.42) with boundary conditions

A =
(

dr
2r +O(r−2) O(r−1)
rdz +O(r−1) −dr

2r +O(r−2)

)
, Ā =

(
−dr

2r +O(r−2) rdz̄ +O(r−1)
O(r−1) dr

2r +O(r−2)

)
, (4.60)

that satisfy the ansatz (4.40). Adopting the same setup they however come to a different
result, namely [11]

SCS[A]−SCS[Ā] = k

4π

∫
dtdϕ

(
φ′′∂̄φ′

(φ′)2 −φ
′∂̄φ

)
− k

4π

∫
dtdϕ

(
φ̄′′∂φ̄′

(φ̄′)2 − φ̄
′∂φ̄

)
. (4.61)
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This expression looks very similar to the chiral generating functional W [µ] on the cylin-
der (2.31), and one might suspect φ to parametrize a nontrivial boundary geometry. We
will see that an interpretation of this sort is indeed possible.

Similarly to the Hamiltonian reduction described in section 4.2, the constraint Frϕ = 0
is solved by writing

Ar = G−1∂rG , Aϕ = G−1∂ϕG . (4.62)

A Gauss parametrization of the group elements G, Ḡ is employed,

G =
(

1 0
F 1

)(
λ 0
0 λ−1

)(
1 Ψ
0 1

)
, Ḡ =

(
1 −F̄
0 1

)(
λ̄−1 0

0 λ̄

)(
1 0
−Ψ̄ 1

)
, (4.63)

such that the gauge connections take the form

A =
(
d ln λ−Ψλ2dF 2Ψd ln λ+ dΨ−Ψ2λ2dF

λ2dF −d ln λ+ Ψλ2dF

)
, (4.64)

Ā =
(

−d ln λ̄+ Ψ̄λ̄2dF̄ −λ̄2dF̄

−2Ψ̄d ln λ̄− dΨ̄ + Ψ̄2λ̄2dF̄ d ln λ̄− Ψ̄λ̄2dF̄

)
. (4.65)

Strictly speaking, at this point the above expressions only account for the r, ϕ components
since At = G−1∂tG does not necessarily hold. Imposing the boundary conditions (4.60) on
the two spatial components implies

F = O(r0) , λ2 = r

F ′
+O(r−1) , Ψ = − F ′′

2rF ′ +O(r−2) , (4.66)

and similarly for the barred quantities. Making the change of variable F = tanφ and
plugging this back into the WZNW expression (4.48) yields the result (4.61).

Just as the flat Liouville action (4.56), the boundary action (4.61) is off-shell with
respect to the bulk equations of motion. Bulk solutions do satisfy the additional conditions

At = G−1∂tG =
(

O(r0) O(r−1)
r φ̇φ′ +O(r0) O(r0)

)
, (4.67a)

Āt = Ḡ−1∂tḠ =

 O(r0) −r
˙̄φ
φ̄′ +O(r0)

O(r−1) O(r0)

 . (4.67b)

We conclude that bulk solutions satisfies the boundary conditions (4.60) if and only if

∂̄φ = 0 , ∂φ̄ = 0 , (4.68)

in which case the action (4.61) again identically vanishes. However, if we do not impose (4.68)
right away and collect all the components of the onshell connections A and Ā, using (4.8)
we find the expression for the associated bulk tetrad

e = r√
2

(
dϕ+

˙̄φ
φ̄′
dt

)
J0 + r√

2

(
dϕ+ φ̇

φ′
dt

)
J1 +O(r0) , (4.69)

– 21 –



J
H
E
P
1
0
(
2
0
2
1
)
2
1
8

such that the boundary metric reads

ds̃2 =
(
dϕ+ φ̇

φ′
dt

)(
dϕ+

˙̄φ
φ̄′
dt

)
(4.70a)

= ∂φ

∂φ− ∂̄φ
∂̄φ̄

∂̄φ̄− ∂φ̄

(
dz + ∂̄φ

∂φ
dz̄

)(
dz̄ + ∂φ̄

∂̄φ̄
dz

)
. (4.70b)

This should strongly remind us of the parametrization of a curved geometry (2.15) in terms
of Beltrami differentials, although the conformal factor is not arbitrary.

