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Abstract: We study the gravitational dual of a high-energy collision in a confining gauge

theory. We consider a linearized approach in which two point particles traveling in an AdS-

soliton background suddenly collide to form an object at rest (presumably a black hole

for large enough center-of-mass energies). The resulting radiation exhibits the features

expected in a theory with a mass gap: late-time power law tails of the form t−3/2, the

failure of Huygens’ principle and distortion of the wave pattern as it propagates. The

energy spectrum is exponentially suppressed for frequencies smaller than the gauge theory

mass gap. Consequently, we observe no memory effect in the gravitational waveforms. At

larger frequencies the spectrum has an upward-stairway structure, which corresponds to

the excitation of the tower of massive states in the confining gauge theory. We discuss

the importance of phenomenological cutoffs to regularize the divergent spectrum, and the

aspects of the full non-linear collision that are expected to be captured by our approach.
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1 Introduction

The study of collisions and their outcomes is one of the most important ways of obtaining

information about a theory and of testing it experimentally. This is true both in particle

physics, where collision experiments have been dominant for a century now, and in gravi-

tational physics, with the expected imminent detection of the gravitational radiation from

collisions of black holes and neutron stars. The advent of gauge/gravity dualities brings

about a merging of these two fields [1]: the collision of two high-energy particles in certain

non-abelian gauge theories can be adequately described in terms of a dual gravitational

collision in a higher-dimensional spacetime with negative curvature.

One phenomenon of current interest in this area is the collision at high energies of

two objects (nuclei, nucleons, or partons) which, through the interactions of Quantum

Chromodynamics (QCD), form a ball of quark-gluon plasma (QGP). Although the dual

of QCD is not known, the analogous process in gauge theories with a gravity dual can be

described via the collision of two objects of finite but small size that form a black hole in

an asymptotically AdS spacetime.1

The study of these collision processes is challenging because one must solve Einstein’s

equations in a dynamical setting, which generically must be done numerically. Several

such studies have now been performed in cases in which the gauge theory is a Conformal

Field Theory (CFT) [3–6].2 The goal of this paper is to give a first step towards extending

this program to gravitational duals of confining gauge theories. For this purpose we will

consider collisions in the so-called AdS-soliton [14, 15].

One motivation for this extension is that a CFT has a continuous spectrum, so the

result of the collision cannot be directly interpreted in terms of e.g. particle production.

In contrast, we will see that, in a confining geometry, typical observables (e.g. the emitted

radiation) admit an immediate particle interpretation. Another motivation is to explore

the effects of confinement on the produced QGP. In a real heavy ion collision at RHIC or

LHC the temperature of the produced QGP is roughly 2Tc . T . 4Tc, with Tc ∼ ΛQCD the

deconfinement temperature. This means that there is no hierarchical separation between

the temperature of the fireball and the confinement scale, thus suggesting that the latter

may play a role in the dynamics of the QGP. Similarly, in the range of temperatures above,

the trace anomaly in QCD, which measures deviations from conformality, is still relatively

sizable [16], again suggesting a possible role of ΛQCD.

1See e.g. [2] for a review of applications of the gauge/gravity duality to QCD.
2See [7–13] for related numerical studies in AdS.
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Figure 1. Energy spectrum for the dominant (quadrupolar, i.e. l = 2) component of the grav-

itational radiation computed from numerical relativity simulations of the head-on collision of two

equal-mass black holes (from [27]). The collision speed in the center-of-mass frame, β = v/c, is

indicated in the legend. The energy spectrum is roughly flat (independent of frequency) up to

the quasinormal mode (QNM) frequencies (marked by vertical lines), after which it decays expo-

nentially. All quantities are normalized to the Arnowitt-Deser-Misner (ADM) mass of the system

MADM. The dashed horizontal lines are the ZFL prediction, obtained by a multipolar decomposition

of (1.1).

1.1 The zero-frequency limit framework

Our framework is very simple: we model the colliding objects as point particles moving

along geodesics in a background spacetime, colliding instantaneously to form a single object

at rest. The process amounts to specifying a conserved stress-energy tensor for point

particles following these trajectories, and the gravitational field that they create is treated

as a linearized perturbation of the background. Treating the collision in this approximation

is well motivated, and this model is sometimes known in the literature as ‘instantaneous

collision framework’ or ‘Zero Frequency Limit’ (ZFL) approximation [17–22]. The ZFL

has been applied in a variety of contexts, including electromagnetism where it can be

used to compute the electromagnetic radiation given away in β-decay (see for instance

Chapter 15 in [23]). Wheeler used the ZFL to estimate the emission of gravitational and

electromagnetic radiation from impulsive events [24]. In essence, we are reducing the full

gravitational dynamics of the process to an effective theory of point particles interacting

through a three-leg vertex, and then weakly coupling gravitational radiation to this system.

This description is a reasonable one given what we know generically about black hole

formation in similar collisions.

In asymptotically flat spacetimes, this simple approximation turns out to describe

accurately all the main features of high-energy collisions of two equal-mass black holes [25–

28]. These results are summarized in figure 1, and refer to head-on collisions of two equal-

mass black holes, with center-of-mass energy parameterized by total energy MADM and

velocity v. The salient features of the ZFL analysis are:

1. A flat, frequency-independent energy spectrum. For the head-on collision of two

equal-mass objects each with rest mass M/2, velocity v in the center-of-mass (CM)

– 2 –
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frame and Lorentz factor γ, the ZFL prediction [21, 22] for the energy spectrum at

an angle θ relative to the collision axis is

d2E

dωdΩ
=
M2γ2v4

4π2
sin4 θ

(1− v2 cos2 θ)2
. (1.1)

The independence of this spectrum on frequency ω follows from simple arguments:

since we are working in the linearized approximation to gravity, the right-hand side

of (1.1) must be proportional to M2. This fixes all the leading-order dependence on

M . The absence of any other dimensionful parameter in the problem then forbids,

on dimensional grounds, any possible dependence on ω. So the ZFL yields a flat

spectrum, as shown in figure 1 for different CM velocities v. The nonlinear results are

in good quantitative agreement and do show an approximately flat energy spectrum.

2. The need for an appropriate, physical cutoff. Because the spectrum is flat, estimates

for the total radiated energy or time-domain signals formally diverge. The depen-

dence on ω that would cutoff the spectrum is lost when we neglect non-linear effects

and thus eliminate all the details of the interaction and the internal structure of the

colliding and final objects. We can nevertheless reintroduce the cutoff in frequency

(or momentum, via the dispersion relations) in a phenomenological way, which in

asymptotically flat spacetimes is essentially uniquely determined (up to numerical,

order-one factors). Although dimensional arguments do not fully fix the cutoff —

besides the dimensionful scale M , there is a dimensionless parameter γ — we can

expect that it is the size ∼Mγ of the final black hole that sets the cutoff: black holes

absorb very efficiently frequencies that are larger than its lowest quasinormal mode

(QNM) frequency, so we may expect that any higher frequencies will not be radiated

away, and therefore

ωcutoff ∼ ωQNM ∼ 1/(Mγ) . (1.2)

This implies that the frequency cutoff decreases as the velocity of the colliding parti-

cles increases, i.e. the quanta radiated are less energetic for larger CM energies — a

characteristic property of collisions that involve black holes. However, since the ZFL

spectrum (1.1) scales like γ2, the total radiated energy scales like γ and thus grows

with v. Nonlinear simulations are in excellent agreement with this picture and show

an exponential suppression of the spectrum for frequencies larger than the final black

hole QNM frequency, as shown in figure 1.

3. A “memory” effect in the signal, which is a consequence of the identity

(
¯̇
h
)
ω=0

= lim
ω→0

∫ +∞

−∞
ḣe−iωtdt = h(t = +∞)− h(t = −∞) , (1.3)

for the Fourier transform
¯̇
h(ω) of the time derivative of any metric perturbation h(t)

(we omitted unimportant overall factors in the definition of the transform). Thus, the

low-frequency spectrum depends exclusively on the asymptotic state of the colliding

– 3 –
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Figure 2. The collision in the AdS-soliton. The vertical direction is the holographic radial direction.

The horizontal directions are the gauge theory directions. The gauge theory can be thought of as

living at the boundary of the space (top plane). The geometry ends smoothly at the plane at

the bottom, where the extra circle of the AdS-soliton (not shown) shrinks to zero size. The two

small-mass point-particles sit at this bottom and collide head-on with velocity v.

particles, which can be readily computed from their Coulomb gravitational fields.

Because the energy spectrum is related to
¯̇
h(ω) via

dE

dΩdω
∝ r2

(
¯̇
h
)2

, (1.4)

we immediately conclude that the energy spectrum at low-frequencies depends only

on the asymptotic states [18, 20–22, 25].

4. Finally, the angular distribution of radiation is nearly isotropic at large collision

energies (v → 1 in (1.1)), when higher multipoles become increasingly more relevant.

This is also in agreement with nonlinear simulations.

The reason for the overall agreement of ZFL predictions with fully nonlinear simulations

is not completely clear, one possibility being that nonlinearities are redshifted away. This

simple model of particle collisions has provided useful benchmarking in the nonlinear sim-

ulations of asymptotically flat spacetimes [25–28]; we expect similar benefits in asymptot-

ically anti-de Sitter (AdS) spacetimes where full-blown nonlinear evolutions are specially

hard to perform.

1.2 The zero-frequency limit in solitonic-AdS backgrounds

A collision in the AdS-soliton background is depicted in figure 2. These collisions differ

from those in asymptotically flat spacetimes in several crucial respects. In particular, the

process through which the initially-formed, highly-excited black hole radiates and relaxes

to its equilibrium state is expected to be much more complex.

Scales in the collision and horizon evolution. In the Minkowski background, the

entire collision and its evolution to a final state are characterized by the only scale in the

– 4 –
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problem,3 namely the Schwarzschild radius ∼M . In particular, this scale controls both the

properties of the linearized field of point particles and the properties of the final equilibrium

black hole.

In contrast, in the AdS-soliton there are two additional scales, namely the AdS cur-

vature radius L and the infrared length scale r0 at which the geometry caps off smoothly.

Actually, using coordinate reparametrizations they determine only one physical scale, which

naturally may be taken as the gauge theory mass gap or confinement energy ΛQCD ∼ r0/L
2.

The presence of this scale besides the particle or black hole mass M implies that the lin-

earized field of a point particle in a confining background need not give a good estimate

of the size and shape of the horizon of an equilibrium black hole localized in the infrared.

In fact, it is a very poor approximation to it when the mass is large, M ≫ ΛQCD [29].

The black hole is dual to a plasma ball [30] and is characterized by two very different

scales: a thickness ∼ r0 in the holographic direction, and a much larger proper extent

∼ L(M/ΛQCD)
1/3 along the gauge-theory directions. Thus our approximation of the final

state as a structureless point source is worse than in a Minkowski background.

Moreover, in a collision with M ≫ ΛQCD we can expect that the initially formed

horizon will be largely insensitive to the scale r0. In this regime of energies the effects of

the confinement scale can be neglected in this very early stage of the collision, but they will

gradually appear in the relaxation to the final dual plasma ball. Thus we expect a richer

evolution from collision to relaxation in a confining AdS background than in a Minkowski

background, with different stages being characterized by different horizon scales.

ZFL spectrum cutoff. The linear approximation used in the ZFL neglects all the de-

tails of this process of horizon formation and relaxation, but some such information is

nevertheless needed in order to specify the cutoff that renders finite the total radiated

energy and time-domain signals. Here the differences between ZFL collisions in Minkowski

and in AdS-soliton backgrounds can become significant in practice. In the former case, as

we have seen, setting the frequency cutoff to be the final-state lowest QNM frequency is

natural as this is the only scale in the problem. Moreover, in that background it does not

matter whether we impose a frequency cutoff (the lowest QNM gives a characteristic time

of horizon vibrations) or a momentum cutoff (implementing that a horizon only absorbs

efficiently wavelengths shorter than its size).

The correct choice of a cutoff in a confining background is more convoluted. Attempting

to find a cutoff on frequencies from the properties of the horizon formed in the collision

is fraught with ambiguities: the horizon evolves through several complex stages and it

is unclear to what extent these out-of-equilibrium horizons are well approximated by the

properties of known stationary black holes. For instance, in a high-energy collision with

M ≫ ΛQCD we might expect the initial horizon to be roughly similar to that of a large

neutral black hole in global AdS, but even then it is not clear which kind of quasinormal

modes would control the cutoff: ‘fast’ modes with frequencies ∝M1/4, proportional to the

black hole temperature, which correspond to the highest gauge-theory energies that the

3This assumes that γ is of order one, but when γ is large the qualitative picture remains. In particular

the fraction of energy radiated is relatively small even in ultrarelativistic cases.

– 5 –
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horizon presumably probes; or ‘slow’ modes, with much smaller frequencies ∼ 1/L, which

approximate hydrodynamic modes for very large black holes. Moreover, the dual plasma

ball that the system relaxes to also has ‘slow’ elastic modes associated to vibrations in

the shape of the (dual) plasma ball. The complex time evolution of the horizon makes it

unclear whether any of these QNMs can give a reliable frequency cutoff on the radiation.

The cutoff on the frequency of radiated AdS-soliton modes may be obtained more

plausibly, via their dispersion relation, from a momentum cutoff. We would expect that

the size of the horizon sets the largest wavelengths that it can efficiently absorb. For

collision energies much larger than the confinement scale, at any stage the horizon will be

larger (at least in some of its directions) than 1/ΛQCD, so it can absorb waves of momentum

down to kcutoff ≪ ΛQCD. However, since the dispersion relation of the lowest AdS-soliton

normal mode is ω2 ≈ k2 + Λ2
QCD, the frequency is effectively cutoff by the mass gap.

While these estimates seem reasonable, the correct choice requires truly non-linear

information about the formation and evolution of the horizon, which at present is unknown

to us. In order to deal with this uncertainty, we will not present our results in the time-

domain, nor as an integrated total energy, but rather as frequency-domain signals, where

the effect of the choice of different cutoffs is apparent and not obscured by integrating over

the frequency spectrum. We will present some time-domain quantities only to illustrate

their cutoff dependence.

It is important to note that in collisions at energies above the confinement scale, al-

though it may be possible to neglect the confinement scale r0 for certain aspects of the

initial dynamics of the black hole formed, this scale is still crucial for the proper interpre-

tation of the emitted radiation in terms of gauge theory particles, since it is responsible

for the discreteness of the spectrum and the existence of a mass gap. These are univer-

sal, structure-independent features of the radiation produced in all such collisions that our

model does capture.

1.3 Plan

The remainder of the paper is organized as follows. We begin by introducing the AdS-

soliton geometry in section 2, where we also collect its most relevant features for our study.

In section 3 we investigate, as a warm-up toy model, the scalar field radiation produced in

the collision of two scalar-charged particles. This is a simpler problem that shares many

features of the gravitational problem — except for the fact that in the former case the

scalar charges in the initial particles simply add up to yield the final charge, whereas in

the latter the kinetic energy of the colliding particles contributes to the final total charge

(i.e. mass). Section 4 is concerned with the gravitational counterpart, the main objective

of the paper. In this section we study the gravitational radiation resulting from colliding

two point particles in the AdS-soliton background and we present results for the far-region

behavior of the stress-energy tensor of the dual confining field theory, obtained via the

AdS/CFT correspondence. Several technical details of the derivation are relegated to the

appendices. Finally, we summarize our results in section 5.

– 6 –
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2 The AdS-soliton background

As discussed in section 1, we will be interested in colliding point particles in a gravitational

dual to a four-dimensional gauge theory in a confined phase. The prototype for such a

geometry is the six-dimensional AdS-soliton [14, 15]. We will take this spacetime as a

background on top of which we then consider a linear analysis of perturbations induced by

the point particles.

The AdS-soliton is a vacuum solution of Einstein’s equations with a negative cosmolog-

ical constant, which is given in terms of the AdS curvature radius by −5/L2. It asymptotes

to AdS with one of the spatial coordinates periodically identified, thus forming an S1. This

circle smoothly shrinks to zero size at a finite radial coordinate and consequently the ge-

ometry is regular everywhere, without possessing an event horizon. The soliton metric is

given by

ds2 = gabdz
adzb =

r2

L2

[
−dt2 + dx2(3)

]
+

dr2

F (r)
+ F (r)dy2 , (2.1)

where

F (r) =
r2

L2
f(r) , f(r) = 1− r50

r5
, (2.2)

and y has periodicity

∆y =
4πL2

5r0
. (2.3)

We will group the coordinates as

xi = (x1, x2, x3) , xµ = (t, xi) , za = (t, xi, r, y) . (2.4)

The S1 shrinks to zero size as r → r0 and the boundary lies at r → ∞. The gauge theory

lives on Mink1,3 × S1. As we will see, the Kaluza-Klein scale associated to the compact

direction,

ΛQCD =
2π

∆y
=

5r0
2L2

, (2.5)

also sets the confining scale (hence our choice of notation), reflecting the well-known fact

that these two scales cannot be decoupled within the gravity approximation.4

Of some interest for us is the eikonal limit of massless field propagation, which is

generically associated to spacetime geodesics. Let us focus on radial geodesics along the

holographic direction r and along the flat directions xi. These satisfy

± dt =
L

r
√
F
√

1− c2x +
r2ǫ

L2E2
t

dr , (2.6)

where ǫ = −1, 0 for timelike and null particles respectively, and Et is a conserved (dimen-

sionless) energy parameter defined by

dt

dτ
=
L2Et

r2
. (2.7)

4See [31] for a general discussion of this and other limitations in the applications of the the gauge/string

duality to QCD.
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The quantity

c2x =
E2

x1
+ E2

x2
+ E2

x3

E2
t

, (2.8)

where
dxi
dτ

=
L2Exi

r2
, (2.9)

defines the other conserved parameters and we set Ey = 0. Note that dxi/dt = Exi
/Et and

therefore the projection of null geodesics onto flat (constant–r) slices follows straight lines.

