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1 Introduction

The AdSd+1/CFTd correspondence [2] or gauge/gravity duality is the duality between
quantum gravity theory in (d+ 1)-dimensional asymptotically Anti-de Sitter (AdS) space-
time and d-dimensional conformal field theory (CFT) living on the asymptotic boundary
of AdS spacetime. Remarkably, the AdS/CFT correspondence provides an ideal proving
ground for probing many deep questions in quantum gravity, e.g., understanding the mi-
croscopic origin of black hole entropy. Even though this holographic duality provides us
with the most promising and precise definition of nonperturbative quantum gravity, our
universe is quite different from AdS spacetime. Defining a quantum gravity theory for
cosmological spacetimes is a crucial question. In the light of the success of the AdS/CFT
correspondence, it is natural to investigate the holographic description of asymptotically
de Sitter (dS) spacetimes.

The discussion of dS holography begins with the observation that an inertial observer
in dSd+1 is surrounded by a causal or cosmological horizon and experiences a non-vanishing
Hawking temperature given by [3]

T = 1
2π L , (1.1)

where L is the background curvature scale. The entropy associated to the cosmological
horizon is determined by the Bekenstein-Hawking formula [3],1

SdS = Area
4GN

= Ld−1 Ωd−1
4GN

≡ N (1.2)

where Ωd−1 = 2πd/2/Γ(d/2) is the volume of a unit (d− 1)-sphere. These features indicate
that the physics of dSd+1 is essentially different from that the AdS counterpart. The

1Quantum corrections to this expression were evaluated in [4].
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holographic description of dS spacetime is further challenging because dS spacetime does
not have an asymptotic spatial boundary like AdS.

Despite the obstacles, various approaches toward dS holography have been developed.
As an ‘analytic continued’ analog of the standard AdS/CFT, the so-called dS/CFT cor-
respondence [5–8] proposes a holographic duality between gravity in asymptotically dSd+1
spacetime and a d-dimensional CFT living on the spacelike boundary at future timelike
infinity of dS. These ideas were further developed, e.g., [9–18], revealing that the boundary
CFT is unconventional. Implicitly this approach describes the physics of a metaobserver
living at the future infinite. An alternative approach focuses on inertial or ‘static patch’
observers, e.g., [19–26]. In the context of static patch holography, it has been argued
that the dS gravity is dual to a quantum mechanical system with a finite number of de-
grees of freedom [19–21, 27–30]. This is a reflection of the finite entropy associated with
the cosmological horizon, which we have designated N in eq. (1.2) to indicate that this
counts the number of fundamental degrees of freedom in the dual theory describing de Sit-
ter spacetime.2

Quantum information theory has produced astonishing new insights into many core
questions in the AdS/CFT correspondence, e.g., see reviews [36–38]. This progress has
motivated some interesting recent discussions of de Sitter holography [1, 39–42]. In par-
ticular, [1, 41, 42] proposed generalizations of the celebrated Ryu-Takayanagi formula [43]
for holographic entanglement entropy to de Sitter spacetime. An essential ingredient is to
replace the asymptotic AdS boundary with the boundary of the static patch, i.e., the cos-
mological horizon (or rather a stretched horizon just inside the cosmological horizon). As a
result, the entanglement entropy between the left- and right-static patches (see figure 1) is
given by eq. (1.2). Motivated by this work (in particular [1]), we examine another quantum
information inspired entry in the holographic dictionary, namely holographic complexity
(e.g., see [44] and references therein), in de Sitter spacetimes.

Holographic complexity borrows the usual notions of computational complexity used in
computer science or quantum information, e.g., see [45, 46]. Roughly speaking, holographic
complexity measures the difficulty (i.e., the resources needed) to construct a particular
target state in the boundary theory from an unentangled reference state using a set of
fundamental simple gates. From the viewpoint of the bulk spacetime (i.e., asymptotically
AdS spacetime), it appears that the holographic complexity may be associated with a broad
family of codimension-one and -zero gravitational observables [47, 48]. However, the most
studied of these are: complexity=volume (CV) [49, 50], complexity=action (CA) [51, 52]
and complexity=spacetime volume (CV2.0) [53].

The CV conjecture [49, 50] states that the complexity is dual to the maximal volume of
hypersurface anchored at the time slice Σ in the boundary on which the state is defined, i.e.,

CV(Σ) =max
Σ=∂B

[ V(B)
GN `bulk

]
, (1.3)

2Let us add that yet another approach named the dS/dS correspondence [31–35] instead considers the
correspondence between a quantum gravity in dSd+1 and two UV-cutoff CFTs which are living on dSd and
coupled to each other by a d-dimensional gravitational system.
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where GN denotes Newton’s constant in the bulk gravitational theory and B corresponds
to the bulk hypersurface of interest. The maximization here is performed over all possible
spacelike surfaces in the bulk whose boundary is fixed at the time slice Σ. The definition
of CV requires that we introduce an additional length scale `bulk to make the holographic
complexity dimensionless. For simplicity, we will set `bulk = L, i.e., the curvature radius
for bulk geometry in the following.

The CA proposal [51, 52] states that the complexity is given by evaluating the grav-
itational action on a region of spacetime, known as the Wheeler-DeWitt (WDW) patch,
which can be regarded as the causal development of a space-like bulk surface anchored on
the boundary time slice Σ. The CA proposal then is given by

CA(Σ) = IWDW

π ~
. (1.4)

The CV2.0 proposal is both a generalization and a simplification of the previous ap-
proach [53]. In this case, the holographic complexity is given by simply evaluating the
spacetime volume of the WDW patch, namely

CSV(Σ) = VWDW

GN `2bulk
. (1.5)

As with the CV proposal, an additional length scale `bulk enters the definition of this
observable as well. As before, we set `bulk = L in the following.

The goal of this paper is to study the generalization of all of these approaches to
holographic complexity in dSd+1 spacetime, following [1, 41, 42] with the boundary time
slice Σ fixed on the stretched horizon. The CV complexity has been studied in dS previously
by [1, 54]. Notably, ref. [1] argued that the complexity growth is hyperfast, apparently
diverging as the boundary time approaches some (finite) critical time. In this paper, we
regulate this divergence by introducing a geometric cutoff, i.e., a cutoff surface near future
timelike infinity. Evaluating the above three proposals for holographic complexity in dSd+1,
we find that they all exhibit similar behaviour. At early times, the complexity growth rate
increases and tends to be divergent when approaching the critical time. With the cutoff
surface, the holographic complexity remains finite, and the hyperfast growth ends before
the critical time is reached. The subsequent growth is linear in time, but the rate is large
and controlled by the cutoff.

The rest of the paper is organized as follows: in section 2, we begin by reviewing some
essential concepts for dSd+1 spacetime and introducing the basic framework for subsequent
calculations. In section 3, we start from CV2.0 by focusing on the time evolution of WdW
patch and the corresponding spacetime volume. Based on these results, we further study
CA in detail in section 4. Furthermore, we explore the extremal surfaces and CV in dSd+1 in
section 5. Finally, we discuss the implications of our results as well as some open questions
in section 6. More analytical results about extremal surfaces and CV in dS2 are given
in appendix A. We also examine the maximization of multiple extremal surfaces in dSd+1
in appendix B.
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2 Preliminaries

We will be examining the (d + 1)-dimensional de Sitter (dSd+1) spacetime. This is a
maximally symmetric geometry with positive curvature, illustrated by the Penrose diagram
in figure 1. Each point in the diagram corresponds to a (d−1)-dimensional sphere. However,
these spheres shrink to zero size at the right and left vertical boundaries (which we refer
to as the north pole and south pole, respectively). Hence horizontal slices in the Penrose
diagram correspond to d-dimensional spheres, and the topology of the full geometry is
R × Sd. Further, the Sd expand to infinite size at future and past timelike infinity i±,
corresponding to the horizontal boundaries at the top and bottom of the Penrose diagram.

Much of our discussion will center on the static dS metric

ds2 = −
(

1− r2

L2

)
dt2 + dr2

1− r2

L2

+ r2dΩd−1 , (2.1)

where L is the dS curvature scale. These coordinates readily cover the ‘static patch’ denotes
quadrants I and III in figure 1. These are the regions accessible to an observer at the north
or south pole, respectively, i.e., r = 0. The null boundaries of these patches correspond to
the future and past cosmological horizons at r = L and t→ ±∞, respectively. Quadrants
II and IV correspond to the regions r ≥ L, with i± corresponding to r → ∞. Of course,
r becomes a timelike coordinate and t is spacelike in these regions. The advantage of this
coordinate system (2.1) is that the Killing vector ∂t is obvious. The global flow of this
time coordinate is illustrated in the figure, and as usual, the time translation symmetry
can be thought of as a ‘boost’ symmetry about the bifurcation surface where the two
horizons cross.

In examining the various holographic complexity proposals in dSd+1, we need coordi-
nates that can extend across the cosmological horizons. Hence it is convenient to introduce
Eddington-Finkelstein (EF) coordinates

v = t+ r∗(r) , u = t− r∗(r) ,

where r∗(r) = L

2 log
∣∣∣∣L+ r

L− r

∣∣∣∣ . (2.2)

Using dr∗ = dr/f(r), the static metric (2.1) becomes

ds2 = −f(r)du2 − 2 du dr + r2 dΩ2
d−1

= −f(r)dv2 + 2 dv dr + r2 dΩ2
d−1 .

(2.3)

Surfaces of constant u are illustrated in figure 1. In quadrants I and II, they correspond to
null cones originating at the north pole and expanding out to future timelike infinity i+.
We note that u → −∞ on the past cosmological horizon (in quadrant I) and u → +∞ in
the top right corner of the Penrose diagram. Further, u = 0 corresponds to the null cone
originating at t = 0, r = 0 and reaching i+ at t = 0, r = ∞. This surface plays a special
role in the following. In quadrants III and IV, surfaces of constant u are null cones with
their tip on the south pole and extending into the past to i−. The description of surfaces
of constant v is similar but with the north and south poles interchanged.

– 4 –
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U ≥ 0
V ≤ 0

UV

U ≤ 0
V ≥ 0

i−

i+

I

IV

II

III

u = −∞

u = +∞

t

t

Figure 1. The Penrose diagram for dSd+1 spacetime consists of four quadrants I, II, III, IV.
The left/right gray region presents the static patch covered by (t, r) coordinates. The dashed
purple curves are referred to as the spacelike hypersurface with a constant radial coordinate, i.e.,
r = ρL = constant. The future and past infinity located at r = ∞ are denoted by blue lines and
labeled by i+, i−, respectively.

It is straightforward to extend the EF coordinates above to Kruskal coordinates (U, V )
covering the entire dSd+1 geometry. In quadrant I, we write

U = +eu/L , V = −e−v/L , (2.4)

and the metric becomes

ds2 = L2

(1− UV )2

(
−4dUdV + (1 + UV )2dΩ2

d−1

)
. (2.5)

These coordinates and the above metric extend to the entire spacetime but one chooses
U = ±eu/L , V = ±e−v/L, where the signs change between the different quadrants — see
figure 1. In terms of the Kruskal coordinates, the north/south pole at r = 0 is given by
UV = −1. The boundary of the static patch, i.e., the cosmological horizon located at r = L

becomes to UV = 0. The asymptotic boundaries, i.e., past and future timelike infinity i±,
at r → ∞ are represented by UV = 1. The interested reader is referred to [55, 56] for
further discussion (and illustrations) of the dSd+1 spacetime.

We build on the recent works [1, 41, 42] that examined the generalization of holographic
entanglement entropy to de Sitter space. In particular, this presents an interpretation of
dS entropy (1.2) as the entanglement entropy between two dual theories describing the left
and right static patches — see figure 2. It is suggested that these dual theories are located
on the boundary of the static patch. That is, they reside on the stretched horizon at

r = rstretch ≡ ρL , with 0 < ρ < 1 . (2.6)

– 5 –
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τ∞

r = ρL

r = L/ε

r = L/ε

r = ρL

τ∞

τ = 0

ττ

r = ∞

r = ∞

r = 0 r = 0

u = 0v =
0

Figure 2. Extremal surfaces joining the left and right stretched horizons at the boundary time τ
are denoted by the black curves.

As in [1, 41, 42], we generally consider ρ to be very close to 1, but our calculations will
allow for any value in the range 0 < ρ < 1. Analogous to the Ryu-Takayanagi (RT)
formula in asymptotically AdS spacetime, the holographic entanglement entropy between
the left/right patch is thus given by the area of the extremal surface (minimax surface)
between two stretched horizons, i.e., the cosmological horizon in dSd+1. As a result, this
dS version of the RT formula yields SdS as the holographic entropy.

Following this framework, the holographic CV complexity (1.3) was also examined
in [1] with the extremal surfaces anchored on time slices in the two stretched horizons.
More importantly, it is argued that the growth rate of holographic complexity CV in dS is
hyperfast, apparently diverging when we approach a critical boundary time. This geometric
result is associated with the exponential growth of the interior of dS and has striking
implications for the boundary theory — see section 6. The divergent behavior is easily
explained with the Penrose diagram in figure 2. We consider the stretched horizons located
at r = ρL with ρ < 1 and denote the coordinate time on the left and right stretched horizon
as tL and tR, respectively. Taking account of the general time evolution of the boundary
times, we will focus on the symmetric case tR = τL = −tL without loss of generality (as
we do throughout the following). In particular, the extremal surfaces in dS can only be
extended to a critical scale denoted by τ∞, at which the extremal surface approaches the
null surface

u = 0 , v = 0 , (2.7)

which are denoted by the light blue lines in figure 2. It is obvious that these null surfaces
extend to the future timelike infinity i+ at r = ∞. As a result, one can find not only the

– 6 –
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divergence of holographic complexity but also the hyperfast growth, i.e.,

lim
τ→τ∞

CV →∞ , lim
τ→τ∞

dCV
dτ
→∞ , (2.8)

by approaching this critical time τ∞. We provide a detailed analysis of this behaviour
for CV, CA, and also CV2.0 (which exhibit analogous divergent growth) in the follow-
ing sections.

