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by weighted adjacient matrices of all possible graphs, are mapped to the boundary Hilbert

space and form an overcomplete basis of the boundary. We name such an overcomplete ba-

sis as holographic coherent states. A generic boundary state can be expanded in this basis,

which describes the state as a superposition of different spatial geometries in the bulk. We

discuss how to define distinct classical geometries and small fluctuations around them. We

show that small fluctuations around classical geometries define “code subspaces” which are

mapped to the boundary Hilbert space isometrically with quantum error correction proper-

ties. In addition, we also show that the overlap between different geometries is suppressed

exponentially as a function of the geometrical difference between the two geometries. The

geometrical difference is measured in an area law fashion, which is a manifestation of the

holographic nature of the states considered.
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1 Introduction

The holographic duality [1–3] was proposed as a duality between quantum gravity in d+ 1

dimensions and quantum field theory in d dimensions. The correspondence was originally

proposed between the partition function and correlation functions of the two theories. The

large N limit of the boundary quantum field theory corresponds to the bulk semiclassical

limit (the limit of small Newton constant GN ). The role of quantum entanglement in

holographic duality was explicitly reflected by the Ryu-Takayanagi formula [4] and its

generalizations [5–8], which relates entanglement entropy of a boundary region to area of

extremal surfaces. The relation of entropy and area motivated the proposal that tensor

networks may provide a “microscopic” framework for understanding holographic duality [9,

10]. Tensor networks, or projected entangled pair states (PEPS) is an approach to construct

entangled quantum many-body states [11–16]. For a graph (see figure 1), the corresponding

PEPS is obtained by first preparing an EPR pair for each link, and then projecting all qubits

at the same vertex to a pure state specified by the tensor at that vertex. This procedure

leads to a many-body state of the remaining qubits living at the end of dangling legs of

the network. The advantage of the tensor network description is that the entanglement

structure of the state is encoded explicitly in the geometry of the network. In particular,
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Figure 1. An example of random tensor network.

the entanglement entropy of each region A is bounded by the minimal number of links that

separate A and its complement, multiplied by logD with D the bond dimension of each

tensor. This is the analog of RT formula.

To use tensor networks to understand holographic duality, a key question is what

states correspond to semiclassical bulk geometry. As we learn in holographic duality,

such states must satisfy various conditions [17, 18], such as the negative tripartite mutual

information [19]. Various tensor network models [20–23] have been proposed to incorporate

desired features of holographic duality. Among them, the random tensor networks [23]

are shown to realize many features of holographic duality naturally, including the RT

formula with quantum corrections, and the quantum error correction property of the bulk-

boundary holographic mapping [24]. However, there are holographic properties that are

not reproduced by tensor networks, such as the Renyi entropy behavior [8, 25]. There

are also obviously many other open questions that have not been addressed in the tensor

network framework.

Among the open questions, an essential one is how to describe quantum superposition

of different geometries, as is required for a quantum gravity theory. This is also a necessary

step towards understanding Einstein equation and graviton excitations in the bulk. In this

paper we make a small progress along this direction by setting up a framework for describing

quantum superposition of tensor network states on arbitrary geometries. We generalize the

random tensor network approach in ref. [23] and define a linear map between geometries in

the bulk and quantum states on the boundary. A geometry is described by the adjacient

matrix axy of a weighted (unoriented) graph (with fixed number of vertices and arbitrary

connectivity), which is defined as a basis vector |{axy}〉 in the bulk. The linear map defined

by random tensors then maps each such basis state to a quantum state |Ψ [{axy}]〉 on the

boundary, which is the holographic state that is dual to this geometry. With this linear map
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it is straightforward to take superpositions between different geometries. We prove that for

a fixed size of the boundary, a large enough number of bulk vertices make such a mapping

an isometry from the boundary to the bulk. In other words, |Ψ [{axy}]〉 parameterized by

the weighted adjacient matrix axy form an overcomplete basis of the boundary, such that

each state in the boundary Hilbert space can be mapped to a quantum superposition of

different geometries. Due to the analog of boson coherent states (as will be elaborated more

in later part of this paper), we name this basis of states “holographic coherent states”.

Furthermore, this formalism allow us to consider small fluctuation around a classical

geometry, and show that such small fluctuations for a “code subspace”[24] which is mapped

to the boundary isometrically. (The precise meaning of “classical geometry” and “small

fluctuation” will be given later. In short, a classical geometry means all nonzero entries

of the weighted adjacient matrix axy are large, while small fluctuations correspond to

axy → axy + δaxy with δaxy � axy.) Such small fluctuations can be considered as low

energy states of the bulk quantum fields. The existence of bulk-boundary isometry in such

subspaces guarantees that small fluctuations at different links of the graph are independent

physical degrees of freedom. In other words, bulk locality emerges in such subspaces

even if the whole bulk theory is intrinsically nonlocal. In addition, the bulk-boundary

isometry satisfies the local reconstruction properties known in holographic duality. The

structure of a boundary-to-bulk isometry in the whole boundary Hilbert space and a bulk-

to-boundary isometry in code subspaces has been proposed as “bidirectional holographic

code” in ref. [22], which is schematically summarized in figure 2.

As an overcomplete basis, states |Ψ [{axy}]〉 for different geometry axy do not corre-

spond to orthogonal states of the boundary. However, we show that the overlap between

different geometries are exponentially suppressed in the large N limit. This is similar to or-

dinary boson coherent states that are used in mean-field approximation of superfluids and

superconductors. Different coherent states are not orthogonal. But because their overlap

is exponentially small, it is physically meaningful to consider them as physically different

states, and therefore consider the condensate wavefunction as a physical order parameter

field. An interesting difference of the geometrical states from ordinary coherent states

is that the overlap between two states has a “holographic” behavior. If two geometries

axy and bxy are distinct in a region R and identical outside R, we prove that the overlap

|〈Ψ [{axy}]| Ψ [{bxy}]〉| is upper bounded by e−c|γ| with γ the area of a minimal surface

bounding region R. c is a constant determined by the entanglement entropy contributed

by each link crossing the boundary. The area law form of the overlap is a manifestation

of the fact that the states |Ψ [{axy}]〉 are consistent with the holographic principle — the

fact that the physical degrees of freedom in a region R are bounded by their area rather

than volume.

The remainder of the article is organized as follows. In section 2 we present the general

setup of our approach. In section 3 we study the condition of boundary-to-bulk isometry.

In section 4 we investigate the definition of classical geometries and the code subspaces with

bulk-to-boundary isometry. In section 5 we study the overlap between different classical

geometries to show that distinct geometries are almost orthogonal. Finally, the conclusion

and further discussions are given in section 6.
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Figure 2. Illustration of the structure of bidirectional holographic code defined by RTN. An

isometry is defined from the boundary Hilbert space HB to bulk Hilbert space Hb which maps

each state in HB to a superposition of geometries. In the code subspace HC which consists of

subspaces of small fluctuations around different classical geometries, an isometry is defined from

bulk to boundary.

2 General framework

We begin with a brief overview of the random tensor networks proposed in ref. [23]. For

a graph, such as the one in figure 1, one first prepares a EPR pair of two qudits for each

link, denoted by |xy〉. Then the RTN is defined by projecting all qudits on the site x to a

random pure state |Vx〉. If each qudit has dimension D, and site x has k neighbors, |Vx〉 is

a random unit vector in a Dk-dimensional Hilbert space. The probability distribution of

|Vx〉 is uniform, which means |Vx〉 and U |Vx〉 has the same probability for any unitary U .

Alternatively, one can define |Vx〉 = U |0〉 with U a Haar random unitary operator and |0〉
a fixed reference state. For a graph G, the RTN state is expressed as

|ΨG〉 =
∏
x

〈Vx|
∏
〈xy〉∈G

|xy〉 (2.1)

with the 〈xy〉 ∈ G runs over (unoriented) edges in the graph G.