Equation (2.8) shows that cx represents the speed of light projected along the x-space. In

particular, light propagates along constant–r slices with constant speed cx = 1, but a non

vanishing component along the holographic direction implies cx < 1.

There are turning points at r = r0 and at r = ri ≡ LEt

√
1− c2x. In general the motion

is bounded in the r−direction, and periodic. For null or high-energy timelike particles, the

(coordinate) time it takes for a roundtrip from r = r0 to r = ∞ and back is

Pnull
roundtrip = 2

∫ ∞

r0

L

r
√
F
√
1− c2x

dr =
2
√
π√

1− c2x

Γ (6/5)

Γ (7/10)

L2

r0
∼ 2.507√

1− c2x

L2

r0
, (2.10)

with Γ(x) a factorial-Gamma function. This implies a characteristic frequency of

ωnull geodesics =
2π

Proundtrip
=

√
π
√
1− c2x

Γ (7/10)

Γ (6/5)

r0
L2

∼ 2.506
√

1− c2x
r0
L2

. (2.11)

This frequency is also the frequency of high-energy timelike particles. On the opposite end

we have low-energy particles, which oscillate between r = ri and r = r0 with a period (for

c2x = 0, ri ∼ r0, Et ∼ r0/L)

Ptimelike
roundtrip ∼

√
2

5

πL3Et

r20
∼
√

2

5

πL2

r0
, (2.12)

and a frequency

ωtimelike ∼
√
10

Et

r20
L3

∼
√
10

r0
L2

. (2.13)

Note that the oscillation period does not depend on the amplitude of the oscillation, in the

small amplitude limit.

3 A toy model: scalar interactions

Although our final goal is to study gravity, let us first take a look at a simplified problem,

that of scalar fields in the background (2.1). We will see later that this problem shares many

common features with the more involved gravitational case. We will study the stability of

the spacetime against scalar field perturbations, compute the field of static scalar charges,

and finally let these collide.

The action of our generic setup is

Sscalar = − 1

8π

∫
d6z

√−g gab∂aΦ ∂bΦ −M

∫
ds
√

−Ż2 −Q

∫
ds
√
−Ż2Φ , (3.1)

– 8 –
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where Ż2 = gabŻ
aŻb, Ża = dZa/ds, and we have adopted the somewhat arbitrary 1/8π

normalization for the scalar. This theory describes a point particle of massM and worldline

Za(s) minimally coupled with strength (charge) Q to a massless scalar field Φ. Note that

the factor of
√
−Ż2 in the last term is necessary to make this term invariant under worldline

reparametrizations. One important consequence of this is that the coupling to the scalar

field vanishes in the ultra-relativistic limit Ż2 → 0. We will see manifestations of this fact

in our results below.

3.1 Stability and normal modes

We start by understanding the stability of the vacuum spacetime when the particle source

is absent. The evolution of the scalar is then described by the massless Klein-Gordon

(KG) equation

�Φ =
L2

r2
ηµν∂µ∂νΦ+

L2

r2
1

f
∂2yΦ+

L4

r4
∂r

(
r6

L6
f ∂rΦ

)
= 0 . (3.2)

This equation separates under the ansatz

Φ(t, xi, y, r) = e−iωt+ikixi+inyΛQCDy Ψ(r) , (3.3)

with ny = 0, 1, 2 . . . due to periodicity y ∼ y + 2π/ΛQCD, and yields

− ∂r

(
r6

L6
f ∂rΨ

)
+
r2

L2

1

f
n2yΛ

2
QCD Ψ =

r2

L2
(ω2 − k2)Ψ , (3.4)

or more explicitly

r
(
r5−r50

)2
Ψ′′+

(
r5−r50

)(
6r5−r50

)
Ψ′+L4r2

[(
r5−r50

)(
ω2−k2

)
−n2yΛ2

QCDr
5
]
Ψ = 0 , (3.5)

with k2 = k21 + k22 + k23. Using a new variable ρ = r/r0 the above can be written in

manifestly dimensionless format,

− ∂ρ

(
ρ6f ∂ρΨ

)
+

25n2y
4f

Ψ = ρ2ω̃2Ψ , (3.6)

or equivalently

ρ(ρ5 − 1)2Ψ′′ + (ρ5 − 1)(6ρ5 − 1)Ψ′ + ρ2
[
(ρ5 − 1) ω̃2 −

(
5ny
2

)2

ρ5
]
Ψ = 0 , (3.7)

where the dimensionless quantity

ω̃2 =
L4

r20
(ω2 − k2) =

25

4Λ2
QCD

(ω2 − k2) (3.8)

is the invariant four-dimensional mass ω2 − k2 measured in units of the confinement

scale Λ2
QCD.
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Generically, the point ρ = 1 is a regular singular point of the ODE, and close to this

point the dominant asymptotic behavior is of the form Ψ ∼ (ρ − 1)±ny/2. Specializing to

ny = 0 modes, the equation simplifies to

ρ(ρ5 − 1)Ψ′′ + (6ρ5 − 1)Ψ′ + ρ2ω̃2Ψ = 0 , (3.9)

At ρ = 1 the solutions behave as

Ψ ∼ Cr0
1 log(ρ− 1) + Cr0

2 . (3.10)

At infinity (for generic ny) they behave as

Ψ ∼ C∞
1 +

C∞
2

ρ5
. (3.11)

We require as boundary conditions that the solution be regular in the infrared, i.e. that

Cr0
1 = 0, and that it be normalizable near the boundary, i.e. that C∞

1 = 0.

Equation (3.6) together with these boundary conditions defines a Sturm-Liouville

eigenvalue problem. The eigenvalues satisfy ω̃2
n > 0 and physically they characterize the

mass spectrum of scalar excitations in the gauge theory in the limit in which their possi-

ble mixing with higher-spin excitations is neglected, since we have ignored their possible

mixing with e.g. gravitational perturbations. We will denote the dimensionful eigenvalues

in (3.4) as

m2
n = (ω2 − k2)n > 0. (3.12)

In the case ny = 0, which will be our focus later, the corresponding eigenfunctions Ψn satisfy

L4

r4
∂r

(
r6

L6
f ∂rΨn

)
+
L2

r2
m2

nΨn = 0 , (3.13)

and are orthonormal with respect to the scalar product

∫ ∞

r0

dr
r2

L2
Ψn(r)Ψm(r) = δmn . (3.14)

By direct integration, with two independent codes, we find the modes in the first column of

table 1. The first eigenfunctions are shown in figure 3. Note that the spectrum is discrete

and gapped despite the fact that the radial direction is infinite, due to the fact that the

AdS-soliton geometry acts like a ‘box’. As we will see, by expanding any function of the

radial direction in the complete basis provided by these eigenfunctions, one may ‘Kaluza-

Klein reduce’ along the radial direction and reduce the problem to one dimension lower.

The mass of the scalar mode with n = 0, ny = 0 determines the mass gap of the gauge

theory in the scalar channel as

M scalar

gap =
2
√
4.061

5
ΛQCD . (3.15)

We thus confirm that the mass gap is set by the Kaluza-Klein scale ΛQCD, as anticipated

above. In particular, this analysis implies that for ω < M scalar
gap there can be no propagating
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ω̃scalar ω̃grav, ny = 0

n ny = 0 ny = 1 vector I scalar vector II

0 4.061 5.700 5.001 2.523 4.061

1 6.688 8.198 7.730 6.200 6.688

2 9.249 10.694 10.340 8.926 9.249

3 11.786 13.192 12.907 11.541 11.786

4 14.312 15.692 15.453 14.114 14.312

5 16.833 18.194 17.988 16.665 16.833

6 19.349 20.697 20.516 19.204 19.349

7 21.863 23.200 23.039 21.735 21.863

8 24.375 25.704 25.558 24.261 24.375

38 99.594 100.863 100.826 99.564 99.594

39 102.100 103.369 103.333 102.071 102.100

40 104.606 105.875 105.840 104.577 104.606

Table 1. Resonances for Klein-Gordon modes (first two columns) and for vector and scalar

gravitational modes (last three columns). Here ω̃2 ≡ L4(ω2−k2)/r20. Notice that for large overtone

the spacing is roughly constant and equal to ω̃n−ω̃n−1 ∼ 2.506 for all fields. As we show in section 4,

the second family of vector gravitational modes (vector II) is described by the same equation as

in the Klein-Gordon case and therefore these two sets of modes exactly coincide. In the particle

collisions we consider in section 4.3, only the gravitational scalar and vector-II modes are excited.

The spectrum of scalar gravitational modes agrees within numerical precision with the spectrum of

scalar, 0++ glueballs found in [32] for the AdS6 soliton.

1 2 3 4

r/r
0

-2.0

-1.0

0.0

1.0

2.0

3.0

Ψ

ω
~
 = 4.061

ω
~
 = 6.688

ω
~
 = 9.249

ω
~
 = 11.786

Figure 3. Eigenfunctions [normalized according to the scalar product (3.14)] for the first four

modes of the scalar field Ψ listed in table 1.

mode of Φ in the geometry, as it would imply an imaginary wavenumber. For very low

frequencies the field is exponentially suppressed with distance; we will explicitly show this in

section 3.3. These results are similar to those of waveguides in classical electromagnetism,

as is the physical setting [23].

In table 1 we also present vector and scalar gravitational modes which are discussed

in the next sections. Our results for scalar perturbations agree perfectly with those of

ref. [33] (see also [34]). For all families of modes and for large overtone number n, we
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find that the resonant frequencies are of the form ω̃n ∼ ω̃0 + 2.506n, with ω̃0 a field-

dependent constant. Notice that at large overtone, where the frequency is large and where

the eikonal limit is valid, the geometrical optics regime of the wave equation should go over

to the geodesic equation. It is therefore pleasing to notice that the spacing of modes in

this regime is exactly (to within numerical precision) the same as the one predicted by a

geodesic analysis. This agreement can be made more formal by using the variable χ = 1/ρ,

and the wavefunction

Ψ =
χ2

√
1− χ5

Θ . (3.16)

The wave equation (3.9) is now brought to the form

d2Θ

dχ2
+ ω̃2qΘ = 0 , (3.17)

with

q = −−24 + 48χ5 + χ10

4χ2ω̃2(1− χ5)2
+

1

1− χ5
. (3.18)

A standard WKB analysis gives the asymptotic modes satisfying Dirichlet boundary con-

ditions as [35]

ω̃n = πn

(∫ 1

0

√
q(t)dt

)−1

. (3.19)

The quantity q is to be evaluated at large ω̃. We then get a spacing of

π

(∫ 1

0

√
1

1− t5
dt

)−1

= π

(∫ ∞

1

√
1

t4(1− 1/t5)
dt

)−1

= π

(∫ ∞

1

√
1

t2F (t)
dt

)−1

. (3.20)

A comparison with (2.10) gives finally a spacing equal to 2π/Proundtrip, and the asymptotic

relation is established.

3.2 A static scalar charge in the AdS-soliton background

Let us consider now the solution of the KG equation with source at xi = Xi, r = b described

by the action (3.1). Notice that, when b > r0, this is in fact not a point particle, but rather

a ring of matter that extends along the y-direction. Since this preserves the rotational

symmetry along this direction, only the ny = 0 mode will get sourced.

The equation of motion is

�Φ = −4πJ = −4πQL3

r3
δ(x1 −X1)δ(x2 −X2)δ(x3 −X3)δ(r − b) . (3.21)

By Fourier expanding the field,

δ(xi −Xi) =
1

2π

∫ +∞

−∞
dki e

iki(xi−Xi) , (3.22)

Φ(xi, r) =
1

(2π)3

∫ +∞

−∞
dki e

iki(xi−Xi)Ψ(ki, r) , (3.23)
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we get the following equation for the field of a static scalar charge,

L4

r4
∂r

(
r6

L6
f ∂rΨ

)
− L2

r2
k2Ψ =

4πQL3

r3
δ(r − b) , (3.24)

or equivalently

r(r5 − r50)Ψ
′′ + (6r5 − r50)Ψ

′ − L4r2k2Ψ

L2r4
=

4πQL3

r3
δ(r − b) . (3.25)

There are several distinct but equivalent ways of solving this equation. The standard pro-

cedure uses variation of parameters. Let us introduce two linearly independent solutions,

ΨI and ΨII, of the homogeneous equations and their Wronskian W ≡ ΨIΨ
′
II − ΨIIΨ

′
I. For

our case

W(r) = W(r1)
r1(r

5
1 − r50)

r(r5 − r50)
, (3.26)

with r1 an integration constant. Now, all we have to do is define the homogeneous solutions

ΨI, ΨII such that

ΨI ∼ const. , r → r0 , (3.27)

ΨII ∼ r−5 , r → ∞ , (3.28)

ΨII ∼ aω̃ log(r − r0) + cω̃ , r → r0 . (3.29)

The quantity aω̃ is generically a function of ω̃2, and we provide a detailed characterization

of it in appendix A. For the present, we are focusing on the case ω2 = 0 and thus in the

static case aω̃ = aω̃(k). Note that ΨI is regular at r = r0, that ΨII is normalizable, and

that ΨII is singular at r = r0 unless aω̃ = 0. In this particular case ΨII is a regular and

normalizable solution of the homogeneous equation. Recall that such solutions exist only

for real and strictly positive values of ω2 − k2. Since for ω = 0 this translates into strictly

negative values of k2, it follows that aω̃(k) has zeros at strictly imaginary values of k.

The solution can be written as

Ψ =

{
AkΨI(r) , r < b ,

BkΨII(r) , r > b .
(3.30)

Continuity at r = b requires that AkΨI(b) = BkΨII(b), and we can write

Ψ =

{
CkΨII(b)ΨI(r) , r < b ,

CkΨI(b)ΨII(r) , r > b .
(3.31)

Let us rewrite the KG equation as

d

dr

[
r(r5 − r50)Ψ

′
]
− L4r2k2Ψ = 4πL5rQδ(r − b) . (3.32)

Performing an integration on both sides from b− ǫ to b+ ǫ we get

Ck =
4πQL5

(b5 − r50)W(b)
, (3.33)
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Finally,

Ψ =





4πQL5

(b5 − r50)W(b)
ΨII(b)ΨI(r) , r < b ,

4πQL5

(b5 − r50)W(b)
ΨI(b)ΨII(r) , r > b .

(3.34)

This result is finite and continuous everywhere, except in the limit r → b → r0, since in

this case we have (see appendix A)

W → aω̃ΨI(b)

b− r0
(3.35)

and therefore

Ψ(r) =
4πQL5

5aω̃r40
ΨII(r) . (3.36)

For k = 0 the homogeneous equation can be solved exactly, with the result

ΨII = log
r5

r5 − r50
, ΨI = 1 . (3.37)

Thus aω̃(ω̃ = 0) = −1. Furthermore, we find that at large k the function aω̃ increases

exponentially (in absolute value), aω̃→−∞ ∼ −6.4× 10−3e−1.156ω̃.

A solution of the inhomogeneous equation (3.24) can also be obtained by expanding

Ψ in the normal modes Ψn. Setting

Ψ(r) =
∑

n

cn(k)Ψn(r) , (3.38)

substituting into (3.24) and using (3.13) we get

∑

n

cn(k)
(
−m2

n − k2
) r2
L2

Ψn(r) =
r4

L4

4πQL3

r3
δ(r − b) . (3.39)

Multiplying both sides by Ψm(r), integrating over r and using the orthonormality condi-

tions (3.14) we obtain

cn(k) = − b4

L4

4πQL3

b3
Ψn(b)

m2
n + k2

. (3.40)

We thus see that the coefficients in the expansion (3.38) are proportional to the support

of the corresponding wave function at the location of the particle. We also see that these

coefficients have poles at (imaginary) values of k determined by the mass spectrum of the

normal modes.

3.2.1 An equivalent, matrix-valued Green function approach

Here we discuss an equivalent approach, based on Green function techniques for coupled

systems of ordinary differential equations (see e.g. ref. [36]). This approach is advantageous

because, as we shall discuss later, it can be directly extended to the gravitational case. Any

second-order system of coupled ODEs can be written in a first-order form,

dY

dr
+VY = S , (3.41)
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where Y and S are generically n dimensional vectors and V is a n×n matrix. We define the

n× n matrix X whose mth column contains the mth solution of the homogeneous system

dx/dr +Vx = 0, i.e. Xij = x
(j)
i , where the j index denotes a solution of the homogeneous

system and i is the vector index. The matrix X constructed in such a way is also a solution

of the associated homogeneous system, in the sense that

dX

dr
+VX = 0 . (3.42)

In order to solve (3.41), we impose the ansatz Y = XΞ, where Ξ is a vector to be de-

termined. Substituting this ansatz into the inhomogeneous system and using eq. (3.42)

we find
dΞ

dr
= X−1S , (3.43)

and the solution to (3.41) formally reads

Y = X

∫
drX−1S . (3.44)

Let us now apply this method to eq. (3.25). In this case, Y ≡ (Ψ,Ψ′) and

V =

(
0 −1

− k2L4r
r5−r50

6r5−r50
r(r5−r50)

)
, S =

(
0

4πQL5δ(r−b)
r5−r50

)
. (3.45)

Furthermore, using the same notation as in the previous section, the matrix of the homo-

geneous system reads

X =

(
ΨI ΨII

Ψ′
I Ψ

′
II

)
. (3.46)

Evaluating the first component of eq. (3.44) we obtain

Ψ = 4πQL5

[
ΨI(r)

∫ ∞

r
dr

ΨII(r)

(r5−r50)W(r)
δ(r−b) + ΨII(r)

∫ r

r0

dr
ΨI(r)

(r5 − r50)W(r)
δ(r − b)

]
,

(3.47)

where the limits of integration were chosen in order to have the correct boundary conditions.