However, to regulate these divergences (2.8), we introduce a cutoff surface near the
timelike infinity i+, as indicated by the pink dashed curve in figure 2. For simplicity, we
assume that the cutoff surface is given by

r = rmax ≡
L

ε
, with ε� 1 . (2.9)

This cutoff surface allows us to tame the divergent behaviour and examine the holographic
complexity for late times, i.e., τ ≥ τ∞. Interestingly, we find that the regulated holographic
complexity grows linearly at late times, viz.,

dC
dτ

∣∣∣∣
τ&τ∞

' N

εd
, (2.10)

where again we find analogous behaviour for all three proposals for holographic complexity.
Of course, this growth is similar to the late-time linear growth of holographic complexity
in asymptotically AdS.

We now turn to examine the CV2.0, CA, and CV proposals in de Sitter space, each in
turn in the following sections.

3 CV2.0 in dSd+1

In this section, we apply the CV2.0 proposal (1.5) for holographic complexity in (d + 1)-
dimensional de Sitter space. As described above, we anchor the WdW patch to equal-time
surfaces tR = −tL = Lτ on the stretched horizons r = Lρ on either side of the horizon —
see figure 3. We show that holographic complexity and its growth rate are both divergent
as the boundary time approaches the critical value τ = τ∞ ≡ arctanhρ. We regulate
the spacetime volume by introducing a cutoff surface r = rmax near the future timelike
boundary. With this regulated volume, the holographic complexity grows linearly with the
boundary time for the subsequent evolution τ & τ∞.

Time evolution of WdW patch. At early times, the boundaries of the WdW patch
are four null cones, as shown in the left panel of figure 3. Focusing on the two boundaries
on the right side of the WdW patch, they parametrized by

umax = Lτ − L

2 log
(1 + ρ

1− ρ

)
= −L2 log

(
r+ + L

r+ − L

)
,

vmin = Lτ + L

2 log
(1 + ρ

1− ρ

)
= L

2 log
(
r− + L

r− − L

)
,

(3.1)

– 7 –
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r = ρLr = ρL

F

P

L R

FL FR

PL PR

F

P

L R r = ρLr = ρL

FL FR

PL PR

Figure 3. The orange square region denotes the WdW patch at a boundary time tR = τL = −tL.
The purple dashed curves represent the stretch horizon at r = ρL. Left: the WdW patch at τ = 0.
Right: the WdW patch at the critical time τ = τ∞ where the future tip F touches i+. The shadowed
blue region presents the WdW patch at τ = 0 with exactly anchoring the boundary at the south
and north poles (i.e., ρ = 0).

where r± are the radii at the tips of the WdW patch, i.e., the two future boundaries
intersect in quadrant II at t = 0, r = r+. Using the above expressions, these positions are
given by

r+
L

= cosh τ − ρ sinh τ
ρ cosh τ − sinh τ ,

r−
L

= cosh τ + ρ sinh τ
ρ cosh τ + sinh τ , (3.2)

whose time evolution is shown in figure 4.
Evolving forward from τ = 0, the WdW patch retains its square shape in the Penrose

diagram until the future tip reaches the asymptotic boundary i+, i.e., when r+ →∞. We
denote this particular time as τ∞ with3

tanh τ∞ = ρ . (3.3)

We note that this corresponds to umax = 0 in eq. (3.1).4 The WdW patch at this critical
time is shown in the right panel of figure 3. We will find below that the volume of the
WdW patch grows rapidly as we approach τ = τ∞. The positions of the two tips satisfy
r+(τ) = r−(−τ), which is inherited from the t→ −t symmetry of the dS geometry. Hence,
r− diverges at τ = −τ∞ when the lower tip of the WdW patch hits i−.

With the CV2.0 proposal (1.5), we must evaluate the spacetime volume of the WdW
patch, which is most easily done using Kruskal coordinates (2.5). For early times |τ | ≤ τ∞,

3In terms of τ∞, we can rewrite r± as r± = L coth(τ∞ ∓ τ).
4We might note that in eq. (3.1), umax < 0 and vmin > 0 since the EF coordinates are defined in (2.2)

so that the critical null cones emerging from t = 0, r = 0 correspond to u = 0 and v = 0.
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0

2

4

6

8

10

Figure 4. The time evolution of tip radii r± of WdW patch with ρ = 1/2. Hence from eq. (3.2),
r+ diverges at τ = τ∞ ' 0.5493, and r− diverges at τ = −τ∞.

the holographic complexity is given by

CSV = VWdW (|τ | ≤ τ∞)
GN L2 = 1

GN L2

∫
WdW

√
−g dΩd−1 dU dV

= 8N
∫ Umax

Umin
dU

∫ Vmax

Vmin
dV

(1 + UV )d−1

(1− UV )d+1 ,

(3.4)

where N denotes the de Sitter entropy (1.2), while Umax, Umin, Vmax, Vmin are the positions
of four null boundaries of WdW patch. With the definition of the Kruskal coordinates in
eq. (2.4), the four null boundaries of WdW patch become

Umax ≡ eumax/L = Vmax = eτ
√

1− ρ
1 + ρ

,

Vmin ≡ −e−vmin/L = Umin = −e−τ
√

1− ρ
1 + ρ

.

(3.5)

CV2.0 complexity at τ = 0. As a warm-up, let us first consider the most symmetric
case with τ = 0, which yields Umax = Vmax = −Vmin = −Umin =

√
1−ρ
1+ρ in eq. (3.5).

Correspondingly, the WdW patch is symmetric between not only the left and right halves
but also the top and bottom halves. The integral (3.4) for the holographic complexity yields

CSV(τ = 0) = 16N
d(d+ 1)

(
ρd+1

2F1

(
1, d+ 1

2 ; d+ 3
2 ; ρ2

)
− 1
ρd+1 2F1

(
1, d+ 1

2 ; d+ 3
2 ; 1

ρ2

)
− πi

2 (d+ 1)
)
,

(3.6)

where 2F1 is the usual hypergeometric function. We note that these functions are complex
for the parameters here, but subtracting the imaginary constant in the second line ensures
that CSV(τ = 0) is real. To get more insight, we can explicitly write the above expression

– 9 –
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for a few dimensions:

CSV(τ = 0) = 8N ×



−2 log ρ , d = 1
1
ρ − ρ , d = 2
1

3ρ2 − 1
3 ρ

2 + 2
3 log ρ , d = 3

1
6ρ3 + 1

2ρ −
ρ
2 −

ρ3

6 , d = 4 .

(3.7)

As we push the stretched horizons to the cosmological horizon (i.e., ρ → 1), the WdW
patch becomes a small diamond in the vicinity of the bifurcation surface — see figure 3.
The corresponding complexity decays to zero as

CSV(τ = 0) ' 8N
(

2(1− ρ) + (1− ρ)2 + d2 + 5
9 (1− ρ)3 +O

(
(1− ρ)4

))
. (3.8)

In contrast, if we pull the stretched horizons near the north and south poles (i.e.,
ρ → 0), the WdW patch expands with future and past tips approaching the timelike
boundaries of the dS geometry. That is, the null boundaries of WdW patch at τ = 0 are
approaching the critical null surfaces at umax = 0 = vmin. For τ = 0, eq. (3.2) simplifies to

r±|(τ=0) = L

ρ
, (3.9)

for the positions of the future and past tips of the WdW patch. As expected, these both
diverge as ρ → 0. As a result, the corresponding holographic complexity (3.6) is also
divergent, i.e.,

CSV(τ = 0) ' 16N
d
×


1

(d−1)ρd−1 + 1
(d−3)ρd−3 + · · · − log ρ , odd d ,

1
(d−1)ρd−1 + 1

(d−3)ρd−3 + · · · , even d .
(3.10)

Although this divergent behavior is presented here for the special case τ = 0 and ρ→ 0, we
will see below that this behaviour is a universal feature associated with the limit τ → τ∞.
That is, from eq. (3.3), the critical time τ∞ ' ρ+ρ3/3 + · · · decreases to zero in the ρ→ 0
limit. Hence we can express the leading divergence above as

CSV '
16N

d(d− 1)
1

(τ∞ − τ)d−1 + · · · , (3.11)

which we will see corresponds (up to a factor of two5) the leading divergence as τ → τ∞
for general ρ — compare with eq. (3.15).

Early time evolution of CV2.0 (τ ≤ τ∞). Let us move the boundary to a generic
time before the critical time, i.e., |τ | ≤ τ∞. As noted above, the WdW patch retains its
square shape in this regime and we must perform the integral in eq. (3.4) for the limits
defined in eq. (3.5) for a specific choice of ρ and τ . The integral can be expressed in terms

5The factor two arises because both tips of the WDW patch are approaching the timelike bound-
aries of the de Sitter geometry here, whereas for general ρ in the following, we only have the future tip
approaching i+.

– 10 –
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of incomplete beta functions B(z; a, b) =
∫ z

0 t
a−1(1− t)b−1dt [57].6 The final result is given

by a sum over all four corners of the WdW patch (shown in figure 3):

CSV (τ ≤ τ∞) = 4N
d

[(
B
(1 +Wi

2 ; d, 1− d
)
−B

(1 +Wi

1−Wi
; d, 0

))F,P

L,R
− 2πi

]
. (3.12)

HereW ≡ UV and the superscripts and subscripts indicate the positions of the four corners
of WdW patch. Further, we again subtract an imaginary constant, i.e., 2πi, to ensure that
the expression is always real.7 The values Wi on the corners are given by

Wi =



UmaxVmax = e2τ 1−ρ
1+ρ , F: future tip

UminVmin = e−2τ 1−ρ
1+ρ , P: past tip

UminVmax = ρ−1
ρ+1 , L: left stretched horizon

UmaxVmin = ρ−1
ρ+1 , R: right stretched horizon .

(3.13)

We can write the results more explicitly for various dimensions, e.g.,

CSV (τ ≤ τ∞) = 8N ×

− log
(
1− (1− ρ2) cosh2 τ

)
, d = 1 ,

ρ(1−ρ2) cosh2 τ
1−(1−ρ2) cosh2 τ

, d = 2 ,
(3.14)

and for d = 3,

CSV (τ ≤ τ∞) =8N
3

(
1− ρ2 − log

(
1− (1− ρ2) cosh2 τ

)

+ (1− ρ2) (1 + ρ2) cosh2 τ − 1(
1− (1− ρ2) cosh2 τ

)2

)
.

One easily sees that the above expressions are divergent where cosh2 τ → 1/(1−ρ)2, which
one readily verifies corresponds to τ → τ∞ with the latter given by eq. (3.3). Of course,
these divergences are expected from our discussion above. Generally the divergences come
from the WF contribution in eq. (3.12) as τ → τ∞, and we find

CSV (τ ≤ τ∞) ' 8N ×


1

d(d−1)(τ∞−τ)d−1 + 1
3(d−3)(τ∞−τ)d−3 + · · · − 1

d log (τ∞ − τ) , odd d

1
d(d−1)(τ∞−τ)d−1 + 1

3(d−3)(τ∞−τ)d−3 + · · · , even d .

(3.15)
Equipped with the general expression (3.12) for an arbitrary |τ | ≤ τ∞, we easily derive

the time rate of growth for the holographic complexity before the critical time. Taking the
time derivative of the holographic complexity CSV, we obtain8

dCSV
dτ

= 8N
d

((cosh τ − ρ sinh τ
ρ cosh τ − sinh τ

)d
−
(cosh τ + ρ sinh τ
ρ cosh τ + sinh τ

)d)

= 8N
d

(
cothd (τ∞ − τ)− cothd (τ∞ + τ)

)
.

(3.16)

6Alternatively, we can write B(z;α, β) = zα

α 2F1(α, 1− β;α+ 1; z).
7The appearance of 2πi is because the spacetime volume integral crosses the horizon and the close form

involves terms like log
(
L−r
L+r

)
.

8In terms of r±, it is rewritten as dCSV
dτ

= 8N
d

((
r+
L

)d − ( r−
L

)d).
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Figure 5. The time evolution of holographic complexity and its growth rate from CV2.0
with ρ = 1/2.

Near the critical time, the complexity exhibits hyperfast growth [1], with

lim
τ→τ∞

dCSV
dτ
≈ 8N

(
1

d (τ∞ − τ)d
+ 1

3 (τ∞ − τ)d−2 + · · ·
)
. (3.17)

Finally, we illustrate holographic complexity and its growth rate at early times in figure 5.

Later time evolution of CV2.0 (τ & τ∞). As observed above, the spacetime volume
of the WdW patch and the corresponding holographic complexity diverges as τ → t∞, which
is only a finite time scale. To make sense of the holographic complexity at late times, we
must regulate this divergence. In the present gravitational calculations, it is natural to
introduce a geometric cutoff, i.e., we introduce a cutoff surface at some large radius

r = rmax ≡
L

ε
with ε� 1 . (3.18)

For convenience, we have introduced the dimensionless parameter ε to control the position
of the cutoff surface. Of course, this cutoff surface is a spacelike surface located inside the
cosmological horizon.

In evaluating the spacetime volume, we only extend our integrals up to r = rmax.
That is, the boundaries of the regulated WdW patch now consist of four null cones and
a spacelike segment extending along the cutoff surface — see the right panel in figure 6.
Hence, we will be able to consider the times beyond τ∞. The transition between the square
WdW patch considered above and this new regulated region occurs slightly before t∞.
That is, the WdW first touches the cutoff surface at a transition time τ∗ given by√

1− ρ
1 + ρ

eτ∗ =
√

1− ε
1 + ε

. (3.19)

Alternatively, we can write

τ∗ = 1
2 log

((1 + ρ)(1− ε)
(1− ρ)(1 + ε)

)
= τ∞ − arctanh ε ≈ τ∞ − ε−

ε3

3 +O
(
ε5
)
,

(3.20)

where we recall τ∞ is given in eq. (3.3).
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C

P

L = L* R* = R τ*τ*

I
II

III
Cc

P

R*L*

L R

r = ρL

r = L /ε

r = L /ε

CL CR

Figure 6. The orange region represents the WdW patch with a cut-off surface at r = L/ε. Left:
the WdW patch at the transition time, i.e., τ = τ∗. Right: the WdW patch after the transition
time where we divide it into three subregions as shown, with I, III shaded light orange and II,
dark orange.

