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Abstract In this paper, we use the “complexity equals
action” (CA) conjecture to discuss growth rate of the com-
plexity in a charged AdS-Vaidya black hole formed by col-
lapsing an uncharged spherically symmetric thin shell of null
fluid. Using the approach proposed by Lehner et al., we eval-
uate the action growth rate and the slope of the complexity
of formation. Then, we demonstrate that the behaviors of
them are in agreement with the switchback effect for the
light shock wave case. Moreover, we show that to obtain an
expected property of the complexity, it is also necessary for
the CA conjecture to add the particular counterterm on the
null boundaries.

1 Introduction

In recent years, there has been a growing interest in the topic
of “quantum complexity” which is defined as the minimum
number of gates required to obtain a target state starting from
a reference state [1,2]. In the holographic viewpoint, Brown
et al suggested that the quantum complexity of the state in
the boundary theory corresponds to some bulk gravitational
quantities which are called “holographic complexity”. Then,
the two conjectures: “complexity equals volume” (CV) [1,3]
and “complexity equals action” (CA) [4,5], were proposed.
These conjectures have attracted many researchers to investi-
gate the properties of both holographic complexity and circuit
complexity in quantum field theory, e.g., [6–43].

We only focus on the CA conjecture, which states that
the complexity of a particular state |ψ(tL , tR)〉 on the AdS
boundary is given by

C (|ψ(tL , tR)〉) ≡ S

π h̄
, (1)

where S is the on-shell action in the corresponding Wheeler–
DeWitt (WDW) patch, which is enclosed by the past and
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future light sheets sent into the bulk spacetime from the times-
lices tL and tR . In particular, it was found that there is a bound
of the complexity growth rate at the late time

Ċ ≤ 2M

π h̄
, (2)

which may be thought of as the Lloyd’s bound on the quantum
complexity [44]. As presented previously, at late times, the
rate of the complexity will saturate this bound. However, by
the full-time analysis [14], we can see that this late time limit
is approached from above, which will violate this bound.

Chapman et al. [45,46] investigated the CA and CV con-
jectures for AdS-Vaidya spacetime which is sourced by the
collapse of a spherically symmetric thin shell of null fluid
[47–49]. They found that the standard definition of the WDW
action is not appropriate for these dynamical spacetimes.
In order to obtain an expected property of the complexity,
we need to add a particular counterterm on the null bound-
aries. This counterterm also keeps the invariance under the
reparametrization of the null generator on the null bound-
ary. Moreover, they also demonstrated that the switchback
effect for light shocks are imprinted in the complexity of for-
mation and the full-time evolution of complexity when this
counterterm is introduced.

In this paper, we follow the discussions in [45,46] to inves-
tigate the holographic complexity for a charged AdS-Vaidya
black hole which is sourced by an uncharged thin shell. This
thin shell will generate a shape transition from a black hole
with total mass M1 and charge Q to another one with mass M2

and same charge Q. With the approach proposed by Lehner
et al. [11], we will evaluate the time evolution of complexity
growth rate as well as the slope of the complexity of for-
mation in the presence of the light and heavy shock wave.
Using these results, we will argue that our results are also
in agreement with the switchback effect for the light shock
wave case.

The structure of this paper is as follows. In Sect. 2, we
review the charged AdS-Vaidya background geometries. In
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Sect. 3, we first use the method proposed by Lehner et al. to
calculate the complexity of formation as well as the action
growth rate of the charged AdS-Vaidya black hole. Then, we
investigate the action growth rate without the counterterm
and compare our holographic results to the circuit behaviors.
Concluding remarks are given in Sect. 4.

2 Charged AdS-Vaidya spacetime

In this paper, we consider the (d + 1)-dimensional Einstein–
Maxwell gravity. Following the convention in Refs. [50,51],
the total action can be expressed as

Stotal = Sgrav + SE.M. + Sct + Sfluid. (3)

Here, the first two terms are the Einstein–Maxwell action
which can be written as

Sgrav + SE.M.

= 1

16πG

∫
M

dd+1x
√−g

[
(R − 2Λ) − FabF

ab
]

+ 1

8πG

∫
B
dd x

√|h|K + 1

8πG

∫
Σ

dd−1x
√

γ η

+ 1

8πG

∫
B′

dλdd−1θ
√

γ κ + 1

8πG

∫
Σ ′

dd−1x
√

γ a,

(4)

where this action includes not only the bulk action of the
Einstein–Maxwell theory but the surface terms and corner
terms as well. The third term is the counterterm for the null
boundaries [11]. It can be expressed as

Sct = 1

8πG

∫
B′

dλdd−1θ
√

γΘ log (lctΘ) , (5)

where Θ = ∂λ ln
√

γ is the expansion scalar of the null
surface generator, and lct is an arbitrary constant length scale.
This counterterm is added to keep the invariance under the
reparametrization of the null generator.

The last term in (3) is the null fluid action. In order to
construct an uncharged null fluid collapse, following the dis-
cussion in [45], we can build the action by

Sfluid =
∫

dd+1x
√−g

(
λgabl

alb + sla∇aφ
)

(6)

with some real tensor fields. According to the bulk action in
(3), the equations of the motion can be expressed as

Gab− 2

L2 gab = 2G

(
FacFb

c−1

4
F2gab

)
+ 8πGTab,

∇a F
ab = 0,

(7)

with Tab = 2λlalb which is the on-shell stress tensor of the
null fluid. One solution is the charged AdS-Vaidya spacetime
whose line element is given by

ds2 = −F(r, v)dv2 + 2drdv + r2dΣ2
k,d−1 (8)

with the blackening factor

F(r, v) = k + r2

L2 − f p(v)

rd−2 + q2

r2(d−2)
. (9)

Moreover, the corresponding Maxwell field and null fluid can
be described by

Aa =
√

d − 1

2(d − 2)

(
q

rd−2
h

− q

rd−2

)
(dv)a,

λ = (d − 1)

64πG

f ′
p(v)

rd−1 ,

la = (dv)a .