Finally, evaluating the expression above when r < b and when r > b, we recover the same

result as in eq. (3.34).

3.2.2 Yukawa-like potential at large distances

Let us now consider a point particle located at r = b = r0 and Xi = 0 and compute

explicitly the large-R behavior. From equation (3.29), we get that the Wronskian between

ΨI,ΨII is W = aω̃(k)ΨI/(r − r0). Using (3.34) we then find that for r > r0,

Φ(xi, r) =
QL5

10π2r40

∫ +∞

−∞
dki

eikixi

aω̃(k)
ΨII(r) , (3.48)

where the function aω̃ depends only on k =
√
k21 + k22 + k23. At r ∼ r0, recall we have from

eq. (3.29) that ΨII ∼ cω̃ + aω̃ log(r − r0) and so we get

Φ(xi, r) =
4πL5

5r40
Q log(r − r0)δ(x1)δ(x2)δ(x3) +

QL5

10π2r40

∫ +∞

−∞
dki

cω̃(k)e
ikixi

ak(k)
. (3.49)
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Figure 4. Scalar field strength log Φ(r,R) in the R − r plane, with contour lines labeled by their

respective magnitude. Notice how the field decays exponentially along the flat R−direction. In this

and in some subsequent plots we work with dimensionless units by setting r0 = L = 1 and we have

chosen, without loss of generality, Q = 1.

Thus, at leading order, the solution is localized in the radial direction. It is not our

priority here, but it would be interesting to extract the coefficient cω̃ defined in (3.29).

This coefficient would presumably dictate the small R, small r0 dependence of the field

away from the source location.

Let us focus instead on the r → ∞ regime, where ΨII → 1/r5. In this case, we get

Φ(xi, r) =
QL5

10π2r40 r
5
I(x1, x2, x3) ≡

QL5

10π2r40 r
5

∫ +∞

−∞
dki

eikixi

aω̃(k)
. (3.50)

The integral above can be simplified,

I(x1, x2, x3) = I(R) =
2π

iR

∫ +∞

0
dk k

eikR − e−ikR

aω̃(k)
=

2π

iR

∫ +∞

−∞
dk k

eikR

aω̃(k)
, (3.51)

where R =
√
x21 + x22 + x23 and we have used the fact that aω̃(k) is an even function of k.

Note that the values of k corresponding to the normal modes of the system correspond to

poles of the integral in the complex plane. A contour plot of the scalar field strength Φ(r,R)

in the R− r plane is shown in figure 4, whereas the integral (3.51) is shown in figure 5 as

a function of R. Note that the potential is finite as R→ 0 and it decays exponentially for

large values of R.

Our numerical results are consistent with a Yukawa-like decay at large R, I ∼ e−µR/R

(cf. right panel of figure 5). Indeed, the integral above can also be computed by deforming

the integration contour in the complex plane and using the residue theorem. We shall

discuss this technique in detail in the following sections; here we just give the final result.
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Figure 5. Left: the integral I(R) (3.51) as a function of R compared with a fit of the superposition

of normal mode solutions (3.52) with N = 5. Right: same for the quantity RI(R).

Using the fit (A.11) to approximate the function aω̃(k) close to the poles, we obtain a sum

of Yukawa-like potentials,5

I(R) ∼
N∑

n=0

c̃n
e−mnR

R
, (3.52)

where mn are the dimensionful (real) eigenvalues, defined in (3.12), associated with the

modes listed in the first column of table 1 and the coefficients c̃n read (cf. section 3.3

for details)

c̃n ≈ 2π

3.9
P(−1)nm3.53

n , (3.53)

where P = 2× 2.506. In section 3.4 we shall confirm these results by obtaining the leading

terms of eq. (3.52) via a completely independent approach. In figure 5 we compare the

numerical results with the superposition of normal mode solutions (3.52) (cf. also section 3.4

below) truncated at N = 5.

An asymptotic analysis of the integral I in (3.51) at large R confirms this Yukawa-like

behavior: using a stationary phase approach, the relevant function to study is f(k) = ka−1
ω̃

at k = 0 [37]. The asymptotic behavior at large R is strongly dependent on the behavior of

the even derivatives of f(k) and in particular the existence of power-law behavior seems to

be connected to non-zero even derivatives of this function. As we show in appendix A, the

function aω̃ is an even function of its argument for small enough argument. Together with

our numerical data, which is consistent with f (2n) = 0 at least for n = 0, 2, 4, this kind of

asymptotic analysis also predicts what we find numerically, i.e. a Yukawa-like suppression.

In fact, this behavior can be proven exactly by using the solution in the form (3.38) with

the coefficients (3.40). Through the Fourier transform (3.23), the poles in the coefficients

produce precisely the Yukawa-like terms:

Φ(r,R) =
∑

n

dnΨn(r)
e−mnR

R
, (3.54)

5In this and in some subsequent expressions we work with dimensionless variables by setting r0 = L = 1.

We have also chosen Q = 1 without loss of generality, since the scalar amplitudes for arbitrary Q are simply

proportional to Q.
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where dn is proportional to the k-independent part of cn. Note that this expression is valid

for all values of r,R.

The Yukawa-like decay is not a peculiarity of having a point source. Our results

generalize to any compact distribution along the flat directions xi, as long as the source

is localized in the holographic direction. In fact, the large distance behavior is controlled

by the small-ω̃ asymptotics, which is independent of how the source is distributed, as long

as it is compact. In subsection 3.4 below, we exhibit vacuum solutions not localized along

the holographic direction and that also display a Yukawa-like decay.

3.3 High-energy collisions of point particles

We now consider the collision of two scalar particles of equal mass moving towards each

other at velocity v along the flat directions, depicted in figure 2. For concreteness, we focus

on two particles flying at each other along the x1 axis and colliding at t = 0. Thus, we

model the problem as

�Φ = −4π J(t, xi)
L3

r3
δ(r − b) (3.55)

where

J(t, xi) = −Qγ−1Θ(−t)
[
δ(x1 − vt) + δ(x1 + vt)

]
δ(x2)δ(x3)

−2QǫBH Θ(t) δ(x1)δ(x2)δ(x3) , (3.56)

where γ = 1/
√
1− v2 is the relativistic boost factor, Θ(t) is the Heaviside function, and

ǫBH will be defined momentarily.

This is the Instantaneous Collision Framework or Zero Frequency Limit (ZFL) approx-

imation described in the Introduction. It is well-motivated for the high-energy collision

of two objects and is known to work well to describe classical processes in electromag-

netism [22, 23]. Two objects flying at close to the speed of light barely feel each other’s

field, and therefore the interaction takes place right at the moment of collision. Since we

are eventually trying to describe the formation of a single black hole from the collision of

two objects, we let the final particle be at rest, as described by the second term on the

right-hand side of (3.55).

Notice that already at this level a choice of the final state is crucial: if the final state

is charge-conserving then ǫBH = 1. If instead the final state is a black hole and black holes

in this theory continue to have no hair, then the scalar charge of the final black hole is

presumably zero, and ǫBH = 0 in this case. This technical detail yields a difference between

a radiation output that scales as γ0 if ǫBH = 1 and a radiation that scales γ−1 if ǫBH = 0.

The physical intuition behind this is that the radiation is the dislocation in the field created

by the change in the source at t = 0. For large γ this change is of order unity if ǫBH = 1

and of order 1/γ if ǫBH = 0.

– 18 –



J
H
E
P
0
1
(
2
0
1
4
)
1
3
8

Let us proceed by Fourier analyzing the fields. We expand any function Z as

Z(t, xi, r) =
1

(2π)4

∫ +∞

−∞
dω

∫
d3ki e

−iωteikixi Z(ω, ki, r) , (3.57)

Z(ω, ki, r) =

∫ +∞

−∞
dt

∫
d3xi e

iωte−ikixi Z(t, xi, r) . (3.58)

In Fourier space, (3.55) yields

r(r5 − r50)Ψ
′′ + (6r5 − r50)Ψ

′ + L4r2(ω2 − k2)Ψ

L2r4
=

r40
r3L2

S(ω, k1) δ(r − b) , (3.59)

where

S(ω, k1) =
8πQL5

ir40

[
1

γ2
ω

(ω − iε)2 − v2k21
− ǫBH

ω + iε

]
(3.60)

and we have exhibited the appropriate ε-prescription, which we may not show explicitly in

subsequent expressions.

With the same procedure as before, we define two homogeneous solutions ΨI,ΨII by

eqs. (3.27)–(3.29). The solution to the inhomogeneous problem can then be written as

Ψ(ω, ki, r) =





r40 S(ω, k1)

(b5 − r50)W(b)
ΨII(b)ΨI(r) , r < b ,

r40 S(ω, k1)

(b5 − r50)W(b)
ΨI(b)ΨII(r) , r > b .

(3.61)

3.3.1 Reduction to four dimensions

We expand the five-dimensional field in the basis of normal modes as

Φ(t, xi, r) =
∑

n

ψn(t, xi)Ψn(r) . (3.62)

Substituting into (3.55) and using (3.13), eq. (3.55) becomes

∑

n

[ (
ηµν∂µ∂ν −m2

n

)
ψn(t, xi)

]
Ψn(r) = −4π J(t, xi)

L

r
δ(r − b) . (3.63)

Multiplying by (r2/L2)Ψm(r), integrating over r and using (3.14) we arrive at an infinite

set of independent equations, one for each mode:

(
ηµν∂µ∂ν −m2

n

)
ψn(t, xi) = −4π jn(t, xi) , (3.64)

where

jn(t, xi) =
b

L
Ψn(b) J(t, xi) . (3.65)

Thus the five-dimensional problem reduces to an infinite set of identical four-dimensional

problems, each of them consisting of the determination of the massive scalar field generated

by a source proportional to J(t, xi). Each of these problems is a classical bremsstrahlung

problem in which two particles moving in opposite directions collide and come to a complete

stop, thus emitting radiation into the massive scalar field that they couple to.
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3.3.2 Cutoffs

As we discussed in the introduction, in our approximation the spectrum needs to be cut off

at high frequencies in order to yield sensible results for the total radiated energy and time-

domain signals. While in the case of gravitational interactions one expects that non-linear

effects, through black hole formation, dynamically introduce such a cutoff, in the case of

scalar interactions the origin of the cutoff is less well defined; it would naturally depend on

properties of the final object such as, possibly, its size scale. If this is larger than 1/ΛQCD,

the argument in section 1.2 extends to this case and the frequency cutoff is set by ΛQCD.

At any rate, these details are not of much interest to us as we are taking this calculation as

a toy model for gravitational interactions and, if needed, we may simply borrow the cutoff

from a gravitational estimate.

3.3.3 High-energy collisions, conserved scalar charge

In the large-velocity limit and assuming that the final state has conserved charge (ǫBH = 1),

the source function S does not depend on k1, and the process is spherically symmetric in

the flat directions at leading order. This is a manifestation of the fact that the source for

the scalar field vanishes in the ultra relativistic limit, as mentioned above. Thus in this

limit one is left with the spherically symmetric field sourced by the ‘sudden appearance’

at t = 0 of a point-like source at rest, namely by the second line of (3.55).

For large holographic coordinate r the field takes the form (see eq. (3.50))

Φ(ω,R, r) ∼ 4πS(ω)

(2π)35r5

∫ +∞

0
dk k

sin kR

Raω̃
−→ 2QL5

5πr40 ωR r
5

∫ +∞

−∞
dk k

eikR

aω̃
. (3.66)

Our final goal is to extract the stress-energy tensor of the dual gauge theory from the

asymptotic behavior of the metric perturbations; we shall tackle that problem in section 4.

For now we are considering only a massless scalar field on a non-dynamical AdS-soliton

geometry. To complete this warm-up exercise we can determine the expectation value of

the dual scalar operator, which is proportional to the coefficient of the r−5 term [38]:

〈O(ω,R)〉 = 2QL5

πr40ωR

∫ +∞

−∞
dk k

eikR

aω̃
. (3.67)

We will use contour integration to perform the integral, and for that we employ an

extension of the standard approach to compute massive field propagators [39, 40]. We start

by estimating the residues of 1/aω̃. Using the fit (A.11), we find close to the poles of this

function that

aω̃ ∼ (−1)n2π

P × 3.9 ω̃ −2.53
n (ω̃ − ω̃n) ≡ fn (ω̃ − ω̃n) , ω̃ → ω̃n , (3.68)

where

ω̃n ∼ 5.25P/(2π) + nP/2 , P = 2× 2.506 . (3.69)

Let us focus on the k-integral, which has poles at

k = ±
√

(ω + iǫ)2 − r20ω̃
2
n/L

4 ∼ ±
(√

ω2 − r20ω̃
2
n/L

4 + iε′ω

)
, (3.70)
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Figure 6. The quantity |〈O(ω,R)〉|ωR (modulo a constant factor proportional to Q) for N = 5 in

eq. (3.73). The effective mass term implies that the spectrum depends on the observation radius R

in the flat directions. A common universal feature to all different observation points is the existence

of plateaux and of a vanishingly small spectrum for frequencies smaller the the fundamental mode.

where ε′ has the same sign as ε. Because we intend to close the contour on the upper half

plane, only poles in the upper half plane contribute. These are located at

kn =





√
ω2 − r20ω̃

2
n/L

4 if ω > r0ω̃n/L
2 ,

−
√
ω2 − r20ω̃

2
n/L

4 if ω < −r0ω̃n/L
2 ,

i
√
r20ω̃

2
n/L

4 − ω2 otherwise .

(3.71)

Finally, expressing

ω̃ − ω̃n ∼ −L
4kn

r20 ω̃n
(k − kn) , (3.72)

we obtain

〈O(ω,R)〉 = 2iQ

πr20

N∑

n=0

(−1)n P
3.9

ω̃3.53
n

eiknR

ωR
. (3.73)

It is gratifying to recover the expected result that frequencies smaller than the effective

mass are exponentially suppressed at large distances R. On the other hand, for frequencies

above the effective mass the field displays oscillatory behavior for large R. The wavelength

of these modes decreases as ω increases but each time the frequency crosses above a mode ω̃n

a new oscillatory term appears, with a wavelength that is shorter than the previous mode.

In figure 6 we show the quantity |〈O(ω,R)〉|ωR (modulo a constant factor proportional

to Q) as a function of the frequency. The different effective masses show up as plateaux in

the spectrum, and the zero-frequency limit of the spectrum vanishes at large radii. This is

a universal solid prediction coming from this model.
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Figure 7. The quantity |〈O(ω,R)〉|, with the static part subtracted as in eq. (3.75), as a function

of ω and R for N = 1 (left panel) and N = 5 (right panel), where N is the number of massive

modes included in eq. (3.73).
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Figure 8. The quantity |〈O(t, R)〉|R, with the static part subtracted as in eq. (3.75), as a function

of R for ωcutoff ∼ 13 and N > 3. Each panel displays a different time snapshot.

In figure 7 we show the full dependence of |〈O(ω,R)〉| on ω and R. As expected, the

details of 〈O〉 depend on the number N of modes included in eq. (3.73). As N increases,

the waveform displays a complicated behavior due to the superposition of several massive

modes. The various cutoffs for ω > ωn are also evident in the right panel of figure 7.

With the frequency-domain quantities under control, we can Fourier-transform back

to the time-domain and discuss the time evolution of the scalar operator. Numerically, this
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Figure 9. The time-domain quantity |〈O(t, R)〉| as a function of t and R and for a cutoff frequency

ωcutoff ∼ 5.4 and ωcutoff ∼ 8. The black dashed curve superimposed on each plot represents the time

of arrival of the first signals that can reach the radius R after the instantaneous collision. The locus

of this line can be easily computed using eq. (2.10). We get tarrival(R) =
√
(1.2535L2/r0)2 +R2.

is achieved by evaluating the inverse-Fourier amplitude of a generic function ψ̃(ω):

ψ(tj) =
1

N

N−1∑

k=0

ψ̃(ωk)e
iωktj , (3.74)

where ψ̃ is evaluated at a fixed spatial position, ωk = k∆ω with 2∆ω = ωmax/(N − 1)

and we assume a frequency domain [−ωmax, ωmax] discretized in N equidistant points. The

resolution in time is given by 2π/ωmax, so that the larger the frequency domain the more

refined is the resolution of the time evolution.

In figure 8 we show several snapshots of 〈O〉 in the time domain as a function of R.

Several pulses (corresponding to modes with different masses) propagate with different

velocities. As expected from causality, the waveform must vanish when R > t. This is

consistent with our results to within our numerical accuracy. Note that the details of

the waveform depend on the frequency cutoff, but the qualitative behavior is generic. The

larger the frequency cutoff, the larger the number of massive modes that can be excited and

the waveform displays some beating effects. The full time-domain dependence of |〈O(t, R)〉|
is shown in figure 9 for different cutoff frequencies.

Finally, there is a nontrivial dispersion relation, and different frequencies propagate at

different speeds. In other words, Huygens’ principle is not satisfied and there is propagation

inside the entire light cone [41, 42]. This peculiarity gives rise to a wake behind the main

pulse, which dies off at late times as [41]

〈O〉 − 〈Ostatic〉 ∼
∑

n

sin (ω̃n t r0/L
2)

t3/2
, t→ ∞ , (3.75)

where 〈Ostatic〉 is the static, Yukawa-like potential to which 〈O〉 asymptotes at late times.