Evaluating the spacetime volume is slightly more involved for τ ≥ τ∗ because the
corresponding WdW patch is cut off at r = rmax. As shown in figure 6, we divide the whole
region into three parts. The null cones separating these subregions extend from either of
the past null boundaries (at U = Umin and V = Vmin) up to the center of the cutoff surface
(at r = rmax and t = 0. Hence, these new null boundaries are given by

U = U∗ =
√

1− ε
1 + ε

and V = V∗ =
√

1− ε
1 + ε

. (3.21)

With this division, region II is a square patch, and we can apply the previous calcula-
tions with appropriate boundaries. The corresponding contribution CIISV to the holographic
complexity then becomes

CIISV = 4N
d

((
B
(1 +Wi

2 ; d, 1− d
)
−B

(1 +Wi

1−Wi
; d, 0

)) ∣∣∣∣Cc,P

L∗,R∗
− 2πi

)
, (3.22)

with

WCc = U∗V∗ = 1− ε
1 + ε

, CC: center of cutoff surface

WP = UminVmin = e−2τ 1− ρ
1 + ρ

, P: past tip

WL∗ = UminV∗ = −e−τ
√

(1− ε)(1− ρ)
(1 + ε)(1 + ρ) , L*: left corner

WR∗ = U∗Vmin = −e−τ
√

(1− ε)(1− ρ)
(1 + ε)(1 + ρ) , R*: right corner .

(3.23)

– 13 –



J
H
E
P
0
5
(
2
0
2
2
)
1
1
9

Now thanks to the left-right symmetry of the configuration, the spacetime volumes of
regions I and III are identical and we focus on the calculations for region I. Since the
cutoff surface r = L/ε is also parametrized by UV = 1−ε

1+ε . Accordingly, the contribution
to holographic complexity from region I is given by

CISV ≡ 8N
∫ Umax

U∗
dU

∫ 1−ε
(1+ε)U

V∗
dV

(1 + UV )d−1

(1− UV )d+1 . (3.24)

One can perform this integral using similar methods to those above. We just note the
following expression∫ 1−ε

(1+ε)U

V
dV

2(1 + UV )d−1

(1− UV )d+1 = 1
dU

(
1
εd
−
(1 + UV

1− UV

)d)
. (3.25)

As a consequence, corresponding contribution from region I becomes9

CISV = 4N
d

(
τ − τ∗
εd

+
(

B
(1 +Wi

2 ; d, 1− d
)
−B

(1 +Wi

1−Wi
; d, 0

)) ∣∣∣∣R∗
R

)
. (3.26)

The corresponding WR and WR∗ are given by eqs. (3.5) and (3.23).
Combining eqs. (3.22) and (3.26), the regulated complexity becomes

CSV(τ ≥ τ∗) = CISV +CIISV +CIIISV ,

= 4N
d

(
2(τ−τ∗)

εd
+
(

B
(1+Wi

2 ;d,1−d
)
−B

(1+Wi

1−Wi
;d,0

))∣∣∣∣Cc,P

L,R
−2πi

)
.

(3.27)

The time evolution of holographic complexity CV from early times to late times is plotted
in figure 7. Furthermore, the corresponding growth rate of the holographic complexity is

dCSV(τ ≥ τ∗)
dτ

= 8N
d

((
rmax
L

)d
−
(
r−
L

)d)

= 8N
d

(
1
εd
−
(cosh τ + ρ sinh τ
ρ cosh τ + sinh τ

)d)

' 8N
d

( 1
εd
− 1 + 2d 1− ρ

1 + ρ
e−2τ +O(e−4τ )

)
,

(3.28)

where the last expression represents an expansion for large times. It is easy to show this
growth rate is continuous at the transition time τ∗, i.e.,

dCSV(τ ≤ τ∗)
dτ

∣∣∣∣
τ∗

= dCSV(τ ≥ τ∗)
dτ

∣∣∣∣
τ∗

. (3.29)

Here we have evaluated eq. (3.16) for τ → τ∗,

dCSV(τ ≤ τ∗)
dτ

∣∣∣∣
τ∗

= 8N
d

 1
εd
−
(

1 + ρ2 − 2ρε
2ρ− ε(1 + ρ2)

)d ' 8N
dεd

, (3.30)

where the final expression is, of course, the leading contribution for ε� 1.
9Note that there is no imaginary contribution, as in eqs. (3.12) and (3.22). This is because both R∗, R

are outside the cosmological horizon withWi < 0. An imaginary contribution −πi appears for contributions
inside the horizon where Wi > 0, e.g., for F, CC, P.
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Figure 7. The time evolution of holographic complexity from spacetime volume CSV(τ). The
blue curve denotes the holographic complexity before the critical time, i.e., CSV(τ ≤ τ∞). After
introducing the cut-off surface, holographic complexity CSV(τ ≥ τ∗) grows linearly as shown by the
black line. Here we choose d = 3, ρ = 9

10 , ε = 1
10 .

4 CA in dSd+1

In this section, we study the CA proposal (1.4) in dSd+1. In particular, we suppose that
the holographic complexity is given by the gravitational action evaluated on the WdW
patch anchored on the stretched horizon (e.g., see figure 3). Schematically, the complexity
is then defined as

CA = 1
π

(Ibulk + IGHY + Inull + Ict + Ijoint) . (4.1)

Apart from the usual bulk action Ibulk, we have included the appropriate boundary
terms (i.e., IGHY, Inull, Ict) for the various codimension-one boundary segments and the
joint terms Ijoint for the codimension-two surfaces where the boundary segments intersect
e.g., [58, 59]. The counterterm action Inull for null boundaries are also included to make
the action invariant under reparameterization of the null boundary [58].

The bulk contribution to the complexity is given by the usual Einstein-Hilbert action
with a positive cosmological constant. Since the scalar curvature of de Sitter space is a
constant, the bulk term is simply proportional to the spacetime volume of the WdW patch.
Hence, we have

Ibulk
π

= 1
16π2GN

∫
dd+1x

√
−g

(
R− d(d− 1)

L2

)
= d VWdW

8π2GNL2 = d

8π2 CSV . (4.2)

Since we saw that CSV diverges as τ → τ∞ (see eq. (3.15)), this bulk term produces similar
divergent behaviour in CA. Thus, as in the previous section, we will regulate the results
with a cutoff surface at r = rmax = L/ε. This is the reason that we included IGHY, the
Gibbons-Hawking-York term [60, 61], in eq. (4.1). This term will play a role for τ & τ∞,
when the WdW patch has encountered the regulator surface and has a spacelike boundary
at r = rmax.
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Early time evolution of CA (τ ≤ τ∞). As discussed in the previous section, at
early times τ ≤ τ∞, the WdW patch has four null boundaries designated in eq. (3.5). To
evaluate the corresponding boundary and joint terms, we must define the normals for these
surfaces. First, we label the four null segments by the joints which they connect in the
Penrose diagram (see figure 3), e.g., the null surface FR extends for the joint on the right
stretched horizon to the future tip of the WdW patch. Following the prescription given in
appendix A of [59], we choose

FR : kµdx
µ = αdu|U=Umax = α (dt− dr/f(r)) |U=Umax ,

FL : k′µdx
µ = −α′ dv|V=Vmax = −α′ (dt+ dr/f(r)) |V=Vmax ,

PL : `µdx
µ = β du|U=Umin = β (dt− dr/f(r)) |U=Umin ,

PR : `′µdx
µ = −β′ dv|V=Vmin = −β′ (dt+ dr/f(r)) |V=Vmin ,

(4.3)

where α, α′, β and β′ are arbitrary (positive) constants. Note that raising the index on
one of the null normals gives a vector that lies tangent to the null surface, as follows
immediately from e.g., kαkα = 0. Thus, each normal defines a parametrization of the null
direction along the hypersurface according to

∂xα

∂s
= kα , (4.4)

with corresponding relations for each boundary segment — see further comments below.
Returning to eq. (4.1), the contribution of the null boundary terms is

Inull
π

= 1
8π2GN

∑∫
ds dd−1Ω√γ κ , (4.5)

where γij is the induced metric on the transverse (i.e., sphere) directions and we sum over
the four null segments. Now the quantity κ is defined by kα∇αkβ = κkβ for the correspond-
ing null normal, and measures the degree to which the parametrization fails to be affine.
However, with our definition (4.3) of the normals, s is an affine parameter, i.e., kα∇αkβ = 0
in each case. Hence this contribution (4.5) to the holographic complexity vanishes.

Next, we have the joint contribution in eq. (4.1),

Ijoint
π

= 1
8π2GN

∑∫
dd−1Ω√γ a , (4.6)

where we sum over the four corners of the WdW patch (F,P,L,R) in figure 3. The integrand
a is defined in terms of the inner product of the null normals of the two surfaces intersecting
at a given joint, and we find10

F : a = log |k · k
′|

2 = log αα′

|f (r+) | , P : a = log |` · `
′|

2 = log ββ′

|f (r−) | , (4.7)

L : a = − log |` · k
′|

2 = − log βα′

f (Lρ) , R : a = − log |`
′ · k|
2 = − log β′α

f (Lρ) .

10The interested reader is referred to appendix A of [59] for details on the choice of signs here.
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These results are independent of the transverse coordinates and hence summing the four
contributions in eq. (4.6) yields

Ijoint
π

= N

2π2

[
rd−1

+
Ld−1 log αα′L2

r2
+ − L2 +

rd−1
−
Ld−1 log ββ′L2

r2
− − L2 − ρ

d−1 log αα′ββ′

(1− ρ2)2

]
. (4.8)

Finally, we come to the null boundary counter term [58] in eq. (4.1)

Ict
π

= 1
8π2GN

∑∫
ds dd−1Ω√γ Θ log(`ct|Θ|) , (4.9)

where Θ = ∇µkµ is the expansion on the corresponding null boundary segment. Note the
appearance of an arbitrary scale `ct in this expression, which introduces an ambiguity in
the final value of the holographic complexity.

In proceeding, let us focus on the FR segment for the moment. As noted in eq. (4.3),
the null normal is simply expressed in the outgoing EF coordinate u. Given the metric (2.3),
it then follows that kµ∂µ = −α∂r and so from eq. (4.4), we have the simple expression:
∂r/∂s = −α. Up to an overall factor, coordinate r coincides with the affine parameter s,
i.e., r = −α s. Similar results follow for the other null boundaries and this allows us to
re-express eq. (4.9) in terms of radial integrals using ds = −dr/α.

We now evaluate the expansion on the four boundaries with Θ = kµ∂µ(log γ) [62],

FR : Θ = −(d− 1) α
r
, FL : Θ = −(d− 1) α

′

r
,

PR : Θ = −(d− 1) β
′

r
, PL : Θ = −(d− 1) β

r
.

(4.10)

It is then straightforward to calculate the full counterterm contribution:

Ict
π

= N

2π2

[
2
(

log L

(d− 1)`ct
− 1
d− 1

)(
rd−1

+
Ld−1 +

rd−1
−
Ld−1 − 2ρd−1

)

+
rd−1

+
Ld−1 log

r2
+

αα′L2 +
rd−1
−
Ld−1 log

r2
−

ββ′L2 − ρ
d−1 log ρ4

αα′ββ′

]
.

(4.11)

Combining eqs. (4.2), (4.8) and (4.11) then yields the full expression for CA, i.e.,

CA = d

8π2CSV + N

π2

[(
log L

(d− 1)`ct
− 1
d− 1

)(
rd−1

+
Ld−1 +

rd−1
−
Ld−1 − 2ρd−1

)
(4.12)

+
rd−1

+
Ld−1 log r+√

r2
+ − L2

+
rd−1
−
Ld−1 log r−√

r2
− − L2

− 2ρd−1 log ρ√
1− ρ2

]
.

where the exact expression for CSV is given in eq. (3.12). We note that the normaliza-
tion constants (i.e., α, α′, β, β′) appearing in Ijoint and Ict separately have disappeared
from this final expression. Of course, varying these constants corresponds to scaling the
parametrization of the null boundaries, as noted in the discussion about eq. (4.10), and
the role of Ict is to ensure that CA is independent of such reparametrization [58].
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We can make the time dependence explicit using the expressions in footnote 3 (as well
as eq. (3.3), which yields

CA = d CSV
8π2 + N

π2

[
cothd−1(τ∞ − τ)

(
log L cosh(τ∞ − τ)

(d− 1)`ct
− 1
d− 1

)
+(τ → −τ)− 2 tanhd−1 τ∞

(
log L sinh τ∞

(d− 1)`ct
− 1
d− 1

)]
.

(4.13)

Hence, we see that similar to the case for the CV2.0 proposal, CA diverges as the boundary
time approaches τ∞. In this case, divergent contributions are coming both from the space-
time volume of the WdW patch (i.e., the bulk action contribution), the joint terms and the
boundary counterterms. Let us also comment in passing that the boundary contribution
proportional to − 1

d−1
rd−1
+
Ld−1 in eq. (4.12) cancels the leading divergence in d

8π2CSV as τ → τ∞,
or alternatively as r+ → ∞. Expanding for small τ∞ − τ , the holographic complexity CA
is given by

lim
τ→τ∞

CA ≈
N

π2

 log L
(d−1)`ct

(τ∞−τ)d−1 +(d−1)
( 1

2(d−3)−
1
3 log L

`ct(d−1)

) 1
(τ∞−τ)d−3 + · · ·

 .

(4.14)
Hence the strength of the leading term is controlled by log L

(d−1)`ct
and in particular, by

the counterterm length scale `ct due to the cancellation noted above. There has been
no constraint to fix `ct, but we see here that one must choose `ct < L/(d − 1) to make
holographic complexity positive.