From the definition of RTN, it is natural to see how to generalize this formalism to

include superposition of different geometries (graphs)—The link state
∏
〈xy〉∈G |xy〉 can be

replaced by superpositions of such states on different graphs. To make this well-defined,

one needs to modify the definition slightly to make sure the Hilbert space dimension of

each vertex is identical for different graphs. This can be easily achieved by defining some

auxiliary states on links that are absent in G. For each 〈xy〉 /∈ G, define a state |xy〉0 =

|x〉0 |y〉0 which is a direct product state and is orthogonal to |xy〉. Adding such direct

product states do not change the entanglement structure of the system. Then if we replace∏
〈xy〉∈G |xy〉 by

∏
〈xy〉∈G |xy〉

∏
〈xy〉/∈G |xy〉0, the dimension of each site is DV−1 if the total

number of vertices is V . Therefore the random states |Vx〉 can be chosen in a Hilbert

space of dimension DV−1 independent from G. Denote |PG〉 =
∏
〈xy〉∈G |xy〉

∏
〈xy〉/∈G |xy〉0

as the “parent state” before projection, then the superposition of two geometries G,G′

correspond to a boundary state a |ΨG〉 + b |ΨG′〉 =
∏
x 〈Vx| [a |PG〉+ b |PG′〉]. In other
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Figure 3. Illustration of the random tensor network on a complete graph with link states. Each

bulk link is a three-leg tensor Laαβ , and each vertex is a random tensor. The blue links are maximally

entangled EPR pairs. The network defines a linear map between bulk link states (red lines) and

boundary states (blue lines).

words, now we have a linear map between different graphs G corresponding to different

EPR pair configurations (in the same Hilbert space) to different boundary states.

Motivated by the discussion above, we consider a more general situation and define the

following tensor network. Consider a complete graph with V vertices, in which VB of them

are labeled as “boundary” vertices, and the rest of them Vb = V − VB are bulk vertices.

For each pair of vertices x, y (x 6= y), we define a three-leg tensor Lαβa shown in figure 3,

with a = 0, 1, 2, . . . , DL − 1 and α, β = 1, 2, . . . , D.1 This tensor defines an isometry from

index a to indices αβ. In other words, states

|axy〉 = Lαβa |α〉x |β〉y (2.2)

are orthonormal, i.e. 〈bxy| axy〉 = δab. (Obviously this requires DL ≤ D2.) The link

variables axy can be considered as specifying a weighted graph. Since we want the weight

axy to label entanglement in state |axy〉, we can require the entanglement entropy between

x and y to be an increasing function of axy. For example, to be specific we can require

Sx (axy) = axy log d, with axy = 0, 1, . . . , DL − 1, dDL−1 = D (2.3)

which means axy is the number of EPR pairs across the link, each with dimension d. The

maximal axy corresponds to a maximally entangled state.

In addition, each boundary vertex is connected with a EPR pair state |xX〉B which

entangles a qudit at vertex x with one at the boundary physical site X. Then for each

configuration axy = 0, 1, 2, . . . , DL − 1, an RTN is defined by

|Ψ [{axy}]〉 =
∏
x

〈Vx|
∏
x 6=y
|axy〉

∏
x

|xX〉B (2.4)

If we only want to incorporate superposition of RTN on different graphs, the simplest

choice will be DL = 2, in which case a qubit at each link determines whether the link is

1Similar link variables have been introduced in perfect tensor networks in ref. [26] for a different but

related purpose.
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connected (entangled) or not. However, it is more convenient to introduce a larger DL,

which makes it possible to define “small” fluctuations around a classical geometry, as will

be discussed in section 4.

The definition (2.4) defines a linear map from the bulk Hilbert space Hb spanned

by the link qubits (with dimension D
V (V−1)/2
L ) to the boundary Hilbert space HB (with

dimension DVB ), which maps the basis states
∏
x 6=y |axy〉 to |Ψ[{axy}]〉. We denote this

map by M : Hb → HB:

M |Ψbulk〉 ≡
∏
x

〈Vx| |Ψbulk〉
∏
x

|xX〉B (2.5)

The Hermitian conjugate operator M † : HB → Hb defines a linear map from the boundary

Hilbert space to the bulk Hilbert space. This pair of maps M and M † can be viewed as a

holographic mapping that builds a correspondence between states (on the boundary) and

geometries (in the bulk). It is straightforward to generalize the random average technique in

ref. [23] to the current setup, which is how we will investigate properties of this holographic

mapping in the following sections.

3 Boundary-to-bulk isometry

In this section, we will study the holographic mapping from boundary to bulk, and show

that it is an isometry under certain conditions. This result demonstrates that tensor

network states |Ψ [{axy}]〉 for all configurations {axy} forms an overcomplete basis of the

boundary Hilbert space, so that any boundary state can be expanded in this basis.

We summarize the result first. The isometry condition requires

ρB =
∑
{axy}

|Ψ [{axy}]〉 〈Ψ [{axy}]| ∝ I (3.1)

Eq. (3.1) is true if the following two conditions are satisfied,

(V − 1)� 2 logD

logDL
(3.2)∣∣Tr

[
ρ⊗4
xy g ⊗ h

]∣∣2 < Tr
[
ρ⊗4
xy g ⊗ g

]
Tr
[
ρ⊗4
xy h⊗ h

]
, ∀g 6= h ∈ S4 (3.3)

Eq. (3.2) can be trivially satisfied if V � 1, while keeping logD/ logDL to be O(1).

Eq. (3.3) is the property of the density matrix, whose details will be elaborated in the

section 3.2 and appendix A.

If we view the tensor network in figure 3 as an entangled state between boundary and

bulk link qudits, the isometry condition is equivalent to the statement that the reduced

density matrix ρB is maximally mixed. To study ρB we study its second Renyi entropy

e−S
(2)
B =

Tr
[
ρ2
B

]
Tr [ρB]2

(3.4)

Similar to ref. [23], we study the random average of the numerator and denominator

separately, and then study their fluctuations. When the fluctuation is small, we have

e−S
(2)
B ' Tr

[
ρ2
B

]
/Tr [ρB]2.
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3.1 The random-averaged isometry condition

A commonly used trick in writing the Renyi entropy is to write

Tr
[
ρ2
B

]
= Tr [XBρB ⊗ ρB] = Tr

[(
XB ⊗ IB

)
(ρB ⊗ ρB)

]
(3.5)

with ρB = |Ψ [{axy}]〉 〈Ψ [{axy}]| the density matrix of the whole system, and XB the

swap operator acting on two-copies of the system which permutes the two copies in B

region. More explicitly, if we denote an orthonormal basis of B region as |n〉B, then

XB |n〉B ⊗ |n′〉B = |n′〉B ⊗ |n〉B.

For the state defined in eq. (2.4), ρB is

ρB = trb

(∏
x

|Vx〉 〈Vx|

)∏
x 6=y

ρxy ⊗
∏
x

|xX〉B 〈xX|B

 (3.6)

with ρxy =
1

DL

DL−1∑
a=0

|axy〉 〈axy| (3.7)

Therefore

Tr
[
ρ2
B

]
= Tr

(XB ⊗
∏
x

|Vx〉 〈Vx|⊗2

)∏
x 6=y

ρxy ⊗
∏
x

|xX〉B 〈xX|B

⊗2
= C−1

∑
R⊆bulk

Tr

XB∪R

∏
x6=y

ρxy ⊗
∏
x

|xX〉B 〈xX|B

⊗2 (3.8)

Here we have used the mathematical fact that the random average |Vx〉 〈Vx|⊗2 ∝ Ix⊗Ix+Xx,

with Xx the swap operator defined in the same way as XB, acting on all qudits at site x.

The normalization constant C =
(
D2V−2 +DV−1

)Vb (D2V +DV
)VB .

The right-hand side of eq. (3.8) is a sum over the purity of the state
∏
x 6=y ρxy ⊗∏

x |xX〉B 〈xX|B for different regions B ∪ R, with R running over all 2V subsets of the

V vertices. Since this state is simple, with only bipartite entanglement between different

sites, the purity can be explicitly computed. In the same way as in ref. [23], the sum

can be expressed as a partition function of a classical Ising model, with an Ising spin

sx = ±1 defined on each site. Each spin configuration corresponds to a region R↓ which is

defined as the spin s = −1 domain. The action of the Ising model A [{sx}] is defined such

that e−A[{sx}] = Tr

[
XB∪R↓

(∏
x 6=y ρxy ⊗

∏
x |xX〉B 〈xX|B

)⊗2
]
. Since the state on the

righthand side only contains bipartite entanglement, the Ising model action only contains

one-body and two-body terms:

A [{sx}] = −J
2

∑
xy

(sxsy − 1)− h

2

∑
x

sx +
1

2
logD

∑
x∈B

sx (3.9)

with h =
V − 1

2
logDL, J = sb −

1

2
logDL =

1

2

(
S(2)
x + S(2)

y − S(2)
xy

)
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Figure 4. Illustration of a spin configuration with nb = nB = 1. The spins are −1 for all sites

with a thick red circle, and +1 elsewhere. The dashed line is the domain wall across which the spin

changes sign. The contribution to the action comes from three kinds of links, those within the spin

down region (black thick line), those between opposite spins (pink thick line) and those connecting

the spin up boundary sites to the boundary (blue thick line). These three contributions correspond

to A1,2,3 in eq. (3.10) respectively.