The t−3/2 fall-off can be proven analytically from the properties of the retarded Green’s
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Figure 10. The time-domanin quantity |〈O(t, R)〉| as a function of t for R = 8, ωcutoff ∼ 25.6 and

N > 8.

function of a massive scalar field in four dimensions. This takes the form

G(t, x; t′, x′) = θ(t− t′)

[
δ(σ)− θ(σ)

mJ1
(
m
√
2σ
)

√
2σ

]
, (3.76)

where

σ =
1

2

[
(t− t′)2 − (x− x′)2

]
. (3.77)

The delta function only contributes on the light-cone, whereas the Bessel function con-

tributes inside the light-cone. Because of this, the field generated by a particle at a point

p is the integral of the Green’s function along the world line of the particle from the re-

mote past to the latest time tret(t) from which the particle could causally affect p. For a

particle that has been sitting at x′ = 0 forever, we can write the resulting field at time t

schematically as

〈Ostatic〉(t) =
∫ tret(t)

−∞
G(t, t′)dt′ . (3.78)

This of course yields the static Yukawa potential. In contrast, the first term on the left-hand

side of (3.75) is only sourced from t′ = 0, so the difference in that equation is

〈O〉(t)− 〈Ostatic〉(t) = −
∫ 0

−∞
G(t, t′)dt′ . (3.79)

We thus see that for t→ ∞ this difference is generated at times that are in the far past of

the point of observation. Consequently, they are controlled by the fall-off at large σ of the

Bessel function, which is

mJ1
(
m
√
2σ
)

√
2σ

≃
√
m

(2σ)3/4
∼ 1

t3/2
. (3.80)

figure 10 shows that even when the signal includes several modes, the tail of the waveform

in time is precisely t−3/2 as predicted by the formula above.
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3.3.4 High-energy collisions, final state with no scalar charge

In this case, ǫBH = 0, and subleading terms have to be taken into account. At large distance

r and for b ∼ r0 we have

Ψ(ω, k1, kρ) ∼
S(ω, k1)

5r5aω̃
, (3.81)

where we defined k2ρ = k22 + k23, and

S(ω, k1) ≡ − 8πQL5iω

r40Et(ω2 − v2k21)
, (3.82)

where Et = γr0/L. Finally, introducing cylindrical coordinates6 we find, for large r,

Φ(ω, x1, ρ, r) ∼ − 8iπQL5ω

(2π)2r40Et5r5

∫ +∞

−∞
dk1

eik1x1

ω2 − v2k21

∫ +∞

0
dkρ kρJ0(kρρ)

1

aω̃
, (3.83)

with J0(x) a Bessel function of the first kind [43]. Using eq. (3.68), close to the poles

we have

aω̃ ∼ −fn(k1 − k1,n)k1,nL
4

ω̃nr20
, (3.84)

where

k21,n = ω2 − k2ρ −
r20 ω̃

2
n

L4
. (3.85)

By first integrating over k1 we get

Φ(ω, x1, ρ, r) =
8iπQL5

(2π)2r40Et5ωr5
2πi

∫ +∞

0
dkρ kρJ0(kρρ)Ψ(ω, x1, kρ) , (3.86)

where we have defined

Ψ(ω, x1, kρ) =
iω

vãω̃
sin

ω

v
x1 +

r20
L4

∑

n

ω2 ω̃ne
ik1,nx1

fnk1,n
[
(1− v2)ω2 + v2(k2ρ + r20 ω̃

2
n/L

4)
] , (3.87)

and ãω̃ is computed for k21 = ω2/v2. Therefore Ψ(ω, x1, kρ) has poles at

k2ρ = −1− v2

v2
ω2 − r20

L4
ω̃2
n (3.88)

coming from the first term of the equation above, and at

k2ρ = ω2 − r20 ω̃
2
n/L

4 , k2ρ =
v2 − 1

v2
ω2 − r20 ω̃

2
n

L4
, (3.89)

which come from the second term in eq. (3.87). In the ultrarelativistic limit, v → 1, both

terms have poles at kρ = ±ir0ω̃n/L
2. From eq. (3.86), we obtain

〈O(ω, x1, ρ)〉 = − 2QL5

r40Etω
I2(ω, x1, ρ) , (3.90)

6Here, ρ =
√

x2
2 + x2

3 should not be confused with the dimensionless holographic coordinate r/r0 used

in section 3.1.
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where

I2(ω, x1, ρ) ≡
∫ +∞

−∞
dkρ kρH

(1)
0 (kρρ)Ψ(ω, x1, kρ) , (3.91)

and H
(1)
n is the Hankel function of the first kind.

Let us solve the integral above in the ultrarelativistic limit, v → 1. We split it into

two contributions, I2 = I
(a)
2 + I

(b)
2 , accordingly to the two terms in eq. (3.87). The first

term has poles at kρ = ±ir0ω̃j/L
2 and, by using the residue theorem, the integral is equal

to the residue of the pole in the upper plane:

I
(a)
2 = 2πω sinωx1

r20
L4

∑

n

ω̃n

fn
H

(1)
0

(
i
r0
L2
ω̃nρ

)
, (3.92)

where we have used the fact that

aω̃ ∼ −fnkρ,n(kρ − kρ,n)L
4

ω̃nr20
. (3.93)

The contribution I
(b)
2 is more involved, because the second term in eq. (3.87) has both two

poles at kρ = ±i r
2
0

L4 ω̃j and two branch points at k2ρ = ω2 − r20
L4 ω̃

2
n. When ω2 <

r20
L4 ω̃

2
n the

branch points are on the imaginary axis, so that the function to be integrated is regular on

the real axis. On the other hand, when ω2 >
r20
L4 ω̃

2
n the branch points are on the real axis.

In this case we can still integrate numerically,7 but the branching points must be suitably

excluded from the integration domain. The quantity ω
√
ρ2 + x21〈O(ω, x1, ρ)〉 obtained by

integrating numerically and summing the two contributions is shown in figure 11 (modulo

a coefficient proportional to Q/Et).

We find the same qualitative features observed in the spherically symmetric case. When

the frequency is smaller than the fundamental mode, ω < 4.062r0/L
2, the spectrum is

exponentially suppressed at large ρ. As ω increases, several mass barriers can be overcome

and single contributions may show an oscillatory behavior. Finally, when ω > 4.062r0/L
2

the spectrum shows an approximate decay as 1/ρ at large distance.

Finally, the full dependence of |〈O(ω, x1, ρ)〉| in the frequency domain is shown in fig-

ure 12 as a function of x1 and ρ for ωcutoff ∼ 5.4 (left panel) and for ωcutoff ∼ 8 (right panel).

3.4 Sources extended in the holographic direction

In the previous sections, we constructed the field of point-like scalar charges, showed it

decays exponentially fast in the gauge theory directions and collided them along one of the

flat directions. What are the effects of finite-size on the previous results? To investigate

this, we now construct a general class of solutions which are not localized in the holographic

direction, and which still display Yukawa-type asymptotics. The formalism below is quite

general and can handle any finite sized object in the holographic direction, reducing the

problem to a Minkowski space evolution of massive fields.

7In principle, the integral (3.91) can be evaluated fully analytically using contour techniques in the

complex kρ plane, but particular attention must be paid to properly include the branch cut contribution.
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Figure 11. The quantity ω
√
ρ2 + x21〈O(ω, x1, ρ)〉 (modulo a coefficient proportional to Q/Et, cf.

eq. (3.90)) in the case of black hole formation (no charge conservation) and for the case where

the cutoff frequency encloses five resonant modes. The operator is not spherically symmetric and

it depends on x1 and ρ. Left panel: x1 = 0.1, Right panel: x1 = 1. Similarly to the spherically

symmetric case, the spectrum is exponentially suppressed at large values of ρ when ω is smaller than

the fundamental frequency, ω̃1 ∼ 4.062. When ω > ω̃1r0/L
2, the spectrum shows an approximate

scaling as (ρ2 + x21)
−1/2.

Figure 12. The frequency-domain quantity |〈O(ω, x1, ρ)〉| as a function of x1 and ρ for ωcutoff ∼ 5.4

(left panel) and for ωcutoff ∼ 8 (right panel).

Up to now we have kept factors of r0 and L in most of the equations. In this section

and in the remainder of the paper we will set r0 = L = 1 to reduce cluttering of the

equations. This can always be accomplished by appropriately rescaling the holographic

coordinate, together with the fields. However, we shall explicitly reinstate such factors in

the main results.

Consider then the Klein-Gordon equation with the general source

− 4πT = −4π

r2
δ(x1)δ(x2)δ(x3)ρ(r) , (3.94)

where for the moment ρ(r) is an arbitrary regular function. If we look for spherically

symmetric solutions by introducing a radial coordinate R =
√
x21 + x22 + x23 we get the
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following equation

1

R2

∂

∂R

(
R2 ∂

∂R
Φ

)
+

1

r2
∂

∂r

(
r4F

∂

∂r
Φ

)
= −ρ(r)

R2
δ(R) . (3.95)

Separable solutions to this problem exist, and we can study them by using the following

decomposition:

ρ(r) =
∑

n

anΨn(r) , (3.96)

Φ(r,R) =
∑

n

Ψn(r)Zn(R) , (3.97)

where Ψn are the vacuum eigenfunctions studied in section 3.1, with eigenvalue ω̃2
n = −k2n.

We then get the following ODE for Zn(R),

1

R2

d

dR

(
R2 d

dR
Zn

)
− k2nZn = − an

R2
δ(R) . (3.98)

This is nothing but the equation for the field of a point-like particle coupled to a (massive)

Klein-Gordon field in flat spacetime, whose solutions have the classical Yukawa-like form:

Zn(R) = −an
e−knR

R
. (3.99)

Thus, a generic distribution in the holographic direction can be understood as the sum

of the field generated by point-like particles in a Minkowski background and carrying a

massive interaction. In the generic case, the field is a superposition of such solutions and

the coefficients an are evaluated as an overlap of different eigenfunctions with weight ∼ r2,

an =

∫ ∞

1
dr r2ρ(r)Ψn(r) . (3.100)

Suppose as a first example that an = δnn0
, so that the stress-tensor profile in the

holographic direction coincides with one of the normal modes of the field. We then get

Φ = −e
−kn0

R

R
ψn0

, (3.101)

and at large distances we find

Φ ∼ ηn0

e−kn0
R

Rr5
, (3.102)

where ηn0
is a normalization constant, which for the fundamental mode is η0 ≈ 3.4.

Let us recover as a final example the point particle results within this approach. In

this case, ρ = δ(r − 1) and we find for the fundamental mode contribution (an infinite

tower of modes contribute to the point particle field)

Φ(R, r) = −Ψ0(1)
e−k0R

R
Ψ0(r) . (3.103)
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This can be evaluated to be, at large holographic distances,

Φ = −12.212

r5
e−k0R

R
, (3.104)

which agrees to within 0.01% with a fit of our numerical results for the point particle

calculation (which yields η0 ≈ 12.213, to be compared with the analytical approximate

results, η0 = c0/(10π
2) ≈ 11.516, cf. eqs. (3.50)–(3.53)). We also get c1/c0 ∼ −5.4, in

rough agreement with eq. (3.53).8 It is interesting to note that at large distances the field

generated by the same total charge Q does depend on the charge distribution. In fact,

the field generated by a point particle is roughly 3 times stronger than that created by a

smooth ρ(r) distribution identical to the fundamental mode.

Collisions of these non-pointlike configurations can also be studied with well-known

methods. Using the same notation as above, our equation now becomes a flat-space massive

field equation:

Zn(k, ω) =
4πan

ω2 − k2 − ω̃2
n

(
2ω

iEt(ω2 − v2k21)
− 2ǫBH

iω

)
. (3.105)

For ǫBH = 1 and in the Et → ∞ limit, the solution in the space domain reads

Zn(R,ω) =
2an
ω

eiknR

R
. (3.106)

Generically, the collision of extended particles is quantitatively different but qualitatively

identical to the collision of point particles. The output can be quantitatively the same

by correcting only the static profile. For instance, the collision of a point particle with

a spectrum cut at the fundamental mode results in a spectrum 3 times larger than the

collision of a smooth extended distribution along r, with ρ(r) = ψ0 and with the same

total charge.

4 Gravitational interactions

We now turn to the main interest of this paper: the study of gravitational perturbations

resulting from the head-on collision of two point particles in the AdS-soliton background.

We tackle this problem step by step, as we did for the scalar toy model, first addressing

the normal modes of the spacetime, then investigating the gravitational field created by

a static particle and finally considering the collision process. From our results we will be

able to infer the behavior of the stress-energy tensor of the dual gauge theory.

Recall we are now setting r0 = L = 1 for simplicity. We will explicitly display such

factors only in the main results.

8The discrepancy is most likely due to numerical inaccuracy as it is very challenging to extract expo-

nentially suppressed contributions.
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4.1 Stability and normal modes of the gravitational waveguide

Let us start by studying the gravitational normal modes of the AdS-soliton. Gravitational

perturbations have more degrees of freedom, but we will be mainly interested in perturba-

tions that keep some of the symmetries of the background intact. In particular, our goal

here is not to perform a full perturbative decomposition of the gravitational field, so we

now focus on the type of perturbations which are more directly relevant for the physics we

wish to understand. In appendix B we show the existence of a special type of vector-like

gravitational perturbations, which are not excited by colliding objects head-on. These

vector-type perturbations, are in principle excited in other, more generic situations; we

show in the appendix that their spectrum shares the same main features as the ones we

discuss below.

We focus on a subset of gravitational perturbations, appropriate for the symmetries

we want to consider. In (t, r, x1, x2, x3, y) coordinates the metric reads

ds2 = ds2soliton + ǫhµνdx
µdxν , (4.1)

where the perturbation quantities are defined as

hµν =




r2htt(r) htr(r) r2htx(r) 0 0 0

htr(r)
hrr(r)
F (r) hrx(r) 0 0 0

r2htx(r) hrx(r) r
2hxx(r) 0 0 0

0 0 0 r2h⊥(r) 0 0

0 0 0 0 r2h⊥(r) 0

0 0 0 0 0 F (r)hyy(r)




e−iωt+ikixi . (4.2)

Here, an integral over ω and ki is implicit, as well as a summation over i = 1, 2, 3. We

have singled out the coordinate x1 to be aligned with the collision axis and for notational

convenience we are setting x1 ≡ x. The transverse directions x2 and x3 are on an equal

footing and will be denoted indistinctly by x⊥. In the configurations that we consider

the stress-energy tensor of the particles does not have any components Ttx⊥
. Thus, when

working in transverse gauge, the components htx⊥
obey homogeneous equations with trivial

boundary conditions and must vanish. From the viewpoint of the gauge theory this may

seem counterintuitive, since we expect that the collision generates radiation with momen-

tum in the x⊥ directions. We will see that this apparent puzzle is actually resolved by the

fact that the change of coordinates from (4.1) (which are a natural gauge choice from the

bulk viewpoint) to Fefferman-Graham coordinates (appropriate for boundary observables)

generates the expected components Ttx2
, Ttx3

of the boundary stress tensor.

Inserting the ansatz (4.2) into the Einstein equations we get four algebraic equations

for htx, hyy, h⊥ and htr:

htx =
k1(h⊥ − hxx)

ω
, (4.3)

hyy = −hrr + htt − hxx , (4.4)
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h⊥ =
iω
[
(rF ′ + 2F )htr + rFh′tr

]
+ r

(
−ω2htt + k21hxx

)

r
(
k21 + ω2

) , (4.5)

htr =
ir

2ω
(
k21 + ω2 + ω̃2

)
F

{
2
(
k21 + ω2

) (
rF ′ + 2F

)
hrr

+
(
k21 + ω2

) (
rF ′ − 2F

)
(hxx − htt) + 2rF

[
(k21 + ω2)h′rr + ω2h′tt − k21h

′
xx

]}
. (4.6)

In addition, the function hrx satisfies a homogeneous second order equation. We completely

fix the gauge by requiring hrx = 0. Although the denominator of htr above vanishes as

r → 1, it is easy to show that in the same limit the numerator vanishes with the same

power of (r − 1), cf. table 2 in appendix E for detail.9 Therefore, htr is regular at r ∼ 1

if the other functions are also regular. Finally, we get three dynamical equations for hxx,

hrr and htt. The latter can be simplified by introducing two new variables z−(r) and z+(r)

such that

htt = −z+ + z−
2

, hxx =
z+ − z−

2
. (4.7)

The perturbation equations in these new variables read

z′′− = − ω̃
2z− + r (rF ′ + 4F ) z′−

r2F
, (4.8)

z′′+ =
4Fhrr +

(
rF ′ + 13F − 15r2 − ω̃2

)
z+ − r (rF ′ + 4F ) z′+

r2F
, (4.9)

h′′rr =
1

2r2F 2

[ (
5rF (F ′ − 3r) + r2F ′2 + F 2

)
z+

+2
(
r2F ′2 − 10F 2 − ω̃2F

)
hrr − 2rF

(
rF ′ + 4F

)
h′rr

]
. (4.10)

Here, we used the identity r2F ′′ = 2(3F − rF ′) to avoid the explicit appearance of the

second derivative of the metric function F (r).

It is worth noting that our ansatz (4.2) includes, but it is not limited to, gravitational

scalar modes. The latter are defined as those that, in their rest frame, transform as scalars

under the little group SO(3). This is equivalent to the condition hxx = h⊥ at k2 = 0 in the

ansatz (4.2). Using this condition and the perturbation equations above, it is easy to show

that eq. (4.8) is identically satisfied. Therefore, the gravitational scalar sector is entirely

described by the system (4.9)–(4.10). On the other hand, eq. (4.8) is decoupled from the

other two and it describes a subsector of the gravitational vector perturbations. Notice

that eq. (4.8) is equivalent to the scalar equation (3.9), so that this subset of gravitatonal

vector modes coincides with the scalar spectrum, as shown in table 1. In table 1 we refer to

these modes as “vector II” family, to distinguish them from the “vector I” family presented

in appendix B which, however, is not excited in the collision discussed in section 4.3.