Taking the derivative with respect to the boundary time τ , we can further obtain the
growth rate of the holographic complexity (4.13) at early times, i.e.,

dCA(τ ≤ τ∞)
dτ

= N(d− 1)
π2

[
cothd(τ∞ − τ)
cosh2(τ∞ − τ)

log L cosh(τ∞ − τ)
(d− 1)`ct

− (τ → −τ)
]
. (4.15)

Similar to CV2.0, we obtain the hyperfast growth of CA by approaching the critical
time τ∞, i.e.,

lim
τ→τ∞

dCA(τ ≤ τ∞)
dτ

≈ N

π2

(d− 1) log
(

L
(d−1)`ct

)
(τ∞ − τ)d +O

( 1
(τ∞ − τ)d−2

)
. (4.16)

This behaviour is sketched in figure 8.

Later time evolution of CA (τ & τ∞). Above, we have seen that the holographic
complexity diverges as the boundary time approaches the critical value τ = τ∞. As in
section 3, we regulate the divergence by introducing a cutoff surface at r = rmax = L/ε.
Thus, we must modify our previous calculations to account for the new spacelike boundary
segment of the WdW patch which appears in this regime.
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Recall that the WdW patch reaches the cutoff surface at the time τ = τ∗ which is
slightly before the critical time τ∞, as shown in eq. (3.20). Eq. (4.2) still applies in this
regime and hence we have the bulk contribution

Ibulk(τ ≥ τ∗)
π

= d

8π2CSV(τ ≥ τ∗) , (4.17)

where CSV(τ ≥ τ∗) is given by eq. (3.27). From eq. (3.28), we see that this term contributes
to the linear growth of holographic complexity CA at late times.

Turning to the joint contribution (4.6), we note that the regulated WdW patch now
has five joints labeled (CR,CL,L,R,P) in figure. 6. The results for the last three remain
the same as in eq. (4.7). To evaluate the joint terms on CR and CL, where the future null
boundary segments intersect the spacelike surface r = rmax, we must first introduce the
(future-pointing) unit normal to the cutoff surface

nαdx
α = dr√

|f(r)|

∣∣∣∣
r=rmax

. (4.18)

For these two joints, the integrand a takes the form

a =


log |k · n| = log α√

r2
max/L

2−1
, CR ,

log |k′ · n| = log α′√
r2
max/L

2−1
, CL .

(4.19)

Note that these contributions from CR,CL on the cutoff surface do not vary with the
boundary time τ , since they only depend on the fixed radial coordinate r = rmax. Summing
over contributions from all five joints, i.e., CR,CL,L,R,P, yields

Ijoint(τ ≥ τ∗)
π

= N

2π2

[
1

εd−1 log αα
′ε2

1− ε2 +
rd−1
−
Ld−1 log ββ′L2

r2
− − L2 − ρ

d−1 log αα′ββ′

(1− ρ2)2

]
. (4.20)

The Gibbons-Hawking-York boundary term is as usual

IGHY

π
= 1

8π2GN

∫
cutoff
ddx
√
hK, (4.21)

where K is the trace of the extrinsic curvature K = ∇αnα, in our case evaluated on the
cutoff surface. It is straightforward to show that the trace of the extrinsic curvature is
constant on any surface of constant r, i.e.,

K = −
√
−f(r)∂r log

√
h = −d r

2 − (d− 1)L2

r
√
r2 − L2

. (4.22)

Noting the coordinate time at the joints is given by t = (τ − τ∗)L, it is then a simple
matter to integrate K over the cutoff surface, providing a contribution to the complexity
in terms of

IGHY

π
= N

π2

(
d− (d− 1)ε2)

εd
(τ − τ∗) . (4.23)

Recall that τ∗ is given in eq. (3.20). Clearly, this contribution to the complexity grows
linearly with boundary time.
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The boundary counterterm contribution to the holographic complexity is also modified
in the regime τ ≥ τ∗. In particular, both the future boundary segments FR and FL are
shortened, corresponding to an appropriate change of integration limits in eq. (4.9), i.e.,
the radial integration ends at rmax rather than r+. The resulting counterterm contribu-
tion becomes

Ict(τ ≥ τ∗)
π

= N

2π2

[
2
(

log L

(d− 1)`ct
− 1
d− 1

)( 1
εd−1 +

rd−1
−
Ld−1 − 2ρd−1

)

+ 1
εd−1 log 1

ε2αα′
+
rd−1
−
Ld−1 log

r2
−

ββ′L2 − ρ
d−1 log ρ4

αα′ββ′

]
.

(4.24)

Combining the contributions from eqs. (4.17), (4.20), (4.23) and (4.24), the expression
for the full CA complexity in the later time regime τ ≥ τ∗ is11

CA(τ ≥ τ∗) =d CSV(τ ≥ τ∗)
8π2 + N

π2

(
d− (d− 1)ε2) (τ − τ∗)

εd

+ N

π2

[
cothd−1(τ∞ − τ∗)

(
log L cosh(τ∞ − τ∗)

(d− 1)`ct
− 1
d− 1

)
+(τ∗ → −τ)− 2 tanhd−1 τ∞

(
log L sinh τ∞

(d− 1)`ct
− 1
d− 1

)]
.

(4.25)

Further, for τ ≥ τ∗, the complexity growth rate becomes

dCA(τ ≥ τ∗)
dτ

= N

π2

[
d+ 1− (d− 1)ε2

εd
− cothd(τ∞ + τ)

cosh2(τ∞ + τ)
log L cosh(τ∞ + τ)

(d− 1)`ct

]
. (4.26)

If we consider the limit where the cutoff is large, i.e., ε� 1, we see that the holographic
complexity grows linearly in this later time regime, i.e.,

dCA(τ ≥ τ∗)
dτ

≈ N

π2

(
d+ 1− (d− 1)ε2)

εd
, (4.27)

where these leading contributions are coming from both the bulk term and also the GHY
boundary term.12

As we have seen in section 3, the evolution of CSV is continuous in the first derivative
when we reach the cutoff surface at τ = τ∗. However, our CA results are somewhat am-
biguous because of the presence of the arbitrary counterterm scale `ct. Further, this scale
controls the leading contributions to the hyperfast growth as τ → τ∞ — see eq. (4.16).
On the other hand, the leading contribution (for ε � 1) to the derivative right after the
critical time is independent of `ct. As a result, there will generally be a discontinuous jump
in the first derivative of CA when the WdW first intersects the cutoff surface. However, we
note that there is a unique choice of `ct which makes the complexity evolve continuously
in the first derivative as the WdW patch hits the cutoff surface, i.e.,

`ct = `0 ≡ L
e
− 1+d−(d−1)ε2

(d−1)(1−ε2)

(d− 1)
√

1− ε2
. (4.28)

11This result is written in a way that makes clear that it coincides with eq. (4.13) when τ → τ∗. The
second line above can also be written in terms of the cutoff using ε = tanh(τ∞ − τ∗) from eq. (3.20).

12Even with ε ∼ O(1), this linear growth appears at late times where τ � 1.
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Figure 8. The holographic complexity CA plotted against the boundary time for two choices of
`ct. The dashed lines show the unregulated divergent behaviour for τ < τ∞. The solid black and
gray curves show the corresponding evolutions after the introduction of the cutoff surface. Note
the linear growth for τ ≥ τ∗. For the choice `ct = `0, the regulated curve is continuous in the first
derivative at τ = τ∗ — see eq. (4.28). The typical non-smooth evolution of the regulated complexity
is shown for the arbitrarily chosen value `ct = 10−3× `0. Here we choose d = 3, ρ = 9

10 and ε = 1
10 .

One could then consider the continuity of the growth of the complexity as a possible
matching condition which fixes `ct, removing the ambiguity in the definition of CA.

5 CV in dSd+1

In the previous two sections, we have shown that the holographic complexity, as well as
the growth rate, for CV2.0 and CA in dSd+1 are both divergent when the boundary time
approaches the finite critical time τ∞. To make sense of the results beyond this time, we
regulate the holographic complexity by introducing a cutoff surface near the asymptotic
boundary i+. With this approach, the complexity exhibits linear growth for subsequent
times where the growth rate is controlled by the regulator. In the following section, we
consider the dS version of complexity=volume (1.3) and show a similar story emerges. We
focus on general dSd+1 spacetimes with d > 1. The case of d = 1 (i.e., dS2) can be solved
completely analytically but is somewhat exceptional — see comments around eq. (5.23).
Hence we reserve a complete discussion of this case to appendix A. We note that extremal
hypersurfaces and the CV proposal in dS2 were recently discussed in [54].

Time evolution of extremal surfaces in dSd+1. The CV conjecture (1.3) identifies
holographic complexity as the volume of a codimension-one extremal surface, where as
before we take the ‘boundary’ time slice Σ to be the surfaces tR = −tL = τL on the
stretched horizons (i.e., r = ρL) in the two static patches. To analyze the time evolution
of extremal surfaces in dSd+1, we follow the analysis presented for the extremal surfaces in
asymptotically AdS spacetimes, e.g., see [47, 63, 64]. The idea is that with an appropriate
gauge-fixing condition, the profile of the extremal surfaces is determined by solving for the
motion of a classical particle moving in an effective potential.
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τ

Figure 9. Extremal surfaces with anchoring on the stretched horizon r = ρL in dSd+1. Each
black curve denotes an extremal surface associated with a conserved momentum Pu(τ) ≥ 0 and a
boundary time τ ≥ 0.

Let us consider a candidate surface B extending between the stretched horizons in
dSd+1. Assuming the surface respects the spherical symmetry of the background geometry,
we parametrize the profile as (u(λ), r(λ)), where λ denotes a ‘radial’ coordinate on B. The
corresponding holographic complexity (1.3) would then be given by

CV = 1
GNL

∫
B

√
h = 4N

L

∫√
−f(r)u̇2 − 2u̇ṙ

(
r(λ)
L

)d−1
dλ , (5.1)

where ẋ = dx(λ)
dλ . Finding the extremal surface is analogous to solving a one-dimensional

classical mechanics problem where we identify the Lagrangian as the integrand of the
integral above: L =

√
−f(r)u̇2 − 2u̇ṙ

(
r(λ)
L

)d−1
. The above integrand is invariant under

reparametrizations λ→ g(λ), and so we choose a convenient gauge

√
−f(r)u̇2 − 2u̇ṙ =

(
r

L

)d−1
. (5.2)

The holographic complexity (5.1) then reduces to

CV = 4N
L

∫ (
r

L

)2(d−1)
dλ , (5.3)

where the integral would be performed on the extremal surface.
Since L does not have any explicit dependence on u, the corresponding momentum is

conserved13

Pu ≡ −
∂L
∂u̇

=
(
r

L

)(d−1) f(r)u̇+ ṙ√
−f(r)u̇2 − 2u̇ṙ

= f(r)u̇+ ṙ , (5.4)

13Note that we have introduced an extra minus sign in the definition of Pu to simplify the following
equations. Most of the later expressions are still similar to the AdS case despite this extra sign.
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Figure 10. The effective potentials U(r) for the extremal surfaces in dSd+1.

where we have substituted the gauge-fixing condition (5.2) to simplify the final expression.
Combining eqs. (5.2) and (5.4) allows us to solve for the profile of the extremal surface
as follows

ṙ = ±

√
P 2
u + f(r)

(
r

L

)2(d−1)
, u̇ = Pu − ṙ

f(r) . (5.5)

Without loss of the generality in the following analysis, we will only focus on the solutions
with ṙ ≥ 0, i.e., trajectories originating at the stretched horizon and moving into the region
beyond the cosmological horizon.

Further insight comes from recasting the ṙ equation above as

ṙ2 + U(r) = P 2
u with U(r) = −f(r)

(
r

L

)2(d−1)
. (5.6)

Here we have the Hamiltonian equation for a particle moving in an effective potential U(r)
with an effective energy P 2

u . The effective potential for various dimensions is shown in
figure 10. A point worth stressing is the crucial difference between the potentials of dSd+1
and those typically studied in AdSd+1 is the former does not contain any local maximum.
In asymptotically AdSd+1 black holes, the local maximum plays a vital role in producing
the linear growth of holographic complexity, e.g., [47, 63, 64]. For later use, we also note
that the equation determining the time coordinate is given by

ṫ = u̇+ ṙ

f(r) = Pu ṙ

f(r)
√
P 2
u + f(r) (r/L)2(d−1)

. (5.7)

Time evolution of CV. The extremal surfaces are all anchored at the stretched horizon,
and hence the relevant solutions of eq. (5.6) begin at the minimal radius rmin = Lρ. They
then proceed to larger radii until they hit the potential at the turning point r = rturn ≥ L.
This turning point is determined by setting ṙ = 0 in eq. (5.6), which yields

P 2
u =

(
r2

turn
L2 − 1

)(
r2

turn
L2

)d−1

. (5.8)
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This part of the trajectory corresponds to the first half of the extremal surface. The trajec-
tory then ‘reverses’ rebounding from the turning point and proceeds towards the stretched
horizon on the left side with ṙ < 0, as shown in figure 15. Given the ṙ equation (5.5), we
can rewrite the holographic complexity (5.3) as

CV(τ) = 8N
L

∫ rturn

rmin

dr

ṙ

(
r

L

)2(d−1)
= 8N

L

∫ rturn

rmin
dr

(r/L)2(d−1)√
P 2
u + f(r) (r/L)2(d−1)

, (5.9)

where the radial integral only covers half of the extremal surface. As before, we are con-
sidering the symmetric configuration with tR = τL = −tL in the following.

As noted in [47], we can consider the time evolution of the extremal surface for an
infinitesimal interval as generating a perturbation of the initial ‘trajectory’. Then working
with the original ‘action’ (5.1), the standard analysis yields the conclusion that the time
derivative of the holographic complexity is given by the momentum Pu evaluated on the
‘end points’, i.e.,

dCV
dτ

= 8N Pu(τ) . (5.10)

Comparing with the AdS case with a similar conserved momentum Pv [47], we note that
the extra minus sign in our definition of conserved momentum (5.4) is compensated by the
fact that the stretched horizon at rmin is the lower limit of integration here. In contrast,
the asymptotic boundary in AdS is the upper limit instead.