(10)

where rh is the radius of the outer horizon. This solution
describes a spacetime which is sourced by the collapse of
an uncharged spherically symmetric shell of null fluid. In
particular, when the width of the shell shrinks to zero, this
scalar function can be written as

f p(v) = wd−2
1 [1 − H(v − vs)] + wd−2

2 H(v − vs), (11)

where H(v) is the Heaviside step function. This function
describes an infinitely thin shell collapse which generates a
shape transition from a black hole with total mass M1 and
charge Q to another one with mass M2 and same charge Q,
in which

Mi = (d − 1)Ωk,d−1

16πG
ωd−2
i ,

Q =
√

2(d − 1)(d − 2)Ωk,d−1

8πG
q,

(12)

where Ωk,d−1 denotes the volume of the corresponding spa-
tial geometry.

3 Holographic complexity in charged AdS-Vaidya black
hole

In this section, we turn to investigate the “complexity equals
action” conjecture. Following the standard procedures, we
focus on the change rate of the action in the WDW patch of
the charged AdS-Vaidya black hole with an uncharged thin
shell of null fluid collapse. In this case, the WDW patch can
be divided into three regions: the stationary region before the
collapse, the null shell with a finite width, and the stationary
region after the collapse. As shown in [45], with the width
of the shell shrinking to zero, the contributions from the null
shell will vanish. Thus, the full action only depends on other
two stationary regions. According to the line element (8), the
on-shell bulk action can be expressed as

Sbulk = 1

16πG

∫
V
dd+1x

√−g

(
−2d

L2 + 2(d − 2)

r2(d−1)
q2

)
.

(13)
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When the width of this shell shrinks to zero, the bulk metric
can be described by (8) with (11). Then, the spacetime is
divided into two regions by the null shell v = vs . And the
blackening factor can be written as

v < vs : F(r, v) = f1(r) = k + r2

L2 − ωd−2
1

rd−2 + q2

r2(d−2)
,

v > vs : F(r, v) = f2(r) = k + r2

L2 − ωd−2
2

rd−2 + q2

r2(d−2)
.

(14)

For the convenience of later calculations, we would like to
introduce the tortoise coordinates as

v < vs : r∗
1 (r) = −

∫ ∞

r

dr

f1(r)
, (15)

v > vs : r∗
2 (r) = −

∫ ∞

r

dr

f2(r)
. (16)

We choose this range of integration to make that both expres-
sions satisfy limr→∞ r∗

1,2(r) → 0. According to Ref. [14],
with the blackening factors Eq. (14), one can obtain

r∗
i (r) = ln(|r − r+,i |/r)

gi (r+,i )(r+,i − r−,i )
− ln(|r − r−,i |/r)
gi (r−,i )(r+,i − r−,i )

− 1

r+,i − r−,i

∫ ∞

r
Gi (r)dr,

(17)

where

gi (r) = fi (r)

(r − r+,i )(r − r−,i )
,

Gi (r) = gi (r+,i )r − gi (r)r+,i

gi (r+,i )gi (r)r(r − r+,i )

− gi (r−,i )r − gi (r)r−,i

gi (r−,i )gi (r)r(r − r−,i )

(18)

with i = 1, 2. Using these coordinates, one can also define an
“outgoing” null coordinate u and auxiliary time coordinate t
as

ui ≡ v − 2r∗
i (r), ti ≡ v − r∗

i (r). (19)

Next, we apply these coordinates to label the null surface
which crosses the null shell at the point r = rw. In the region
v > −tw, this surface can be described by u2 = ū2. And in
v < −tw, it becomes u1 = ū1. Since all of them cross the
same point (−tw, rw), we have

ū2 = −tw − 2r∗
2 (rw), (20)

ū1 = −tw − 2r∗
1 (rw). (21)

By performing an infinitesimal transformation ū1 → ū1 +
δū1 to this null surface and using (20) and (21), one can
further obtain

f2(rw)δū2 = f1(rw)δū1. (22)

Then, we introduce four positions which are important in
defining the WDW patch in our case. As shown in Figs. 1
and 2, rb is where the left future boundary of the WDW
patch meets the shock wave inside the future black hole, rs is
where the right past boundary of the WDW patch meets the
shock wave out of the black hole; r1,2 is where the past/future
null boundary segments of the WDW patch meet inside the
horizon. In order to regulate the divergence near the AdS
boundary, a cut-off surface r = rΛ is introduced.

By using the tortoise coordinates, one can find that the
coordinates rs, rb, r1 and r2 yield

tw + 2r∗
2 (rs) = −tR,

tw + 2r∗
1 (rb) = tL ,

tw + 2r∗
1 (rs) = tL + 2r∗

1 (r1),

tw + 2r∗
2 (rb) = −tR + 2r∗

2 (r2).

(23)

In what follows, we will use the methods in [11] to evaluate
the derivative of the complexity of formation with respect to
tw as well as the growth rate of the complexity in the charged
Vaidya spacetime.

First of all, we consider the additional complexity, com-
monly referred to the complexity of formation, comes from
the comparison of two circuit complexities, one is from ther-
mofield double state (TFD), the other is two unentangled
copies of the vacuum state, i.e.,

ΔC = C(|T FD〉) − C(|0〉L ⊗ |0〉R). (24)

Using the CA conjecture, the holographic calculation is to
evaluate the WDW action for tL = tR = 0 in the black
hole and subtract that for two copies of the AdS vacuum
geometry. Note that the complexity of the formation can be
studied as a function of tw. In order to show the switchback
effect, next, we consider the derivative of the complexity of
formation with respect to tw (the slop of the complexity of
formation). Through the shift symmetry to the antisymmetric
time evolution of the complexity, we have

dΔS

dtw
=

[
dS

dtR
− dS

dtL

]
tL=tR=0

, (25)

where S = S(tL , tR) is denoted as the action for the WDW
patch determined by the time slices on the left and right AdS
boundaries [4,5]. Thus, the key to evaluate the slope of the
complexity of formation is to obtain the time derivative of
the action with respect to tR and tL .