Furthermore, eqs. (4.8)–(4.10) depend only on the combination ω̃2, which was also the

case in section 3.

9Note however that the metric perturbation (4.2) considered in this section is more general than the one

considered in appendix E, which restricts to the static case.
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Close to the bottom r = 1, we impose regularity of the perturbation functions:

hrr ∼
∞∑

j=0

A
(j)
b (r − 1)j , z+ ∼

∞∑

j=0

B
(j)
b (r − 1)j , z− ∼

∞∑

j=0

C
(j)
b (r − 1)j , (4.11)

where the coefficients A
(j)
b and B

(j)
b can all be written in terms of just two independent

parameters, namely A
(1)
b and B

(0)
b . The equation for z− is decoupled and the coefficients

C
(j)
b can all be expressed in terms of C

(0)
b .

Close to infinity we get

hrr ∼
∞∑

j=0

A(j)
∞ r−j , z+ ∼

∞∑

j=0

B(j)
∞ r−j , z− ∼

∞∑

j=0

C(j)
∞ r−j , (4.12)

where the expansion coefficients A
(j)
∞ and B

(j)
∞ can be written in terms of four independent

parameters and the coefficients C
(j)
∞ can be written in terms of two independent parameters.

We guarantee that all metric perturbations decay at infinity by fixing

A(2)
∞ = B(0)

∞ = C(0)
∞ = 0 . (4.13)

By imposing the conditions above, the asymptotic behavior of the metric functions reads

hab =
Aab

r3
+
Bab

r5
+O(r−7) , (a, b) 6= (t, r) (4.14)

htr =
Atr

r4
+
Btr

r6
+O(r−8) , (4.15)

and the explicit form of the constants Aij and Bij is given in appendix F.1. There we show

that the large-distance behavior only depends on the three parameters

A(3)
∞ ≡ Arr , B(5)

∞ ≡ Btt +Bxx , C(5)
∞ ≡ Btt −Bxx . (4.16)

We have integrated eqs. (4.9)–(4.10) imposing the expansion (4.11) at r = 1 and

requiring eqs. (4.13) at infinity. With these boundary conditions, all metric components

are guaranteed to be regular at r = 1 and to vanish as r → ∞. We have searched for

the eigenvalues using two different methods, one of which we now describe. An alternative

method based on Frobenius expansions is outlined in appendix C.

The most efficient method is a standard technique to deal with matrix-valued eigen-

value problems (cf. ref. [44] for a review). First, we perform two integrations starting from

r = 1 with (A
(1)
b , B

(0)
b ) = (1, 0) and (A

(1)
b , B

(0)
b ) = (0, 1). By extracting the functions hrr

and z+ at infinity we construct the matrix

S(ω̃, k) =

(
A

(2),I
∞ A

(2),II
∞

B
(0),I
∞ B

(0),II
∞

)
, (4.17)

where the superscripts (I, II) denote the two choices of (A
(0)
b , B

(0)
b ), respectively. The latter

also correspond to two sets of solutions, (hIrr, z
I
+) and (hIIrr , z

II
+ ). Finally, the eigenfrequency
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Figure 13. Eigenfunctions corresponding to the fundamental mode and the first few overtones of

scalar-type gravitational perturbations (left panels) and of vector-type II gravitational perturbations

(right panels) as listed in table 1.

ω̃ is obtained by searching for the roots of detS. We find a discrete set of modes, which

are listed in table 1. Curiously, the modes of the system (4.9)–(4.10) include, but they are

not limited to, the modes of eq. (4.8). We stress that the latter coincide with the scalar

modes previously discussed.

In figure 13 we show the eigenfunctions corresponding to the first three gravitational

scalar-type and first three vector-II type modes in table 1. Within this direct integration

method, the eigenfunctions are defined as

hrr(r) = α1h
I
rr(r)− α2h

II
rr(r) , (4.18)

z+(r) = β1z
I
+(r)− β2z

II
+ (r) , (4.19)

where α1 = B
(0),I
∞ , α2 = B

(0),II
∞ , β1 = A

(2),I
∞ , β2 = A

(2),II
∞ are constants obtained after

the determinant of the matrix S in eq. (4.17) has been minimized. By construction, since

detS = 0, the functions above are automatically eigenfunctions. In figure 13, the classifi-

cation of modes into two different families is manifest. Finally, we show in appendix D that

ω = k = 0 is not a regular solution of the problem, and therefore that no zero modes exist

in this background. In the gauge theory this means that the glueball spectrum is gapped,

as expected.

4.2 A static point particle in the AdS-soliton background

In this section, we investigate the gravitational field generated by a static point-like source

located at the tip r = r0 = 1. In (t, r, x1, x2, x3, y) coordinates the metric reads as in

eqs. (4.1)–(4.2) but with all off-diagonal terms set to zero, in addition to ω = 0 and

h⊥ = hxx. Inserting this ansatz into the Einstein equations we get two coupled, second-

order differential equations for hxx and hrr:

h′′rr =
−r2T̃tt(r)/2 +

(
k2r2 − 30r4

)
hrr −

(
6r5 − 1

)
(2h′rr − h′xx)

r(r5 − 1)
, (4.20)

h′′xx =
−r2T̃tt(r)/2 + 10r4hrr + k2r2hxx + 2

(
r5 − 1

)
h′rr +

(
−8r5 + 3

)
h′xx

r(r5 − 1)
, (4.21)
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where T̃tt(r) is the Fourier transform (defined as in eq. (3.58)) of the only nonvanishing

component of Tµν , T̃tt(r) = µ δ(r − 1). Note that the Einstein equations allow a source

term of this form, which is consistent with the fact that in this spacetime a point-particle

can be static only at the tip r = 1. The remaining perturbation functions hyy and htt are

algebraically related to hxx, hrr, and their derivatives:

hyy = −hrr + htt − hxx , (4.22)

htt =
2
(
4r5 + 1

)
hrr + 5hxx + 2r

(
r5 − 1

)
(h′rr − h′xx)

5
, (4.23)

and they can be directly computed once the system (4.20)–(4.21) is solved. In appendix E

we explicitly solve eqs. (4.20)–(4.21) using Green’s function techniques. Here, we just

report the final results, where we have reinserted factors of r0 and L.

In the Fourier domain, we obtain

hrr(ki, r) =
µL4

10r30 (akdk − bkck)

[
bkh

(∞,1)
rr (r)− akh

(∞,2)
rr (r)

]
, (4.24)

hxx(ki, r) =
µL4

10r30 (akdk − bkck)

[
bkh

(∞,1)
xx (r)− akh

(∞,2)
xx (r)

]
. (4.25)

The series expansions in table 2 then determine the large (holographic) distance behavior:10

hrr(ki, r) ∼
µL4 bk

10r30 (akdk − bkck)

(r0
r

)3
, hxx(ki, r) ∼ −hrr(ki, r)

3
. (4.26)

The dimensionless functions ak(k
2), bk(k

2), ck(k
2) and dk(k

2) are related to the behavior

of the gravitational perturbations at r ∼ r0. They can be constructed by a numerical

integration of the homogeneous system, cf. appendix E for details. Finally, in the space

domain at leading order in r we obtain

hrr(xi, r) = −3hxx(xi, r) =
1

(2π)3

∫ +∞

−∞
d3k eikixihrr(ki, r) =

µL4

80π3r30r
3
I(xi) , (4.27)

so that all the information about the metric perturbations is encoded in the

following integral

I(xi) ≡
∫ +∞

−∞
d3k

bke
ikixi

akdk − bkck
. (4.28)

The functions bk and Dk = akdk − bkck have behaviors qualitatively similar to that of

the function aω̃ in the negative x−axis shown in figure 18. In order to evaluate the inte-

gral (4.28), we proceed as in the scalar case:

I(x1, x2, x3) = I(R) = 2π

iR

∫ +∞

0
dk k bk(k)

eikR − e−ikR

Dk(k)
. (4.29)

10The 1/r3 fall-off of hxx may seem surprising, but this is simply due to the fact that r does not coincide

with the Fefferman-Graham coordinate r̄ near the boundary. In terms of the latter coordinate the fall-off

is instead 1/r̄5, as expected (see Eq (F.31)).

– 34 –



J
H
E
P
0
1
(
2
0
1
4
)
1
3
8

10
-3

10
-2

10
-1

10
0

R/r
0

10
-4

10
-2

10
0

10
2

|I
(R

)|

numerical
fit

0.0 1.0 2.0 3.0 4.0 5.0 6.0
R/r

0

10
-4

10
-2

10
0

10
2

|R
 I
(R

)|

numerical
fit

Figure 14. Left: the integral I(R) (4.28) as a function of R compared with a fit of the superposition

of normal mode solutions (3.52) withN = 3 and using the gravitational scalar-type modes in table 1.

We consider the fundamental mode and the first three overtones including both families listed in

table 1. Right: same for the quantity R I(R).

The integral above is shown in figure 14, where we again compare the numerical results

with a superposition of normal-mode solutions analogous to eq. (3.52), but where now µn
are only the first four gravitational modes listed in table 1 (we considered the fundamental

mode plus three overtones including both scalar-type and vector-II type modes).

4.3 High-energy collision of particles

In this section, we compute the linear gravitational emission during the head-on collision

of two point-particles with mass m boosted with speed v, each following a straight geodesic

along the x1 direction in the hyperplane defined by r = r0. We consider Einstein’s equations

with the stress-energy tensor

Tµν =
mL3r0
r4γ

δ(x2)δ(x3)δ(r − r0)Θ(−t)
[
uµ(1)u

ν
(1)δ(x1 − vt) + uµ(2)u

ν
(2)δ(x1 + vt)

]

+
Θ(t)ML4

r4
uµ(3)u

ν
(3)δ(x1)δ(x2)δ(x3)δ(r − r0) , (4.30)

where γ = 1/
√
1− v2 and, at first order, the mass of the final (static) object is equal to

the total energy in the initial system, M = 2m L
r0
γ. Accordingly, the spacetime velocity

vectors of the three particles are

uµ(1) =
L

r0
γ(−1, 0, v, 0, 0, 0) , uµ(2) =

L

r0
γ(−1, 0,−v, 0, 0, 0) , uµ(3) = (−1, 0, 0, 0, 0, 0) .

(4.31)

Recall we are using coordinates xµ = (t, r, x1, x2, x3, y) but, to avoid cluttering subsequent

formulas, we shall adopt the notation x1 ≡ x as in section 4.1. In the final results we revert

to the original notation.

The Fourier transform, defined as in eq. (3.58), of the stress-energy tensor (with co-

variant indices) may be expressed as follows:

T̃µν(ω, ki, r) = −2imLγ

r0
δ(r − r0)

[
1

ω2 − v2k21

(
Pi 0

0 0

)
− 1

ω

(
Pf 0

0 0

)]
, (4.32)
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where

Pi =




ω 0 −v2k1
0 0 0

−v2k1 0 v2ω


 , Pf =




1 0 0

0 0 0

0 0 0


 , 0 =




0 0 0

0 0 0

0 0 0


 . (4.33)

Note two qualitative differences with respect to the scalar case: (i) because kinetic energy

gravitates, the stress-energy tensor depends on v also in the ultrarelativistic limit v → 1

through the γ term; (ii) T̃µν explicitly depends on k1 even in the ultrarelativistic limit,

so that the source term is not spherically symmetric in the k-space. This is analogous to

the case of black hole formation with no scalar charge, ǫBH = 0, discussed in section 3.3.4.

Note also that the nonvanishing components of T̃µν are related to each other by T̃xx =

ω2T̃tt/k
2
1 and T̃tx = −k1T̃xx/ω. By using these relations, in the following we shall write the

perturbation equations in terms of T̃tt only.

A consistent ansatz for the metric perturbation of two point particles boosted along the

x1 direction is given by eq. (4.2). The metric perturbations htx, hyy, h⊥ and htr read as in

eqs. (4.3)–(4.6), whereas the dynamical variables hxx, htt and hrr satisfy an inhomogeneous

system of equations. The latter takes a simpler form after introducing the functions z± as

defined in eq. (4.7). We obtain one decoupled inhomogeneous equation for z−,

z′′− = −
r (rF ′ + 4F ) z′− + ω̃2z− − 2

(
1 + ω2

k21

)
T̃tt

r2F
, (4.34)

and a system of two coupled inhomogeneous equations for z+ and hrr,

z′′+ =
4Fhrr +

(
rF ′ + 13F − 15r2 − ω̃2

)
z+ − r (rF ′ + 4F ) z′+ +

(
1− ω2

k21

)
T̃tt

r2F
, (4.35)

h′′rr =
1

2r2F 2

[ (
5rF (F ′ − 3r) + r2F ′2 + F 2

)
z+

+2
(
r2F ′2 − 10F 2 − ω̃2F

)
hrr − 2rF

(
rF ′ + 4F

)
h′rr

]
. (4.36)

Note that no source term appears in eq. (4.36), which reads as in the vacuum case.

Our final goal is to compute the expectation value of the holographic stress-energy

tensor in the dual theory. This is computed explicitly in appendix F.3 and the entire

computation is detailed in appendix F. Here we only give the final result. In Fourier space

and in the v → 1 limit, we get

Ttt(ω, ki) = ξ

[
30
(
3k21 − k2

) (
k21 + ω2

)

ω
(
ω2 − k21

) (
2ω2 − k2 + k21

)
aω̃

+
15
(
k2 + k21

)
αω̃ − L4

(
k4 + k21ω

2 − 3k2
(
k21 + ω2

))
βω̃

ω
(
2ω2 − k2 + k21

)
∆ω̃

]
, (4.37)

Tx1x1
(ω, ki) = ξ

[
30
(
k21 + ω2

)

ω
(
ω2 − k21

)
aω̃

+
15αω̃ + L4

(
ω2 − k2 + 2k21

)
βω̃

ω∆ω̃

]
, (4.38)
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Ttx1
(ω, ki) = ξ

[
30k1

(
k21 + ω2

)

ω2
(
k21 − ω2

)
aω̃

− k1
(
15αω̃ + L4

(
k2 + ω2

)
βω̃
)

ω2∆ω̃

]
, (4.39)

Tyy(ω, ki) = ξ

[
4L4(ω2 − k2)βω̃ − 30αω̃

ω∆ω̃

]
, (4.40)

Ttx2
(ω, ki) = ξ

[
30k2

(
k21 + ω2

)

ω2
(
2ω2 − k2 + k21

)
aω̃

,

−k2
(
15
(
k21 + ω2

)
αω̃ + L4

(
k2(k21 − ω2) + ω2

(
k21 + 3ω2

))
βω̃
)

ω2
(
2ω2 − k2 + k21

)
∆ω̃

]
, (4.41)

Tx2x2
(ω, ki) = ξ

[
− 30

(
k21 + ω2

)

ω
(
2ω2 − k2 + k21

)
aω̃

+
15
(
k21 + ω2

)
αω̃

ω
(
2ω2 − k2 + k21

)
∆ω̃

(4.42)

−L
4
(
2k21

(
k21+k

2
3

)
+
(
3k21+4k23

)
ω2−3ω4+k2

(
ω2−3k21−2k23

))
βω̃

ω
(
2ω2 − k2 + k21

)
∆ω̃

]
.

where

ξ =
imγ

240πGLr40
, ∆ω̃ = αω̃δω̃ − βω̃γω̃ , (4.43)

and αω̃, βω̃, γω̃ and δω̃ are related to the behavior near r0 of the metric functions (see

table 3). The other five nonvanishing components, Tx3x3
, Ttx3

, Tx1x2
, Tx1x3

and Tx2x3
, can be

obtained by using symmetry arguments and the tracelessness and divergence-free conditions

T ≡ ηmnTmn = 0 , ∂mT mn = 0 , (4.44)

where ηmn stands for the Minkowski metric in the five-dimensional space covered by co-

ordinates xm = (t, x1, x2, x3, y). As a check on our calculations, we have computed all

components of Tmn and checked that the conditions above are satisfied by virtue of the

Einstein equations.

A relevant quantity is the energy flux across a sphere of radius R,

F(ω) = R2

∫ 2π

0
dϕ

∫ 1

−1
d cos θ TtR(ω,R, cos θ, ϕ) , (4.45)

where we have introduced spherical coordinates (R =
√
x21 + x22 + x23, θ, ϕ) and TtR is the

R − t component of the holographic stress-energy tensor. By performing a change of

coordinates, the latter reads

TtR =
x1Ttx1

+ x2Ttx2
+ x3Ttx3

R
, (4.46)

where, by symmetry, Ttx3
can be obtained from eq. (4.41) by replacing k2 ↔ k3. Even

though Ttx2
and Ttx3

have no particular symmetry, one can show that TtR in Fourier

space reads

TtR(ω, ki) =
1

(2π)3

∫
d3xi

∫
d3k′i e

−i(ki−k′i)xi T̂tR(ω, xi, k′i) , (4.47)

with

T̂tR(ω, xi, k′i) =
k′1x1f1(ω

2, k′1
2, k′ρ

2) + (k′2x2 + k′3x3)f2(ω
2, k′1

2, k′ρ
2)

R
, (4.48)
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where the functions

f1(ω
2, k21, k

2
ρ) =

Ttx1

k1
, f2(ω

2, k21, k
2
ρ) =

Ttx2

k2
(4.49)

have cylindrical symmetry in k-space, and recall k2ρ ≡ k22 + k23.

