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1 Introduction

Information theory and entanglement have long been seen to play a role in quantum grav-

ity [1–4], however, this perspective has become central to many recent investigations of

holography. In particular, it is now evident that quantum entanglement of the microscopic

degrees of freedom is a key element leading to the emergence of the semi-classical space-

time geometry in the bulk [5, 6]. The novelty of the gauge/gravity duality [7, 8] is that

the holographic dictionary between the bulk and boundary theories provides a framework

where new tools and techniques from quantum information science can be precisely tested

in quantum gravity. Much of this discussion has focused on the idea of holographic en-

tanglement entropy [9–12], which has led to a remarkably rich and varied range of new

insights, e.g., [13–23].

However, it was recently observed that holographic entanglement entropy will not cap-

ture certain features of the late time behaviour of eternal black hole geometries or of the

dual boundary thermal states [24]. This motivated the suggestion that quantum circuit

complexity may play a role in understanding holography. In the holographic context, we

think about the quantum complexity of states, which is a measure of the resources required

to prepare a particular state of interest, by applying a series of (simple) elementary gates

to a (simple) reference state, e.g., see [25, 26] for reviews. Two parallel proposals have been

developed in holography to describe the quantum complexity of states in the boundary the-

ory, namely, the complexity=volume (CV) conjecture [27, 28] and the complexity=action

(CA) conjecture [29, 30]. The CV conjecture equates the complexity of the boundary state

with the volume of an extremal (codimension-one) bulk surface anchored on a time slice Σ

in the boundary where the state is defined. More precisely,

CV(Σ) = max
Σ=∂B

[ V(B)
GN L

]

, (1.1)
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where B corresponds to the bulk surface of interest, while GN and L denote Newton’s

constant and the AdS curvature scale, respectively, in the bulk theory. Instead, the CA

conjecture equates the complexity with the gravitational action evaluated on a region

of spacetime, known as the Wheeler-DeWitt patch (WDW), corresponding to the causal

development of any of the bulk surfaces B appearing above. It reads

CA(Σ) =
IWDW

π ~
. (1.2)

Currently, both conjectures seem to provide viable candidates for holographic complexity

but it still is far from clear how to construct a derivation for either of these proposals,

i.e., how to translate a known calculation of complexity in the boundary theory into a

geometric procedure in the bulk. However, the past few years have seen extensive interest

in studying these new gravitational observables, complexity in quantum field theory and

the corresponding conjectures, e.g., [31–56].

This paper presents another step in this research program, in which we investigate

the full time evolution of holographic complexity for a class of time-dependent geometries.

In particular, we study the time evolution of complexity in Vaidya shock wave space-

times [57–59], with a collapsing shell of null matter in asymptotic AdS spacetimes. In fact,

holographic complexity has already been studied for these geometries both for one-sided

black holes, e.g., [49, 50], where the shell is injected into empty AdS space, and for two-sided

black holes, e.g., [28–31], where the shell falls into an existing eternal black hole.1 In the

present paper, we focus on the case of black hole formation, i.e., one-sided black holes, but

we also consider shock waves falling into an eternal black hole in a companion paper [60].

First, we demonstrate that the null fluid action vanishes on-shell, and hence does not

contribute to the WDW action. The standard prescription to evaluate the WDW action

chooses the generators of the null boundaries to be affinely parametrized [33]. However, we

demonstrate that this prescription yields unsatisfactory results, e.g., the complexity actu-

ally decreases in the case of a two-dimensional boundary CFT. However, this situation can

be corrected by supplementing the gravitational action with an additional counterterm on

the null boundaries. This counterterm was introduced in [33] to establish the invariance

of IWDW under reparametrizations of the null boundaries. For stationary spacetimes, the

addition of this counterterm does not significantly change the properties of the holographic

complexity, e.g., see [34, 48]. However, it appears to be an essential ingredient of the CA

proposal (1.2) if the WDW action is to properly describe the holographic complexity of

dynamical spacetimes, such as the Vaidya geometries. We also evaluate the holographic

complexity for these spacetimes using the CV proposal (1.1) and compare the behaviour

of the complexity for these two approaches. Our results are stated for general spacetime

dimensions, as well as for both planar and spherical horizons.

The remainder of the paper is organized as follows: in section 2, we begin by construct-

ing an action for a null fluid and we demonstrate that the on-shell fluid action vanishes.

While this simplifies the evaluation of the WDW action, in section 2.2, we carefully exam-

1For an analysis of subregion complexity [35–37] in the context of Vaidya geometries, see for

instance [55, 56].
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ine the contribution of the region containing a narrow shell of null fluid and show that it

vanishes as the width of the shell shrinks to zero. Hence with an infinitely thin shell, the

WDW action can be evaluated as the sum of the actions for two separate regions, the first

inside the shell and the second outside the shell. In section 2.3, we consider the counterterm

for null boundaries and consider its contribution in presence of a collapsing shell of null

fluid. In section 3, we study the evolution of the holographic complexity, using both the

CA and CV conjectures, in the formation of a black hole modeled by the Vaidya geometry

for a null shell collapsing into the AdS vacuum spacetime. In section 4, we briefly discuss

our results and indicate some possible future directions.