Here 0 < sb ≤ logD is the second Renyi entropy of site x in the state ρxy, i.e. e−sb =

trx(tryρxy)
2, and the Ising coupling J is half of the second Renyi mutual information

between sites x, y in the mixed state ρxy. The last term in the action sums over the VB
boundary sites.

The Ising model problem is simpler than that for a generic RTN in ref. [23] because

all pairs of x, y are coupled equally. Consequently, all Vb bulk vertices are equivalent, and

all VB boundary vertices are equivalent. The action is therefore only a function of two

integers, the number of down spins in the bulk vertices nb ∈ [0, Vb], and the number of

down spins in the boundary vertices nB ∈ [0, VB].

A [{sx}] = A(nb, nB) = A1 +A2 +A3

A1 = logDL(nb + nB)(nb + nB − 1)/2,

A2 = sb (nb + nB) (V − nb − nB) , A3 = logD (VB − nB) (3.10)

The three terms A1,2,3 are contributions of links within region R, links between R and its

complement, and links from R to the boundary, respectively, as is illustrated in figure 4.

With the action A(nb, nB), eq. (3.8) becomes

Tr
[
ρ2
B

]
= C−1

Vb∑
nb=0

VB∑
nB=0

(
Vb
nb

)(
VB
nB

)
e−A(nb,nB) (3.11)

For large Vb, VB, this sum is dominated by the biggest term, which corresponds to the

minimum of S (nb, nB) = A (nb, nB) − log

(
Vb
nb

)
− log

(
VB
nB

)
. One can show that

– 8 –



J
H
E
P
0
8
(
2
0
1
7
)
0
6
0

S (nb, nB) reaches its minimum in the large Vb, VB limit at one of the corners in region

nb ∈ [0, Vb], nB ∈ [0, VB]. A detailed explanation can be found in appendix A.1. The same

analysis applies to the denominator Tr [ρB]2, and the only difference is in the boundary

term A3.

Tr [ρB]2 = C−1
Vb∑
nb=0

VB∑
nB=0

(
Vb
nb

)(
VB
nB

)
e−Ã(nb,nB) (3.12)

with Ã = A1 +A2 + Ã3 and Ã3 = nB logD.

The isometry condition is satisfied if the dominant configuration for both the numerator

and the denominator is given by nB = nb = 0, which requires

logDL
V (V − 1)

2
> VB logD (3.13)

logDL
VB(VB − 1)

2
+ sbVbVB > VB logD (3.14)

Condition (3.13) is simply a requirement that the bulk Hilbert space dimension D
V (V−1)/2
L

is larger than that of the boundary (DVB ). Condition (3.14) requires that the link state

ρxy is sufficiently entangled. In term of coupling J = sb − 1
2 logDL, the condition (3.14)

requires

J >
1

Vb

(
logD − V − 1

2
logDL

)
(3.15)

Condition (3.13) and (3.14) are easy to satisfy. If we take the limit Vb, VB → ∞ with

the ratio VB/V fixed, and keep D,DL to be O(1), all conditions will be trivially satisfied.

The isometry condition (3.1) allows an expansion of an arbitrary boundary state |Φ〉
in this basis: |Φ〉 =

∑
{axy} |Ψ [{axy}]〉 〈Ψ [{axy}]| Φ〉 =

∑
{axy} φ [{axy}] |Ψ [{axy}]〉. This

wavefunction is the analog of Wheeler-de Witt wavefunction [27] of quantum gravity, al-

though here we are only taking superpositions of spatial geometries.

3.2 Fluctuations

As we discussed earlier, the calculation of Tr
[
ρ2
B

]
only tells us the average of second

Renyi entropy if the fluctuation is small. The fluctuation can be studied by computing(
Tr
[
ρ2
B

]2)−(Tr
[
ρ2
B

])2
. As has been shown in ref. [23], the random average of a quantity

like
(

Tr
[
ρ2
B

]2)
, which is quartic in ρB, can be expressed as a partition function of a statis-

tical model with a pseudo-spin gx at each site taking values in the 4-element permutation

group S4. In general, any quantity in the form of Tr
[
ρ⊗kOk

]
, with operator Ok acting on

k copies of the system,2 is mapped to a partition function of a model with pseudo-spins in

k-element permutation group Sk. Similar to the Ising model analyzed above, the statistical

models for higher k is also defined on a complete graph, which simplifies the problem. In

2For example, Tr
[
ρkA

]
which determines the k-th Renyi entropy can be written as Tr

[
ρ⊗kCAk

]
with

CAk the cyclic permutation of the k copies of systems in A region.
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appendix A we analyze these pseudospin models and obtain sufficient conditions for fluc-

tuations such as
(

Tr
[
ρ2
B

]2) − Tr
[
ρ2
B

]2
to be controlled. For bounding the fluctuation of

the second Renyi entropy calculation, the sufficient conditions are the following:

(V − 1)� 2 logD

logDL
(3.16)∣∣∣Tr

[
ρ⊗kxy g ⊗ h

]∣∣∣2 < Tr
[
ρ⊗kxy g ⊗ g

]
Tr
[
ρ⊗kxy h⊗ h

]
, ∀g 6= h ∈ Sk (3.17)

with k = 4 in the second equation. More details of the derivation will be given in ap-

pendix A. It is not difficult to see that conditions (3.16) and (3.17) imply the conditions we

obtain earlier in eq. (3.13) (3.15). Condition (3.16) can be easily satisfied in large volume

V . Condition (3.17) imposes addition constraints to the choice of states |axy〉 and ρxy, but

is also not hard to satisfy, as we will discuss in more details in appendix A. We also give

an explicit example of |axy〉 in appendix A.3 which satisfies condition (3.17) for general k.

4 Bulk-to-boundary isometry in code subspaces

Since the bulk basis |Ψ [{axy}]〉 is generically overcomplete, the mapping from bulk to

boundary defined by our random tensor network is not injective. However, holographic du-

ality requires that small fluctuations around a classical geometry are independent physical

states on the boundary. For example, if we consider a dilute gas of gravitons in the bulk,

the total degree of freedom of the gas is proportional to volume. Gravitons at different

bulk locations should be dual to independent degrees of freedom on the boundary, since

graviton creation/annhilation operators should be mapped to independent operators on

the boundary by the dictionary of holographic duality. This requirement means that there

should be a bulk-to-boundary isometry in the subspace of such small fluctuations. The

bulk small fluctuations are mapped to a subspace of the boundary Hilbert space, named

as the “code subspace”[21, 24]. Each geometry corresponding to a configuration a = {axy}
defines a code subspace HC [a]. The mapping of such small fluctuations to the boundary

should satisfy the following local reconstruction property: each region on the boundary

A corresponds to a minimal surface γA in the bulk that is homologous to it. The region

enclosed by A∪γA is the entanglement wedge EA.3 A bulk operator acting in the subspace

of small fluctuations (the code subspace) in the bulk region EA can be reconstructed in

boundary region A. Since each bulk point can be enclosed by the entanglement wedges

of different boundary regions, information in the bulk can be recovered from different

boundary regions, making the bulk-boundary map in the code subspace a quantum error

correction code [24]. The bulk-boundary isometry and local reconstruction is illustrated in

figure 5.