Then, we consider the growth rate of the complexity with
respect to a symmetric time tL = tR = t/2. To evaluate this
quantity, we turn attention to the change of the action which
can be defined as

δS ≡ S(tL + δt/2, tR + δt/2) − S(tL , tR)

in the WDW patch. Following the standard prescription pro-
posed by Refs. [45,46], we shall apply the affine parameter
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for null generator of null segments. As a consequence, the
contributions from the corners at rs/b, as well as all of the null
segments will vanish. For simplicity, we rewrite the change
of the action as δS = δSL + δSR , with

δSL = S(tL + δt/2, tR) − S(tL , tR), (26)

δSR = S(tL , tR + δt/2) − S(tL , tR). (27)

Therefore, in order to obtain the slope of the complexity of
formation as well as the growth rate of the complexity, we
need derive the change of the action δSR and δSL .

3.1 The change of the action

3.1.1 δSR

We first calculate δSR where we fix the left boundary time tL
and vary tR in the right boundary as shown in Fig. 1. Consid-
ering the local symmetries of this spacetime, the nonvanish
terms are contributed by the regions M1, M2, M′

2, as well
as the joints J ′

1, J1, J ′
2, J2. Then, we have

δSR = SM′
2
− SM2 + SJ ′

2
− SJ2 − SM1 + SJ ′

1
− SJ1 .

Here, M2 is bounded by the null surfaces v = tR , v = −tw,
u2 = tR and u2 = tR + δtR . M′

2 is bounded by u2 =
tR + δtR, u2 = uL , v2 = tR and v2 = tR + δtR . And M1 is
bounded by v = −tL , v = −tw, u1 = ū1 and u1 = ū1 + δū1

Fig. 1 The change of the Wheeler–DeWitt patches in a charged
Vaidya-AdS black hole, where we fix the left boundary time tL and
vary tR in the right boundary

with

δū1 = f2(rs)

f1(rs)
δū2 = f2(rs)

f1(rs)
δtR, (28)

where we have used Eq. (22).
To evaluate the action contributed by M′

2, using the coor-
dinate (v, r) and keeping the first order of δtR , one can obtain

SM′
2

= Ωk,d−1

16πG

∫ tR+δtR

tR
dv

×
∫ ρ2(v)

ρ′
2(v)

drrd−1
(

−2d

L2 + 2(d − 2)

r2(d−1)
q2

)

= −Ωk,d−1δtR
8πG

(
rdΛ
L2 − rd2

L2 + q2

rd−2
Λ

− q2

rd−2
2

)
,

(29)

where r = ρ2(v) is the solution of the equation u2(v, r) =
tR + δtR and r = ρ′

2(r) is the solution of the equation
u2(v, r) = uL . Similarly, with (u2, r) coordinates, we have

SM2 = −Ωk,d−1δtR
8πG

(
rdΛ
L2 − rds

L2 + q2

rd−2
Λ

− q2

rd−2
s

)
, (30)

where r = ρ(u2), r = ρs(u2) are the solutions of the equa-
tion v(u2, r) = tR and v(u2, r) = −tw, respectively. Let us
turn to the bulk region M1. With similar calculation, one can
further obtain

SM1 = −Ωk,d−1

8πG
δū1

(
rds
L2 − rd1

L2 + q2

rd−2
s

− q2

rd−2
1

)
(31)

with δū1 = f2(rs )
f1(rs )

δtR . Combining these bulk contributions,
we have

SM′
2
− SM2 − SM1

= −Ωk,d−1δtR
8πG

{(
1 − f2(rs)

f1(rs)

)
rds
L2 − rd2

L2 + f2(rs)

f1(rs)

rd1
L2

+
[(

1 − f2(rs)

f1(rs)

)
1

rd−2
s

− 1

rd−2
2

+ f2(rs)

f1(rs)

1

rd−2
1

]
q2

}
.

We next consider the contributions from the joints in the
δSR . Using the expression of the corner term, one can obtain

SJi = 1

8πG

∫
Ji

dd−1x
√

γ ηi = Ωk,d−1r
d−1
i

8πG
ηi , (32)

where Ji ∈ {J1,2,J ′
1,2} and ri ∈ {r1,2, r ′

1,2}. To obtain the
corner parameter ηi , we need define the generator of the null
boundary of WDW patch with affine parameters. The relevant
null normals to the past right null boundary can be defined
as

k pa =
⎧⎨
⎩

α
(
−(dv)a + 2

f2(r)
(dr)a

)
for r > rs

α̃
(
−(dv)a + 2

f1(r)
(dr)a

)
for r < rs

. (33)
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For the future left null boundary, we have

k f
a =

⎧⎨
⎩

α
(
−(dv)a + 2

f1(r)
(dr)a

)
for r > rb

α̂
(
−(dv)a + 2

f2(r)
(dr)a

)
for r < rb

. (34)

By demanding that the null boundary is affinely parameter-
ized across the shock wave, we have [50]

α̃

α
= f1(rs)

f2(rs)
and

α̂

α
= f2(rb)

f1(rb)
. (35)

We can also introduce the null normal to the future right/past
left null boundary,

ka = α(dv)a . (36)

In what follows, we consider the contributions from J2,J ′
2.

Using η = ln | 1
2k1 · k2|, one can obtain

η′
2 = − ln

(
− f2(r ′

2) f1(rb)

α2 f2(rb)

)
,

η2 = − ln

(
− f2(r2) f1(rb)

α2 f2(rb)

)
.