2 Null fluid and the Vaidya geometry

We start by introducing the background spacetime for our present studies of holographic

complexity, namely the AdS-Vaidya spacetime. Vaidya geometries are a special class of

metrics which among other things provide an analytic description of the formation of black

holes by a gravitational collapse [57, 58]. The collapse that can be studied here is generated

by sending in a homogeneous shell composed of null fluid (or null dust), and the construction

is easily extended to the case of asymptotically AdS boundary conditions, e.g., [59]. In the

latter holographic setting, the limit of sending in an infinitely thin, spherically symmetric

shell of matter with finite energy has been studied extensively — e.g., see [61–70].

We will be studying holographic complexity for a d-dimensional boundary CFT dual

to an asymptotically AdSd+1 Vaidya spacetime with a metric given by

ds2 = −F (r, v) dv2 + 2 dr dv + r2 dΣ2
k,d−1

with F (r, v) =
r2

L2
+ k − fp(v)

rd−2
.

(2.1)

If we fix the profile fp(v) = ωd−2 to be a fixed constant, these metrics would correspond

precisely to the black hole geometries in d ≥ 3 for which the holographic complexity was

studied in [34, 48].2 In particular, they are written in terms of the Eddington-Finkelstein

coordinate v, parameterizing ingoing null rays. Further, L denotes the AdS curvature scale

while k indicates the curvature of the horizon3 situated at r = rh where

ωd−2 = rd−2
h

(

r2h
L2

+ k

)

. (2.2)

However, the profile fp(v) may be taken from a large class of functions and then the

metric (2.1) describes the collapse of a shell of null fluid. Generally, one would require

2It is straightforward to extend these metrics to the special case of d = 2, and we treat the corresponding

process of BTZ black hole formation separately in section 3.
3As usual, k takes three different values, {+1, 0,−1}, which correspond to spherical, planar, and hyper-

bolic horizon geometries, respectively. Following the notation of [34, 48], we will use Ωk,d−1 to denote the

dimensionless volume of the corresponding spatial geometry in the expressions below. For k = +1, this is

just the volume of a (d–1)-dimensional unit sphere, i.e., Ω1,d−1 = 2πd/2/Γ(d/2), while for hyperbolic and

planar geometries, we must introduce an infrared regulator to produce a finite volume.

– 3 –



J
H
E
P
0
6
(
2
0
1
8
)
0
4
6

that the profile is positive to ensure that the total mass is positive at all times,4 and

monotonically increasing so that the energy density of the shell is everywhere positive —

see below. As an example, consider the profile

fp(v) = ωd−2
1 (1−H(v − vs)) + ωd−2

2 H(v − vs) , (2.3)

where H(v) is the Heaviside step function. This profile describes an infinitely thin shell

collapsing along the null surface v = vs, and it generates a sharp transition connecting

one black hole geometry with mass proportional to ωd−2
1 to another black hole with mass

proportional to ωd−2
2 . In section 3, we will choose ω1 = 0 in which case this profile (2.3)

corresponds to a shell collapsing into the AdS vacuum and forming a (one-sided) black hole.

2.1 Action for a null fluid

To evaluate the holographic complexity using the CA conjecture, we need to take into

account the action of the matter fields in the collapsing shell. Hence, we present here a

construction of the action principle for a null fluid, which is inspired in part by the fluid

actions given in [71, 72].5 Let us also note that, a null fluid action was also constructed

in [80] using a complementary set of variables.6 Further, in a particular limit, it is also

possible to use a massless scalar field as the source in the Vaidya metric [61].7

The stress tensor of a null fluid takes the following simple form

Tµν = ε(xµ) ℓµ ℓν , (2.4)

where ℓµ is a null vector, i.e., ℓµℓµ = 0. We can compare the above expression to the stress

tensor for a conventional relativistic fluid: Tµν = (ε+ p)uµuν + p gµν where ε and p are the

local energy density and pressure, respectively. Further, uµ is the local four-velocity of the

fluid elements, with uµuµ = −1. Hence eq. (2.4) can be thought of as the limit where the

fluid velocity becomes null and the pressure vanishes, i.e., uµ → ℓµ and p = 0. Now one

can show that the on-shell action for a conventional fluid is simply an integral of the local

pressure [71] and hence this result suggests that the on-shell action for a null fluid should

vanish. We demonstrate below this intuitive result is in fact correct. We follow in part the

construction in [72], but adapt it to describe the null fluid stress tensor (2.4).

We take the following ansatz for the fluid action

Ifluid =

∫

dd+1x
√−gLfluid where Lfluid(λ, φ, s, ℓ

µ, gµν) = λ gµνℓ
µℓν + s ℓµ∂µφ . (2.5)

4In fact, the stress-tensor depends on the derivative of the profile function with respect to v (see eq. (2.10)

below), so that one should choose the profile to increase monotonically to ensure the energy density is every-

where positive. Note that for k = −1, the mass can take negative values in a restricted range, e.g., see [34].
5There is an enormous literature on the subject of the action principle for relativistic fluids, e.g.,

see [73, 74] for further discussions of perfect fluids and [75–79] for recent developments in describing

dissipative hydrodynamics.
6We note that the on-shell action also vanishes using this alternative approach.
7However, this description breaks down near the singularity, i.e., the solution is not well approximated

by the Vaidya metric there. Therefore we did not adopt this approach since in general, the near-singularity

region makes a finite contribution to the holographic complexity in CA calculations.
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This action involves a number of auxiliary fields, beginning with λ which is a Lagrange

multiplier imposing the constraint that ℓµ is null on shell. With only the first term in the

Lagrangian, we would obtain equations of motion which set ℓµ = 0 (or λ = 0) everywhere,

and hence the corresponding stress tensor would also vanish. Therefore, the second term,

involving a contraction of ℓµ with the derivative of a new scalar φ, is added in eq. (2.5).