This suggests an alternative way of recovering the boundary action (4.61), based on
the holographic treatment described in section 3 or section 4.1 and the resulting Polyakov
action. Indeed, as discussed in section 2, the local Quillen-Belavin-Knizhnik anomaly
can be subtracted from the generating functional W [g̃ij ] in order to achieve holomorphic
factorization at the expense of diffeomorphism invariance,

Wholo = W [µ] +W [µ̄] . (4.71)

Recalling the parametrization appropriate to the cylinder (2.31), we have

W [µ] = − c

24π

∫
d2w

(
∂∂̄φ ∂2φ

(∂φ)2 − ∂̄φ ∂φ
)
, (4.72)

and the result of Cotler and Jensen (4.61) is recovered upon replacement ∂ϕ 7→ ∂ in the
first term and ∂ϕ 7→ ∂̄ in the second term.5 Note that this alternative derivation of the
(cylinder) Alekseev-Shatashvili action is radically different from the one due to Cotler and
Jensen and reviewed above. Indeed, in the latter the field φ describes off-shell dynamical
bulk modes when a flat boundary metric is assumed, while φ in (4.72) should be interpreted
as parametrizing a curved boundary metric playing the role of background source for
the dual CFT stress tensor. This alternative derivation simply follows from the classical
GKPW dictionary (1.3) that has been the basis for most investigations within the AdS/CFT
correspondence. It also suggests another interpretation for those computations performed
by Cotler and Jensen that are based on the Alekseev-Shatashvili action (4.61). I come back
to this point in the discussion.

5 Discussion

The generating functional of stress tensor correlation functions is an important and universal
object characterizing any two-dimensional CFT, and in this review I have presented a unified
view regarding its holographic derivation within the AdS3/CFT2 correspondence in both
metric and Chern-Simons formulations. The literature on this subject is vast and confusing,
and with the present work I hope to have given a robust account that will allow further
developments. Below I discuss a few open problems which appear relevant to recent
developments in holography.

5I believe that this slight modification would not affect the other results in [11].
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Multiple boundaries and wormholes. I restricted this review to the case of a single
asymptotic boundary with the topology of the plane or cylinder. The case of a single
torus boundary is straightforward to obtain and yields the same expression (2.20) for
the chiral generating functional W [µ] with the integration domain restricted to a single
fundamental domain of torus [37]. Generalizations of the AdS/CFT generating functional to
multiple asymptotic boundary components connected through spacetime wormholes are yet
missing, although Hamiltonian reductions have been generalized to that context [12, 22]. An
important difference compared to the case of a single boundary is the presence of nontrivial
holonomies in the Chern-Simons connections which eventually couple the boundary zero
modes of the disconnected boundary components [7, 12, 22]. Although they have been
the basis of recent discussions about the role of wormholes in quantum gravity [22, 49], it
should be emphasized that Hamiltonian reductions have no straightforward interpretation
within the AdS/CFT correspondence. It might therefore be interesting to work out the
generating functional associated with multiple boundaries and wormholes, and subsequently
use it as the basis for further holographic studies in that context.