(37)

Thus, we have

SJ ′
2
− SJ2

= Ωk,d−1r
′d−1
2

8πG
η′

2
− Ωk,d−1r

d−1
2

8πG
η2

= −δtR

[
Ωk,d−1

16πG
rd−1

2 f ′
2(r2)

+Ωk,d−1(d − 1)

16πG
rd−2

2 f2(r2) ln

(
− f2(r2) f1(rb)

α2 f2(rb)

)]
,

(38)

where we have used

δr2 = r ′
2 − r2 = 1

2
f2(r2)δtR, (39)

Then, we consider the contributions from J1,J ′
1. Using the

relations

δrs = − f2(rs)

2
δtR,

δr1 = − f1(r1)

2
δū1 = − f1(r1)

2

f2(rs)

f1(rs)
δtR,

(40)

and

η′
1 = − ln

(
− f1(r ′

1) f2(r
′
s)

α2 f1(r ′
s)

)
,

η1 = − ln

(
− f1(r1) f2(rs)

α2 f1(rs)

)
,

(41)

one can obtain

SJ ′
1
− SJ1

= Ωk,d−1r
′d−1
1

8πG
η′

1
− Ωk,d−1r

d−1
1

8πG
η1

= Ωk,d−1δtR
16πG

[
rd−1

1
f2(rs) f ′

1(r1)

f1(rs)

+(d − 1)rd−2
1

f2(rs) f1(r1)

f1(rs)
ln

(
− f1(r1) f2(rs)

α2 f1(rs)

)]

+ Ωk,d−1δtRr
d−1
1

16πG

(
f ′
2(rs) − f ′

1(rs)
f2(rs)

f1(rs)

)
.

(42)

Combining these expressions, we have

δSR = SM′
2
− SM2 − SM1 + SJ ′

2
− SJ2 + SJ ′

1
− SJ1

= −Ωk,d−1

16πG

{
2

(
1 − f2(rs)

f1(rs)

)(
rds
L2 + q2

rd−2
s

)

+ (d − 2)

(
ωd−2

2 − f2(rs)

f1(rs)
ωd−2

1

)}
δtR

− (d − 1)Ωk,d−1

8πG

(
f2(rs)

f1(rs)

q2

rd−2
1

− q2

rd−2
2

)
δtR

+ Ωk,d−1r
d−1
1

16πG

(
f ′
2(rs) − f ′

1(rs)
f2(rs)

f1(rs)

)
δtR

− (d−1)Ωk,d−1

16πG

[
rd−2

2 f2(r2) ln

(
− f2(r2) f1(rb)

α2 f2(rb)

)

−rd−2
1

f2(rs) f1(r1)

f1(rs)
ln

(
− f1(r1) f2(rs)

α2 f1(rs)

)]
δtR

(43)

3.1.2 δSL

We turn to calculate δSL where we fix the right boundary
time tR and vary tL in left boundary as illustrated in Fig. 2.
The nonvanish terms are contributed by the regions V1, V2,
V ′

2, as well as the joints C′
1, C1, C′

2, C2. Then, we have

δSL = SV ′
2
+ SV ′

1
− SV1 + SC′

2
− SC2 + SC′

1
− SC1 . (44)

Turning to the bulk contributions, with similar calculation,
one can obtain

SV ′
1

= −Ωk,d−1δtL
8πG

(
rdΛ
L2 − rdb

L2 + q2

rd−2
Λ

− q2

rd−2
b

)
,

SV1 = −Ωk,d−1δtL
8πG

(
rdΛ
L2 − rd1

L2 + q2

rd−2
Λ

− q2

rd−2
1

)
,

SV ′
2

= −Ωk,d−1δtL
8πG

f1(rb)

f2(rb)

(
2rdb
L2 − 2rd2

L2 + q2

rd−2
b

− q2

rd−2
2

)
.

Using the relations

δrb = f1(rb)

2
δtL , δr2 = f2(r2)

2

f1(rb)

f2(rb)
δtL , (45)
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the corner terms which are contributed by the joints C′
1 ,C1,

C′
2 and C2 can be expressed as

SC′
1
−SC1=

Ωk,d−1δtL
16πG

[
rd−1

1 f ′
1(r1)

+(d−1)rd−2
1 f1(r1) ln

(
− f1(r1) f2(rs)

α2 f1(rs)

)]

SC′
2
−SC2= − Ωk,d−1δtL

16πG

f1(rb)

f2(rb)

[
rd−1

2 f ′
2(r2)

+(d−1)rd−2
2 f2(r2) ln

(
− f2(r2) f1(rb)

α2 f2(rb)

)]

− Ωk,d−1δtLr
d−1
1

16πG

(
f ′
1(rb) − f ′

2(rb)
f1(rb)

f2(rb)

)
,

(46)

Combining these expressions, we have

δSL = Ωk,d−1

16πG

[
2

(
1 − f1(rb)

f2(rb)

) (
rdb
L2 + q2

rd−2
b

)

+ (d − 2)

(
ωd−2

1 − f1(rb)

f2(rb)
ωd−2

2

)]
δtL

+ (d − 1)Ωk,d−1

8πG

(
f1(rb)

f2(rb)

q2

rd−2
2

− q2

rd−2
1

)
δtL

− Ωk,d−1r
d−1
2

16πG

(
f ′
1(rb) − f ′

2(rb)
f1(rb)

f2(rb)

)
δtL

+ (d−1)Ωk,d−1

16πG

[
rd−2

1 f1(r1) ln

(
− f1(r1) f2(rs)

α2 f1(rs)

)

−rd−2
2

f1(rb) f2(r2)

f2(rb)
ln

(
− f2(r2) f1(rb)

α2 f2(rb)

)]
δtL .

(47)

3.1.3 Counterterm contributions

In this subsection, we calculate the contributions from the
counterterm as mentioned above. In our case, we need to
consider the contributions from all of the null boundaries of
the WDW patch. First, we consider the past null boundary
on the right side of the WDW patch. As illustrated in Fig. 2,
this boundary crosses the shock wave at r = rs . From Eq.
(33), the null normal of this null surface can be re-expressed
by

k pa = H(r, v)

(
−(dv)a + 2

F(r, v)
(dr)a

)
(48)

with affine parameters, where we denote

H(r, v) = αH(r − rs) + α̃ (r − rs) . (49)

Due to ka = (
∂
∂λ

)a
, one can obtain dr/dλ = H(r, v). Using

the expression Θ = ka∇a ln
√

γ , the expansion scalar of this
null surface generators can be further expressed by

Θ = (d − 1)H(r, v)

r
. (50)

Fig. 2 The change of the Wheeler–DeWitt patches in a charged
Vaidya-AdS black hole, where we fix the right boundary time tR and
vary tL in the left boundary

Whence, the counterterm contribution for the past null
boundary on the right side can be written as

S(1)
ct =Ωk,d−1(d−1)

8πG

∫ rΛ

r1

dr rd−2 ln

(
(d−1)lct H(r, v)

r

)

= Ωk,d−1

8πG

[
rd−1
Λ ln

(
(d − 1)αlct

rΛ

)

−rd−1
1 ln

(
(d − 1)αlct

r1

)
+ rd−1

Λ − rd−1
1

d − 1

]

+ Ωk,d−1

8πG

(
rd−1
s − rd−1

1

)
ln

(
f1(rs)

f2(rs)

)
.