4.4 Numerical results for the stress-energy tensor of the dual theory

The results (4.37)–(4.42) were obtained in Fourier space. By inverse-Fourier transforming

from k-space, we can obtain the spatial dependence of the operators. Note that eqs. (4.37)–

(4.39) and eq. (4.47) explicitly depend on k2 and k21 only and the inverse Fourier transform

can be performed in cylindrical coordinates as shown in the scalar case (cf. eq. (3.83)). The

term (4.40) only depends on k2 and its transform can be evaluated as in the spherically

symmetric scalar case (cf. eq. (3.66)). Finally, the last two terms (4.41) and (4.42) are less

symmetric because they explicitly depend on (k1, k2, k3).

After a tedious but straightforward manipulation, we obtain

Ttt(ω, xi) =− iξr
2
0

4L4

{
II∑

n

120ω̃nH
(1)
0 (iρω̃n) sin(x1ω)

fn

−
∫ ∞

−∞
dkρ

kρH
(1)
0 (kρρ)

ωπ

[
−

II∑

n

30ω̃ne
ik1,nx1

(
−2k21,n + k2ρ

) (
k21,n + ω2

)

k1,n
(
k2ρ − 2ω2

) (
k2ρ + ω̃2

n

)
fn

(4.50)

−
I,II∑

n

ω̃ne
ik1,nx1

15
(
2k21,n + k2ρ

)
αn + L4

(
2k41,n − k4ρ + 3k2ρω

2 + k21,n
(
k2ρ + 2ω2

))
βn

k1,n
(
2ω2 − k2ρ

)
gn

]}
,

Tx1x1
(ω, xi) =− iξr

2
0

4L4

{
II∑

n

120ω̃nH
(1)
0 (iρω̃n) sin(x1ω)

fn
−
∫ ∞

−∞
dkρ

kρH
(1)
0 (kρρ)

πω
(4.51)

×
[
−

II∑

n

30ω̃ne
ik1,nx1

(
k21,n + ω2

)

k1,n
(
k2ρ + ω̃2

n

)
fn

−
I,II∑

n

ω̃ne
ik1,nx1

15αn + L4
(
k21,n − k2ρ + ω2

)
βn

k1,ngn

]}
,

Ttx1
(ω, xi) =− iξr

2
0

4L4

{
II∑

n

120iω̃nH
(1)
0 (iρω̃n) cos(x1ω)

fn
−
∫ ∞

−∞
dkρ

kρH
(1)
0 (kρρ)

πω2
(4.52)

×
[

II∑

n

30ω̃ne
ik1,nx1

(
k21,n + ω2

)
(
k2ρ + ω̃2

n

)
fn

+

I,II∑

n

ω̃ne
ik1,nx1

15αn + L4
(
k21,n + k2ρ + ω2

)
βn

gn

]}
,

Tyy(ω, xi) = ξ

π

r20
L4

I,II∑

n

ω̃ne
iknR

gnωR

[
15αn − 2L4ω̃2

nβn
]
, (4.53)

Ttx2
(ω, xi) =

iξr20
2L4π2ω2

∫ ∞

−∞
dk2

∫ ∞

−∞
dk3e

i(k2x2+k3x3)

[
II∑

n

15eik1,nx1k2
(
k21,n + ω2

)
ω̃n

k1,n
(
k22 + k23 − 2ω2

)
fn

(4.54)

−
I,II∑

n

eik1,nx1k2ω̃n

(
15
(
k21,n+ω

2
)
αn+L

4
(
k41,n+k

2
1,n

(
k22+k

2
3

)
+ω2

(
−k22−k23 + 3ω2

))
βn
)

2k1,n
(
k22 + k23 − 2ω2

)
gn

]
,

Tx2x2
(ω, xi) =− iξr20

2L4π2ω

∫ ∞

−∞
dk2

∫ ∞

−∞
dk3e

i(k2x2+k3x3)

[
II∑

n

15eik1,nx1
(
k21,n + ω2

)
ω̃n

k1,n
(
k22 + k23 − 2ω2

)
fn

−
I,II∑

n

15
(
k21,n + ω2

)
αne

ik1,nx1ω̃n

2k1,n
(
k22 + k23 − 2ω2

)
gn

(4.55)

+
L4
(
k41,n + 2k43 − 5k23ω

2 + 3ω4 + k21,n
(
3k22 + 3k23 − 4ω2

)
+ k22

(
2k23 − ω2

))
βne

ik1,nx1ω̃n

2k1,n
(
k22 + k23 − 2ω2

)
gn

]
.

In the expressions above we omitted the dependence e−iωt, and αn, βn are shorthand

notations for the functions αω̃, βω̃ evaluated at ω̃ = ω̃n. The symbol
∑II

n refers to a sum
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Figure 15. The operator |Tyy(ω,R)|R (modulo a coefficient proportional to ξ, cf. eq. (4.53)) for

N = 5. The spectrum is qualitatively similar to the spherically symmetric emission in the scalar

case, cf. figure 6.

over the infinite (n = 0, 1, . . .) modes of the vector-II type family in table 1 (i.e. to the roots

of aω̃), whereas
∑I,II

n refers to the sum over both scalar-type and vector-II type families

(i.e. to the roots of ∆ω̃). Finally, fn is defined as in eq. (3.68) and gn is defined through

the behavior of ∆ω̃ close to its poles, ∆ω̃ ∼ gn(ω̃− ω̃n). Our numerical data are well fitted

by g1 = 0.015 and

gn =
2π

P 14.53(−1)n+1ω̃−5.98
n , n > 1 , (4.56)

where ω̃n are the scalar-type gravitational modes for the two families listed in table 1.

As in the scalar case, some of the integrals above have to be performed numerically.

In figure 15 we show the operator |Tyy(ω,R)|, which is spherically symmetric and quali-

tatively similar to the scalar case shown in figure 6. In figure 16 we show the operators

that are cylindrically symmetric. In this case the spectrum is qualitatively similar to the

cylindrically symmetric emission in the scalar case, cf. figure 11.

Finally, we can compute the energy flux. Let us first compute the inverse-Fourier

transform of TtR. From eq. (4.47), we obtain

TtR(ω, ρ, x1) =
π

(2π)2R

∫ +∞

−∞
dk1e

ik1x1

∫ +∞

−∞
dkρkρ

[
k1x1H

(1)
0 (kρρ)f1(ω

2, k21, k
2
ρ)

+ikρρH
(1)
1 (kρρ)f2(ω

2, k21, k
2
ρ)
]
, (4.57)

where cylindrical coordinates are related to spherical ones via ρ = R sin θ, x1 = R cos θ and

there is no explicit dependence on ϕ. Therefore, the energy flux reads

F(ω) = 4πR2

∫ 1

0
d cos θ TtR(ω,R sin θ,R cos θ) , (4.58)

where, using the symmetries of the problem, we integrate over half of the cos θ-space. The

energy flux as a function of the frequency is shown in figure 17. As expected, the flux is

vanishing for frequencies smaller than the first normal mode, ω < ω̃1 ∼ 2.52.
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Figure 16. The operators |Ttt(ω, x1, ρ)|
√
x21 + ρ2, |Txx(ω, x1, ρ)|

√
x21 + ρ2 and |Ttx(ω, x1, ρ)|(x21 +

ρ2) (modulo a coefficient proportional to ξ) for N = 11. Left panels: x1 = 1, Right panels: x1 = 10.

The spectrum is qualitatively similar to the cylindrically symmetric emission in the scalar case, cf.

figure 11.

5 Discussion and conclusions

Gravity-dominated high-energy collisions are a fascinating topic: the efficiency for gravi-

tational wave emission is huge, and these processes typically give rise to the largest known

luminosities. In addition, fine-tuned collisions of this kind provide useful tests of Cosmic

Censorship. In four-dimensional, asymptotically flat spacetimes the simulations of such

events took several decades to perform and turned out to be ‘mostly linear’ in that wave-

forms are smooth and simple perturbative models capture most of the physics [25–27, 45].

By contrast, full non-linear simulations of collisions in AdS spacetime are in their

infancy [3–6]. Validation of any such simulations requires benchmarking with perturbative
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Figure 17. Energy flux |F(ω)| (modulo a coefficient proportional to ξ) across a sphere at large

distance as a function of the frequency. The flux is zero for ω smaller than the first normal frequency

and it increases monotonically for ω & 2.52.

results, either for the final ringdown stage or for intermediate stages of the process. We

have explored a simple and compelling model for such collisions. Some of the important

physical observables, such as total radiated energy and time-dependence of the stress-

energy tensor depend quantitatively on the magnitude of the cutoff, which in turn depends

sensitively on the (unknown) final state. Nevertheless, we also obtained what we expect are

universal features to be seen in any simulation and experiments: Yukawa-type potentials

for static particles and power-law decay of perturbations at late times, characteristic of

massive fields. The energy distribution of the particles produced during such events is also

cutoff-independent.

As shown in figures 6, 11, 15 and 16, the spectrum is exponentially suppressed for

frequencies smaller than the fundamental mode of the AdS-soliton, i.e. smaller than the

mass gap in the gauge theory. Using eq. (1.3), this result implies that the waveform shows

no memory effect in this spacetime. This property is most likely related to the fact that the

AdS boundaries are timelike and can be reached by the emitted radiation in a finite time.

Furthermore, for larger frequencies the spectrum shows a peculiar upward-stairway

structure, which is formed by various plateaux corresponding to the excitation of various

normal modes with increasing overtone number. From the dual theory perspective, as

more massive state becomes available in the confining gauge theory, the energy density

dE/dω for a given frequency grows monotonically with the energy. For example, for the

scalar charge-conserving collisions studied in section 3.3.3, eq. (3.73) predicts a distribution

dE/dω ∼ ω2.53 at large energies. For the gravitational emission, our numerical results are

less accurate, but the behavior is also consistent with a wΥ dependence, with 2.5 . Υ . 3

for Tyy, Tx1x1
and Ttx1

.

These qualitative features are robust because they follow from the fact that the fields

in a confining geometry can be decomposed into a discrete set of massive four-dimensional

fields propagating in Minkowski spacetime. From the gauge theory viewpoint these are just
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the different glueball states in the theory. This reduced description in Minkowski spacetime

allows us to give a very simple and intuitive picture of the radiation field coming out of

the collision, along the same lines as in electromagnetism. Imagine that we regularize the

problem by assuming that the two particles come to rest in a small but finite amount of

time δt, so that they start slowing down at t = 0 and come to a full stop at t = δt. After

this time, the solution has three regions. The field sufficiently far from the particles, at

R ≫ t, is just the sum of the two boosted fields created by the incoming point particles.

In the opposite limit, R≪ t, the field is the spherically symmetric solution created by the

resulting particle at rest. In between these regions there is a thin shell of thickness ∼ δt in

which the field smoothly connects these two solutions. This ‘dislocation’ is the gravitational

wave, and it is not spherically symmetric because it must connect a spherically symmetric

solution (at small R) to a non-spherically symmetric one (at large R).

Note that the only difference between the present situation and that in electromag-

netism is that in our case the effective four-dimensional fields are massive. This is not an

essential difference though, since the front wave of a massive field still propagates at the

speed of light even if it is followed by slower modes. As in electromagnetism, the regular-

ized picture illustrates the fact that the radiated energy diverges in the limit δt → 0 and

hence explains the need for a cutoff. Indeed, the derivative of the field across the shell of

thickness δt is of order v/δt, and hence the total radiated energy scales as δt× (v/δt)2.

Although our model has no internal information about the colliding objects, presum-

ably this is not a serious limitation if the collision is sufficiently energetic: horizon formation

will cloak any multipolar strucutre of the colliding particles and presumably a point-particle

approximation is just as good as any other [28, 46, 47].

A more important limitation is the fact that our linear approximation cannot describe

strong-gravity effects, in particular the formation of a black hole and its subsequent relax-

ation. This means that the part of the gravitational radiation that is accurately captured by

our approximation is that near the future lightcone of the collision point. This pulse will be

followed by radiation emitted in the relaxation process to the final, equilibrium state. The

crudest features of the final state can be accounted for by introducing appropriate cutoffs,

as we have explained. However, a more precise determination of the relaxation dynamics

to this final state will require a non-linear analysis, which we leave for future work.
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A The function aω̃

Because it plays such an important role in our analysis, in this appendix we present the

main properties of the function aω̃ introduced in (3.29). The overall behavior is shown in

figure 18.

Small frequency behavior. For ω̃ = 0, the homogeneous equation associated with

eq. (3.25) or more generally with eq. (3.9) can be solved exactly, with the result ΨII =

log r5

r5−r50
, ΨI = 1. Thus aω̃(ω̃ = 0) = −1. A systematic scheme to compute corrections to

aω̃(ω
2 − k2) for small values of the argument can be found as follows. The only possible

nontrivial expansion is of the form Ψ =
∑

n=0 ω̃
2nΨ(n), in which case one gets

r(r5 − r50)Ψ
(n)′′ + (6r5 − r50)Ψ

(n)′ = −r20r2Ψ(n−1) . (A.1)
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The two homogeneous solutions of interest are

Ψ
(n)
h,2 = log

r5

r5 − r20
, (A.2)

Ψ
(n)
h,1 = 1 . (A.3)

The solution which is regular everywhere is

Ψ(n) = −r20

[
Ψ

(n)
h,1(r)

∫ ∞

r
dr
rΨ

(n)
h,2(r)Ψ

(n−1)(r)

(r5 − r50)W(n)(r)
+ Ψ

(n)
h,2(r)

∫ r

r0

dr
rΨ

(n)
h,1(r)Ψ

(n−1)(r)

(r5 − r50)W(n)(r)

]
,

(A.4)

where W(n) ≡ Ψ
(n)
h,1Ψ

(n)
h,2

′
−Ψ

(n)
h,2Ψ

(n)
h,1

′
. With this procedure, what we have accomplished is to

maintain the singularity behavior of Ψ
(0)
II at r0, at the expense of changing the normalization

at infinity. This way, the constant aω̃ needs to be redefined. In particular, we get that

close to the AdS boundary we have

Ψ(n)(r ∼ ∞) ≃ −r
7
0

r5

∫ ∞

r0

dr
rΨ(n−1)(r)

(r5 − r50)W(n)(r)
=

r20
5r5

∫ ∞

r0

dr r2Ψ(n−1)(r) . (A.5)

As an example, let’s work to second order in ω̃. We find that close to the tip of the

soliton, r = r0, the singular solution behaves like ΨII = (1 + ǫ ω̃2) log r5

r5−r50
with

ǫ = −1

5

∫ ∞

1
dξ ξ2 log

ξ5

ξ5 − 1
≈ −0.13228 . (A.6)

Thus, to summarize, we have

aω̃ = −1 + 0.13228 ω̃2 +O(ω̃)4 . (A.7)

The numerical results are in perfect agreement with this prediction: we find aω̃ = −1 +

0.13229 ω̃2 from fitting the data to a parabola dependence. The procedure can be easily

extended to higher orders.

Large momentum behavior. At large negative values of ω̃2, we find an exponential

increase

aω̃ ∼ −7× 10−3e1.2 |ω̃| , ω̃2 → −∞ . (A.8)

The WKB analysis can be used to understand this scaling, giving a large k expansion of

the wavefunction [35]

Ψ(ρ) ∼ eα(ρ)k , (A.9)

with

α(ρ) = L

∫ ∞

ρ

dρ′

ρ′
√
F (ρ′)

=
2

3

[
ρ3/2

√
ρ5 − 1 2F1

(
4

5
, 1,

13

10
, ρ5
)
+

(−1)1/5√
π

Γ

(
1

5

)
Γ

(
13

10

)]
.

(A.10)

Here 2F1 is an hypergeometric function, while F was defined in (2.1) as a function of

r = r0ρ. Close to the tip, ρ = 1, we find α(ρ = 1) ≃ 1.25, in good agreement with a

numerical fit of our data.
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Large frequency behavior. Finally, at large positive values of ω̃2, we find an oscillating

power-law decay of the form

aω̃ ∼ 3.9 ω̃−2.53 sin

(
2π

5.012
ω̃ − 5.25

)
, ω̃2 → +∞ . (A.11)

Notice that the period of this ringing pattern is roughly twice as large as the spacing of

the resonant modes in table 1, which is a good consistency check.

B Vector-I gravitational perturbations

In the main text we studied gravitational modes which are excited by the axisymmetric

collision described in this work. These modes were referred to as gravitational scalar

and vector-II modes in table 1. However, other types of perturbations are excited more

generically. Here we briefly show the existence of at least one other perturbation mode,

which is vector-type (with respect to the (t, r)−subspace) and takes the form (4.1) with

the perturbation quantities defined as

hµν =




0 0 0 0 0 hty(r)

0 0 0 0 0 hry(r)

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

hty(r) hry(r) 0 0 0 0




e−iωt+ikixi , (B.1)

where an integral over ω and ki (i = 1, 2, 3) is implicit. Inserting the ansatz above into the

Einstein equations we get

Exy : (4r5 + 1)hry + ir2ωhty + r(r5 − 1)h′ry = 0 , (B.2)

Ery : − r(r5 − 1)ω̃2hry − iω(2r5 + 3)hty + iωr(r5 − 1)h′ty = 0 , (B.3)

Ety : − iωr(4r5+1)hry+(k2r3+6(r5 − 1))hty−ir(r5 − 1)
(
rωh′ry − 2ih′ty − irh′′ty

)
= 0 ,

(B.4)

where primes stand for derivatives in r and note we are setting r0 = L = 1. One can solve

Ery for hry and its derivatives,

hry =
iω

r(r5 − 1)ω̃2

(
r(r5 − 1)h′ty − (2r5 + 3)hty

)
, (B.5)

and plug it back in the remaining two Einstein equations. These are then both equivalent

to a single equation for hty,

r2h′′ty + 2rh′ty +

(
ω̃2 r3

r5 − 1
− 6

)
hty = 0 . (B.6)

Regular solutions have to decay like hty ∼ r−3 at large holographic direction and as (r−1)

when r ∼ 1, in order to keep hry finite [the generic dominant behavior is hty ∼ (r2, const.)

at infinity and r = 1, respectively].
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The resonances of eq. (B.6) were searched with standard direct integration, and are

presented in table 1 as “vector I” family. Note that for ω = k there is an exact solution

regular at infinity, hty = r−3. However, this solution is not compatible with the exact

solution for (B.5) regular at r = 1, hty = (r5 − 1)/r3. Thus, in particular there are no

zero modes.