The field s can in principle be reabsorbed with a redefinition of ℓµ (and in this sense it

represents a redundancy in the description) but we will keep it to allow for an arbitrary

rescaling of ℓµ. The equations of motion for the full action (2.5) are:

1√−g

δIfluid
δλ

= ℓµℓ
µ = 0 , (2.6a)

1√−g

δIfluid
δℓµ

= 2λ ℓµ + s ∂µφ = 0 , (2.6b)

1√−g

δIfluid
δφ

= −∇µ(s ℓ
µ) = 0 , (2.6c)

1√−g

δIfluid
δs

= ℓµ∂µφ = 0 . (2.6d)

These equations of motion provide us with an interpretation of the various fields. Of

course, eq. (2.6a) enforces that ℓµ is null on-shell. Eq. (2.6b) indicates that the null ‘fluid

velocity’ ℓµ and the gradient of φ point in the same direction and fixes the prefactor in the

proportionality relation between them in terms of the fields s and λ. In this sense, φ plays

a role analogous to the velocity potential in potential flows [72]. Eq. (2.6c) implies that s

has an interpretation of a conserved charge density. Since all fields are real (i.e., the fluid is

neutral) s can be understood as the entropy density [72]. Eq. (2.6d) follows automatically

by contracting eq. (2.6b) with ℓµ. Varying the action with respect to the metric yields the

stress tensor

Tµν ≡ − 2√−g

δIfluid
δgµν

= −s(ℓµ∂νφ+ ℓν∂µφ)− 2λℓµℓν + gµν(sℓ
σ∂σφ+ λℓσℓσ) . (2.7)

On-shell, this expression reduces to the desired form

Tµν = 2λ ℓµ ℓν , (2.8)

and comparing to eq. (2.4), we see that λ is proportional to the energy density i.e.,

ε = 2λ. Further, we note that imposing the equations of motion (2.6) yields a vanishing

action (2.5), i.e.,

[Ifluid]on-shell = 0 . (2.9)

Therefore, in evaluating the holographic complexity using the CA conjecture, our calcula-

tions reduce to evaluating the geometrical quantities in the gravitational action (2.16) with

the Vaidya metric (2.1) and there will be no explicit contribution from the matter fields.

Upon substituting the metric (2.1) into the Einstein equations, only the vv component

is nontrivial with

Evv =
(d− 1)

2 rd−1
f

′

p(v) = 8πGN Tvv . (2.10)

– 5 –
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We see from eq. (2.8) that this forces ℓµ to point in the v direction, i.e., ℓµdx
µ ∝ dv. Recall

that retaining the parameter s in eq. (2.5) meant that we could rescale ℓµ at will, and we

use this freedom to pick an affine parametrization of the form ℓµdx
µ = dv. In this case,

combining eqs. (2.8) and (2.10) yields

λ =
(d− 1)

32πGN

f
′

p(v)

rd−1
. (2.11)

Since we identified λ = 2ε, we see here that the energy density is proportional to the

derivative of the profile fp(v). Next, eq. (2.6c) yields

∂r(r
d−1s) = 0 (2.12)

and as a result, the entropy density is given by

s =
s0

rd−1
. (2.13)

In eq. (2.6b), we see that we must have φ = φ(v) and the full equation becomes

s0 ∂vφ+
d− 1

16πGN
f

′

p(v) = 0 . (2.14)

Integrating this equation then produces

φ = φ0 −
(d− 1)

16πGNs0
fp(v) . (2.15)

The integration constants, s0 and φ0, will be fixed by the asymptotic boundary conditions

for the matter.

2.2 Null fluids & complexity=action

Having constructed a consistent null fluid action, which we showed vanishes on-shell, and

found the corresponding source for the AdS-Vaidya geometry (2.1), we can begin to study

the holographic complexity in these dynamical spacetimes. In particular, to study the

complexity=action proposal (1.2), we showed that the null fluid action vanishes and so

we need only to consider the gravitational action in the Vaidya spacetimes sourced by a

collapsing shell of null fluid. Further, in section 3 and in a companion paper [60], we focus

on the case where the shell is very thin, i.e., the profile takes the form given in eq. (2.3).

Using the additivity of the gravitational action [33], the problem essentially then factorizes

into evaluating the action for two stationary spacetime regions: one before the collapse,

characterized by the mass parameter ω1, and one after, characterized by ω2. However, in

this section, we wish to verify that the null shell does not contribute to the Wheeler-DeWitt

(WDW) action by first considering a thin but finite-width shell — see figure 1. That is, we

split the spacetime into three regions: the stationary region before the collapse, the shell

of finite width, and the stationary region after the collapse. In this section, we will only

focus on the contribution of the null shell to the WDW action and we will confirm that in

the limit that the width of the shell shrinks to zero this contribution vanishes, as expected.