(51)

where we replaced dλ = dr/H(r, v). Next, we consider the
left future boundary of the WDW patch. By replacing rs, r1

with rb, r2 respectively, the corresponding conterterm can be
further obtained

S(2)
ct = Ωk,d−1

8πG

[
rd−1
Λ ln

(
(d − 1)αlct

rΛ

)

−rd−1
2 ln

(
(d − 1)αlct

r2

)
+ rd−1

Λ − rd−1
2

d − 1

]

+ Ωk,d−1

8πG

(
rd−1
b − rd−1

2

)
ln

(
f2(rb)

f1(rb)

)
.

(52)
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With similar calculation, counterterm contributions of the
past boundary on the left side and the future boundary on the
right can be expressed as

S(3)
ct = Ωk,d−1

8πG

[
rd−1
Λ ln

(
(d − 1)αlct

rΛ

)

−rd−1
1 ln

(
(d − 1)αlct

r1

)
+ rd−1

Λ − rd−1
1

d − 1

]
.

S(4)
ct = Ωk,d−1

8πG

[
rd−1
Λ ln

(
(d − 1)αlct

rΛ

)

−rd−1
2 ln

(
(d − 1)αlct

r2

)
+ rd−1

Λ − rd−1
2

d − 1

]
.

(53)

Then, we consider the change of the action where we fix
the right boundary time tR and vary tL in the left boundary.
Using (39) and (40), one can obtain

δSctR = (d − 1)Ωk,d−1

16πG

{
rd−2
1 f1(r1)

f2(rs)

f1(rs)
ln

(
f1(rs)

f2(rs)

)

+ 2rd−2
1 f1(r1)

f2(rs)

f1(rs)
ln

(
(d − 1)αlct

r1

)

− rd−2
2 f2(r2)

[
ln

(
f2(rb)

f1(rb)

)
+2 ln

(
(d−1)αlct

r2

)]

−rd−2
s f2(rs) ln

(
f1(rs)

f2(rs)

)}
δtR

+
(
rd−1
1 −rd−1

s

) Ωk,d−1

16πG

[
f2(rs) f ′

1(rs)

f1(rs)
− f ′

2(rs)

]
δtR .

(54)

When we fix the left boundary time tL and vary tR , the cor-
responding change of the action can be shown as

δSctL = (1 − d)Ωk,d−1

16πG

{
rd−2

2 f2(r2)
f1(rb)

f2(rb)
ln

(
f2(rb)

f1(rb)

)

+ 2rd−2
2 f2(r2)

f1(rb)

f2(rb)
ln

(
(d − 1)αlct

r2

)

− rd−2
1 f1(r1)

[
ln

(
f1(rs)

f2(rs)

)
+2 ln

(
(d−1)αlct

r1

)]

−rd−2
b f1(rb) ln

(
f2(rb)

f1(rb)

)}
δtL

−
(
rd−1

2 −rd−1
b

) Ωk,d−1

16πG

[
f1(rb) f ′

2(rb)

f2(rb)
− f ′

1(rb)

]
δtL .

(55)

3.2 Complexity of Formation

In this subsection, we consider the complexity of formation.
By using Eqs. (25), (43), (47), (54), and (55), one can obtain

32πG

(d − 1)Ωk,d−1

dΔS

dtw

= 2

(
q2

rd−2
2

+ q2

rd−2
1

− q2

rd−2
b

− q2

rd−2
s

)

− 2
f1(rb)

f2(rb)

(
q2

rd−2
2

− q2

rd−2
b

)
−2

f2(rs)

f1(rs)

(
q2

rd−2
1

− q2

rd−2
s

)

−
[
rd−2
b f1(rb) ln

(
f2(rb)

f1(rb)

)
+rd−2

s f2(rs) ln

(
f1(rs)

f2(rs)

)]

+ rd−2
1 f1(r1)

(
f2(rs)

f1(rs)
− 1

)
ln

(
− (d − 1)2l2ct f1(r1)

r2
1

)

− rd−2
2 f2(r2)

(
1 − f1(rb)

f2(rb)

)
ln

(
− (d − 1)2l2ct f2(r2)

r2
2

)
.

Using Eqs. (17) and (23), the slope of the complexity
of formation can be directly evaluated. In the left panel of
Fig. 3, we show the effect of a light shock wave on the
slope of the complexity of formation as a function of tw.
As shown in this figure, one can find that there exists a
scrambling time t∗scr which is characterized by the energy
of the shock wave δω = ω2 − ω1. And the slope is
approximately zero until the t 
 t∗scr at which point it
rapidly rises to the final constant value. This implies that
for the order of the scrambling time t∗scr, the complexity
of formation is same as the case of unperturbed state. In
the regime of tw > t∗scr, it grows linearly with respect
to the time tw. This shares the similar behavior with the
uncharged black hole in [46]. And it is also in agree-
ment with the switchback effect which we will discuss in
Sect. 3.5.

In the right panel of Fig. 3, we show the effect of heav-
ier shock waves. In this regime, the slope starts at a finite
value and suddenly drop to a minimal value, after that, it
rapidly rises to the final constant value. It implies that the
complexity of formation starts changing immediately and
rapidly approach a regime of linear growth with increas-
ing tw. This is very different with the light shock wave
case.