Ensemble average in AdS3/CFT2. Recently there has been a lot of interest in a new
kind of holographic duality between gravity with AdS asymptotics and dual ensembles of
strongly coupled quantum systems, where the prime example is a correspondence between
Jackiw-Teitelboim gravity in AdS2 and the Sachdev-Ye-Kitaev quantum mechanichal en-
semble [50–55]. There is increasing evidence that quantum mechanical ensembles are not
exact duals of quantum gravitational theories but rather describe a form of coarse-graining
from which statistical properties can be obtained [56–61]. This should remind us of the
work of Wigner who showed that the energy level spacing statistics of heavy nuclei can be
obtained from random matrix theory [62], although there is no doubt that the fundamental
description of nuclei does not involve any ensemble of theories. Similarly, it has been
conjectured long ago that the spectral statistics of any chaotic quantum mechanical system
are described by random matrix ensembles [63, 64]. Quantum gravity being chaotic, it is
exponentially difficult to access detailed information about pure sates that would depart
from the coarse-grained description.

In the context of AdS3 gravity, Cotler and Jensen have given a path integral derivation
of the spectral statistics of black holes, where the action used is a modification of (4.61)
appropriate to the case of two disconnected asymptotic boundary components [22]. They
found agreement with the predictions of a particular random matrix ensemble, leading
them to the conclusion that AdS3 gravity might be dual to an ensemble of CFTs rather
than a single one. This conclusion, which is in tension with the common lore on the
AdS/CFT correspondence [3], may have been premature. First of all, the preceding
discussion shows that ensemble averaging can often be used to obtain spectral statistics of
quantum chaotic systems that are otherwise fundamentally described by a single theory. In
addition, I argued at the end of section 4.3 that the boundary action (4.61) coincides with
the Polyakov action in disguise, such that it alternatively follows from the standard GKPW
dictionary (1.3) which would give φ the interpretation of a source rather than a dynamical
field. As reviewed in section 2, in that context φ is related to the source µ on the plane
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through equations (2.21), (2.27) and (2.30). It is therefore very tempting to re-interpret
the computation of Cotler and Jensen as an explicit averaging of the holographic CFT
generating functional ZCFT[µ] = e−W [µ] over the source µ, with integral measure [22]

dφ

∂φ
= df , (5.1)

where f is related to µ through the Beltrami equation (2.21). This contrasts with the logic
of these authors in which φ plays the role of fluctuating bulk field while the boundary
geometry is kept flat. However, to make the above re-interpretation fully precise requires
some more work. In particular, one should properly discuss the generating functional
associated with two disconnected boundaries (see previous paragraph). I hope to report on
this problem in a future publication.

As an additional remark, recall that W [µ] is also the action for the two-dimensional
quantum gravity of Polyakov in the lightcone gauge,6 with (5.1) the appropriate path
integral measure [29–31, 69]. Therefore, the computation of Cotler and Jensen is also a
computation in 2d quantum gravity. It would be extremely interesting to revisit some of the
old results in the latter theory in light of these new developments. Perhaps unexpectedly,
we might learn about 3d quantum gravity from 2d quantum gravity.

Finite central charge. The derivation of the Polyakov generating functional within the
AdS/CFT correspondence has been presented in the limit of large central charge c→∞,
i.e., in the classical gravity regime. However, the form of the generating functional of any
two-dimensional CFT is the same whether at large or finite central charge, such that there
cannot be any O(c−1) correction to this result. In some sense the classical saddle point
approximation (1.3) appears exact in AdS3/CFT2. This can be viewed as a very stringent
constraint to be satisfied by any nonperturbative definition of quantum gravity in AdS3,
i.e., by the right-hand side of (1.1). Such a nonperturbative definition is crucially missing
at this time, which prevents any real progress towards a detailed understanding of quantum
gravity within the AdS/CFT correspondence.

Higher dimensions. Conformal anomalies exist in all even dimensions. Like in two-
dimensions, they can be integrated into nonlocal effective actions [70]. In contrast to two
dimensions, stress tensor correlation functions are not fully determined by the anomaly
coefficients and therefore their most general form cannot be generated from the nonlocal
actions. However, the latter encode most of the information about low-point functions.
In four dimensions for example, they determine up to three-point correlators of the stress
tensor [71, 72]. It would be interesting to repeat the holographic derivation reviewed in
section 3 in higher dimensions in order to understand their emergence within the AdS/CFT
correspondence. Related discussions can be found in [18, 70].