In order to determine the evolution of holographic complexity, we still need to deter-
mine the relation between the conserved momentum Pu and the time τ along the stretched
horizon. Here we integrate eq. (5.7) to find τ as a function of Pu

τ = tR − tturn
L

= −
∫ rturn

rmin

dr

L

ṫ

ṙ
= −

∫ rturn

rmin

dr

L

Pu

f(r)
√
P 2
u + f(r) (r/L)2(d−1)

, (5.11)

where we used that given our symmetric configuration, the turning point occurs at t =
tturn = 0. Interestingly, we should point out that the relation between Pu and τ may not
be a one-to-one mapping in general. That is, with a given boundary time τ , one may find
that several conserved momenta Pu satisfy the relation (5.11), and so there may be several
extremal surfaces anchored at the same time slice on the stretched horizons. However, this
feature is eliminated for 1−ρ� 1 (as shown in figure 11) and so we defer further discussion
to appendix B.

From eq. (5.11), it is obvious that Pu = 0 corresponds to the extremal surface anchored
at τ = 0. Increasing the conserved momentum then increases the corresponding time τ . We
assume that we are in the regime where τ is a monotonic function of Pu. Then maximum
time is approached by taking the limit Pu →∞, which in turn yields rturn →∞ in eq. (5.8).
In this limit, eq. (5.11) simplifies to

τ(Pu →∞) = −
∫ ∞
Lρ

dr

L f(r) = arctanh ρ = τ∞ . (5.12)

That is, we recover precisely the critical time τ∞ in eq. (3.3) as the maximum time that can
reach. The maximum corresponds to the same critical time appearing in the CV2.0 and

– 24 –



J
H
E
P
0
5
(
2
0
2
2
)
1
1
9

-10 -5 0 5 10

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 11. Boundary times τ(Pu) at various dimensional spacetime dSd+1 as a function of the
conserved momentum Pu. We take the stretched horizon located at ρ = 9/10 in this plot. The
corresponding critical times ±τ∞ are given by the limit |Pu| → ∞ and denoted by the dashed line.

CA approaches. Examining eq. (5.5), we see that ṙ ' Pu and u̇ ' U(r)/Pu in this limit.
Hence with du/dr → 0, the extremal surface approaches a null surface (i.e., u =constant)
in this limit. It is straightforward to verify that in fact, it approaches u = 0 (on the right
and v = 0 on the left after the turning point). For τ > τ∞, there are no extremal surfaces
connecting these time slices on the two stretched horizons. We note that this time scale is
universal for all dimensions and only depends on the position of stretch horizons ρ.

Although we have explicitly shown that the limit Pu → ±∞ yields a finite limit for the
time along the stretched horizon, i.e., τ → τ∞. However, as a side point, we want to show
here that the anchor time τ for our symmetric extremal surfaces is always finite, i.e., the
integral in (5.11) is always finite. Explicitly, this integrand is singular at r = rturn due to

P 2
u − U(rturn) = 0 . (5.13)

However, we can consider a series expansion about r = rturn as follows

lim
r→rturn

(
P 2
u − U(rturn)

)
' U ′(rturn) (rturn − r) +O

(
(rturn − r)2

)
, (5.14)

where as noted above, we always have U ′(rturn) 6= 0. Further rturn > L and so f(rturn) <
0. As a result, one can find the contribution around the singular point in eq. (5.11) is
convergent with∫ r→rturn

dr
−Pu

f(r)
√
P 2
u − U(r)

∼ lim
r→rturn

2Pu
f(rturn)

√
U ′(rturn)

√
rturn − r ∼ 0 . (5.15)

So we can conclude that
τ(Pu) is finite , ∀ |Pu| . (5.16)

Of course, this conclusion is true even for |Pu| → ∞, as we have explicitly shown above in
eq. (5.12). The key point in producing this finiteness is that the derivative of the effective
potential was non-vanishing at the turning point. Applying the analogous analysis for
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the finiteness for asymptotically AdS black holes (e.g., [47, 48]), one finds that τ → ∞
precisely when the trajectory approaches a local maximum in the effective potential, i.e.,
U ′(r = rturn) = 0.

Divergent behaviour for τ → τ∞. We have eq. (5.10) relating the growth rate of
the holographic complexity to the conserved momentum. Hence we know that the growth
rate diverges as τ → τ∞, since this corresponds to Pu → ∞. However, we would now like
to extend the analysis above to show that the CV proposal exhibits the same hyperfast
growth as τ → τ∞ that we found for the CV2.0 and CA proposals.

To make a controlled approach the critical time τ∞, we consider Pu � 1 and consider
a large-Pu expansion of eq. (5.11),

τ =
∫ rturn

rmin

dr

L

−Pu
f(r)

√
P 2
u − U(r)

,

≈ −
∫ rturn

rmin

dr

f(r)L

(
1 + U(r)

2P 2
u

+ 3U(r)2

8P 4
u

+O
( 1
P 6
u

))
,

(5.17)

where the first term matches eq. (5.12), which yields the critical time τ∞. However, note
from eq. (5.8) that Pu '

( rturn
L

)d in this regime. Hence, after integration around the
turning point, all of the subleading terms yield corrections of the same order 1

rturn
∼ 1

P
1/d
u

.
Therefore in order to derive the leading corrections to τ∞ − τ in the limit Pu → ∞, we
need to account for all of the O(1/rturn) contributions together, i.e.,

τ(Pu)− τ∞ = 1
L

(∫ ∞
rturn

dr

f(r) +
∞∑
n=1

∫ rmin

rturn

(2n− 1)!!
2nn!

(
U(r)
P 2
u

)n dr

f(r)

)

≈
∞∑
n=0

(2n− 1)!!
(2dn− 1)2nn!

L

rturn
+O

(
L2

r2
turn

)
,

(5.18)

where we have used the Taylor expansion for 1√
1−x =

∑∞
n=0

(2n−1)!!xn
2nn! . Summing this

infinite series, we find that to leading order, the time becomes14

τ ' τ∞ −
√
π Γ

(
2d−1

2d

)
Γ
(
d−1
2d

) L

rturn
. (5.19)

14Alternatively, we can notice that the leading correction to the boundary time around τ∞ is dominated
by the integral around r ≈ rturn. Focusing on this region, the integrand is approximated by

−Pu
f(r)

√
P 2
u − U(r)

≈ rdturn

r2
√
r2d
turn − r2d

+O

(
rdturn

r4
√
r2d
turn − r2d

)
,

and the first subleading term at the order O(L/rturn) is given by∫
rturn

dr
L

r2

(
rdturn√

r2d
turn − r2d

)
≈ −
√
π Γ
(

2d−1
2d

)
L

Γ
(
d−1
2d

)
rturn

+O
(

L2

r2
turn

)
,

which matches the result in eq. (5.18) derived from the sum of infinite series.
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We note that this expression only applies for d > 1, i.e., Γ
(
d−1
2d

)
diverges for d = 1 — we

return to this special case below.
Replacing L/rturn ∼ 1/P 1/d

u in the above expression, we can express the growth
rate (5.10) as

lim
τ→τ∞

dCV
dτ
' 8N

 √
πΓ
(

2d−1
2d

)
Γ
(
d−1
2d

)
(τ∞ − τ)

d for d > 1 , (5.20)

which exhibits analogous divergent behaviour to that found previously for CV2.0 and CA
in eqs. (3.17) and (4.16), respectively. Of course, we can integrate the above expression to
find the holographic CV complexity near the critical time:

lim
τ→τ∞

CV ≈
8N
d− 1

√πΓ
(

2d−1
2d

)
Γ
(
d−1
2d

)
d 1

(τ∞ − τ)d−1 for d > 1 , (5.21)

which again is divergent in the limit τ → τ∞. Apart from matching the powers or τ∞ − τ
in eqs. (5.20) and (5.21), the origin of these divergences is similar to the CV2.0 and CA
cases. The extremal surface approaches the null cones u = 0 = v in the limit Pu →∞, and
the contributions around rturn →∞ generate the divergence.

Before we close this discussion, we return to the remark that the analysis yielding
eq. (5.18) fails for d = 1. For this special case dS2, we need to take into account of the
corrections from the next order, i.e.,

τ∞ − τ ∼
L2

r2
turn
∼ 1
P 2
u

, (5.22)

or equivalently,
lim
τ→τ∞

Pu (τ) ≈ ρ√
2 (τ∞ − τ)

, for d = 1 . (5.23)

Hence dCV/dτ ∼ ρ/
√
τ∞ − τ , which does not match the 1/(τ∞ − τ) behaviour found for

CV2.0 and CA. We note that this result has the interesting feature that the growth rate
vanishes for ρ = 0, i.e., when the extremal surfaces are anchored to the north and south
pole. Further while dCV/dτ diverges as τ → τ∞ (with ρ > 0), this singularity is integrable
so that the complexity remains finite in this limit — see eq. (A.14). We refer interested
readers to a complete discussion of the holographic complexity CV(τ) for dS2 in appendix A.

Extremal surfaces joining the cutoff surface. The above analysis of the time evo-
lution of the extremal surface has revealed divergent behaviour of CV(τ) as τ → τ∞, which
reminds us of that found for CV2.0 and CA. To regulate the divergences and examine the
evolution beyond τ∞, we introduced a cutoff surface near future timelike infinite i+ for
those approaches to holographic complexity. Motivated by the results derived in previous
sections, we now consider using the same geometric cutoff for the CV approach. Our results
above (e.g., see figure 11) imply that the extremal surfaces connecting two boundaries at
equal times on the stretched horizon simply disappear when the anchor time moves beyond
a critical value τ∞. In other words, as formulated initially, the CV proposal (1.3) does not
work for late times (i.e., τ & τ∞) due to the absence of an extremal surface. However, when
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τ
τcrt

r = ρL

r = L/ε

r = L/ε

r = ρL
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<latexit sha1_base64="sLpGr7BiWTU2CrmW6A3s9pcsWwc=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSyCq5Jo2uqu6MZlFfuANoTJdNIOnTyYmQglxI2/4saFIm79C3f+jZM0FF8HBs6ccy/33uNGjAppGJ/awuLS8spqaa28vrG5ta3v7HZEGHNM2jhkIe+5SBBGA9KWVDLSizhBvstI151cZn73jnBBw+BWTiNi+2gUUI9iJJXk6PsDH8kxRiy5SJ0k/3A/uUlTR68YVSMH/EvMglRAgZajfwyGIY59EkjMkBB904iknSAuKWYkLQ9iQSKEJ2hE+ooGyCfCTvILUniklCH0Qq5eIGGufu9IkC/E1HdVZbai+O1l4n9eP5bemZ3QIIolCfBskBczKEOYxQGHlBMs2VQRhDlVu0I8RhxhqUIr5yGc10/NhjU/GWaKWWvU5krnpGrWq9a1VWlaRRwlcAAOwTEwQQM0wRVogTbA4B48gmfwoj1oT9qr9jYrXdCKnj3wA9r7F55Ml8k=</latexit>BR
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tε = L(τ − τcrt)

Figure 12. Left: the time evolution of the extremal surfaces for evaluating CV(τ). After the
transition time τcrt, we consider hypersurfaces B which are defined piecewise and do not extend
beyond the cutoff surface at r = rmax = L/ε. They consist of three parts, i.e., B = BL ∪ Bε ∪ BR.
Right: part of Penrose diagram with zooming into the late time regime at τ > τcrt. The black
curves anchoring on the stretched horizon at r = ρL are various candidate surfaces ranging from
BR being null to where it connects being tangent to Bε. The position of the intersection of BR with
Bε along the cutoff surface is denoted by tε = Lτε.

we introduce a cutoff surface at r = rmax, we will demand that the surfaces yielding the
holographic complexity do not extend beyond this maximal radius. Hence, we will need to
modify the prescription for the CV complexity in any event.

A natural proposal for the modified CV prescription is illustrated in figure 12. In this
regime, the ‘extremal’ surface is defined piecewise with three components B = BL∪Bε∪BR
and eq. (1.3) is replaced by

CV =max
Σ=∂B

[V(BL) + V(Bε) + V(BR)
GN L

]
. (5.24)

Here, the segments BL and BR extend from the stretched horizon, across the cosmological
horizon, and out to some large r. For early times τ . τ∞, these spacelike surfaces could
not reach the cutoff surface at r = rmax, and hence there will not be a segment Bε, i.e.,
this component is the empty set. With our symmetric configuration, BL and BR will meet
at t = 0 at some r = r0. We would extremize the local profiles of these segments and
also the position r0. This will result in the smooth extremal surfaces found with our
previous analysis for early times τ . τ∞, e.g., the extremal value of the meeting point
would be r0 = rturn.

Now for τ & τ∞, BL and BR can reach the cutoff surfaces. Hence as well as the two-
component candidate surfaces considered above, we also include surfaces with a nontrivial
Bε component. That is, a candidate surface BR will extend from the stretch horizon to the
cutoff surface at some t = tR,ε > 0, while BL intersects the cutoff surface at t = tL,ε < 0.
They are connected by Bε, which simply stretches along the cutoff surface from tL,ε to tR,ε.
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In this case, the maximization in eq. (5.24) involves locally extremizing the profiles of BL
and BR, and also the positions of the intersection points, tL,ε and tR,ε, on the cutoff surface.