Now, we would like to analytically investigate the beha-
viour of these figures in the case of the light shock wave with
ωd−2

2

ωd−2
1

= 1 + 2ε. In order to find the scrambling time for the

light shock wave, we consider the limit where the shock wave
enters at very early time, i.e., tw � 1. According to Eq. (17),
one can obtain

rs/r+ ≈ 1 + e−8πT1tw , rb/r+ ≈ 1 − e−8πT1tw . (56)

In this limit, there are two interesting regimes: ε � e−8πT1tw

and ε � e−8πT1tw . Then, the scrambling time tscr =
− 1

8πT1
ln ε is determined by the transition condition ε ≈

e−8πT1tw .
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Fig. 3 The derivative of the complexity of formation with respect to
tw . The left panel illustrates the behaviour for a light shock wave,
with d = 3, k = 0, lct = 1, L = 1, q = 0.6, ω1 = 1, where the

dishes lines describe the corresponding scrambling time t = t∗scr. The
right panel illustrates the behaviour for the heavy shock wave with
d = 3, k = 0, lct = 1, L = 1, ω1 = 1, w2 = 2

3.2.1 Large and small time behaviors

According to these figures, one can see that there exist two
interesting regimes: tw � t∗scr and tw � t∗scr, i.e., the small
and large limit of tw. First, we consider the small time limit.
In this limit, we have tw → 0, which will give rs → ∞ and
rb, r1, r2 → rm , where rm is determinate by r∗

1 (rm) = 0.
Then, we have

32πG

(d − 1)Ωk,d−1

dΔS

dtw

∣∣∣∣
tw→0+

= ωd−2
1 −ωd−2

2 −rd−2
m f2(rm) ln

(
− (d − 1)2 f2(rm)l2ct

r2
m

)

+ rd−2
m f1(rm) ln

(
− (d − 1)2 f1(rm)l2ct

r2
m

)
,

(57)

In the limit of the light shock wave, we have ω2 
 ω1. Then,
the slope will approach zero, which is in agreement with the
behavior as illustrated in the left panel of Fig. 3.

Then, we consider the small charge limit q → 0 under
the heavy shock wave case at tw = 0. For simplicity, here
we focus on the 4-dimensional planar black hole, i.e., d =
3, k = 0, lct = 0. According to Eq. (17), we can obtain
rm = r−,1. Then, we have

16πG

(d − 1)Ω0,2

dΔS

dtw

∣∣∣∣
tw→0+

= −δm − r−,1 f2(r−,1) ln

(
−4 f2(r−,1)l2ct

r2−,1

)

≈ δm
[
ln

(
4l2ctδmω3

1

)
− 1 − 6 ln q

]
+ O(q).

(58)

This equation illustrates that the complexity of formation
at tw = 0 is divergent under the limit q → 0, which
implies that, for the complexity of formation, the result of
the uncharged case can not be obtained by setting q → 0
from the charged case. However, as is shown in Fig. 4, we

Fig. 4 The complexity of formation with respect to tw for the small
time region with some small charges, where we set d = 3, k = 0, lct =
1, L = 1, ω1 = 1, ω2 = 2

can see that the smaller of the charge q, the shorter of time tw
dropping the minimal value, which means that this divergent
peak only exists at t = 0 under the limit q → 0.

Next, we consider the large time limit tw → ∞. In this
limit, rs and rb approach r+,2 and r+,1 respectively. With
these in mind, we have

32πG

(d − 1)Ωk,d−1

dΔS

dtw

∣∣∣∣
tw→∞

= 2

(
q2

rd−2
2

+ q2

rd−2
1

− q2

rd−2
+,1

− q2

rd−2
+,2

)

− rd−2
1 f1(r1) ln

(
− (d − 1)2l2ct f1(r1)

r2
1

)

−rd−2
2 f2(r2) ln

(
− (d − 1)2l2ct f2(r2)

r2
2

)
,

(59)
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Fig. 5 The action growth rate for the light shock wave with the symmetric time evolution as tL = tR = t/2 with tw = 5 (left) and tw = 14 (right).
We have set d = 3, k = 0, lct = 1, L = 1, q = 0.6, ω1 = 1, ω2 = 1 + 10−4

In limit of the light shock wave, by replacing the label 2 to
1, we can further obtain

32πG

(d − 1)Ωk,d−1

dΔS

dtw

∣∣∣∣
tw→∞

= 4

(
q2

rd−2
m

− q2

rd−2+

)

− 2rd−2
m f (rm) ln

(
− (d − 1)2l2ct f (rm)

r2
m

)
.

(60)

Here, we also used the relation r1 = r2 = rm under the light
shock wave limit.

3.3 Time evolution of the complexity

In this subsection, we consider the time evolution of the holo-
graphic complexity. By summing the various expressions
above, the actiom growth rate with the counterterm can be
written as

32πG

(d − 1)Ωk,d−1

dS

dt

= 2

(
q2

rd−2
2

− q2

rd−2
1

+ q2

rd−2
b

− q2

rd−2
s

)

+ 2
f1(rb)

f2(rb)

(
q2

rd−2
2

− q2

rd−2
b

)
−2

f2(rs)

f1(rs)

(
q2

rd−2
1

− q2

rd−2
s

)

+
[
rd−2
b f1(rb) ln

(
f2(rb)

f1(rb)

)
−rd−2

s f2(rs) ln

(
f1(rs)

f2(rs)

)]

+ rd−2
1 f1(r1)

(
1 + f2(rs)

f1(rs)

)
ln

(
− (d − 1)2l2ct f1(r1)

r2
1

)

− rd−2
2 f2(r2)

(
1 + f1(rb)

f2(rb)

)
ln

(
− (d − 1)2l2ct f2(r2)

r2
2

)
.

Fig. 6 The action growth rate for the heavy shock waves with the
symmetric time evolution as tL = tR = t/2, where we set d = 3, k =
0, lct = 1, L = 1, ω1 = 1, ω2 = 2, and tw = 5. Here q = 0.687 is a
special case where the initial black hole is a extremal black hole

Under the limit of the light shock wave, the time dependent
action growth rate will return to that of the eternal RN black
hole [14].