In the following we will explain how our formalism of fluctuating geometry allows the

definition of small fluctuations and code subspaces. In section 4.1, we obtain the condition

of code subspaces in which global reconstruction (i. e. bulk-to-boundary isometry) can be

3More precisely, EA here is the intersection of the entanglement wedge and the spatial slice. Since we

will always be dealing with a spatial slice, we neglect this difference and call EA the entanglement wedge.
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Figure 5. (a) Illustration of the bulk-boundary map defined in the code subspace. The mapping

from the whole bulk subspace to the boundary is an isometry. Furthermore, the local reconstruction

property requires that degrees of freedom in EA which is the entanglement wedge of A can be

reconstructed in A, which means an isometry is defined from EA to A for arbitrary states in EA
and A. (b) A small region in the bulk (orange disk) can be reconstructed in different boundary

regions such as A,B.

defined. A sufficient condition is given in eq. (4.7) and (4.8). In section 4.2, we discuss the

condition of local reconstruction on a subregion of the boundary.

4.1 Classical geometry and the code subspace

Each configuration {axy} corresponds to a “geometry” (i.e. a weighted graph), but if axy
takes arbitrary values, one cannot define what fluctuations are considered “small”. With a

large link variable dimension DL, one can define a classical geometry as one with all non-

trivial links (axy 6= 0) contributing a large entropy ∝ DL, and then define small fluctuations

as fluctuations of axy that are small compared to DL.

For concreteness, we pick a value of link variable a0 with 0 < a0
DL−1 < 1, and take the

limit DL, D → ∞ with a0
DL−1 fixed. We define a classical geometry by a state |Ψ [{axy}]〉

with all axy equal to either a0 or 0.4 For such states, we can define an adjacient matrix K

with Kxy = 0, 1, such that axy = Kxya0.

Now define a range of small fluctuation Λ � a0. In the limit DL → ∞, Λ is kept

finite. Then we define small fluctuations around the classical geometry Kxya0 as all states

|Ψ [{axy}]〉 satisfying {
axy ∈ [a0 − Λ, a0 + Λ], if Kxy = 1

axy ∈ [0, 2Λ], if Kxy = 0
(4.1)

4It is straightforward to generalize the following discussion to states with different a0 on different links

as long as all of them are taken to infinity with the ratio a0/(DL − 1) fixed.
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Figure 6. Illustration of small fluctuations around a classical geometry. In the classical geometry,

the black thick lines and grey thin lines are connected links with axy = a0 and disconnected links

with axy = 0, respectively. The fluctuations are encoded by fluctuation of link quantum number a

around the classical value in a small range.

This range of axy defines a subspace of the bulk, which is mapped to the boundary by

the random tensor network. The definition of the classical geometry and small fluctuation

subspace is illustrated in figure 6.

To study whether the bulk-boundary map is an isometry, we carry the same calcula-

tion as in section 3 to evaluate the second Renyi entanglement entropy between bulk and

boundary. An isometry is defined if the bulk subspace is maximally entangled with the

boundary. The calculation is exactly parallel to that in section 3, except that the bulk link

state ρxy in eq. (3.6) is replaced by

ρxy =


ρ1 =

1

2Λ + 1

Λ∑
δaxy=−Λ

|a0 + δaxy〉 〈a0 + δaxy| , if Kxy = 1

ρ2 =
1

2Λ + 1

2Λ∑
δaxy=0

|δaxy〉 〈δaxy| , if Kxy = 0

(4.2)

The Ising action is changed correspondingly to

A [{sx}] = A0 [{sx}] + δA [{sx}]

A0 [{sx}] = −J1

2

∑
〈xy〉∈K

(sxsy − 1) +
1

2
logD

∑
x∈B

sx

δA [{sx}] = −J2

2

∑
〈xy〉6=K

(sxsy − 1)− hC
2

∑
x

sx (4.3)

with hC =
V − 1

2
log (2Λ + 1) ,

J1 = sb [ρ1]− 1

2
log (2Λ + 1) , J2 = sb [ρ2]− 1

2
log (2Λ + 1)

Here J1,2 are half the Renyi mutual information of the states ρ1,2 on the connected and

the disconnected links respectively.
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In the limit of J1 � J2, logD → ∞ with hC and Λ finite, A0 is the leading term in

the action, and δA is a subleading correction.

The analysis of this action is essentially the same as the original RTN case in ref. [23].

The boundary term prefers sx = −1, while the bulk pinning field hC prefers sx = +1. Isom-

etry condition is satisfied in the limit logD →∞, J1 →∞ if the lowest action configura-

tion is sx = −1 everywhere, which corresponds to an entropy hCV = V (V−1)
2 log (2Λ + 1) =

log (dimHC). In order for this configuration to have the lowest action, one requires that

creating any spin up domain R costs a positive action. Denoting the action of a spin con-

figuration with sx = +1 in R and sx = −1 elsewhere as AR, the isometry requirement is

AR −A∅ = (J1 − J2) |∂R|+ J2 |R| (V − |R|)
+ logD |R ∩B| − hC |R| > 0, ∀R ⊆ bulk (4.4)

where the first two terms are action cost from the two-body interaction terms, the third

term is the action cost from boundary pinning fields, while the last term is the action

saved by the external field term hC . |R| is the number of vertices in R and |∂R| is the

number of links connecting R and its complement in graph K (excluding the boundary

links). |∂R ∩B| is the number of links connecting R with boundary, i.e. the number of

boundary sites in R.

For sufficiently large J1, logD and finite J2, hC , condition (4.4) is satisfied. To

obtain a more explicit understanding on the requirements, in the following we derive a

sufficient condition which guarantees that the isometry condition (4.4) is satisfied for all

classical geometries. Denote N and M as the number of interior sites and boundary

sites in R, respectively, such that |R| = N + M and |R ∩B| = M . The action cost

∆A ≡ AR −A∅ is a function of N,M and the graph dependent parameter |∂R|. If we are

considering a particular given graph, |∂R| is not independent from N and M . However,

simplification occurs when we require condition (4.4) to hold for all R and for all classical

geometries. By varying the graph, one can always vary |∂R| of a given region R in the range[
0, (N+M)(V−N−M)

2

]
). Therefore we can view the action cost ∆A as a function of three

independent variables N,M, |∂R|. This simplified the problem of minimizing ∆A, because

the function in eq. (4.4) does not have local minimum in term of N,M and |∂R|. Thus

the minimum can only occur at corners of the parameter space. Given that J1 − J2 > 0,

the minimum always occurs at |∂R| = 0, in which case ∆A = J2 (N +M) (V −N −M) +

M logD− hC(N +M). Evaluating ∆A at the four corners N = 0 or Vb and M = 0 or VB
leads to two nontrivial conditions:

∆A(Vb, VB) > 0 ⇒ VB logD >
V (V − 1)

2
log(2Λ + 1) (4.5)

∆A(Vb, 0) > 0 ⇒ J2VbVB >
Vb(V − 1)

2
log (2Λ + 1) (4.6)

In summary the two sufficient conditions are

logD >
V (V − 1)

2VB
log(2Λ + 1) (4.7)

J2 >
(V − 1)

2VB
log(2Λ + 1) (4.8)

– 13 –



J
H
E
P
0
8
(
2
0
1
7
)
0
6
0

Physically, the first condition (4.7) is simply the requirement that the bulk code subspace

has smaller dimension than the boundary. The second condition requires that even weak

links with coupling J2 provide strong enough entanglement to propagate information from

bulk to boundary isometrically. It should be noted that condition (4.7) requires D to grow

exponentially with volume V (if we fix the ratio VB/V ). This is necessary since the bulk

code subspace dimension grows with (2Λ + 1)V (V−1)/2. Besides, eq. (4.8) only requires J2

to be a O(1) number in this limit. If we consider a limit V →∞ with large but finite D, it

will be impossible to faithfully represent all link variable fluctuations δaxy to the boundary.

However, it is probably still possible to define a code subspace with lower bound dimension,

which contains bulk excitations with a low enough density. (An example of such kind of

code subspace was discussed in ref. [22].) Such a code subspace which is not a direct

product of Hilbert spaces of each link is probably closer to the code subspace in AdS/CFT,

consisting low energy bulk quantum field theory excitations.