– 6 –
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However, this analysis will also reveal a new boundary condition on the null normal to the

past boundary of the WDW patch as it crosses the collapsing shell.

Recall that the CA conjecture (1.2) proposes that the complexity of the CFT state on

some time slice Σ in the boundary is given by the bulk action evaluated on the corresponding

WDW patch. In this work, we follow the conventions of [37].8 For the Vaidya geometries

with a null fluid, the bulk action becomes [33]

I = Igrav + Ifluid

Igrav =
1

16πGN

∫

M
dd+1x

√−g

(

R+
d(d− 1)

L2

)

+
1

8πGN

∫

B
ddx
√

|h|K +
1

8πGN

∫

Σ
dd−1x

√
ση

+
1

8πGN

∫

B′

dλ dd−1θ
√
γκ+

1

8πGN

∫

Σ′

dd−1x
√
σa ,

(2.16)

and Ifluid was given in eq. (2.5). Recall that, as we showed in eq. (2.9), the fluid action

Ifluid vanishes when evaluated for a solution of the fluid equations of motion (2.6a)–(2.6d).

Of course, this does not imply that there is no consequence of the shock wave, but rather

that its effect only appears through the backreaction of the geometry, namely, in forming

the collapsing geometry (2.1). For the gravitational action Igrav, we have the standard

geometric quantities and boundary terms, which include contributions from null boundaries

and joints [33]. The bulk integral contains the Einstein-Hilbert action with the Ricci scalar

R and the cosmological constant Λ = −d(d − 1)/(2L2). Next, we have the Gibbons-

Hawking-York (GHY) surface term [81, 82] for smooth timelike and spacelike segments

of the boundary, which is defined in terms of the trace of the extrinsic curvature K.

There is also an analogous boundary term for the null segments that depends on κ, which

indicates by how much the coordinate λ along the null boundaries departs from affine

parametrization. Further, there are the Hayward joint terms [83, 84], which appear at

the intersection of two timelike or spacelike boundary segments and which are defined in

terms of the “boost angle” η between the corresponding normal vectors. Finally, the last

contribution in Igrav involving an analogous “angle” a appears for the joints including at

least one null segment [33].

As discussed in [33], there are inherent ambiguities in calculating the gravitational

action for regions delimited by null boundaries. However, we follow the suggestion of [33],

of choosing affine parametrization for the null normals (i.e., setting κ = 0) and fixing their

overall normalization constant by normalizing with vectors at the boundary. In particular,

at infinity there is an asymptotic timelike Killing vector t̂ = ∂t generating time translations

in the boundary and we fix t̂·k = ±α, with the + (−) for the normal to the future (past) null

boundary. Both of these choices have the advantage that they do not make any reference

to the background for which we are evaluating the complexity and so they allow for an

unambiguous comparison of the complexities evaluated on different bulk geometries or on

8We noticed a typo in the null surface contribution to the action, proportional to κ, in [33, 37]. Correcting

for this mistake, we have flipped the sign of the κ term above. We comment further on this issue below

where this sign becomes important — see eq. (2.23).

– 7 –
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Figure 1. The null shell has a finite thickness 2ε around the null ray v = vs. The portion enclosed

by the WDW patch is shaded in orange. The contribution of the two joints indicated by red dots

exactly cancels the surface term for the portion of the null boundary connecting the joints, where

we have a time dependent κ(v).

different boundary time slices in a given bulk geometry. Hence our evaluation of the WDW

action in the following and in the next section will use both of these choices.

As discussed above, we want to consider an AdS-Vaidya spacetime (2.1) where the

shell of null fluid is narrow but still has a finite width. In particular, the shell will extend

from vmin = vs−ε to vmax = vs+ε, as shown in figure 1. Further, the shell will separate two

stationary9 spacetime regions characterized by the mass parameter ωd−2
1 inside the shell

and by ωd−2
2 outside the shell. The details of the profile fp(v) in the metric will not be

important but we assume that it is continuous (and smoothly increasing). Of course, from

integrating eq. (2.10) across the shell, the profile must also satisfy

fp(vs + ε)− fp(vs − ε) =

∫

shell

dv f ′
p(v) = ωd−2

2 − ωd−2
1 . (2.17)

With these choices, in the limit ε → 0, the profile reduces to that given in eq. (2.3).10

Now we will evaluate the contribution of the null shell to the WDW action, but we will

be particularly interested in the limit where the shell becomes infinitely thin, i.e., ε → 0.

Let us examine the various terms in eq. (2.16). First, of course, the fluid action Ifluid vanishes

on-shell, as we showed in the previous section. The bulk term in Igrav is (approximately)

9That is, ∂t satisfies the usual Killing equations in either region.
10Our calculations here are general enough to accommodate both black hole formation which we examine

in section 3, and null shocks in an eternal black hole background which we will study in [60].
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proportional to the volume of the shell and so vanishes in the limit that ε → 0. Similarly

evaluating the GHY term at the r = 0 singularity (following the prescription in [34]) yields

a result which vanishes as ε → 0. The Hayward joint terms are not relevant for this

particular region and hence we turn to the null surface and null joint terms.