Holography beyond AdS. Rather interestingly, the effective action W [µ] appears at
the boundary of spacetimes that are not asymptotically AdS. In particular, it appears at
the spacelike boundaries of three-dimensional asymptotically de Sitter gravity [73] and on

6For a description of Polyakov gravity in conformal gauge, see [65–68].
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the celestial sphere in four-dimensional asymptotically flat gravity [74]. Since this effective
action is characteristic of two-dimensional CFTs, it strongly hints at the holographic nature
of these gravitational theories.
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A Chiral generating functional and diffeomorphism anomaly

Following Yoshida [75], I review the derivation of the chiral generating functional W [µ] from
the conformal Ward identity satisfied by the stress tensor correlation functions themselves.
The very definition for the chiral generating functional is that it generates all the correlation
functions of the chiral component of the stress tensor,

e−W [µ] ≡
∞∑
n=0

(−π)−n

n!

∫
d2z1 . . . d

2zn µ(z1, z̄1) . . . µ(zn, z̄n)〈T (z1) . . . T (zn)〉 . (A.1)

Stress tensor correlation functions can be determined recursively from the conformal
Ward identities [24],

〈T (z)T (z1) . . . T (zn)〉 =
n∑
i=1

c

2(z − zi)4 〈T (z1) . . .���T (zi) . . . T (zn)〉 (A.2)

+
n∑
i=1

( 2
(z − zi)2 + ∂zi

z − zi

)
〈T (z1) . . . T (zn)〉 ,

whose differentiation directly yields the anomalous chiral diffeomorphism Ward identity

∂̄〈T (z)T (z1) . . . T (zn)〉 = −
n∑
i=1

πc

12 ∂
3δ(x− xi) 〈T (z1) . . .���T (zi) . . . T (zn)〉 (A.3)

− π
n∑
i=1

(2 ∂δ(z − zi)− δ(z − zi)∂zi) 〈T (z1) . . . T (zn)〉 ,

where I made used of the distributional identity ∂̄(1/z) = πδ(x). In turn, this directly
translates to a statement for the generating functional (A.1),

(
∂̄ − µ∂ − 2∂µ

) δW

δµ(z, z̄) = c

12π ∂
3µ . (A.4)

Using the chain rule

δ

δf(z, z̄) =
∫
d2w

δµ(w, w̄)
δf(z, z̄)

δ

δµ(w, w̄) = − 1
∂f

[
∂̄ − µ∂ − 2∂µ

] δ

δµ(z, z̄) , (A.5)
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the Ward identity (A.4) can also be written in terms of the quasiconformal mapping f
defined in (2.21),

δW

δf(z, z̄) = − c

12π ∂f ∂
3µ . (A.6)

As can be explicitly checked, the solution to this equation is

W [µ] = c

24π

∫
d2z

∂̄f

∂f
∂2 ln ∂f . (A.7)

We can also explicitly compute the variation of W [µ] [76]. For that, we first note
that (2.21) implies

(∂̄ − µ∂) ln ∂f = ∂µ , (A.8)

and thus
(∂̄ − µ∂)δ ln ∂f = ∂δµ+ δµ∂ ln ∂f . (A.9)

Using these two relations and a few integration by parts, we obtain

δW [µ] = c

12π

∫
d2z δµ

(
∂2 ln ∂f − 1

2(∂ ln ∂f)2
)

= c

12π

∫
d2z δµS[f, z] , (A.10)

where S[f, z] is the Schwarzian derivative (2.23). Hence, we obtain the familiar result for
the expectation value of the stress tensor in a background geometry µ related to the complex
plane by a (quasi)conformal mapping f ,

〈T 〉µ = π
δW [µ]
δµ

= c

12 S[f, z] . (A.11)

B Active vs. passive diffeomorphisms

I briefly review the distinction and relation between diffeomorphisms and coordinate
transformations (passive diffeomorphisms) which is often a source of confusion. This plays a
role in section 3 where the freedom in the conformal mode of the boundary metric associated
with PBH diffeomorphisms (3.5) is traded for a freedom in the coordinate location of the
cutoff boundary surface (3.8). This distinction between active and passive diffeomorphisms,
along with its prominent role in Einstein’s struggle to make physical sense of General
Relativity, is beautifully discussed in [77].