With the anchor surfaces placed symmetrically on the stretched horizons, we can expect
that even with our modified prescription (5.24), the extremal surface will be left-right
symmetric in the Penrose diagram. Hence, we focus our attention on BR extending from
the stretched horizon to the cutoff surface. To reduce the clutter in our equations, we
denote the position of the intersection t = tε = Lτε and r = rmax = L/ε. Because the
intersection between the extremal surface and the cutoff surface is free, there are infinite
extremal surfaces labeled by conserved momenta Pu ∈ (0,+∞) at a fixed boundary time
tR = τL. However, the extremization equations are still the same as before, but one of the
boundary conditions is modified. Since the turning point should now be at rturn ≥ rmax,
the conserved momenta of interest are bounded from below, viz.,

Pu ≥
√

1− ε2

εd
≡ Pcrt . (5.25)

The lower bound corresponds to the critical case where the extremal surface just touches
the cutoff surface with rturn(Pcrt) = L/ε. As before, the infinite limit with Pu →∞ pushes
the extremal surface to become a null surface located at

u = constant = tR − r∗(ρL) = L (τ − arctanhρ) = L (τ − τ∞) . (5.26)

Following the analysis in the previous subsection, the contribution of the left and right
segments is given by

Cext
V = V(BL) + V(BR)

GN L
= 8N

∫ L/ε

Lρ

(r/L)2(d−1)√
P 2
u + f(r)(r/L)2(d−1)

dr

L
. (5.27)

Since the cutoff surface is simply given by r = rmax, it is straightforward to derive the
volume for Bε,

CεV = V(Bε)
GN L

= 8N
√

1− ε2

εd
τε . (5.28)

Of course, the intersection time τε on the cutoff surface is not totally free in that the
profile of BR connects it to the time τ on the stretched horizon for a given momentum
Pu ≥ Pcrt. Similar to the eq. (5.11), the extremization equation implies the relation
between τ and τε, i.e.,

τε − τ =
∫ L/ε

Lρ

dr

L

Pu

f(r)
√
P 2
u + f(r) (r/L)2(d−1)

. (5.29)

Implicitly, we are considering the case where BL and BR do not intersect at r = r0 < rmax.
Hence, the intersection time (for the right part) is constrained by τε ≥ 0. This implies
the transition time from smooth extremal surfaces to the piecewise extremal surfaces is
located at

τcrt =
∫ L/ε=rturn

Lρ

dr

L

Pcrt

f(r)
√
P 2

crt + f(r) (r/L)2(d−1)
' τ∞ −

√
πΓ
(

2d−1
2d

)
Γ
(
d−1
2d

) ε , (5.30)
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where the final approximation was derived by considering ε� 1. We note that this result
is similar to eq. (3.20) where it was found that the effect of the cutoff surface was first felt
for CV2.0 (and CA) at a time τ∗ = τ∞ −O(ε).

For any boundary time beyond this critical time τ ≥ τcrt, we can find a (continuous)
family of piecewise surfaces where BL and BR are locally extremized away from the cutoff
surface. As described above, it remains to find the surface that maximizes the holographic
complexity in eq. (5.24) by extremizing over the intersection time τε. That is, we determine
the surface with the maximal volume by performing the maximization:

CV (τ ≥ τcrt) = max
Pu≥Pcrt

(
Cext
V (Pu) + CεV(τε)

)
, (5.31)

where the time τ is fixed and so eq. (5.29) determines τε in terms of the conserved momen-
tum Pu.

First, it is easy to find that the leading contributions in Cext
V (τ), and CεV(τε) in the

regime ε� 1 are

Cext
V ≈ 8N

εd−1

√
πΓ
(

2d−1
2d

)
(d− 1)Γ

(
d−1
2d

) , CεV ≈
8Nτε
εd

, (5.32)

respectively. One may naively expect that the maximization should identify the maximal-
complexity surfaces in eq. (5.31) are those which maximize the extent of Bε along the
cutoff surface because its contribution CεV dominates above. However, we note that the
naive expectation is incorrect because the variations in τε are only O(ε) and so Cext

V and
CεV compete on an equal footing in the maximization (5.31). More precisely, we obtain the
maximal and minimal values for τε as follows

τε|max = τ − τ∞ + arctanh (ε) , with Pu →∞ ,

τε|min = τ − τcrt , with Pu = Pcrt ,
(5.33)

and as noted above, we will find τε|max − τε|min ∼ O(ε).
Although the full analytical results for the above integrals for higher dimensions are

much more complicated, we can still show that the surface which maximizes (5.31) (for
τ ≥ τcrt) is the surface intersecting the cutoff at τε|min. That is, the surface is constructed
with the smallest momentum Pu = Pcrt. We only need to focus on the derivative of the
two contributions with respect to the conserved momentum, namely

∂Cext
V

∂Pu
= −8N Pu

∫ L/ε

Lρ

(r/L)2(d−1)(
P 2
u + f(r)(r/L)2(d−1))3/2 drL , (5.34)

and

∂CεV
∂Pu

= 8N
√

1− ε2

εd
∂τε
∂Pu

= 8N Pcrt

∫ L/ε

Lρ

(r/L)2(d−1)(
P 2
u + f(r)(r/L)2(d−1))3/2 drL ,

(5.35)
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Figure 13. The time derivative of holographic complexity dCV(τ)
dτ . The blue curve is referred to

as the growth rate before the critical time, i.e., Pu(τ ≤ τ∞). After introducing the cut-off surface,
holographic complexity CV(τ ≥ τcrt) grows linearly with a growth rate 8NPcrt as indicated by the
black line. We choose d = 2, ρ = 9

10 , ε = 1
10 for this plot.

where we substituted the definition of Pcrt from eq. (5.25) into the final expression. Com-
bining these two expressions, we thus obtain

∂
(
Cext
V + CεV

)
∂Pu

∝ (Pcrt − Pu) ≤ 0 , (5.36)

due to our constraint that Pu ≥ Pcrt. In the above analysis, we consider an arbitrary
time, stretched horizon, and cutoff surface, which means that this conclusion holds for any
τ, ρ, ε. As a result, we conclude that the CV complexity of the piecewise surfaces B in the
late-time regime (τ ≥ τcrt) is always associated with the extremal surfaces with a conserved
momentum Pcrt. These are the surfaces where BR and BL are just tangent to the cutoff
surface when they meet Bε, i.e., the piecewise extremal surface remains smooth.

After the transition time, the growth of holographic complexity is exactly linear. It
is easy to understand this linear growth because Cext

V remains as a constant and CεV grows
linearly. The linear growth at late times simply reads

dCV
dτ

∣∣∣∣
τ≥τcrt

= 8N Pcrt = 8N
√

1− ε2

εd
. (5.37)

The growth rate of holographic complexity from early to late times is shown in figure 13.
Finally, we remark that the transition from hyperfast to linear growth, dCV/dτ is continu-
ous. This is similar to the result for CV2.0 shown in eq. (3.29).

6 Discussion

In this paper, we investigated three different proposals for holographic complexity applied
to (d + 1)-dimensional de Sitter space. We found that the hyperfast growth regime first
discussed in [1] for the CV proposal appears quite generally. That is, the complexity grows
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much faster than the linear growth observed for black holes, e.g., [52, 63, 65]. In fact, all
three proposals exhibit a pole of the form

dC
dτ
≈ N

(τ∞ − τ)d , (6.1)

as we approach the critical time τ∞ — see eqs. (3.17), (4.16) and (5.20). An exception to
this behaviour was the CV complexity for d = 1, which yields dC/dτ ≈ N/

√
τ∞ − τ , as

shown in eq. (A.15). This critical time has a clear geometric explanation in the gravity
calculations [1]. When the null sheets are emitted to the future from time slices on the
left and right stretched horizons, they will intersect in the region behind the cosmological
horizon (at early times, 0 ≤ τ ≤ τ∞). At τ = τ∞, the position of this intersection just
reaches timelike infinity i+ in the Penrose diagram, and of course, for τ > τ∞, these null
sheets no longer intersect (i.e., they reach i+ before intersecting).

As indicated in eq. (6.1), all three approaches to holographic complexity yield a factor
of N , the de Sitter entropy (1.2). As this entropy is thought to measure the number of
holographic degrees of freedom, e.g., [27–29], it is natural that such a factor should appear
in the holographic complexity. Eq. (6.1) is also written in terms of a dimensionless time
coordinate on the stretched horizons [1], i.e., we chose tR = τL = −tL. Expressing the
result in terms of the coordinate time t would introduce factors of L, the dS curvature
scale, or alternatively of the Hawking temperature (1.1) measured by an observer at the
center of the static patch. Perhaps a more natural approach is to use the proper time
measured along the stretched horizon, tp =

√
1− ρ2Lτ . Expressing eq. (6.1) in terms

of tp would then introduce factors of the blue-shifted temperature measured by observers
traveling along the stretched horizon, i.e.,

Tstretch = 1
2π
√

1− ρ2L
. (6.2)

Of course, this is the natural temperature to associate with the holographic theory on the
stretched horizons, and then eq. (6.1) becomes

dC
dtp
≈ N Tstretch

[Tstretch(tp,∞ − tp)]d
. (6.3)

It is interesting to compare the results for holographic complexity here with the anal-
ogous results in AdS spacetime. One immediate difference is that the present complexities
are finite at early times τ . τ∞. In contrast, in AdS spacetime, one finds universal UV
divergences due to the contributions near the asymptotic boundary, e.g., see [59, 66]. These
divergences are associated with introducing entanglement down to small UV distance scales
in the boundary theory. Hence the lack of divergences at early times in de Sitter space is
not surprising because it is expected that the holographic dual only has a finite number
of degrees of freedom. As noted above, this number of degrees of freedom appears as the
overall factor of N in the dS complexity. This is analogous to the leading AdS contribu-
tion with CV or CV2.0, which is also proportional to the number of degrees of freedom
in the boundary CFT [59]. That is, one finds the leading contribution to the complexity

– 32 –



J
H
E
P
0
5
(
2
0
2
2
)
1
1
9

is proportional to cT vol./δd−1 where cT is a central charge characterizing the boundary
CFT and vol./δd−1 counts the number of cutoff-sized cells in the corresponding boundary
time slice. This general feature also extends to CA, although additional logarithmic factors
exist.15 For example, the factor log(L/(d− 1)`ct) appearing in eq. (4.14) has similar coun-
terparts in AdS calculations. It is interesting to note that the signs are such that we require
`ct < L/(d − 1) for CA to be positive in dS,16 while we should choose `ct > L/(d − 1) in
AdS [67, 68]. Of course, divergences appear as τ → τ∞ (e.g., see eq. (3.15)), and we observe
that the structure of the divergences in the dS complexity is similar to the structure of
UV divergences appearing in the AdS complexity. That is, in both cases, we have a series
of power-law divergences beginning with 1/(τ∞ − τ)d−1 in dS and 1/δd−1 in AdS [59, 66].
Further, the series includes only odd or even powers for d even or odd, respectively, with
an additional logarithmic term appearing for even-dimensional dS or AdS spacetime, i.e.,
an odd-dimensional dual theory.17

Susskind [1] argued that the hyperfast growth of the complexity shown in eq. (6.1)
signals that the Hamiltonian governing the time evolution of the holographic degrees of
freedom is not of the usual k-local type. Instead, Hamiltonian is comprised of ‘complex’ op-
erators where k grows with N , the total number of degrees of freedom, i.e., these operators
act on a significant fraction of the degrees of freedom simultaneously. These arguments
were made explicit by considering the SYK model in an unusual limit, where the tem-
perature is large, and the number of fermions in the interactions scales as a power of N .
This new regime allows the time evolution of the system to quickly explore the Hilbert
space, in contrast to the circuits which are used to construct the corresponding state when
measuring its complexity. These ‘complexity’ circuits are built with simple gates that only
act on a finite number of degrees of freedom. This difference in the nature of the operators
appearing in the Hamiltonian and the complexity circuits leads to the rapid growth of the
complexity. The behaviour in eq. (6.1) would be a target in extending the discussion of
the underlying microscopic degrees of freedom to higher dimensions.

While the holographic complexity diverges in a finite time, as shown in eq. (6.1), it
was natural to regulate the geometric calculations with a cutoff surface at some large
radius rmax. In this case, the hyperscaling behaviour saturates at C ∼ N/εd, where ε =
L/rmax � 1 is a dimensionless parameter characterizing the cutoff. Subsequently, the
complexity grows linearly with time

dC

dτ
' N

εd
, (6.4)

as shown in eqs. (3.28), (4.26), and (5.37). Of course, this rate is somewhat ambiguous
since it depends so strongly on the cutoff.

15Let us also note that if we had not included the null boundary counterterm (4.9) in our
complexity=action calculations in section 4, the leading divergence would have been dCA/dτ ≈
N log (τ∞ − τ) / (τ∞ − τ). This raises a number of interesting questions, but it also means that the re-
sults would depend on the parametrization of the null boundaries.

16See discussion under eq. (4.14).
17Of course, this logarithmic contribution is the leading term for d = 1, i.e., dS2.
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Further, this linear growth at later times is again in agreement with the discussion
of [1]. However, a discrepancy between the present and earlier discussions is that in [1], it
was argued that the finiteness of the Hilbert space must tame the hyperfast growth and
the corresponding prefactor in eq. (6.4) would be exponential in the number of degrees
of freedom. As is evident, with the cutoff which we introduced by hand, the growth rate
remains linear in N unless we allow the cutoff to be controlled by the number of degrees
of freedom, e.g., ε ∼ e−aN . Of course, the finiteness of the Hilbert space also comes into
play in discussing the long-time behaviour of holographic complexity in asymptotically
AdS black holes, i.e., after a time exponential in the entropy, the complexity saturates,
e.g., [65, 69, 70]. We note that recent calculations in JT gravity involving summing over
topologies revealed the expected late-time saturation of the complexity in this context [71].
Hence, it would be interesting to see if these calculations could be adapted to a dS version
of JT gravity (as examined in e.g., [72–74]) and then if they would reveal linear growth
for the late-time dS complexity in line with the predictions of [1]. Further, let us add
that the dS complexity must also eventually saturate as in the AdS case, and it would
be interesting to understand the relevant time scale for saturation either in the present
regulated framework or in that considered in [1].