First, we must introduce (outward-directed) normals for the upper and lower null

boundaries,11

v = vs + ε : ks+
µ dxµ = β dv ,

v = vs − ε : ks–
µ dx

µ = −β dv . (2.18)

With this choice, these null normals are affinely parameterized and therefore the null surface

term vanishes, i.e., κ = 0, for these two boundaries. We might add that the null joint terms

vanish where these boundaries meet the singularity at r = 0 because there the transverse

volume vanishes for these two joints.

The final boundary for the shell region is a portion of the past null boundary of the

WDW patch. From the metric (2.1), we can see that the normal to this boundary can be

written as

kµ∂µ = H(r, v)

(

2

F (r, v)
∂v + ∂r

)

, (2.19)

where F (r, v) is the usual metric function — see eq. (2.1). Note that with eq. (2.19), we

are describing the null normal for the entire past null boundary Bpast. Hence in the regions

beyond the shell, the metric function F simplifies to

F (r, v) = fi(r) =
r2

L2
+ k − ωd−2

i

rd−2
, (2.20)

with i = 1 and 2 denoting the region inside (v < vmin) and outside (v > vmax) of the

shell, respectively. Of course, across the shell, F depends on both r and v as shown in

eq. (2.1). Further, we have introduced an overall factor H(r, v) in eq. (2.19) to allow for

the possibility that the normalization of the null normal changes when the past boundary

crosses the shell of null fluid. For v > vmax, we will set H to be a fixed constant, i.e.,

H(r, v) = α to match the asymptotic boundary condition k · t̂ = −α (see discussion above).

As we will see below, this simple choice also ensures that κ = 0 on this outer portion of

the past boundary. Similarly for v < vmin, we set H(r, v) = α̃ which is again a positive

constant in order for the null generators to be affinely parametrized on the inner portion of

the null boundary. However, we have taken the liberty to choose an independent constant

α̃ since this portion of the boundary never reaches asymptotic infinity. Expressing this

normal (2.19) as a form, we have

kµ dx
µ = H(r, v)

(

−dv +
2

F (r, v)
dr

)

. (2.21)

11We have chosen the same normalization constant β for the two normals to simplify the final result,

i.e., this choice ensures that the null joint terms exactly cancel with the surface term below. Of course,

another choice would yield the same result for the total action of the WDW patch after summing with the

relevant boundaries and joints for the portions of the WDW patch above/below the null shell, since these

are all inner boundaries of the WDW patch that we have introduced. However, we note that if the two

normals in eq. (2.18) were not normalized with the same constant, the null shell would make a nonvanishing

contribution to the total action.

– 9 –
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Then in the region above the shell where F (r, v) = f2(r), eq. (2.21) takes the expected form

kµ dx
µ = −αdu ≡ −α (dv − 2dr/f2(r)). That is, in the region above the null shell, the

past null boundary Bpast is a surface where the outgoing Eddington-Finkelstein coordinate

is constant (see eqs. (3.8) and (3.10) below) and fixing H to be a constant ensures that κ

vanishes there. Similarly in the region below the null shell, we find kµ dx
µ = −α̃ du and

again κ = 0 on this portion of the past boundary.

On the other hand, because of the r and v dependence of F (r, v) and H(r, v) within the

shell of null fluid, the null normal (2.19) will only be affinely parametrized on this portion

of Bpast with a special choice of H. We will return to this special choice below, but for now

we consider more general possibilities for which κ 6= 0. In particular, using kρ∇ρ kµ = κ kµ,

we find

κ =

(

2

F
∂v + ∂r

)

H(r, v)− 2H

F 2
∂vF (r, v)

= kµ∂µ logH(r, v)− kµ∂µ logF (r, v) +H ∂r logF (r, v) (2.22)

=
d

dλ
log

H(r, v)

F (r, v)
+

H

F
∂rF (r, v) ,

where in the second line, we have used eq. (2.19) to express κ in terms of derivatives along

the null boundary. In the final line, we have introduced λ, which parametrizes the null rays

in the boundary such that kµ = ∂xµ/∂λ. Note that in the extra term in the last line, there

is a partial derivative with respect to r, but to evaluate κ, we must calculate this quantity

on the null boundary.

The resulting surface term in the gravitational action is then12

Iκ =
1

8πGN

∫

Bpast

dλ dd−1θ
√
γ κ

=
Ωk,d−1

8πGN

∫

Bpast∩ shell
dλ rd−1

[

d

dλ
log

H(r, v)

F (r, v)
+

H

F
∂rF (r, v)

]

. (2.23)

Now at the center of the shock (i.e., v = vs), the radial coordinate takes some value13

r = rs and throughout the shell r = rs +O(ε). Hence to leading order in ε/rs, we can fix

r = rs in the above integral, in which case the first term reduces to

Iκ,1 =
Ωk,d−1

8πGN
rd−1
s

∫ λmax

λmin

dλ
d

dλ
log

H(r, v)

F (r, v)
+O(ε/rs)

=
Ωk,d−1

8πGN
rd−1
s log

F (rs, vmin)H(rs, vmax)

F (rs, vmax)H(rs, vmin)
+O(ε/rs) . (2.24)

Now we must still evaluate the integral over the second term in eq. (2.23). Here it is

convenient to convert this to an integration over v along the boundary using dv/dλ = 2H/F