4.2 Local reconstruction properties

Now we further investigate the local reconstruction properties of the bulk-boundary isom-

etry. The local reconstruction requirement can be phrased in an entanglement entropy

calculation. In the old setup of tensor networks with fixed geometry, shown in figure 5,

one can view the bulk-boundary map as a quantum state that contains four partitions

A,A,EA, EA. The requirement that A contains all information about EA is equivalent to

the statement I(EA : A) = S (EA) +S(A)−S(EAA) = 0. In the following we will evaluate

the second Renyi entropy version of the mutual information. In the large D limit when the

fluctuation of Renyi entropies are small, we expect the von Neumann entropy to be equal

to the Renyi entropy. Before proceeding, we would like to note that in the current setup

the bulk degrees of freedom are defined on links, so that the bulk Hilbert space do not

factorize into different regions. For a boundary region A, one can define an entanglement

wedge EA, such that all links with both ends contained in EA can be reconstructed from

A. In the following we will demonstrate that under certain conditions, the region enclosed

by a boundary region A and the minimal surface γA homologous to A is the entanglement

wedge EA. This is illustrated in figure 7.

Since we need to compute Renyi entropy of regions including both bulk and boundary,

we should not trace over bulk link variables to obtain a reduced density matrix ρxy. Instead

we treat the whole RTN with bulk and boundary indices as a state, and map the second

Renyi entropy calculation to an Ising model partition function. All dangling ends of the

tensor network in bulk and boundary correspond to fixed external spins that couple to the

dynamical Ising spins defined on bulk vertices. We denote the dynamical Ising spins as sx,

and the external spins as mX on the boundary and mxy on bulk links. sx,mX ,mxy all take

values of ±1. When we compute the Renyi entropy of a bulk region EA and a boundary

region A, the external spins are defined as

mX =

{
−1, X ∈ A
+1, X /∈ A

, mxy =

{
−1, xy ∈ EA
+1, xy /∈ EA

(4.9)
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Figure 7. Illustration of the entanglement wedge of a boundary region A. The vertices with

red circles are the entanglement wedge EA, enclosed by A and the minimal surface γA. The code

subspace that can be locally reconstructed in region A are labeled by links with both ends in EA,

marked by red bulk lines. (For clarity we have only drawn a few of the unconnected (grey) links.)

For small fluctuations around a graph K considered here, we have

Tr
[
ρ2
A∪b
]

= const.
∑

{sx=±1}

e−A[{sx}]

A [{sx}] = −J1

2

∑
〈xy〉∈K

(sxsy − 1)− J2

2

∑
〈xy〉/∈K

(sxsy − 1)

−1

2
logD

∑
x∈B

sxmX −
1

4
log (2Λ + 1)

∑
xy

mxy (sx + sy) (4.10)

J1 and J2 are the same as in eq. (4.3). The earlier calculation of the entropy of entire

boundary in eq. (4.3) corresponds to the special case mxy = +1, ∀x, y and mX = −1, ∀X.

The constant prefactor is not important as it is the same for all configurations, and does not

affect normalized quantities such as Tr
[
ρ2
A∪b
]
/Tr [ρA∪b]

2
. Similarly, Tr [ρA]2 and Tr [ρb]

2

can be computed by the same action with different boundary conditions.

The mutual information is determined by the correlation between external spins me-

diated by the dynamical spins. We denote the effective action A−−eff = − log Tr
[
ρ2
A∪EA

]
as

the effective action with boundary condition (4.9), with −− labeling the sign of external

spin in Ā and EA respectively. Similarly A−+
eff = − log Tr

[
ρ2
A

]
, A+−

eff = − log Tr
[
ρ2
EA

]
, and

A++
eff = Tr [ρ]2 is the normalization constant. Then

I(2)(EA : A) = S
(2)

A
+ S

(2)
EA
− S(2)

AEA
' A+−

eff +A−+
eff −A

++
eff −A

−−
eff (4.11)

is determined by the “energy cost” of the external spins in Ā and EA being anti-parallel.

The requirement of zero mutual information is equivalent to the requirement that the two

external spins are completely uncorrelated. It is easy to see that this is true in the limit

we consider, with J1, logD → ∞ and J2,Λ finite. In this limit, the spin configuration
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sx is completely determined by boundary external spins mX , and thus I(2)(EA : A) = 0.

For finite J1, logD, the local reconstruction condition depends on more detailed properties

of the classical geometry. Although it is possible to write down some sufficient condition

by taking J1 and logD to be very large, we feel these conditions are not so useful to

include here.

5 Overlap between different classical geometries

In the discussion above we have shown that each classical geometry labeled by a graph

K is accompanied with a code subspace that satisfies bulk-boundary isometry and local

reconstruction properties. The next question is whether the code subspaces for different

classical geometries are truely independent subspaces of the boundary Hilbert space. Since

the basis |Ψ [{axy}]〉 is over-complete, different geometries are generically not orthogonal,

but in the following we will show that states in the code subspace of different classical

geometries have exponentially small overlap.

For this purpose we study the overlap Cab = 〈Ψ [{axy}]| Ψ [{bxy}]〉 between two generic

geometries axy and bxy. Using the definition (2.4) we have

Cab = D−VBTr

∏
x

|Vx〉 〈Vx|
∏
x 6=y
|bxy〉 〈axy|

 (5.1)

Carrying the random average one obtains

Cab = D−(V−1)Vb−V VBδab (5.2)

It is essential to go to the second order and study the fluctuation around the average value,

so that we evaluate |Cab|2:

|Cab|2 = D−2VBTr

∏
x

|Vx〉 〈Vx|⊗2

∏
x 6=y
|bxy〉 〈axy| ⊗ |axy〉 〈bxy|


= D−2VBΩ−1

∑
R⊆bulk

Tr

XR

∏
x6=y
|bxy〉 〈axy| ⊗ |axy〉 〈bxy|


= Ω−1

∑
R⊆bulk

Tr

XR

∏
x 6=y
|bxy〉 〈axy| ⊗ |axy〉 〈bxy|

D−|R∩B| (5.3)

with Ω =
(
DV−1 +D2(V−1)

)Vb (DV +D2V
)VB . To simplify this expression we can write

XR = XRXtot with Xtot the swap of all bulk vertices. Xtot will simply permute |bxy〉 and

|axy〉. Relabel R by R we obtain

|Cab|2 = Ω−1
∑

R⊆bulk

Tr

XR

∏
x 6=y
|axy〉 〈axy| ⊗ |bxy〉 〈bxy|

D|R∩B|−VB
= Ω−1

∑
R⊆bulk

Tr
[
ρaRρ

b
R

]
D|R∩B|−VB (5.4)
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Here ρaR is the reduced density matrix of
∏
xy |axy〉 〈axy| in region R, and similarly for

ρbR. If we consider the term with R the entire bulk, Tr
[
ρaRρ

b
R

]
= | 〈a| b〉 |2 = δab is the

inner-project of the two bulk states. Roughly speaking, we can consider all other terms as

corrections to the overlap induced by the bulk-boundary map that is not injective.

The overlap Tr
[
ρaRρ

b
R

]
is nonzero only if axy = bxy for all x, y ∈ R. Denote the set

of R that satisfy this property as C. To obtain an upper bound of the overlap, we use

the inequality

Tr
[
ρaRρ

b
R

]
≤
√

Tr
[
ρaR
]2

Tr
[
ρbR
]2

= e
− 1

2

(
S
(2)
a (R)+S

(2)
b (R)

)
(5.5)

where S
(2)
a,b (R) are the second Renyi entropy of states |axy〉 and |bxy〉 in region R. Therefore

|Cab|2 ≤ Ω−1
∑
R∈C

e
− 1

2

(
S
(2)
a (R)+S

(2)
b (R)

)
−logD(VB−|R∩B|) (5.6)

To understand the physical meaning of eq. (5.6), we evaluate it in several situations.

1. The diagonal element. If axy = bxy ∀x, y, R can be any subset of the bulk, and

the dominant term in the sum is given by R = entire bulk. Also in this case, the

inequality takes the equal sign. If we take the classical geometry discussed in this

section, with J1, logD → ∞, we can ignore the contribution of other terms, and

obtain C2
aa ' Ω−1. Therefore

C2
aa

Caa
2 '

(
1 +D1−V )−Vb (1 +D−V

)−VB ' e−VbD1−V −VBD−V
(5.7)

The ratio is close to 1 in the limit of large volume since VbD
1−V and VBD

−V are

much smaller than 1. In other words, the fluctuation of the norm of state |Ψ [{axy}]〉
is exponentially suppressed, which justifies the computation of |Cab|2 without first

normalizing the two states.