At large overtone numbers the spacing is again consistent with the geodesic approx-

imation. In fact, the substitution r ≡ 1/η leads the equation above to the following

WKB-amenable form,

h′′ty + ω̃2

(
− 6

ω̃2η2
+

1

1− η5

)
hty = 0 . (B.7)

Following the scalar-field analysis, with the same large ω̃ behavior, one finds the same

asymptotic expression.

C Determination of eigenmodes by Frobenius expansions

In this appendix we describe a method to obtain the eigenmodes of a boundary value

problem defined by a system of coupled ODEs. This procedure is an alternative to the

method discussed in section 4.1.

Here we adopt a series solution to the problem, by first defining the wavefunctions Hrr

and Z+ according to

hrr = η2Hrr , z+ = η2Z+ , (C.1)

which are then expanded in a power series around η = 1/r = 1:

Hrr =
∞∑

q=0

aq(1− η)q , Z+ =
∞∑

q=0

bq(1− η)q . (C.2)

The radius of convergence of this series is at least as large as the distance to the closest

singular point, thus it should converge on the entire interval 0 < η < 1, corresponding to

1 < r < ∞. The coefficients aq, bq can be obtained by direct substitution into the two

coupled ODEs. Because it is linear, we can choose a0 = 1, and all coefficients will be

functions of ω̃ and b0. This expansion satisfies the boundary conditions at the tip η = 1;

to satisfy the boundary conditions at infinity (η = 0) we require that

∑

q

aq =
∑

q

bq = 0 . (C.3)

This results in two conditions for two quantities, ω̃ and b0. The series has to be truncated

at some value; we typically need around 30 terms in the expansion to get an accuracy of

1%. This second method yields values in very good agreement with the direct integration

procedure, but computationally it seems more costly. To get higher overtones, one needs to

keep more terms in the series to get a good convergence rate. This method is an extension

of a Frobenius expansion used originally in refs. [48–50] (see also ref. [44] for a review).
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D Absence of a zero mode

Our numerical investigations in section 4.1 did not reveal the existence of any zero mode

(ω̃ = 0). Here we explicitly rule out this mode in the static limit, which then dictates

generic Yukawa-type decay at large distances R. For ω = k = 0, equations (4.20)–(4.23)

simplify to

hyy = −hrr + htt − hxx , (D.1)

htt =
2
(
4r5 + 1

)
hrr + 5hxx + 2r

(
r5 − 1

)
(h′rr − h′xx)

5
, (D.2)

h′′rr = −30r4hrr +
(
6r5 − 1

)
(2h′rr − h′xx)

r(r5 − 1)
, (D.3)

h′′xx =
10r4hrr + 2

(
r5 − 1

)
h′rr +

(
−8r5 + 3

)
h′xx

r(r5 − 1)
. (D.4)

We can solve the third equation for h′xx,

h′xx =
30r4hrr + 2(6r5 − 1)h′rr + r(r5 − 1)h′′rr

6r5 − 1
, (D.5)

and get a single third-order ODE for hrr from the last equation. With the behavior (4.12)

we find,

htt =
2rA

(4)
∞

15
+

(
B(0)

∞ − 2A
(5)
∞

5

)
+O(r−2) . (D.6)

The solution does have B
(0)
∞ = A

(4)
∞ = 0. However, A

(5)
∞ 6= 0, and thus it corresponds

to a spacetime with a deformed boundary, because both htt and hyy asymptote to a con-

stant. We should exclude these solutions. Therefore, no zero-mode solution exists in

this spacetime.

E Green’s function analysis for a static point particle in the AdS-soliton

background

In this appendix we discuss a Green’s function approach to solve the system (4.20)–(4.21).

By setting Y ≡ (hrr, hxx, h
′
rr, h

′
xx), eqs. (4.20)–(4.21) can be written in the form (3.41) with

V =




0 0 −1 0

0 0 0 −1
−k2L4r+30r3

r5−r50
0

2(6r5−r50)

r(r5−r50)
− 6r5−r50

r(r5−r50)

− 10r3

r5−r50
− k2L4r

r5−r50
−2

r
8r5−3r50
r(r5−r50)



, S = −L

4rµδ(r − r0)

2(r5 − r50)




0

0

1

1


 .

(E.1)

For clarity of notation, we restore all factors of r0 and L in this appendix.

In order to construct the matrix X (see section 3.2.1), we need four independent

solutions of the homogeneous system which satisfy the correct boundary conditions. Close
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to r0, the general solution reads

h(r0)rr ∼ akr0
r − r0

+

(
ck +

akk
2L4

5r20

)
log

r − r0
r0

+
∞∑

i=0

c(i)rr (r − r0)
i , (E.2)

h(r0)xx ∼ ck log
r − r0
r0

+
∞∑

i=0

c(i)xx(r − r0)
i . (E.3)

We require the fields to be regular at r = r0, so ak = ck = 0 and the correct asymptotic

behavior reads

h(r0)rr ∼
∞∑

i=0

c(i)rr (r − r0)
i , h(r0)xx ∼

∞∑

i=0

c(i)xx(r − r0)
i , (E.4)

where c
(i)
rr and c

(i)
xx are constants that can be expressed in terms of two parameters only, c

(0)
rr

and c
(0)
xx , by solving the equation in the r → r0 limit perturbatively. Then, two independent

solutions can be found by imposing these two parameters to be (1, 0) and (0, 1). We shall

denote these solutions by Y(r0,1) and Y(r0,2), respectively.

Likewise, at infinity we have the following general behavior:

h(∞)
rr ∼

∞∑

i=1

d
(i)
rr

ri
, h(∞)

xx ∼
∞∑

i=0

d
(i)
xx

ri
, (E.5)

where again all the expansion coefficients d
(i)
rr and d

(i)
xx can be expressed in terms of four pa-

rameters. We impose that the perturbations decay at infinity. Using the series expansions

above and the solution of htt(r) in eq. (4.23), we get

d(0)xx = 0 , d(5)rr =
k2L4d

(3)
rr

6
, (E.6)

where the second condition comes from requiring htt → 0 at infinity. After imposing these

boundary conditions, the asymptotic behavior of the perturbation functions reads

h(∞)
rr ∼ d(3)rr

(
1

r3
+
k2L4

6r5
+
k4L8

120r7
+

5r50
6r8

+
k6L12

5040r9

)
+
d
(10)
rr

r10
, (E.7)

h(∞)
xx ∼ d(3)rr

(
− 1

3r3
+
k2L4

30r5
+
k4L8

280r7
+

k6L12

9072r9

)
+

[
13k2L4r50

180
d(3)rr − d

(10)
rr

3

]
1

r10
, (E.8)

h
(∞)
tt ∼ d

(3)
rr

3r3
+

[
59k2L4

90
d(3)rr − 56

15r50
d(10)rr

]
1

r5
, (E.9)

Note that the large-distance behavior only depends on two parameters, d
(3)
rr and d

(10)
rr .

If d
(3)
rr 6= 0, both functions hrr and hxx decay as r−3, whereas they decay as r−10 when

d
(3)
rr = 0. Two independent solutions can be found by imposing these parameters to be (1, 0)

and (0, 1), respectively. We shall denote these solutions by Y(∞,1) and Y(∞,2), respectively.
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r → r0 r → ∞

h
(∞,1)
rr ak

r0
r−r0

(r0/r)
3

h
(∞,2)
rr bk

r0
r−r0

(r0/r)
10

h
(∞,1)
xx ck log(r − r0) −(r0/r)

3/3

h
(∞,2)
xx dk log(r − r0) −(r0/r)

10/3

Table 2. Schematic asymptotic behavior of the homogeneous solutions of the system (4.20)–(4.21).

Recall that the superscripts (1, 2) in hrr and hxx denote the choice (1, 0) or (0, 1), respectively, for

the couple of independent parameters of the expansion at infinity. Making similar choices for the

independent parameters of the expansion near r = r0 and integrating out to infinity gives the

asymptotic behavior of h
(r0,i)
rr and h

(r0,i)
xx . These behaviors are not displayed since in practice we

do not need them (they do not contribute when b→ r0).

Therefore, the matrix of the homogeneous system reads

X =




h
(r0,1)
rr h

(r0,2)
rr h

(∞,1)
rr h

(∞,2)
rr

h
(r0,1)
xx h

(r0,2)
xx h

(∞,1)
xx h

(∞,2)
xx

h
(r0,1)
rr

′
h
(r0,2)
rr

′
h
(∞,1)
rr

′
h
(∞,2)
rr

′

h
(r0,1)
xx

′
h
(r0,2)
xx

′
h
(∞,1)
xx

′
h
(∞,2)
xx

′



. (E.10)

In table 2 we show the asymptotic behavior of each field at r → r0 and at r → ∞.

Finally, from eq. (3.44), we can write the solutions for hrr and hxx, which satisfy the

correct boundary conditions in the presence of the source term, as follows:

hrr ≡ Y1 =
2∑

i=1

(
h(∞,i)
rr (r)I

(i)
− (r) + h(r0,i)rr (r)I

(i)
+ (r)

)
, (E.11)

hxx ≡ Y2 =
2∑

i=1

(
h(∞,i)
xx (r)I

(i)
− (r) + h(r0,i)xx (r)I

(i)
+ (r)

)
, (E.12)

where

I
(i)
+ =

µL4

2

∫ ∞

r
dr

C
(i)
+ r

W(r5 − r50)
δ(r − b) ,

I
(i)
− =

µL4

2

∫ r

r0

dr
C

(i)
− r

W(r5 − r50)
δ(r − b) ,

with W ≡ det(X). In writing this we are localizing the particle at r = b but in the end we

want to take the limit b→ r0, as in section 3.2. The functions C
(i)
± depend on the solutions

of the homogeneous system. For completeness, their expressions read

C
(1)
+ = h(∞,2)

rr (h(∞,1)
xx (−h(r0,2)rr

′
+ h(r0,2)xx

′
) + h(r0,2)xx (h(∞,1)

rr

′ − h(∞,1)
xx

′
))

+h(∞,1)
rr (h(∞,2)

xx h(r0,2)rr

′ − h(r0,2)xx h(∞,2)
rr

′ − h(∞,2)
xx h(r0,2)xx

′
+ h(r0,2)xx h(∞,2)

xx

′
)

+h(r0,2)rr (−h(∞,2)
xx h(∞,1)

rr

′
+ h(∞,1)

xx h(∞,2)
rr

′
+ h(∞,2)

xx h(∞,1)
xx

′ − h(∞,1)
xx h(∞,2)

xx

′
) , (E.13)
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C
(2)
+ = h(∞,2)

rr (h(∞,1)
xx (h(r0,1)rr

′ − h(r0,1)xx

′
) + h(r0,1)xx (−h(∞,1)

rr

′
+ h(∞,1)

xx

′
))

+h(∞,1)
rr (−h(∞,2)

xx h(r0,1)rr

′
+ h(r0,1)xx h(∞,2)

rr

′
+ h(∞,2)

xx h(r0,1)xx

′ − h(r0,1)xx h(∞,2)
xx

′
)

+h(r0,1)rr (h(∞,2)
xx h(∞,1)

rr

′ − h(∞,1)
xx h(∞,2)

rr

′ − h(∞,2)
xx h(∞,1)

xx

′
+ h(∞,1)

xx h(∞,2)
xx

′
) , (E.14)

C
(1)
− = h(∞,2)

rr (h(r0,2)xx (−h(r0,1)rr

′
+ h(r0,1)xx

′
) + h(r0,1)xx (h(r0,2)rr

′ − h(r0,2)xx

′
))

+h(r0,2)rr (h(∞,2)
xx h(r0,1)rr

′ − h(r0,1)xx h(∞,2)
rr

′ − h(∞,2)
xx h(r0,1)xx

′
+ h(r0,1)xx h(∞,2)

xx

′
)

+h(r0,1)rr (−h(∞,2)
xx h(r0,2)rr

′
+ h(r0,2)xx h(∞,2)

rr

′
+ h(∞,2)

xx h(r0,2)xx

′ − h(r0,2)xx h(∞,2)
xx

′
) , (E.15)

C
(2)
− = h(∞,1)

rr (h(r0,2)xx (h(r0,1)rr

′ − h(r0,1)xx

′
) + h(r0,1)xx (−h(r0,2)rr

′
+ h(r0,2)xx

′
))

+h(r0,2)rr (−h(∞,1)
xx h(r0,1)rr

′
+ h(r0,1)xx h(∞,1)

rr

′
+ h(∞,1)

xx h(r0,1)xx

′ − h(r0,1)xx h(∞,1)
xx

′
)

+h(r0,1)rr (h(∞,1)
xx h(r0,2)rr

′ − h(r0,2)xx h(∞,1)
rr

′ − h(∞,1)
xx h(r0,2)xx

′
+ h(r0,2)xx h(∞,1)

xx

′
) . (E.16)

If r > b→ r0, then the solution reads

hrr(ki, r) =
µL4

2

2∑

i=1

A(i)h(∞,i)
rr (r) , (E.17)

hxx(ki, r) =
µL4

2

2∑

i=1

A(i)h(∞,i)
xx (r) , (E.18)

where

A(1) = lim
b→r0

C
(1)
− r

W(r5 − r50)

∣∣∣∣∣
r=b

=
bk

5r30 (akdk − bkck)
, (E.19)

A(2) = lim
b→r0

C
(2)
− r

W(r5 − r50)

∣∣∣∣∣
r=b

= − ak
5r30 (akdk − bkck)

, (E.20)

and, as in the scalar case with ny = 0, this limit is finite. Finally, we obtain eqs. (4.24)

and (4.25) in the main text.

F Computation of the holographic stress-energy tensor for high-energy

particle collisions in the bulk

In this appendix we compute in detail the holographic stress-energy tensor presented in

eqs. (4.37)–(4.42) and we collect some intermediate results that are presented in the main

text. The computation is divided into three steps. In section (F.1) we analyse the asymp-

totic behavior of the metric functions defined in eq. (4.2). In section F.2 we solve the inho-

mogeneous perturbation equations eqs. (4.8)–(4.10) in the bulk through Green’s function

techniques. Finally, these results are used in section F.3, where we compute the holographic

stress-energy tensor explicitly, via the holographic renormalization scheme [38].
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F.1 Asymptotic behavior of the metric perturbation

The asymptotic behavior at large holographic distance r of the metric functions defined in

eq. (4.2) reads (recall we are choosing a gauge such that hrx = 0)

hrr =
A

(3)
∞

r3
− A

(3)
∞ r20ω̃

2

6r5
+O(r−7) , (F.1)

hxx = −A
(3)
∞

3r3
+
B

(5)
∞ − C

(5)
∞

2r5
+O(r−7) , (F.2)

htt =
A

(3)
∞

3r3
− B

(5)
∞ + C

(5)
∞

2r5
+O(r−7) , (F.3)

h⊥ = −A
(3)
∞

3r3
+

15((B
(5)
∞ +C

(5)
∞ )(k2L4+r20ω̃

2)+(B
(5)
∞ −C(5)

∞ )k21L
4)−A(3)

∞ r40ω̃
4

(
30
(
k2 + k21

)
L4 + 60r20ω̃

2
)
r5

+O(r−7) ,

(F.4)

hyy = −A
(3)
∞

3r3
+
A

(3)
∞ r20ω̃

2 − 6B
(5)
∞

6r5
+O(r−7) , (F.5)

htx =
k1(30C

(5)
∞ k2L4 − 15(B

(5)
∞ − 3C

(5)
∞ )r20ω̃

2 −A
(3)
∞ r40ω̃

4)

30ω
((
k2 + k21

)
L4 + 2r20ω̃

2
)

[
1

r5
− r20ω̃

2

14r7

]
+O(r−9) , (F.6)

htr =
i

6L2ω
((
k2 + k21

)
L4 + 2r20ω̃

2
)
[
1

r4
− r20ω̃

2

10r6

] [
A(3)

∞ r20ω̃
2
(
(k2 + k21)L

4 + r20ω̃
2
)

(F.7)

+15
(
(B(5)

∞ + C(5)
∞ )(k2L4 + r20ω̃

2) + (B(5)
∞ − C(5)

∞ )k21L
4
)]

+O(r−8) ,

which straightforwardly give

z+ = −2A
(3)
∞

3r3
+
B

(5)
∞

r5
+O(r−7) , (F.8)

z− =
C

(5)
∞

r5
+O(r−7) . (F.9)

Therefore, the coefficients A
(3)
∞ , B

(5)
∞ and C

(5)
∞ , which shall be crucial for our analysis,

are related to the dominant and subdominant terms of z+ and to the dominant term of

z−, respectively.