12We would like to point out a crucial typo in [33] and [37]. In [33], there is a typo in the conventions

established in appendix C (but not in the main text). In particular, in eq. (C1), the overall sign of the

surface term for null boundaries should be flipped. Similarly, there should be an overall flip of the sign of

this surface term in appendix A of [37], i.e., the sign in front of the null boundary term in eq. (A.1) should

be a plus.
13Of course, this position matches that described in the main text for an infinitely thin shell to within O(ε).
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from eq. (2.19). Then this contribution to the boundary term becomes

Iκ,2 =
Ωk,d−1

16πGN

∫ vmax

vmin

dv
[

rd−1 ∂rF (r, v)
]

r=h(v)
, (2.25)

where we have expressed the null boundary as a constraint equation r = h(v). Of course, for

the present thin shell, we have r ≃ rs + ε h̃(v/rs) where h̃(v/rs) is a smooth dimensionless

function. Similarly, ∂rF remains finite across the shell,14 and so we have Iκ,2 = O(ε) since

the range of integration is δv = vmax − vmin = 2ε. Therefore, in the limit ε → 0, the surface

term reduces to

Iκ =
Ωk,d−1

8πGN
rd−1
s log

2β α

f2(rs)
− Ωk,d−1

8πGN
rd−1
s log

2β α̃

f1(rs)
, (2.26)

where we have written the final result as a sum of two terms, in a suggestive manner.15

Note that in converting the expression in eq. (2.24) to the above result, we have used the

fact that at either edge of the shell, F (r, v) precisely matches the metric function fi(r) in

the corresponding region beyond the shell, e.g., F (r, vmax) = f2(r). A similar matching

applies for the normalization function, as we described above, i.e., H(rs, vmax) = α and

H(rs, vmin) = α̃.

Now the final contribution to the action of the null shell comes from the null joints

where the two edges (i.e., v = vs ± ε) intersect the past boundary of the WDW patch

(indicated by red dots in figure 1). Given the null normals in eqs. (2.18) and (2.19), it

is straightforward to evaluate these contributions using the prescription given in [37] with

the result

Ijoint = −
[

Ωk,d−1

8πGN
rd−1 log

β α

f2(r)

]

r=h(vmax)

+

[

Ωk,d−1

8πGN
rd−1 log

β α̃

f1(r)

]

r=h(vmin)

=
ε→0

−Ωk,d−1

8πGN
rd−1
s log

β α

f2(rs)
+

Ωk,d−1

8πGN
rd−1
s log

β α̃

f1(rs)
(2.27)

where r = h(v) again denotes the position of Bpast. In the second line, we have used

that within our narrow shell, the radial position of this boundary is fixed up to order

ε corrections, i.e., r = h(v) ≃ rs + ε h̃(v/rs). Now we see that the two nonvanishing

contributions to the action evaluated on the thin null shell precisely cancel! That is,

combining eqs. (2.26) and (2.27), we have

Ishell =
ε→0

Iκ + Ijoint = 0 . (2.28)

Therefore we have shown that in the limit of an infinitely thin shell, evaluating the WDW

action in the Vaidya spacetime (2.1) reduces to two separate calculations: one for evaluating

the action I2 of the region outside of the shell (v > vs) and another for evaluating the action

I1 of the inside region (v < vs).

14That is, ∂rF does acquire any terms proportional to a delta-function δ(v) in the limit ε → 0.
15Recall that β is the normalization constant for the normals to the surfaces v = vs ± ε (see eq. (2.18)),

but note that the log β terms cancel in the difference between the two terms in eq. (2.26).
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Notice that our result (2.28) for the vanishing of the shell action did not require that

we specify the value of α̃, the normalization constant for the null normal on the portion

of the past boundary Bpast before the collapse. Hence we are left with an ambiguity in

evaluating I1, the part of the WDW action coming from the region inside the null shell.

This ambiguity is, of course, related to the ambiguities discussed in [33] and it arises here

because our calculations left κ unspecified on the portion of the past boundary inside the

shell — see eq. (2.22). As discussed above, the most natural way to fix this ambiguity is to

simply set κ = 0. In fact, we already made this choice for all of the other null boundaries

above and it is certainly possible to fix κ = 0 on Bpast inside the shell as well. One would

simply treat eq. (2.22) with κ = 0 as a (first order) differential equation for H(r, v), or

rather H(λ) since we are only interested in the value of H on the null boundary. The

integration constant in this equation is fixed by setting H = α at the upper edge of the

shell, i.e., at v = vmax. Solving the differential equation will then determine the value of α̃

as the value that H reaches at the lower edge of the shell, i.e., v = vmin. However, we can

easily determine this value (at least in the limit ε → 0) by examining the result for Iκ in

eq. (2.26). If κ = 0 everywhere along the boundary, this contribution must vanish and so

we must have

α̃ = α
f1(rs)

f2(rs)
. (2.29)

We might also observe that the sum of the null joint terms in eq. (2.27) also vanishes with

this particular choice for α̃. In any event, as expected, we see that fixing κ = 0 everywhere

removes the ambiguity in evaluating I1 by fixing the value of α̃ along the corresponding

portion of the past null boundary.