2. Completely distinct states. If we consider two completely distinct states such that

axy 6= bxy ∀x, y, then the only contribution comes from R = ∅, and |Cab|2 =

Ω−1D−VB =

√
C2
aaC

2
bbD

−VB . In other words, the overlap between these states, af-

ter normalization, is the inverse of boundary Hilbert space dimension DVB . This is

equal to the average overlap between two completely random states in the boundary

Hilbert space dimension.5

3. Two states different in IR. Now we study a nontrivial example. In holography all

geometries considered are asymptotically anti-de Sitter space in UV (the region near

5Apparently, when the bulk volume V is large enough so that the basis |Ψ [axy]〉 is very overcomplete,

some of them will have a significant overlap. This fact, however, does not appear in the calculation of

averaged overlap |Cab|2. The higher moments |Cab|2k shall be able to reveal the effect of extremely large

V , which we postpone to future works. We would like to thank Lenny Susskind for helpful discussion on

this problem.
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Figure 8. Two graphs with identical edges in the UV region (grey) and different edges in IR

(orange) and between the two regions. The overlap of these two states are upper bounded by

eq. (5.6), with |∂R|a = |∂R|b = 8.

the boundary) and are generically different in IR. For example we may consider two

geometries, one with a black hole in IR and one without black hole. As a toy model

of this situation, we can consider two geometries that are identical in a UV region

Rm bounding the boundary, and distinct in the IR region, as is illustrated in figure 8.

We assume axy and bxy are completely distinct if x or y are outside region Rm, so

that all regions contributing to the overlap are Rm or its subsets. In this case the

dominant contribution to eq. (5.6) is given by the R ⊆ Rm that has minimal averaged

entropy 1
2

(
S

(2)
a (R) + S

(2)
b (R)

)
. If both geometries are classical geometries with all

connected links axy = a0, the entropies satisfy area law S
(2)
a,b (R) = s0 |∂R|a,b with s0

the entropy contributed by each link state |a0〉. |∂R|a,b denotes the area (number

of links crossing the boundary of R) in graphs of a, b respectively. In summary we

obtain for two classical geometries a, b

|Cab|2√
Caa

2
Cbb

2
≤ e−

s0
2 (|∂R|a+|∂R|b) (5.8)

where R is chosen to minimize the averaged area. For example if we consider two

geometries with and without a black hole, and assume that the geometry to be

identical in UV until a certain distance to the horizon, then |∂R|a,b > ABH is bounded

by the area of black hole horizon, so that the overlap is upper bounded by e−SBH .

More generally, the overlap is bounded by the entropy of the minimal area surface

that enclose the region where the two geometries are (macroscopically) distinct.

From our definition of code subspace, it’s clear that if two classical geometries are

distinct at a link xy, the small fluctuations axy + δaxy are still distinct from bxy + δbxy.

Therefore the overlap upper bound for |Cab|2 between two classical geometries a, b also

applies to any pair of states from the code subspaces of a and b. Consequently, if we choose

a set of macroscopically distinct geometries anxy, the code subspaces HCn of each of them are
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almost orthogonal subspaces of the boundary Hilbert space. One can define a bigger code

subspace HC = ⊕nHCn such that the bulk-boundary isometry is still well-defined in the

bigger code subspace. In the bigger code subspace HC , operators that can be reconstructed

on a boundary region A form an algebra with nontrivial center, a structure that has been

investigated in ref. [28]. More specifically, for example one can define an area operator

LA = ⊕snIn which takes eigenvalue sn in each code subspace HCn. sn is the number of

connected links between EA and its complement. Similar structure has been explicitly

constructed in the perfect tensor networks [21] by introducing link degrees of freedom [26].

We would like to comment a bit more on the mapping between bulk and boundary op-

erators. A generic bulk operator in this code subspace has the form φ =
∑

n PnφnPn, with

Pn the projection operator onto n-th code subspace HCn, and φn an operator acting only in

that subspace. If we denote the linera map from boundary to bulk as M , a local operator

φn in the code subspace of geometry anxy is mapped to a boundary operator M †PnφnPnM .

Although the bulk-boundary mapping is linear and isometric, one can consider PnM as

the linear map restricted to a code subspace, which is “state-dependent”[29]. Locality in

the bulk can only be defined in a code subspace around a given classical geometry, and the

local operators in a code subspace (such as an operator φxy that only slightly changes axy
value for one link) is actually an operator PnφxyPn in the large bulk Hilbert space. The

“state dependence” of operator correspondence in each code subspace is encoded in the

support of the operator in the bulk Hilbert space, specified by Pn.

6 Conclusion and discussions

In conclusion, we have shown that the random tensor network states on all graphs form an

overcomplete basis of the boundary Hilbert space, which we name as holographic coherent

states. A generic boundary state is mapped to a superposition of geometries. The semi-

classical geometries are defined as small fluctuations around reference classical geometries

with strongly entangled edges. We show that small fluctuations around a classical geometry

form a code subspace, the states in which are mapped to the boundary isometrically, with

local reconstruction properties. Furthermore, we show that states in the code subspaces

of two different classical geometries are almost orthgonal to each other, with their overlap

decaying exponentially as a function of the minimal area surface that covers the bulk region

in which the two bulk geometries are distinct.

The holographic coherent state basis has a lot of similarity to the coherent state basis

of a boson field. If we consider a complex boson field described by a |φ|4 theory, the

coherent state basis |φ(x)〉 is an overcomplete basis of the system, with which one can

write a path integral representation of the partition function. The action of the system

may have multiple local minima, for example configurations with and without vortices.

Around each local minimum one can expand the action in small fluctuations, A [φc + δφ] '
Ac + 1

2
δ2A
δφδφδφδφ. The quantization of such fluctuations are low energy quasiparticles such

as superfluid phonons. The Hilbert space of such quasiparticle excitations is a “low energy

subspace” of the entire Hilbert space. Different classical minima |φc1(x)〉 , |φc2(x)〉 are not

exactly orthogonal, but the overlap of macroscopically different states are exponentially
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suppressed. Therefore one can view the low energy excitations associated with each of

them as physically independent subspaces.6 There are two key differences between the

holographic coherent states we consider and the boson coherent states. Firstly, the overlap

in the former case is suppressed by exponential of the minimal area covering the distinct

region, while that in the latter case is suppressed by exponential of the volume of the

distinct region, which can be viewed as a manifestation of holographic principle. Secondly,

in the gravity case, locality in the bulk is only defined in the code subspaces, which can

be seen in the fact that the log of Hilbert space dimension log(dim(HC)) is proportional to

the volume of the bulk, while that of the total Hilbert space log(dim(H)) is proportional to

the boundary. On comparison, in ordinary boson coherent state case both quantities are

proportional to the volume of the system.

There are a lot of open questions along this direction. For a given boundary Hamilto-

nian, a natural problem is to use the holographic coherent states as variational wavefunc-

tions. The geometry described by axy can be used as a “mean-field order parameter” that

is optimized by minimizing the energy. The difficulty of this approach is the random aver-

age, which introduces the ambiguity of a local unitary transformation and therefore mixes

states with very different energy. In principle, this problem can be solved in the following

procedure. For each given geometrical state |a〉 ≡ |Ψ [{axy}]〉, one can consider all local

unitary transformations
∏⊗
X∈B uX |a〉, with uX ∈ SU(D), and variationally determine uX

by minimizing energy. Denote the minimal energy in this class of states as E [a], we can

then minimize energy to determine the optimal bulk geometry axy. It is not clear whether

such a variational procedure is technically feasible. We will reserve that to future works.

Another natural question is how to obtain the bulk equation of motion — the analog

of Einstein’s equation. By writing the boundary dynamics into a path integral in the

geometrical basis, one can in principle obtain a bulk action. Is the Einstein equation or

its analog the saddle point equation if the bulk action? Will such saddle point equation

be related to previous entanglement approaches to Einstein equation [31–36]. Yet another

interesting question is whether a similar area-law bound of state inner product exists in

general relativity, where the inner product between two states is defined by a path integral

with these states as boundary conditions [37, 38]. It is interesting to compare our results

with other recent discussions about the overcompleteness of the geometry basis. [39–41]
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A Fluctuations and higher Renyi entropies

In section 3, we make the following approximation in the calculation of the second Renyi

entropy.

e−S
(2)
B =

(
Tr[ρ2

B]

Tr[ρB]2

)
≈ e−A

(2)
min[h1]

e−A
(2)
min[h0]

(A.1)

where h1, h0 denote the boundary field configuration for the calculation of Tr[ρ2
B], Tr[ρB]2.