Asymptotic behavior of the solutions of the homogeneous system. In order to

apply the Green’s function technique discussed in section F.2 below, we need the asymptotic

behaviors (at r ∼ r0 and at infinity) of the solution of the homogeneous field equations,

i.e. eqs. (4.8)–(4.10) without the source terms. The Green function method requires two

independent solutions of the homogeneous system, the first one being regular at r ∼ r0 and

(for generic values of the frequency ω) irregular at infinity; the second solution is regular

at infinity and generically irregular at r ∼ r0. We shall denote these solutions as X(r0) and

X(∞), respectively, where X collectively denotes any perturbation variable. By analyzing

eqs. (4.8)–(4.10) at infinity and at r ∼ r0, we obtain the behavior of the relevant metric

functions given in table 3.
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r → r0 r → ∞

h
(∞,1)
rr αω̃(r − r0)

−1 r−3 +O(r−8)

h
(∞,2)
rr βω̃(r − r0)

−1 15r50r
−10/56 +O(r−12)

z
(∞,1)
+ γω̃ log(r − r0) −2r−3/3 +O(r−7)

z
(∞,2)
+ δω̃ log(r − r0) r−5 +O(r−7)

z
(∞)
− aω̃ log(r − r0) r−5 +O(r−7)

Table 3. Schematic asymptotic behavior of the homogeneous solutions of the system (4.35)–(4.36).

Recall that the superscripts (1, 2) in hrr and z+ denote the choice (1, 0) or (0, 1) for the couple of

independent parameters of the expansion at infinity, respectively, whereas the superscripts (∞) and

(r0) denote solutions which are regular at infinity and at r = r0, respectively. As in table 2, we do

not display the asymptotic behaviors of the solutions h
(r0,i)
rr , z

(r0,i)
+ and z

(r0,i)
−

because they do not

contribute in the b→ r0 limit.

F.2 Green’s function analysis for collisions of particles in the AdS-soliton

background

Let us now solve eq. (4.34) and the system (4.35)–(4.36) explicitly by using Green’s function

techniques. We shall separate the discussion in two parts. In the first part we compute

the coefficient C
(5)
∞ by solving eq. (4.34) and in the second part we compute the coefficients

A
(3)
∞ and B

(5)
∞ by solving the system (4.35)–(4.36).

The coefficient C(5)
∞

. The solution of eq. (4.34) can be written in the form of eq. (3.41)

with Y ≡ (z−, z
′
−) and (restoring factors of r0 and L)

V =

(
0 −1

ω̃2L4r
r5−r50

6r5−r50
r(r5−r50)

)
, S =

(
0

− 4iL4mγv2(k21+ω2)r

(r5−r50)ω(ω
2−k21v

2)
δ(r − b)

)
, X =

(
z
(r0)
− z

(∞)
−

z
(r0)
−

′
z
(∞)
−

′

)
,

(F.10)

where z
(r0)
− and z

(∞)
− are two independent solutions of the homogeneous system which satisfy

the correct boundary conditions at r0 and at infinity, respectively (cf. table 3). Since the

homogeneous equation is equivalent to that of the scalar case, these solutions correspond

to ΨI and ΨII defined in section 3, with the substitution k2 → −ω̃2. Once again, we are

placing the point source at r = b but in the end we will take the limit b→ r0. The solution

of eq. (4.34) which satisfies the correct boundary conditions at r ∼ r0 and at infinity reads

z−(ω, ki, r) = −4iL4mv2γ(ω2 + k21)

ω(ω2 − v2k21)
(F.11)

×
[
z
(r0)
− (r)

∫ ∞

r

r z
(∞)
− (r)

(r5 − r50)W(r)
δ(r − b)+z

(∞)
− (r)

∫ r

r0

r z
(r0)
− (r)

(r5 − r50)W(r)
δ(r − b)

]
.
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Let us evaluate the integral above when b → r0 < r. Recalling that W(r) ∼ aω̃/(r − r0)

and z
(r0)
− ∼ 1 at r ∼ r0, we get

z−(ω, ki, r) = −4iL4mv2γ(ω2 + k21)

5r30ω(ω
2 − v2k21)

z
(∞)
− (r)

aω̃
. (F.12)

From the equation above and the asymptotic behavior of z
(∞)
− shown in table 3, we obtain

C(5)
∞ = −4iL4mv2γ

5r30

(ω2 + k21)

aω̃ω(ω2 − v2k21)
. (F.13)

The coefficients A(3)
∞

and B(5)
∞

. In order to solve eqs. (4.35) and (4.36) we use the

same approach as for the static gravitational case, which was also described by a system

of two coupled ODEs. By setting Y ≡ (z+, hrr, z
′
+, h

′
rr), eqs. (4.35)–(4.36) can be written

in the form (3.41) with (factors of r0 and L restored)

V =




0 0 −1 0

0 0 0 −1
10r50+L4r3ω̃2

r2(r5−r50)
− 4

r2
6r5−r50
r(r5−r50)

0

−5r50(6r
5−r50)

2r2(r5−r50)
2

6r10−32r5r50+r100 +L4r3(r5−r50)ω̃2

r2(r5−r50)
2 0

6r5−r50
r(r5−r50)



, (F.14)

S =
2iL4mv2γ(ω2 − k21)rδ(r − b)

(r5 − r50)ω(ω
2 − v2k21)




0

0

1

0


 . (F.15)

The matrix X of the solutions of the homogeneous system reads

X =




z
(r0,1)
+ z

(r0,2)
+ z

(∞,1)
+ z

(∞,2)
+

h
(r0,1)
rr h

(r0,2)
rr h

(∞,1)
rr h

(∞,2)
rr

z
(r0,1)
+

′
z
(r0,2)
+

′
z
(∞,1)
+

′
z
(∞,2)
+

′

h
(r0,1)
rr

′
h
(r0,2)
rr

′
h
(∞,1)
rr

′
h
(∞,2)
rr

′



, (F.16)

where the superscripts (1, 2) denote the two independent solutions of the homogeneous

system, whereas the superscripts (r0) and (∞) denote solutions which are regular11 at

r ∼ r0 and at infinity, respectively. The asymptotic behavior of each field at r → r0 and

at r → ∞ is given in table 3.

The solutions for hrr and z+, which satisfy the correct boundary conditions in the

presence of the source term, can be written as follows

z+ ≡ Y1 =

2∑

i=1

(
z
(∞,i)
+ (r)I(i)

− (r) + z
(r0,i)
+ (r)I(i)

+ (r)
)
, (F.17)

hrr ≡ Y2 =

2∑

i=1

(
h(∞,i)
rr (r)I(i)

− (r) + h(r0,i)rr (r)I(i)
+ (r)

)
, (F.18)

11Note that, even if hrr and z+ are regular, we require regularity of all metric perturbations which can

be algebraically constructed from them using eqs. (4.3)–(4.6).
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where

I(i)
+ =

iL4mv2γ(ω2 − k21)

ω(ω2 − v2k21)

∫ ∞

r
dr

C(i)
+ r

(r5 − r50)W(r)
δ(r − b) ,

I(i)
− =

iL4mv2γ(ω2 − k21)

ω(ω2 − v2k21)

∫ r

r0

dr
C(i)
− r

(r5 − r50)W(r)
δ(r − b) ,

with (i = 1, 2) and W ≡ det(X). The functions C(i)
± , which have lengthy expressions and

so we avoided presenting explicitly, are similar to the functions C
(i)
± defined in appendix E

for the static case. If r > b→ r0, then the solution reads

z+(ω, ki, r) =
iL4mv2γ(ω2 − k21)

ω(ω2 − v2k21)

2∑

i=1

A(i)z
(∞,i)
+ (r) , (F.19)

hrr(ω, ki, r) =
iL4mv2γ(ω2 − k21)

ω(ω2 − v2k21)

2∑

i=1

A(i)h(∞,i)
rr (r) , (F.20)

where

A(1) = lim
b→r0

C(1)
− r

W(r)(r5 − r50)

∣∣∣∣∣
r=b

= − 2βω̃
5r30∆ω̃

, (F.21)

A(2) = lim
b→r0

C(2)
− r

(r5 − r50)W(r)

∣∣∣∣∣
r=b

=
2αω̃

5r30∆ω̃
, (F.22)

and ∆ω̃ = αω̃δω̃ − βω̃γω̃. Therefore, we obtain

z+(ω, ki, r) = −2iL4mv2γ(ω2 − k21)

5r30ω(ω
2 − v2k21)

1

∆ω̃

[
βω̃z

(∞,1)
+ (r)− αω̃z

(∞,2)
+ (r)

]
, (F.23)

hrr(ω, ki, r) = −2iL4mv2γ(ω2 − k21)

5r30ω(ω
2 − v2k21)

1

∆ω̃

[
βω̃h

(∞,1)
rr (r)− αω̃h

(∞,2)
rr (r)

]
. (F.24)

Finally, using the expressions above and the asymptotic behaviors shown in table 3,

we obtain

A(3)
∞ = −2iL4mv2γ

5r30

(ω2 − k21)

ω(ω2 − v2k21)

βω̃
∆ω̃

, (F.25)

B(5)
∞ =

2iL4mv2γ

5r30

(ω2 − k21)

ω(ω2 − v2k21)

αω̃

∆ω̃
= −αω̃

βω̃
A(3)

∞ , (F.26)

which, together with eq. (F.13), constitute the main results of this section. Note that,

while A
(3)
∞ and B

(5)
∞ do not depend on k1 in the ultrarelativistic limit, C

(5)
∞ still has explicit

dependence on the longitudinal component of the wavevector.

F.3 Holographic stress-energy tensor

In this part we shall obtain the stress-energy tensor Tab of the holographic boundary theory,

as determined by the asymptotic expansion of the bulk gravitational field via holographic

renomalization.
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The metric we consider is

ds2 =
r2

L2
(ηab + hab) dx

adxb + (1 + hrr)
dr2

F (r)
+ 2hardrdx

a + F (r)(1 + hyy)dy
2 , (F.27)

Here xa = (t, x1, x2, x3). The hµν are linear perturbations, which we require to vanish at

infinity, and we only consider cases where

h2µ = 0 , for µ 6= 2 , (F.28)

h3µ = 0 , for µ 6= 3 , (F.29)

h22 = h33 . (F.30)

which reduces to the ansatz defined in section 4.1.

Asymptotics and stress-energy tensor. We will obtain the stress-energy tensor by

writing the metric near infinity in the Fefferman-Graham gauge

ds2 =
L2

r̄2
dr̄2 +

r̄2

L2

(
ηmn +

1

r̄5
16πGL6

5
Tmn +O(r̄−7)

)
dx̄mdx̄n . (F.31)

Here m,n = t, x1, x2, x3, y.

Note that already the unperturbed soliton solution above is not in these coordinates.

We write the perturbations asymptotically as

hµν =

(
aµν
r3

+
bµν
r5

+O(r−7)

)
eikax

a

(F.32)

(with constant aµν , bµν) for all perturbations except for

har = i
aar
r4
eikax

a

+O(r−6) . (F.33)

We raise and lower indices of ka with ηab, e.g. kax
a = −ωt+ kixi.

In order to bring the metric into Fefferman-Graham form we make the following change

of coordinates:

r = r̄

(
1 +

r50
10r̄5

+

(
arr
6r̄3

+
brr
10r̄5

)
eikax

a

+O(r̄−7)

)
, (F.34)

t = t̄+
iL2

30r̄5
(ωL2arr − 6atr)e

ikaxa

+O(r̄−7) , (F.35)

x1 = x̄1 +
iL2

30r̄5
(k1L

2arr + 6a1r)e
ikaxa

+O(r̄−7) , (F.36)

x2 = x̄2 +
iL2

30r̄5
k2L

2arre
ikaxa

+O(r̄−7) , (F.37)

x3 = x̄3 +
iL2

30r̄5
k3L

2arre
ikaxa

+O(r̄−7) , (F.38)

y = ȳ +O(r̄−2) . (F.39)
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This makes gr̄r̄ = L2/r̄2 and eliminates all other terms gr̄µ from the metric. A number

of conditions on the metric coefficients appear when solving the Einstein equations in the

asymptotic region:

−att = a11 = a22 = a33 = ayy = −arr/3 , at1 = 0 . (F.40)

These conditions have the effect of eliminating terms r̄−3 in the expansion of the met-

ric along holographic directions and with them the metric has the required asymptotic

behavior.

With this, we obtain the stress tensor in the form

16πGL6Tyy = −4r50 + eikax
a

(brr + 5byy) (F.41)

and

16πGL6Tab = ηabr
5
0 + eikax

a

(
ηabbrr + 5bab − L2(aarkb + abrka)− L4kakb

arr
3

)
, (F.42)

or more explicitly

16πGL6Ttt = −r50 + eikax
a

(
− brr + 5btt + 2L2ωatr − L4ω2arr

3

)
, (F.43)

16πGL6T11 = r50 + eikax
a

(
brr + 5b11 − 2L2k1a1r − L4k21

arr
3

)
, (F.44)

16πGL6T22 = r50 + eikax
a

(
brr + 5b22 − L4k22

arr
3

)
, (F.45)

16πGL6T33 = r50 + eikax
a

(
brr + 5b22 − L4k23

arr
3

)
, (F.46)

16πGL6Tt1 = eikax
a

(
5bt1 + L2(ωa1r − k1atr) + L4k1ω

arr
3

)
, (F.47)

16πGL6Tt2 = eikax
a

L2

(
− k2atr + L2k2ω

arr
3

)
, (F.48)

16πGL6Tt3 = eikax
a

L2

(
− k3atr + L2k3ω

arr
3

)
, (F.49)

16πGL6T12 = eikax
a

L2

(
− k2a1r − L2k1k2

arr
3

)
, (F.50)

16πGL6T13 = eikax
a

L2

(
− k3a1r − L2k1k3

arr
3

)
, (F.51)

16πGL6T23 = −eikaxa

L4k2k3
arr
3
. (F.52)

The constraints that the stress-energy tensor be traceless and divergence-free

Tmm = 0, ∂mT mn = 0 (F.53)

have not been imposed yet. They can be expressed as

btt = −bt1
k1
ω

− atr
5ω
L2ω̃2 − b22 , (F.54)

b11 = −bt1
ω

k1
− atr

5k1
L2ω̃2 + b22 , (F.55)
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b22 =
1

5

(
− brr + L2(−ωatr + k1a1r)− L4ω̃2arr

3

)
, (F.56)

byy =
a1rL

2ω(ω̃2 − 2k21)− atrL
2k1(ω̃

2 + 2ω2)− 5bt1(k
2
1 − ω2)− ωk1(brr − L4arrω̃

2)

5k1ω
.

(F.57)

This leaves five coefficients, e.g. arr, brr, btt, a1r, b11 as independent coefficients. Two

of them can be eliminated. If we choose the gauge h1r = 0, as in section 4.1, then a1r = 0.

Other non-dynamical Einstein equations correspond to constraints due to gauge choices in

directions other than the radial one. This is the case with the algebraic equations (4.22)

which imply that

brr = −A
(3)
∞ ω̃2

6
. (F.58)

Making contact with section F.1,

arr = A(3)
∞ , btt =

B
(5)
∞ + C

(5)
∞

2
, b11 =

B
(5)
∞ − C

(5)
∞

2
. (F.59)

One can check that with the values for the coefficients that are given in eqs. (F.13), (F.25)

and (F.26), the constraints (F.53) are satisfied.

Background subtraction. Regularity at r = r0 requires y ∼ y +∆y with

∆y =
4π

5

L2

r0

(
1 +

1

2
[hrr(r0)− hyy(r0)]

)
. (F.60)

Since in our case we have hrr(r0) = hyy(r0), the y circles in the solution and in the

background will match if we take the same parameter r0 for both of them. Then, in order

to subtract the background contribution from the stress-energy tensor we simply have to

remove the terms ∝ r50 from Tmn (this subtraction could equally well be done by adding

an appropriate counterterm to the action).

Final result. After performing the background subtraction we obtain

Ttt =
1

96πGL6

1

2ω2 − k2 + k21
eikx−iωt (F.61)

×
[
15B(5)

∞

(
k2 + k21

)
+
(
k2−3k21

) (
15C(5)

∞ +A(3)
∞ k2L4

)
+A(3)

∞

(
−3k2 + k21

)
L4ω2

]
,

Tx1x1
=

1

96πGL6

(
15B(5)

∞ − 15C(5)
∞ +A(3)

∞ L4
(
k2 − 2k21 − ω2

))
eikx−iωt , (F.62)

Tyy =
1

48πGL6

(
2A(3)

∞ L4
(
ω2 − k2

)
− 15B(5)

∞

)
eikx−iωt , (F.63)

Ttx1
=

1

96πGL6

k1(−15B
(5)
∞ + 15C

(5)
∞ +A

(3)
∞ L4

(
k2 + ω2

)
)

ω
eikx−iωt , (F.64)

Ttx2
=

1

96πGL6

k2

ω
(
2ω2 − k2 + k21

)eikx−iωt (F.65)

×
[
15C(5)

∞ (k21−ω2)−15B(5)
∞

(
k21+ω

2
)
+A(3)

∞ L4
(
k2(k21−ω2)+ω2

(
k21 + 3ω2

))]
,
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Tx2x2
=

1

96πGL6

[
15C

(5)
∞ (ω2 − k21) + 15B

(5)
∞

(
k21 + ω2

)

2ω2 − k2 + k21
(F.66)

+
A

(3)
∞ L4

(
2k21

(
k21+k

2
3

)
+
(
3k21+4k23

)
ω2−3ω4+k2

(
ω2 − 3k21 − 2k23

))

2ω2 − k2 + k21

]
eikx−iωt.

The other five non-vanishing components, Tx3x3
, Ttx3

, Tx1x2
, Tx1x3

and Tx2x3
, can be ob-

tained by using the tracelessness and divergence-free conditions. As a check on our calcu-

lations, we have computed these components explicitly and checked that the tracelessness

and divergence-free conditions hold as a consequence of the asymptotic behavior shown

in eqs. (F.1)–(F.7). Finally, inserting eqs. (F.13), (F.25) and (F.26) with v = 1 in the

expressions above, we get eqs. (4.37)–(4.42).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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