Of course, setting aside the above considerations, one might ask how our geomet-
ric regulator should be interpreted in the dual theory. Here we can find guidance from
the complexity=volume calculations in section 5. Recall that the extremal surfaces have
an intuitive relation to the unitary circuits measuring the complexity of the dual state,
e.g., [50, 65, 75]. While at early times, the cutoff surface does not play a role, and as usual,
we imagine that the entangled state between the stretched horizons is constructed by ‘com-
plexity’ circuits using elementary gates acting on only a few degrees of freedom, i.e., the
resources available in their construction are k-local operators.18 However, beyond τ & τ∞,
the nature of the surfaces changes, and a segment Bε of the maximum volume surface lies
along the cutoff surface. Hence the nature of the underlying circuit must change, which
we can interpret as new resources becoming available. These resources tame the growth of
the complexity, i.e., the growth is linear in time albeit with a very large coefficient. Hence
one might imagine that the new resource involves gates that are not k-local so that the
complexity circuits can keep up with the nonlocal Hamiltonian evolution of the dual theory
suggested by [1].

Further progress may come from taking a ‘conventional’ holographic interpretation of
the cutoff surface. Taking over our experience from AdS/CFT, one would interpret rmax
in terms of a short distance UV cutoff δ in a boundary theory, i.e.,

rmax = LR

δ
or ε = δ/R . (6.5)

Our parameter ε becomes the ratio of this UV cutoff δ to a macroscopic scale R, characteriz-
ing the boundary geometry. In particular, following the standard holographic prescription,
the boundary geometry here becomes

ds2
boundary = R2

(
dτ2 + dΩ2

d−1

)
, (6.6)

18This assumption follows from the usual intuition developed in the conventional AdS setting.
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where τ = t/L, as is consistent with our previous notation. Hence it may be natural
to interpret the portion of the extremal surface that hugs r = rmax as a Euclidean path
integral involving a boundary CFT in this background geometry (6.6).

Of course, this interpretation connects with attempts to construct dS/CFT holography,
e.g., [5–18], where gravity in asymptotically de Sitter space was conjectured to be dual to
a boundary CFT living on timelike infinity. Of course, these studies showed that this must
be an unconventional CFT (e.g., with complex conformal weights). This CFT path integral
certainly seems to increase the available resources to construct the unitary circuit. In the
CFT interpretation, N becomes the central charge of the dual CFT, a local measure of
degrees of freedom. That is, there are N degrees of freedom for each cutoff-sized plaquette
on a slice through the Euclidean manifold, i.e., the total number of degrees of freedom is
rough N ′ = N(R/δ)d−1. Then we can rewrite the rate (6.4) as

dC

dτ
' N ′

ε
= N ′

R

δ
. (6.7)

Recall that in the discussion around eq. (5.36), we showed that the segment on the cutoff
surface extends from −τε to τε = τ − τcrt with the constant shift τcrt given in eq. (5.30).
That is, as the holographic theory evolves for an interval ∆τ , the interval over which
the path integral is performed expands by R∆τ (up to a factor of two) according to the
boundary metric (6.6). Alternatively, we can say that in this interval, the Euclidean path
integral expands by R∆τ/δ cutoff-sized layers. Hence, we see that the linear growth rate
is proportional to the product of the total number of degrees of freedom in the boundary
CFT and the rate at which cutoff-sized layers are added to the Euclidean path integral.

In considering the new resources, we note that Euclidean path integral would not be
constructed by unitary gates alone, but rather it would include ‘euclideons’, new tensors
derived directly for the Euclidean time evolution by the Hamiltonian [76, 77].19 Overall,
we expect that the boundary CFT is an auxiliary system. We note that the degrees of
freedom in this auxiliary theory are organized and operated on with some sense of locality
in the boundary geometry (6.6). However, embedding the total of N degrees of freedom on
the stretch horizons is unlikely to respect this locality and so is very much in line with the
idea that we are introducing nonlocal operators in this portion of the complexity circuit.

The above speculation produces a rather pleasing description (at least to the present
authors) where both perspectives on dS/CFT holography have a role to play, i.e., the
fundamental theory lives on the stretched horizon while a boundary CFT plays the role of
an auxiliary system. However, one must ask what the nature of the underlying complexity
model really is. In particular, one may wonder if the new resources are introduced (by hand)
after the complexity evolves beyond a certain threshold, i.e., the state crosses some distance
in the Hilbert space, or if these resources are available but simply not efficient in describing
the state at early times τ . τ∞. We argue that our modified CV prescription (5.24) favors
the latter approach. In finding the extremal surface, we optimize between segments of the
piecewise surface that are locally extremal and those that hug the cutoff surface, e.g., we

19See [78–83] for other approaches to explaining holographic complexity outside of the standard approach
of unitary circuits.
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optimize over the intersection points, tL,ε and tR,ε. This suggests a microscopic picture
where one is optimizing between the standard resources, i.e., simple k-local gates, and
the new resources involving the boundary CFT path integral. In particular, our detailed
analysis showed that the maximal volume surface connects as a tangent to the cutoff surface,
rather than just falling into r = rmax along a null sheet. This means that the maximal
surface remains away from the cutoff as long as it can and contributes Cext

V ∼ N/εd before
connecting to the cutoff surface.

There are a variety of directions in which the present work could be extended. As
noted above, one interesting future direction would be to adapt the JT gravity calculations
of [71]to a positive cosmological constant. This may reveal that the expected linear growth
beyond τ & τ∞ emerges naturally from a sum over spacetime topologies. Our approach
of introducing a geometric regulator, i.e., a cutoff surface, is a complementary approach,
but it readily allows for a broader examination of dS holography including black holes,
e.g., [40, 41] or shock waves, e.g., [84, 85].

Indeed, extending the present discussion of holographic complexity to more general
cosmological backgrounds would be interesting. The idea of using cosmological horizons
as a holographic screen has been considered in e.g., [86–88]. One interesting context to
examine would be asymptotically dS geometries with matter excitations [11, 13]. In general,
the corresponding Penrose diagram is no longer square, and instead, the diagram would
be taller than it is wide. Hence two observers fixed on antipodal points in the spacetime
would then observe overlapping regions on the t = 0 slice. It would be interesting to
understand the holographic description of such a scenario. In some cases, these matter-
filled spacetimes collapse to form singularities in the future or emerge from a singularity in
the past (e.g., see [11, 89]). However, holographic entanglement and complexity may still
prove to be exciting probes of these cosmological singularities. It would be interesting to
compare their behaviour to that in the context of black hole singularities, e.g., [90–92].

Following [47, 48], it would be interesting to consider the present dS setting to ex-
plore the behaviour of generalized gravitational observables which have an interpretation
in terms of holographic complexity. In this direction, one might reconsider our revised
CV proposal (5.24). A natural question is whether the volume of the segment running
along the cutoff surface could be weighted differently from the locally extremal segments?
It would be interesting to investigate if such a choice changes the behaviour of the com-
plexity in any essential way. It appears that one consequence would be that the growth
rate would jump discontinuously when the cutoff surface begins to contribute. In this
context, another interesting question would be to understand whether or not it is possible
to construct observables that do not exhibit hyperfast growth (i.e., which stay away from
timelike infinity).

Finally, we note that the discussion of holographic entanglement entropy can be framed
in terms of ‘bit threads’ [93].20 In the de Sitter setting, this leads to two distinct proposals:
the monolayer [1], and bilayer [41] approaches for entanglement entropy — see [42] for a
discussion of the differences between the two approaches. However, we note that there is an

20Alternatively, holographic entanglement entropy in static spacetime, i.e., the Ryu-Takayanagi prescrip-
tion can be also reformulated in terms of calibrations [94].
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analogous ‘gate line’ description of complexity=volume [95–97]. Hence it would be helpful
to examine this description of holographic complexity in the context of de Sitter space and
explore if analogous subtleties arise as were found for the holographic entanglement entropy.
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A CV complexity in dS2

In this appendix, we examine the extremal surfaces and holographic complexity CV(τ)
for dS2 in detail. Thanks to the simplicity of dS2, we will be able to derive all results
analytically. We should also point out that the most results derived in the main section for
dSd+1 are also valid for dS2, except the divergent power law shown in eqs. (5.20) and (5.21).
Before we move to the extremal surface in dS2, we also note that the crucial difference
of spacetime structure of dS2 with its cousins the higher dimensional spacetime. In the
following discussion, we will focus on the geometry represented by the Penrose diagram in
figure 1. For dSd+1 each point in the diagram represents an Sd−1 and hence for dS2 i.e.,
d = 1, we have S0. The latter actually denotes two separate points. That is, for d = 1,
a horizontal cross-section of the Penrose diagram is a circle S1 with the north and south
poles being two antipodal points dividing this circle into two halves. Further then, each
point in the diagram represents two points equidistant from either pole, one on each of
these halves. As a result, the complete Penrose diagram for dS2 be redrawn as shown in
figure 14, where each of the two halves is explicitly shown. This means that the cosmological
horizon surrounding the observer at the center of the diagram actually has two separate
components, one to the left of the observer and one to the right. One might imagine that
there are distinct holographic degrees of freedom associated with each of these,21 but we do
not examine this possibility here. In direct analogy with the higher dimensional discussion
in the main text, we will consider extremal surfaces with two symmetric left and right

21There is also no reason why the circumference of the t = 0 should necessarily be 2πL, which is implicitly
the case in figure 14. So it would also be interesting to explore the case where this circumference is larger
or smaller than this canonical value. In particular, if the circumference is less than πL, a single observer
would eventually be able to see the entire t = 0 slice and realize that her universe is compact. However, we
do not explore this possibility here either.
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i−

i+

i−

i+

r = 0 r = 0r = 0 r = 0

r = ∞ r = ∞

r = ∞ r = ∞

Figure 14. Penrose diagram of dS2 which contains two copies. In this diagram, we identify the
two north poles located at r = 0 to glue the two copies together.

components, which are always anchored on the same time slices on the stretched horizons
at the same radii just outside the two horizons shown in figure 14.

We also remark that the extremal surfaces in dS2 were recently explored in [54]. Their
investigation focused on studying holographic complexity for locally dS2 geometries within
an asymptotically AdS2 spacetime [25, 26]. For their discussion of pure dS2, the extremal
surfaces were anchored on the north and south poles at r = 0 (and hence t = 0). In the
following, we consider the general cases with extremal surfaces anchored at r = ρL, which
allows the surfaces and CV to evolve along the stretched horizon. Further, we analyze the
CV complexity with a cutoff surface for late times τ & τ∞.

Extremal surfaces in dS2. In the following, we explore the holographic complexity CV
for dS2, i.e.,

CV = 1
GNL

∫
B

√
h = 4N

∫√
−f(r)u̇2 − 2u̇ṙ dλ

L
, (A.1)

with N = Ω0
4GN

. As described above, this describes extremal surfaces with two symmetric
but separate components on the left and right halves of figure 14. Although our discussion
only refers to a single surface, i.e., a half of the entire extremal surface, the factor Ω0 = 2
in N takes account of the contributions from the two separate components.

We start from the extremizing equations in dS2, namely

ṙ =

√
P 2
u + 1− r2

L2 , u̇ = Pu − ṙ
f(r) . (A.2)

Obviously, the turning point between the left/right parts is derived as rturn = L
√

1 + P 2
u

with ṙ|rturn = 0. First of all, we consider the simplest case with extremal surfaces starting
from the north pole. The corresponding boundary conditions are given by

r(0) = 0 , u

(
π

2

)
= tturn − r∗(rturn) = −L2 log

√
1 + P 2

u + 1√
1 + P 2

u − 1
, (A.3)
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in which the second condition is derived by requiring the turning point located at tturn = 0
for the symmetric configuration with boundary time tR = τ = −tL. One can thus solve the
extremizing equations and get

r(λ)
L

=
√

1 + P 2
u sin

(
λ

L

)
,

u(λ)
L

= −1
2 log


(
1 +

√
1 + P 2

u sin(λ/L)
)

(1− Pu tan(λ/L))(
1−

√
1 + P 2

u sin(λ/L)
)

(1 + Pu tan(λ/L))

 ,

(A.4)

with taking λ
L ∈ [0, π2 ]. From the evolution along the radial direction, we can find the

extremal hypersurface cross the cosmological horizon at the ‘time’ λh = arctan
(

1
|Pu|

)
. Ob-

viously, we should have two symmetric branches in terms of t, r coordinates, corresponding
to Pu ≥ 0, Pu ≤ 0, respectively. However, the extremal surface with the negative conserved
momentum Pu would cross the past horizon and move into the region not covered by the
infalling coordinate u. This fact is shown by the singularity at λ = λh in the solution u(λ)
with Pu < 0. In the following, we will just focus on the branch with non-negative momen-
tum for simplicity. The corresponding extremal surfaces are shown in the Penrose diagram
of dS2 in figure 15. At the infinite momentum limit Pu → ∞, the extremal hypersurface
approaches the null surface u = 0 and the turning point happens at the infinite future i+

with rturn → +∞.
A unique feature associated with dS2 is the infinite redundancy of the extremal surfaces.

From the solution in eq. (A.4), we can find that u(0) = 0 for all values of Pu. It means that
all extremal surfaces would collapse on the north pole at t = 0, r = 0, which is faithfully
shown in figure 15. From this point of view, we can conclude that the extremal surfaces are
infinitely degenerate, i.e., there is a continuous family of extremal hypersurfaces connecting
the north pole and south pole.