This calculation is valid if the fluctuation around the minimum is small [23]. Formally,

the following conditions should be satisfied

(
Tr[ρ2B ]

e
−A

(2)
min

[h1]
− 1

)2

� 1, which can be achieved

by requiring (
Tr[ρ2

B]

e−A
(2)
min[h1]

− 1

)2

≤
Tr[ρ2

B]2

e−A
(4)
min[h1]

− 1� 1 (A.2)

Here we have used that Tr[ρ2
B] ≥ e−A

(2)
min[h1], since at finite temperature the partition

function receives contributions from all spin configurations, not just the minimal energy

configuration. Similarly for the calculation of Tr [ρB]2 one can require Tr[ρB ]4

e
−A

(4)
min

[h0]
− 1 �

1. Thus the calculation of the fluctuation requires the random average over four copies

of the density matrix. Similarly, when calculating the kth Renyi entropy, we need to

calculate Tr
[
ρkB
]

which involves k copies of the density matrix. For example Tr
[
ρ4
B

]
and

Tr
[
ρ2
B

]2
are both average of 4 copies of density matrices, with different boundary conditions

which specify the contraction of indices. More explicitly they can be written as Tr
[
ρ4
B

]
=

Tr
[
ρ⊗4hB(1234)

]
and Tr

[
ρ2
B

]2
= Tr

[
ρ⊗4hB(12)(34)

]
with hB(1234) the cyclic permutation acting

on 4-copies of B, and hB(12)(34) the permutation of 12 and 34 acting on the same region.

Therefore in general we can evaluate the random average of k copies of density matrix

with an arbitrary boundary condition, and study how to control its deviation from the con-

tribution of the dominant configuration. The k copy quantity with most general boundary

condition can be expressed as

Z(k) ≡ Tr

[
ρ⊗k

∏
X∈B

hX

]
=
∑
gix∈Sk

∏
xy

Tr
[
ρ⊗kxy g

i
xg
j
y

] ∏
x∈B

Tr
[
ρ⊗kEPRg

i
xhX

]
(A.3)

with boundary permutations hX ∈ Sk defining the boundary conditions. We label the

permutation group elements as gix, i = 0, 1, 2, . . . , k!−1, with g0
x = Ix the identity operator.

The averaged entanglement quantity is mapped to a partition function of a Sk statistical

mechanical model defined on the complete graph.

In the following we will prove that the fluctuation of such quantities with general

boundary conditions is bounded if the following sufficient conditions are satisfied:

(V − 1) logDL � 2 logD (A.4)

Tr(ρ⊗kxy g
i
xg
i
y)Tr(ρ⊗kxy g

j
xg
j
y) > |Tr(ρ⊗kxy g

i
xg
j
y)|2, ∀, i 6= j (A.5)
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In section A.1, we bound the fluctuations based on conditions (A.4) and eq. (A.5). In

section A.2, we propose a stronger condition of the density matrix that implies eq. (A.5).

In section A.3, we construct the an explicit example in spin system and show that eq. (A.4)

and eq. (A.5) are satisfied.

A.1 General results

In this section, we prove that eq. (A.4) and eq. (A.5) are sufficient to bound the fluctuations

and to guarantee that higher Renyi entropies are close to the maximum.

First we rewrite eq. (A.5) as

Lii(k) + Ljj(k)− 2Lij(k) > 0 (A.6)

where

Lij(k) = −1

2

(
log Tr(ρ⊗kxy g

i
xIy) + log Tr(ρ⊗kxy Ixg

j
y)− log Tr(ρ⊗kxy g

i
xg
j
y)
)

(A.7)

Next, it is straightforward to show that eq. (A.5) implies Lii(k) > 0, i 6= 0, a condition

we will use to bound the fluctuation. If we take j = 0, eq. (A.5) means

Lii(k) + L00(k)− 2Li0(k) > 0 (A.8)

Since ρxy is normalized. L00(k) = Li0(k) = 0. Thus Lii(k) > 0.

Now we calculate the partition function in (k > 2) replica with an arbitrary boundary

condition. Using permutation symmetry between vertices in the complete graph, eq. (A.3)

can be rewritten as

Z
(k)
1 =

∑
{ni},{mi}

e−A(ni,mi)
Vb!

n0!n1! · · ·nk!−1!

VB!

m0!m1! · · ·mk!−1!
(A.9)

A(ni,mi) =
∑
i>j

J ij (ni +mi) (nj +mj) +
∑
i

J ii

2
(ni +mi)(ni +mi − 1) +

∑
i

Bimi

with

J ij = − log tr
(
ρ⊗kxy g

i
xg
j
y

)
Bi = − log tr

(
ρ⊗kEPRg

i
xh
)

Lij = (J i0 + J0j − J ij)/2∑
i

ni = Vb
∑
i

mi = VB

where ni(mi) is the number of bulk(boundary) points occupied by the group element gi;

Vb(VB) is the total number of bulk(boundary) points; hX = h fixes the boundary condition.

Then we replace n0 = Vb −
∑

i≥1 ni, m0 = VB −
∑

i≥1mi. Since J00 = 0, we have

A(ni,mi) =
∑
i>j≥1

J ij (ni +mi) (nj +mj) +
∑
i≥1

J i0 (ni +mi)

Vb + VB −
∑
j≥1

(nj +mj)


+
∑
i≥1

J ii

2
(ni +mi)(ni +mi − 1) +

∑
i

Bimi

– 22 –



J
H
E
P
0
8
(
2
0
1
7
)
0
6
0

=
∑
i,j≥1

−(ni +mi)L
ij(nj +mj) +

∑
i≥1

(
(Vb + VB)Lii + (Vb + VB − 1)

J ii

2

)
ni

+
∑
i≥1

(
(Vb + VB)Lii + (Vb + VB − 1)

J ii

2
+Bi −B0

)
mi +B0VB (A.10)

In the large Vb, VB limit, we treat ni and mi as continuous variables to decide where

F (ni,mi) ≡ −A(ni,mi) −
∑

i log ni! −
∑

i logmi! reaches its maximum. We use Stirling

formula and calculate the second derivatives of this function

M =

[
M1 M2

M2 M3

]
(A.11)

M ij
1 =

∂2

∂ni∂nj
F (ni,mj) = 2Lij − δij

ni
− 1

n0

M ij
2 =

∂2

∂ni∂mj
F (ni,mj) = 2Lij

M ij
3 =

∂2

∂mi∂mj
F (ni,mj) = 2Lij − δij

mi
− 1

m0

Now we show that F does not have local minimum away from the corners of the parameter

space. A local minimum requires M to be a negative definite matrix, so to prove that F does

not have local minimum one just needs to show that M is not negative definite anywhere

away from the corners. A corner of the parameter space (labeled by ni/Vb, mi/VB) is

defined by having one ni = Vb, mj = VB and all other numbers vanishing. Therefore for

any point away from these corners, there are either two numbers ni, nj of order Vb, or two

numbers mi, mj of order VB. Let’s assume there are ni, nj of order Vb since the discussion

with mi, mj is exactly in parallel. This includes the following two cases:

• If n0 is of O(1), then there are two ni, nj with i, j > 0 of order O(Vb). Define a vector

~v whose ith element is 1, jth element is −1 and all others are 0. Obviously,

vTMv = 2
(
Lii + Ljj − 2Lij

)
− 1

ni
− 1

nj
(A.12)

Since Lii + Ljj − 2Lij > 0, and ni, nj are O(Vb), v
TMv > 0. So M is not negative

definite and there is no local maximum in this case away from the corners.

• If n0 is of O(Vb), then there is at least another ni being O(Vb). We choose ~v whose

only non-zero element is 1 at the ith element. Thus

vTMv = 2Lii − 1

ni
− 1

n0
(A.13)

Since Lii > 0 is O(1) and n0, ni is O(Vb), v
TMv > 0.

Therefore we conclude that eq. (A.5) is the sufficient condition that guarantees F (ni,mi)

does not have local minimum away from the corners.