2.3 Counterterm for null boundaries

As we discussed above, various ambiguities arise in calculating the WDW action com-

ing from contributions associated with the null boundaries [33]. We followed a standard

approach suggested in [33] to fix the corresponding null normals, however, an alternate

approach which was also suggested there was to add to the following counterterm action

Ict =
1

8πGN

∫

B′

dλ dd−1θ
√
γ Θ log (ℓctΘ) , (2.30)

where ℓct is an arbitrary (constant) length scale and Θ is the expansion scalar of the null

boundary generators, i.e.,

Θ = ∂λ log
√
γ . (2.31)

The expansion Θ only depends on the intrinsic geometry of the null boundaries and so this

additional surface term (2.30) is not required to ensure that the gravitational action (2.16)

produces a well-defined variational principle. However, this counterterm was constructed

to eliminate the dependence of the action on the parametrization of the null generators.

Including this surface term does not effect certain key results for the CA proposal, e.g., the

complexity of formation [34] or the late-time rate of growth for an eternal black hole [48].

On the other hand, it was found to modify the structure of the UV divergences in an

interesting way [85] and it also modifies the details of the transient behaviour in the time
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evolution for an eternal black hole [48].16 We note that these previous studies involved

stationary spacetimes, and we will see below and in [60] that the inclusion of the countert-

erm is essential in dynamical spacetimes, such as the Vaidya geometries (2.1), in order to

reproduce some key properties of complexity.

We will explore the effect of the counterterm (2.30) in detail in the next section, but

here we will extend some of the previous calculations to include the contributions of this

surface term. In particular, let us consider including this term on the past null boundary

Bpast. In evaluating this contribution, the essential behaviour will be determined by the

normalization function H(r, v) appearing in the null normal (2.19). Hence, considering the

limit ε → 0,17 we have H(r, v) = α above the shell (i.e., for v > vs) and H(r, v) = α̃ below

the shell (i.e., for v < vs). Recall that H(r, v) is only defined along the null boundary,

and so in the following, it will be helpful to treat H as a function of the radial coordinate

(along Bpast), i.e.,

H(r, v) = α H(r − rs) + α̃ (1−H(r − rs)) , (2.32)

where H stands for the Heaviside function. Further, the inner normalization constant α̃ is

determined by eq. (2.29). Further, from eq. (2.19), we have dr/dλ = H(r, v). Hence we

evaluate the null expansion (2.31) as

Θ =
H(r, v)

rd−1

d

dr

(

rd−1
)

=
(d− 1)H(r, v)

r
. (2.33)

Now the counterterm contribution (2.30) becomes

Ict =
Ωk,d−1(d− 1)

8πGN

∫ rmax

rmin

dr rd−2 log

(

(d− 1)ℓctH(r, v)

r

)

, (2.34)

where we replaced dλ = dr/H(r, v). The upper limit of the radial integral will be

rmax = L2/δ, where δ is the short-distance cutoff in the boundary CFT. The lower limit

rmin will depend on the details of the situation for which we are evaluating the holographic

complexity. Using eq. (2.32), we may evaluate the integral in eq. (2.34) to find

Ict =
Ωk,d−1

8πGN
rd−1
max

[

log

(

(d− 1)ℓctα

rmax

)

+
1

d− 1

]

(2.35)

− Ωk,d−1

8πGN
rd−1
min

[

log

(

(d− 1)ℓctα̃

rmin

)

+
1

d− 1

]

+
Ωk,d−1

8πGN
rd−1
s log

(

α̃

α

)

and hence upon substituting for α̃ using eq. (2.29), we find

Ict = · · · +
Ωk,d−1

8πGN
rd−1
s log

(

f1(rs)

f2(rs)

)

. (2.36)

In this expression, we have focused on the contribution that appears where the past bound-

ary crosses the null shell (i.e., r = rs). Note that this term appears similar to the expressions

appearing in eq. (2.26) or (2.27) if we substituted α̃ = α in the latter. It will turn out that

this particular surface contribution will play an essential role in determining the (proper)

behaviour of the holographic complexity.

16In particular, see appendices A and E of [48].
17The following results would remain unchanged if we first evaluate the counterterm contribution with a

small but finite width and only take the limit ε → 0 afterwards.
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3 Complexity in black hole formation

In this section, we study the case of a thin shell of null fluid collapsing in empty AdS

to form a black hole. In these geometries describing a one-sided black hole, we evaluate

the holographic complexity, using the Complexity=Action proposal in section 3.1, and the

Complexity=Volume proposal in section 3.2. From the perspective of the boundary CFT,

this geometry describes a quantum quench, e.g., see [62–65, 86–88]. The CFT begins in

the vacuum state and then, say, at t = 0, we act with a (homogeneous) operator which

injects energy into the system creating an excited state.

The bulk geometry is described by eq. (2.1) with the profile

fp(v) = ωd−2 H(v) , (3.1)

where H(v) is the Heaviside step function. This is a simplified version of the profile in

eq. (2.3) where we set ω1 = 0 and vs = 0, as well as ω2 = ω. Here we focus on dimensions

d ≥ 3, and the special case of BTZ black holes (i.e., d = 2) will be treated separately below.