Coordinate transformations. Under an invertible change of coordinates

x 7→ x′(x) , (B.1)

the components of a contravariant tensor field A of rank p evaluated at a point P ∈M are
related in the two charts by

A′α1...αp(P ) =
[
∂xµ1

∂x′α1
. . .

∂xµp

∂x′αp
Aµ1...µp

]
(P ) . (B.2)
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This simply follows from the chain rule of differential calculus. Both sides of this equation
are evaluated at the same point P , with coordinates x(P ) and x′(P ) in the respective charts.
In the case of a scalar field Φ for example, this equation simply reads

Φ′(P ) = Φ(P ) . (B.3)

The numerical value of Φ′ and Φ at the point P is the same, although the value the
coordinates x(P ) and x′(P ) are different.

Maps between manifolds. Before getting to diffeomorphisms themselves, we discuss
generic smooth maps φ :M→ N between two manifolds. Given a function f : N → R,
the pullback function φ∗f :M→ R is defined by

φ∗f = f ◦ φ . (B.4)

In particular, integration of φ∗f over a domain D ⊂M yields∫
D
φ∗f =

∫
φ(D)

f . (B.5)

Given a vector field V ∈ T (M), the pushforward vector field φ∗V ∈ T (N ) is defined by

φ∗V (f) = V (φ∗f) , ∀ f : N → R . (B.6)

Finally, given a contravariant tensor field A ∈ T ∗p(N ), the pullback tensor field φ∗A over
M is defined by

φ∗A(V1, . . . , Vp) = A(φ∗V1, . . . , φ∗Vp) , ∀V1, . . . , Vp ∈ T (M) . (B.7)

There has been no need to introduce coordinate systems in order to build these definitions.
However, if we chartM and N with coordinates yα and xµ, respectively, in components
the above equation becomes

(φ∗A)α1...αp(P ) =
[
∂xµ1

∂yα1
. . .

∂xµp

∂yαp
Aµ1...µp

]
(φ(P )) , ∀P ∈M . (B.8)

This equation looks dangerously similar to the transformation law of A under a change
of coordinates (B.2), although they should be clearly distinguished. Indeed, the left and
right-hand sides of (B.8) are evaluated at different points, which in fact belong to distinct
manifolds.

Diffeomorphisms. In the case that N =M, the smooth map φ discussed above is called
a diffeomorphism if it is invertible. Considering a point P ∈ M with coordinates x, and
designating by x′ another set of coordinates defined by

x′ = φ(x) , (B.9)

the relation (B.8) between A and φ∗A becomes

A′α1...αp(P ) ≡ (φ∗A)α1...αp(P ) =
[
∂xµ1

∂x′α1
. . .

∂xµp

∂x′αp
Aµ1...µp

]
(φ(P )) , ∀P ∈M . (B.10)
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This looks exactly like the transformation law (B.2) of the components of A under a change
of coordinates x 7→ x′(x) except that the right-hand side of (B.10) is evaluated at φ(P )
rather than P itself. Diffeomorphisms are not mere changes of coordinates, they actually
drag tensor fields along with them. However, their action can be and is often represented
by coordinate changes, keeping in mind this additional subtlety.

In section 3, the freedom in the conformal mode of the boundary metric g̃ij that is
associated with PBH diffeomorphisms (3.5) is traded for a freedom in the location of the
cutoff boundary surface ∂M by straightforward application of the integral identity (B.5).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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