– 23 –



J
H
E
P
0
8
(
2
0
1
7
)
0
6
0

The next step is to compare the value of F (ni,mi) of each corner solution and bound

the near corner solutions. The corner solutions are categorized as

• Sn0,m0 : n0 = Vb, m0 = VB,

F (Sn0,m0) = −B0VB (A.14)

• Sni,m0 : ni = Vb, i ≥ 1, m0 = VB,

F (Sni,m0) = −B0VB − VbVBLii − (V − 1)
J iiVb

2
(A.15)

• Sn0,mj : n0 = Vb, mj = VB, j ≥ 1,

F (Sn0,mj ) = −BjVB − VbVBLjj − (V − 1)
J jjVB

2
(A.16)

• Sni,mj : ni = Vb, mj = VB, i, j ≥ 1,

F (Sni,mj ) = −BjVB − VbVB
(
Lii + Ljj − 2Lij

)
− (V − 1)

J iiVb + J jjVB
2

(A.17)

Firstly, we notice that F (Sn0,m0) � F (Sni,m0) is always true, because Lii > 0 is

assumed and J ii = logDL

(
k − χ(gi)

)
> 0, where χ(g) denotes the number of cycles in a

permutation g.

Secondly,

F (Sn0,m0)− F (Sn0,mj )

= VB logD
(
k − χ((gj)−1h)− (k − χ(h))

)
+ VBVbL

ii + (V − 1)
J jjVB

2

≥ −VB logD
(
k − χ((gj)−1)

)
+ (V − 1)

VB
2

logDL

(
k − χ((gj)−1)

)
(A.18)

In the inequality, we use Lii > 0, and the triangle inequality of d(g, h) ≡ k − χ(g−1h),

which is equal to the minimal number of transpositions (i.e., permutations that exchange

only two indices) required to write a permutation g−1h. d(g, h) defines a distance on

Sk, which satisfies the triangle inequality d(g, I) + d(I, h) ≥ d(g, h) [23]. Thus eq. (A.4)

(V − 1) logDL � 2 logD is a sufficient condition for F (Sn0,m0)� F (Sn0,mj ).

Thirdly,

F (Sn0,m0)− F (Sni,mj )

= VB logD
(
k − χ((gj)−1g∂)− (k − χ(g∂))

)
+ VBVb(L

ii + Ljj − 2Lij)

+ (V − 1)
J iiVb + J jjVB

2

> VB logD
(
k − χ((gj)−1g∂)− (k − χ(g∂))

)
+ (V − 1)

VB
2

logDL

(
k − χ((gj)−1)

)
≥ −VB logD

(
k − χ((gj)−1)

)
+ (V − 1)

VB
2

logDL

(
k − χ((gj)−1)

)
(A.19)
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where in the first inequality, we use J ii > 0 and Lii + Ljj − 2Lij > 0. In the second

inequality, we use the triangle inequality of k− χ((gi)−1gj) again. Thus if eq. (A.4) holds,

we also have F (Sn0,m0)� F (Sni,mj ).

In fact, we can make tighter bounds in F (Sn0,m0)−F (Sni,mj ) and F (Sn0,m0)−F (Sn0,mj )

if we do not simply discard Lii or Lii +Ljj − 2Lij . However, using condition eq. (A.4) has

the advantage that it does not depend on k and the details of the link state.

Finally, we can bound Z
(k)
i by analyzing the configurations near the corners. We

have shown that when eq. (A.4) and eq. (A.5) are satisfied, all other corner solutions are

exponentially small compared with the dominating corner Sn0,m0 , and the exponent is

suppressed by −k−χ(gj)
2 VB ((V − 1) logDL − 2 logD). Thus the next biggest configuration

is at the neighborhood of the corner solution Sn0,m0 . In fact we can bound all configurations

that are finite distance away from Sn0,m0 by C · exp
[
− (V−1) logDL−2 logD

2

]
, where C is a

O(1) number. Thus we obtain that

Z
(k)
i ≤ e−B0VB

(
1 + C(VBVb)

k!−1 exp

[
−(V − 1) logDL − 2 logD

2

])
(A.20)

where (VBVb)
k!−1 is the total number of configurations of F (ni,mj).

We conclude that if eq. (A.4), (A.5) are satisfied, the fluctuation is controlled and all

higher Renyi entropies are close to VB logD. Thus there is an isometry from the boundary

to the bulk.

A.2 A sufficient condition for eq. (A.5)

In this section, we provide a sufficient condition that deduces eq. (A.5), which helps to

clarify what density matrices satisfy this equation. In a basis |αx〉 =
∏k
s=1

∣∣αkx〉 of the

k-copied Hilbert space, density operators and permutation operators are written as

ρ⊗kxy =
(
ρ⊗kxy

)
α,β,γ,δ

(|αx〉 ⊗ |βy〉) (〈γx| ⊗ 〈δy|) (A.21)

gj = (gj)α,β |α〉〈β| (A.22)

One can rearrage the indices and write

Tr
[
ρ⊗kxy g

i
xg
j
y

]
= (gi)γ,α

(
ρ⊗kxy

)
α,β,γ,δ

(gj)δ,β = 〈gi|ρ̃⊗kxy |gj〉 (A.23)

ρ̃⊗kxy ≡
(
ρ⊗kxy

)
α,β,γ,δ

(|αx〉 ⊗ |γx〉) (〈βy| ⊗ 〈δy|) (A.24)

|gj〉 ≡ (gj)α,β |α〉 ⊗ |β〉, 〈gi| ≡ (gi)α,β〈α| ⊗ 〈β| (A.25)

where in the last step, we have used the fact that the matrix elements giα,β in the product

basis are real. In this representation, Tr
[
ρ⊗kxy g

i
xg
j
y

]
becomes an inner product between states∣∣gi〉 , ∣∣gj〉 with metric ρ̃⊗kxy . Therefore eq. (A.5) follows from Cauchy-Schwarz inequality if

ρ̃⊗kxy is Hermitian and positive semi-definite for all k. Thus we conclude that a sufficient but

not necessary condition for eq. (A.5) is that ρ̃xy is Hermitian and positive semi-definite.

This condition is not necessary since eq. (A.5) is only required for permutation operators

and does not need to hold for general operators.
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A.3 An explicit example of states |axy〉

In this section, we provide an explicit example of link states |axy〉 and prove that condition

(eq. (3.17) is satisfied. We define the state |J〉 as a SU(2) singlet formed by two spins each

carrying spin J representation:

|J〉 ≡
∑
M

(−)J−M√
2J + 1

|J,M ; J,−M〉 (A.26)

with J = 0, 1, . . . , DL− 1 labeling the link states. The Hilbert space of each site is a direct

sum of different representations Hx = ⊕DL−1
J=0 HJ . States with different J obviously are

orthogonal. (A subtlety is that the entropy of state |J〉 is log (2J + 1), so that we should

think the link variable a ∝ log (2J + 1) if we still want a to label the entropy across the

link. This does not affect any discussion here.) The density matrix ρxy is given by

ρxy ≡
1

DL − 1

DL∑
J=1

|J〉〈J | (A.27)

If one directly obtains ρ̃xy in eq. (A.24) for ρxy, the resulting ρxy is Hermitian but not

positive semi-definite. However, we can prove ρxy satisfies condition (A.5) by defining a

unitary operator on the y site

uy =
∑
J,M

(−1)M |J,−M〉 〈J,M | (A.28)

The density matrix in the new basis is

σxy ≡ uyρxyu†y =
1

DL − 1

DL−1∑
J=0

1

2J + 1

∑
M,N

|J,M ; J,M〉 〈J,N ; J,N | (A.29)

Since u⊗ky commutes with permutation operators giy, we have Tr
[
σ⊗kxy g

i
xg
j
y

]
= Tr

[
ρ⊗kxy g

i
xg
j
y

]
.

For σxy, the corresponding operator σ̃xy defined in eq. (A.24) is

σ̃xy =
1

DL − 1

DL−1∑
J=0

1

2J + 1

∑
M,N

|J,M ; J,N〉 〈J,M ; J,N | = ⊕DL−1
J=0

1

(DL − 1)(2J + 1)
IJ

(A.30)

with IJ an identity matrix of the size (2J + 1)2× (2J + 1)2. Obviously σ̃xy is diagonal and

positive definite, so that we prove σxy and therefore ρxy satisfy eq. (A.5).
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