An alternative way to visualize the extremal surface in dS2 is embedding de Sitter
spacetime as the hyperboloid (with radius L) in a three-dimensional Minkowski space-
time R2,1. In two dimension spacetime, the extremal surfaces are nothing but geodesics.
With this embedding, the spacelike and timelike geodesic (extremal surface) in dS2 can be
shown to be the intersections with a plane through the origin of the embedding space (e.g.,
see [98]). Correspondingly, one can find that all spacelike geodesics are periodic, i.e., start-
ing from the north pole and ending at the south pole, as shown in the Penrose diagram in
figure 15. Moreover, one can notice that all these spacelike geodesics on dS2 are degenerate
because they are related to each other by the boost in the embedding Minkowski spacetime.
Consequently, we immediately conclude that the length (volume) of all geodesics in dS2 is
the same, which we can also see in the following subsection.22

Time evolution of CV complexity. We are more interested in exploring the time
evolution of the extremal surfaces with endpoints located on a fixed stretched horizon

22Yet another way to understand this degeneracy is to imagine defining new static patch coordinates with
the origin centered at the bifurcation surface shown in the Penrose diagram. Then the extremal surfaces are
just constant t slices in the new coordinate patch and the symmetry is time translations. The fact that the
extremal surfaces are related by an isometry is why the complexity is constant when ρ→ 0 — see also [54].
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Figure 15. Extremal Surfaces with various conserved momentum in dS2.

at r = ρL. The corresponding extremal surface is nothing but the same one derived in
eq. (A.4) with non-zero λ as the start point. The boundary time τ = tR/L defined in
eq. (5.11) then reduces to

τ (ρ;Pu) =
∫ rturn

rmin

dr

L

−Pu
f(r)

√
P 2
u + 1− r2

L2

= arctanh
(

Puρ√
P 2
u + 1− ρ2

)
. (A.5)

The relation τ(Pu) is also shown in figure 15. Since the stretched horizon is outside the
horizon, we can find the boundary time τ is bounded from above by τ∞, i.e.,

τ (ρ;Pu) ≤ arctanh ρ = τ∞ , (A.6)

where the equality is saturated when Pu →∞. We can further obtain the series expansions
in different limits, viz.,

τ (ρ;Pu) ≈


τ∞ − ρ

2P 2
u

+O
(

1
P 3
u

)
, Pu →∞

Pu√
1+P 2

u

ρ+O(ρ3) , ρ→ 0
1
2 log

(
P 2
u

(1−ρ)(1+P 2
u)

)
+
(

1
4 −

1
P 2
u

)
(ρ− 1) +O

(
(ρ− 1)2) , ρ→ 1 .

(A.7)

As a comparison to the higher dimensional case, let us also remark here that the relation
between τ and Pu is monotonic, i.e.,

dτ

dPu
= ρ

(1 + P 2
u )
√
P 2
u + 1− ρ2 ≥ 0 . (A.8)

We note here that the non-negativity for dS2 with any nonzero ρ implies that there is one
and only one extremal surface anchoring on the stretched horizon ρ at a specific bound-
ary time.

Let us turn to the holography complexity CV in dS2 by evaluating the radial integral

CV(ρ;Pu) = 8N
L

∫ rturn

rmin

dr√
P 2
u + 1− r2/L2 = 8N

(
π

2 − arctan
(

ρ√
P 2
u + 1− ρ2

))
. (A.9)
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Here, we note that with ρ = 0, i.e., the extremal surface is anchored at the north and south
poles, the holographic complexity reduces to a constant,

CV(ρ = 0) = 4πN , (A.10)

which is independent of the conserved momentum Pu. It indicates that all extremal surfaces
with different conserved momenta have the same volume. This particular result was also
discussed in [54] from the viewpoint of holographic complexity.23 We may also note that
with the choice, τ∞ = 0 all of the surfaces are anchored at ρ = 0 and τ = 0. As we
discussed above, the fact that all surfaces have the same volume is related to the boost
symmetry of embedding spacetime R2,1 — see footnote 22.

Unlike the particular case above, the volume of the extremal surfaces anchored at ρ > 0
is sensitive to the choice of the conserved momentum, i.e., depends on the boundary time
τ . To show the time dependence explicitly, we can also rewrite eq. (A.5) as

Pu = eτ − e−τ√
2
(

1+ρ2

1−ρ2 − cosh (2τ)
) . (A.11)

Substituting eq. (A.11) to eq. (A.9), we finally obtain the time dependence of holographic
complexity CV:

CV(ρ;Pu) = 4N
(
π − 2 arctan

(
1

cosh (τ)

√
1 + ρ2 − (1− ρ2) cosh(2τ)

2(1− ρ2)

))
. (A.12)

It is straightforward to check that its time derivative is given by

dCV
dτ

= 8N sinh(τ)
√

2(1− ρ2)
ρ2 + 1− (1− ρ2) cosh(2τ) = 8NPu , (A.13)

as we claimed before in eq. (5.10). Taking the limit τ → τ∞, one can find

lim
τ→τ∞

CV ' 4πN − 8N
√

2ρ(τ∞ − τ) +O((τ∞ − τ)3/2) , (A.14)

which is approaching a constant 4πN rather than being divergent. However, we can still
find the hyperfast growth of complexity, i.e.,

lim
τ→τ∞

dCV
dτ
≈ 8N

√
ρ

2 (τ∞ − τ) +O
(√
τ∞ − τ

)
, (A.15)

which is different from the power law in eq. (5.20) for dSd+1. See figure. 16 for the time
dependence of complexity and its growth rate in dS2.

23The constant derived in [54] differs from eq. (A.10) by a factor Ω0 = 2 since as discussed above, our
extremal surfaces contain two components in the complete Penrose diagram for dS2 shown in figure 14.
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Figure 16. Left: time evolution of holographic complexity CV in dS2. Right:Time evolution of
growth rate of complexity in dS2. The black line indicates the growth rate for the linear growth
after the transition time τcrt.

Introducing a cutoff surface. In contrast to the CV complexity in higher dimensional
dSd+1, CV in dS2 remains finite at the critical time τ = τ∞, as shown in eq. (A.14). However,
we still need a new description for CV to understand the behaviour after the critical time due
to the absence of the extremal surfaces connecting the two stretched horizons for τ > τ∞.
Following the approach in section 5, we introduce a cut-off surface at r = L/δ and use
the modified proposal in eq. (5.24) where the extremal surfaces are defined in a piecewise
manner beyond the critical time τ∞. The conclusions for CV at later times in dS2 are then
essentially the same as in higher dimensional dS. This subsection will show more analytical
results to support the general analysis in section 5.

From the extremality equation derived in eq. (A.4), the conserved momentum of
the extremal surfaces that can touch the cut-off surface should satisfy the following con-
strain, namely

|Pu| ≥
√

1
ε2 − 1 . (A.16)

Correspondingly, the contribution of the extremal surfaces BL,BR to complexity is defined
in eq. (5.27) and derived as

Cext
V = 8N

(
arcsin

(
1

ε
√

1 + P 2
u

)
− arcsin

(
ρ√

1 + P 2
u

))
. (A.17)

The complexity from the cut-off surface part Bε then reads

CεV = 8Nτε
√

1
ε2 − 1 , (A.18)

where the intersection time τε on the cut-off surface is related to the boundary time τ by

τ − τε = arctanh
(

Puρ√
1 + P 2

u − ρ2

)
+ 1

2 log

∣∣∣∣∣∣
√
P 2
u + 1− 1

ε2 − Pu/ε√
P 2
u + 1− 1

ε2 + Pu/ε

∣∣∣∣∣∣ . (A.19)

The transition time is derived as

τcrt = arctanh

 Pcrtρ√
1 + P 2

crt − ρ2

 = arctanh

ρ
√√√√ 1

ε2 − 1
1
ε2 − ρ2

 < τ∞ . (A.20)
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Figure 17. The boundary time τ as a function of the conserved momentum Pu as derived in (5.11).
We consider three-dimensional de Sitter spacetime dS2+1 and choose different stretched horizons at
r = ρL in this plot. We note that it is not a monotonic function for smaller values of ρ, e.g., ρ = 0
and 3/10.

After the transition time τcrt, we pick up the one with the maximal volume among those
infinite discontinuous surfaces by performing the maximization:

CV (τ ≥ τcrt) = max
|Pu|≥Pcrt

(
Cext
V (Pu) + CεV(τε)

)
. (A.21)

Explicitly, one can find the monotonicity with respect to the momentum Pu, i.e.,

∂
(
Cext
V + CεV

)
∂Pu

= 8Nε
1 + P 2

u

(√
1
ε2 − 1− Pu

) ρ√
1 + P 2

u − ρ2 −
1/ε√

1 + P 2
u − 1

ε2

 ≤ 0 ,

(A.22)
where the non-positivity is guaranteed by the constrain in eq. (A.16) as well as ρ < 1 < 1/δ.
As a result, we conclude that the maximal volume for those surfaces anchoring at boundary
time τ on the stretched horizon is derived as

CV (τ ≥ τcrt) = 8N

π
2 − arcsin (ρε) +

√
1
ε2 − 1

τ − arctanh

ρ
√

1
ε2 − 1√

1
ε2 − ρ2

 , (A.23)

with a linear growth, i.e.,
dCV
dτ

∣∣∣∣
τ≥τcrt

= 8N
√

1
ε2 − 1 . (A.24)

B Multiple extremal surfaces and maximization

Except for the similarities with dS2, a new feature associated with the higher dimensional
dS spacetime is that the relation between τ and momentum Pu is not monotonic in general.
In other words, the sign of the derivative dτ

dPu
is not fixed for dSd+1 for an arbitrary stretched

horizon, i.e., for small values of ρ. For example, we show the relation in figure 17 for dS3.
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This feature implies that there is more than one extremal surface associated with a specific
boundary time τ .

Taking the boundary time τ related to the extremal surfaces with a momentum Pu,
i.e., eq. (5.11), we first examine the derivative of τ with respective to Pu, viz.,

dτ

dPu
= −drturn

dPu

Pu/L

f(r)
√
P 2
u − U(r)

∣∣∣∣∣
r→rturn

+
∫ rturn

rmin

dr

L

U(r)
f(r) (P 2

u − U(r))3/2 , (B.1)

where drturn/dPu is given by
dPu
drturn

= U ′(rturn)
2Pu

, (B.2)

with using the definition of the turning point shown in eq. (5.13). It is obvious that both
terms in eq. (B.1) are divergent due to the same singular point at r = rturn. However, we
can explicitly find that these two divergences are exactly canceled and dτ

dPu
is always finite.

Focusing only on the divergent terms, we can get

drturn
dPu

Pu

f(r)
√
P 2
u − U(r)

∣∣∣∣∣
r→rturn

∼ 2U(rturn)
f(rturn) (U ′(rturn))3/2

1√
rturn − r

+O
(√
rturn − r

)
,

(B.3)
and also∫ rmax

ρ

U(r) dr
f(r) (P 2

u − U(r))3/2 ∼
∫ r→rmax U(r) dr

f(r) (U ′(rturn)(rturn − r))3/2 dr̃

∼ 2U(rturn)
f(rturn) (U ′(rturn))3/2

1√
rturn − r

+O
(√
rturn − r

)
.

(B.4)

with substituting eq. (B.3) and performing the integral around the maximal radius. As a
result, the potential divergences appearing dtR

dPu
are canceled. Correspondingly, we arrive

at the second conclusion about the finiteness, i.e.,

dτ

dPu
is finite , ∀ |Pu| , (B.5)

for the extremal surfaces in dSd+1. This also indicates the difference with the linear growth
for the extremal surfaces in asymptotically AdS whose potential contains a maximum at
the turning point.

Although we have shown the finiteness of dτ
dPu

, its sign is still undetermined because it
depends on the choice of the stretched horizon. Due to f(rturn) < 0, the two terms shown
in eq. (B.1) are positive and negative, respectively. However, it is still straightforward to
show d

drmin
dτ
dPu

> 0. When the minimal radius, i.e., rmin = ρL is too small, dτ
dPu

could be
negative since the second term in eq. (B.1). A characteristic behavior of Pu(τ) is illustrated
in figure. 18. Taking any time slice at τ ∈ (−τ∞,+τ∞), there are three corresponding
momentums Pu, i.e., three extremal surfaces anchoring at this boundary time. Among
these candidates, we should pick up the one with the maximal volume for holographic
complexity CV. We will prove in the following that the maximal one is always given by the
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dCV
d⌧

= 8NPu

P+

P−

Pu( + )

Pu( − )

P′￼−

P′￼0

P′￼+

Figure 18. Multiple extremal surfaces at a fixed boundary time τ .

extremal surface with larger momentum |Pu|, which is also the one smoothly related to the
critical null surface u = 0.

Let us first take the boundary time τ = 0 as an example. The corresponding momen-
tums are denoted by P+, P0 = 0, P−, as shown in figure. 18. Assuming the complexity CV
at P0 = 0 is given by CV(P0) and considering the evolution of the extremal surface from P0
to P+, we rewrite the holographic complexity CV(P+) as

CV(P+) = CV(P−) = CV(P0) +
∫ −τmax

0
dτ
dCV
dτ

+
∫ 0

−τmax
dτ
dCV
dτ

= CV(P0) + 8N
∫ 0

−τmax
dτ (−Pu(−) + Pu(+)) ,

(B.6)

where contributions from Pu(−), Pu(+) are negative and positive, respectively. As illus-
trated in figure. 18, the negative and positive contributions are represented by the area
of the gray region and yellow region, respectively. Obviously, we have Pu(+) > Pu(−) as
well as

CV(P+) = CV(P−) > CV(P0) , with τ = 0 . (B.7)

We can then move to an arbitrary boundary time τ ∈ (−τ∞, τ∞) with three extremal sur-
faces labeled by conserved momentums P ′0, P ′+, P ′−. Without loss of generality, we consider
an example with τ > 0 as indicated by the purple line in figure. 18. Following the method
introduced above, one can find

CV(P ′+) > CV(P+) , CV(P ′0) < CV(P0) , CV(P ′−) < CV(P−) , CV(P ′−) > CV(P ′0) . (B.8)
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Combing the these inequalities with eq. (B.7), we finally conclude that

CV(P ′+) > CV(P ′−) > CV(P ′0) , with τ ∈ [0,+τ∞] . (B.9)

This inequality indicates that the maximization over all extremal surfaces at a fixed bound-
ary time always arrives at the extremal surface with a larger |Pu|, which belongs to the
branch with the critical null surface at u = 0.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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