Considering Eqs. (17) and (23), we can numerically cal-
culate the action growth rate in Eq. (61). Then, we show
the action growth rate as the function of t for the light and
heavy shock wave in Figs. 5 and 6 separately. In these figures,
we can see that the action growth rate develops a minimum
or maximum at some finite time in very small charge case.
These minimum or maximum becomes deeper and sharper
for smaller charges. Therefore, the behaviors for the charged
cases can smoothly approach that of the neutral cases. And
the minimum or maximum is corresponding to the critical
time in uncharged black hole [46].

In the left panel of Fig. 5, we show the action growth rate
for a very light shock wave with δω = ω2 − ω1 = 10−4

at tw = 5. These figures show the same pictures with that
of the internal RN black hole, which can be understood by
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the switch back effect since tw = 5 < t∗scr in this case. In
the right panel, we show the growth rate at tw = 14 such
that tw > t∗scr. After the scrambling time, the action of the
light shock wave will be clearly illustrated. Therefore, in
this case, it will share the similar behaviours with the case
of heavy shock wave as shown in Fig. 6. Moreover, for the
small charge case, a minimum value of the action growth
rate appears at a finite time. Under the uncharged limit, this
minimum point will reduce to the critical time in the neutral
case as shown in Fig. 2 of Ref. [46].

In Fig. 6, we show the action growth rate for a heavier
shock wave with δω = 1 at tw = 5. We can see that there
might exist two critical times under the uncharged limit,
which will coincide with the neutral case for the heavier
shock wave in Fig.3 of Ref. [46]. In addition, as shown in
Fig. 6, for the non-extremal case, there exists at least two
horizontal periods, in which the rate can be regarded as con-
stant. However, for the extremal case, there only exists one
horizontal period, i.e., the late time period.

3.3.1 Early and late time behaviors

Here, we consider some simple limits for the growth rate of
the complexity. First, we begin by examining the early time
behavior, where tw is sufficiently large. Then rs approaches
r+,2 and rb approach r+,1. Then, the growth rate of the com-
plexity becomes

32πG

(d − 1)Ωk,d−1

dS

dt

∣∣∣∣
tw→∞

= 2

(
q2

rd−2
2

− q2

rd−2
1

+ q2

rd−2
+,1

− q2

rd−2
+,2

)

+ rd−2
1 f1(r1) ln

(
− (d − 1)2l2ct f1(r1)

r2
1

)

− rd−2
2 f2(r2) ln

(
− (d − 1)2l2ct f2(r2)

r2
2

)
.

(61)

One can find that this limit depends on the value of the
times tR and tL , which is different from the uncharged case
where this limit is simply proportional to the difference of
the masses.

Next, we consider the late time behaviors. In the late time
limit, the points rb, rs, r1 and r2 approach to r−,1,r+,2,r+,1

and r−,2 respectively. As a consequence, we have f1(rb),
f1(r1), f2(rs), f2(r2) → 0. Using these expressions, the
action growth rate can be written as

32πG

(d − 1)Ωk,d−1

dS

dt

∣∣∣∣
t→∞

= 2

(
q2

rd−2
−,1

− q2

rd−2
+,1

+ q2

rd−2
−,2

− q2

rd−2
+,2

)
.

(62)

The late time rate is proportional to the average value of the
two eternal RN-AdS rate without shockwave with parame-
ter 1 and 2. It would be convenient to work in terms of the
following dimensionless quantities:

y = r−,2

r+,2
, α = r+,2

r+,1
, β = r−,1

r−,2
,

z = L

r+,2
, x = r

r+,1
.

(63)

Using the black hole mass and these dimensionless quanti-
ties, according to (62), one can obtain

dCA

dt

∣∣∣∣
t→∞

= Λ1M1 + Λ2M2

π
(64)

with

Λ1 =
(

1 − yd−2
1

) [(
1 − yd1

) + kz2
1

(
1 − yd−2

1

)]
(

1 − y2(d−1)
1

)
+ kz2

1

(
1 − y2(d−2)

1

) , (65)

Λ2 =
(
1 − yd−2

) [(
1 − yd

) + kz2
(
1 − yd−2

)]
(
1 − y2(d−1)

) + kz2
(
1 − y2(d−2)

) , (66)

in which

y1 = r−,1

r+,1
= α β y, z1 = L

r+,1
= α z. (67)

In these variables, when we set ω2 → ω1, i.e., α, β → 1,
this result will return to the case with the light shock wave.
Meanwhile, it is also equal to the value of the eternal RN
black hole [14]. When we set y → 0, this result will return
to that of the uncharged case [46]. For the cases k = 0, 1,
it’s not difficult to see that our late time value is less than the
uncharged case, i.e., this result saturates the bound

dCA

dt

∣∣∣∣
t→∞

≤ M1 + M2

π
. (68)

3.4 Complexity without counterterm

In this subsection, we consider the growth rate of the com-
plexity where we drop the counterterm from the full action.
Without the inclusion of the counterterm, the growth rate is
only contributed by δSR and δSL . Considering the late time
limit, from Eqs. (47) and (43), one can obtain

d S̃

dt

∣∣∣∣∣
t→∞

= Ωk,d−1

32πG

[
2

(
rd−,1 − rd+,2

L2 + q2

rd−2
−,1

− q2

rd−2
+,2

)

+rd−1
+,1 f ′

2(r+,2) − rd−1
−,2 f ′

1(r−,1)

+ (d − 2)

(
ωd−2

1 − ωd−2
2 + 2q2

rd−2
−,2

− 2q2

rd−2
+,1

)]
.

(69)
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First, we consider the limit of light but still non-zero shocks.
In this limit, we have ω2 
 ω1, r+,2 
 r+,1, f2 
 f1 and
r−,2 
 r−,1. Then, the late time limit becomes

d S̃

dt
= Ωk,d−1

32πG

[
(3d−4)q2

rd−2 −(d−2)

(
k + r2

L2

)
rd−2

]r−,1

r+,1

.

(70)

Next, we consider the shock wave with exactly zero energy.
In this situation, we have ω2 = ω1 and f2 = f1. According
to (47) and (43), the action growth rate can be shown as

d S̃

dt
= (d − 1)Ωk,d−1

8πG

(
q2

rd−2
2

− q2

rd−2
1

)

+ (d − 1)Ωk,d−1

16πG

[
rd−2

1 f1(r1) ln

(
− f1(r1)

α2

)

−rd−2
2 f2(r2) ln

(
− f2(r2)

α2

)]
(71)

which is exactly the growth rate of the eternal RN black hole
as discussed in [14]. Then, the late time limit can be given
by

d S̃

dt
= (d − 1)Ωk,d−1

8πG

(
q2

rd−2
−,1

− q2

rd−2
+,1

)
. (72)

Comparing (70) and (72), one can find that the late time
growth rate in the limit of light shocks can’t return to the
case without shock wave. Therefore, in order to obtain an
expected property of the complexity, it is necessary to add
the counterterm into the full action for the CA conjecture.

3.5 Circuit analogy

In this subsection, we would like to investigate the connection
between the behaviours of our holographic results and the
switchback effect of the circuit model. As discussed in Refs.
[3,45], evolving the perturbed state independently in the left
and right times yield the expression

|T FD(tL , tR)〉pert = UR(tR + tw)ORUR(tL − tw)|T FD〉,
where the perturbed operator OR is a localized simple opera-
tor. UR(t)ORUR(−t) = I with the identity operator I when
t < t∗scr. This feature is connected to the switchback effect
[3,7] and can provide a deeper explanation of our holographic
results.

We denote the rate of the complexity to c1 before the
operator OR is inserted and c2 after it [45]. Under the limit
of light shock, we have c1 ≈ c2 ≈ c.

First of all, we consider the case tw < t∗scr. When tL < tw,
the process in Eq. (73) can be illustrated in (b) of Fig. 7. In this
situation, the switchback effect produces a cancellation for

(a) (b) (c)

Fig. 7 A representation of the insertion of a perturbed operator OR at
the time −tw for the TFD state, in analogy to the construction in figure
25 of [45] as well as figure 6 of [3]

the process below the dashed line. Therefore, the complexity
is given by

Cpert ≈ 2c t, (73)

where we set tL = tR = t/2. One can note that this complex-
ity is exactly the result of the eternal case where the cancel-
lation is always valid for the process below the dashed line.
When tL > tw, the process can be illustrated by (c) in Fig.
7. We can see that there is no opportunity for the switchback
effect. Hence, the complexity is also the result of the eternal
case which can be described by Eq. (73). As a summary, we
find that when tw < t∗scr, by virtue of the switch back effect,
the complexity is same as that of the unperturbed state. This
behavior is in agreement with our holographic result repre-
sented by the left panel of Fig. 5.

Then, we consider the case tw > t∗scr. When tL − tw >

−t∗scr, the complexity shares the same result with the case
tw < t∗scr. When tw − tL > t∗scr, the process can be illustrated
by (a) in Fig. 7. In this case, the two time-evolution operators
cancel out only during the scrambling time. Therefore, the
complexity can be written as

Cpert ≈ 2c (tw − t∗scr). (74)

This result shows that the growth rate is very close to zero in
the region t < 2(tw − t∗scr). This feature is in agreement with
our holographic result as shown in right panel of Fig. 6.

Next, we consider the complexity of formation. By setting
t = 0 an using the above equations, one can obtain

dΔCpert

dtw
= 2cH(tw − t∗scr). (75)

Again, this formula also matchs the our holographic case as
illustrated in left panel of Fig. 3 in which when t < t∗scr, the
rate of the complexity of formation is close to zero, and when
t > t∗scr, it remains constant.
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4 Conclusion and discussion

The action of AdS black hole within the WDW patch has
been related to the quantum complexity of a holographic
state. Following the procedure in [50], we calculated the
action growth rate of the charged AdS-Vaidya black hole
in (d + 1)-dimensional Einstein–Maxwell gravity. We first
introduced a charged AdS-Vaidya geometry which is source
by the collapse of an uncharged thin shell of null fluid. And
this thin shell generates a shape transition from a black hole
with total mass M1 and charge Q to another one with mass
M2 and the same charge Q.

Using the approach proposed by Lehner et al. [11], we
studied the complexity of the formation and discussed its
small and large time behaviors in Sect. 3.2. We found that
the slope of the complexity of formation shares the similar
behaviors with the uncharged case. Meanwhile, these results
are also in agreement with the switchback effect. After that,
the growth rate of the complexity was evaluated in Sect. 3.3.
By comparing it to the uncharged case, we found that the
behaviors for the charged cases can smoothly approach that
of the neutral cases. Furthermore, we also found that when
tw < t∗scr, the action growth rate is the same as the unper-
turbed case, and when tw > t∗scr, it shares the similar behav-
iors with the heavy shock wave case. And these behaviors
can be explained by the switchback effect. In addition, we
show that the late time growth rate is given by the average
value of the two RN rate without shockwave, which is con-
sistent with the uncharged case. In Sect. 3.4, we investigated
the early and late time behaviors of the complexity without
the counterterm. We demonstrated that, in order to obtain
an expected property of the complexity, it is also necessary
to introduce the counterterm on the null boundaries for the
charged Vaidya black hole. Finally, by analysing the circuit
model, we showed our results our holographic results are in
agreement with that of the circuit model.

In this paper, we only considered the CA conjecture
in charged RN black hole sourced by the collapse of an
uncharged thin shell of null fluid. It would also be interesting
to further investigate the CV conjecture in the charged Vaidya
black hole. As discussed in the uncharge case [50], the CV
conjecture also shares the similar results with the CA con-
jecture, such as the late time behaviors and the switch back
effect. Therefore, we have good reason to believe that the CV
conjecture have same behaviors with the CA conjecture in
the charged Vaidya black hole, such as the late time action
growth rate can also be expressed as the sum of the average
value of the two RN rate without shockwave. In addition, it
would be interesting to investigate the charged Vaidya black
hole with a charged shock wave, in which we might possi-
ble to study the one-side charged Vaidya spacetimes which
formed by the collapse of an charged spherically symmetric

shell to the AdS vacuum spacetime, and consider the process
from the finite temperature black hole to extremal black hole.
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