Hence the metric function F becomes

v < 0 : F (r, v) = fvac(r) =
r2

L2
+ k , (3.2)

v > 0 : F (r, v) = fBH(r) =
r2

L2
+ k − ωd−2

rd−2
. (3.3)

We consider these collapses for planar and spherical shells (and horizons), i.e., k = 0

and k = +1.18 As noted above, these AdS-Vaidya geometries can be interpreted as the

holographic dual of the quantum quenches described above for the boundary CFT in the

d-dimensional geometry:19

ds2bdry = −dt2 + L2 dΣ2
k,d−1 . (3.4)

Here we have simply defined the boundary time t = v at r → ∞. In the regime t > 0 in

the boundary CFT (i.e., v > 0), the energy is determined as usual by the black hole mass

from fBH(r) in eq. (3.3), i.e.,

M =
(d− 1)Ωk,d−1

16πGN
ωd−2 , (3.5)

where Ωk,d−1 denotes the (dimensionless) volume of the spatial geometry (see footnote 3).

In this part of the geometry, we determine the horizon radius with fBH(r = rh) = 0 which

corresponds to

ωd−2 = rd−2
h

(

r2h
L2

+ k

)

. (3.6)

18The case k = −1 with hyperbolic spatial sections is somewhat different since a time slice only covers

half of a constant time surface in the global AdS boundary, e.g., see [34]. The present discussion could be

extended to cover this case if shells of null fluid were injected symmetrically from both halves of a global

boundary time slice.
19As is conventional, the AdS curvature scale L also appears here as the curvature scale of the boundary.

However, a simple Weyl scaling in the boundary theory can be used to separate these two scales, e.g., see [48].
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Then, using the usual gravitational expressions, we can assign an effective temperature and

entropy to the corresponding excited state:

T =
1

4π

∂f

∂r

∣

∣

∣

∣

r=rh

=
1

4π rh

(

d
r2h
L2

+ (d− 2) k

)

, S =
Ωk,d−1

4GN
rd−1
h . (3.7)

In the following, it will also be useful to construct the radial tortoise coordinates on

each side of the shock wave as:

v > 0 : r∗BH(r) = −
∫ ∞

r

dr̃

fBH(r̃)
, (3.8)

v < 0 : r∗vac(r) = −
∫ ∞

r

dr̃

fvac(r̃)
=

{

−L2/r for k = 0

L
(

tan−1 (r/L)− π
2

)

for k = +1
,

where fBH(r) and fvac(r) are given in eqs. (3.3) and (3.2), respectively. Note that the sign

is chosen in eq. (3.8) to ensure that dr∗ = dr/f and the range of integration ensures that

the tortoise coordinates vanish at infinity, i.e.,

lim
r→∞

r∗vac, BH(r) → 0 . (3.9)

Now we can define an outgoing null coordinate u and an auxiliary time coordinate t as

u ≡ v − 2r∗(r) , t ≡ v − r∗(r) . (3.10)

Notice that these coordinates are discontinuous across the shell because f(r) changes from

the vacuum to a black hole spacetime, as in eqs. (3.2) and (3.3). Of course, r and the ingoing

coordinate v are globally defined, but it is still useful to consider t and u if one properly

matches these coordinates across the collapsing shell. In particular, we will represent the

collapsing-shell geometries with Penrose diagrams, or rather ‘Penrose-like’ diagrams, as

shown in figure 2. These diagrams can be smoothly ruled with lines of constant u and v.

Since u is discontinuous, this introduces a(n unphysical) jump as the outgoing null rays

cross the shell. The spacetime is, of course, continuous along this surface and the outgoing

null rays are smooth, as can be seen by regulating the thin shell to have a small but finite

thickness, as was discussed in section 2. Further, these jumps in the outgoing null rays can

be removed by deforming the Penrose diagrams to the future or the past of the shell, but

the undeformed figures are simpler to construct and we found that they provide a useful

intuitive picture of the geometry.

In order to translate the bulk results into boundary quantities, it is useful to work in

terms of the dimensionless variables (following [48]) defined as

x ≡ r

rh
, z ≡ L

rh
. (3.11)

The temperature in eq. (3.7) can be recast in terms of z as

LT =
1

4π z

(

d+ k (d− 2) z2
)

, (3.12)
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Figure 2. Penrose-like diagrams for the thin shell collapsing geometries, we represent spherical

horizon collapse from global AdS (left) and planar horizon from Poincaré patch (right). In order

to not distort the diagrams, we represent the discontinuity in the outgoing coordinate u by a jump

while crossing the collapsing shell, e.g., the dashed blue line indicates the extension of the event

horizon into the region before the collapsing shell. We use rs to denote the radial position where

the null boundary of the WDW patch crosses the shock wave.

or alternatively, this expression can be inverted in order to express z as a function of LT ,

z =
d

√

4π2(LT )2 − (d− 2) d k + 2πLT
. (3.13)

Note that for the planar case (i.e., k = 0), this expression simplifies z = d/(4πLT ). Now

any result that depends on z can be regarded as a boundary quantity defined in terms of

LT with eq. (3.13).

Further, following the notation in [48], it is useful to define a dimensionless tortoise

coordinate. We write

x∗(x, z) ≡ rh
L2

r∗(r) = −
∫ ∞

x

dx

f̃(x, z)
, (3.14)

where f̃(x, z) = z2f(r, rh) ,

where f̃(x, z) is the blackening factor written in terms of the dimensionless coordinates x

and z and rescaled by z2. That is, combining eqs. (3.2), (3.3), (3.6) and (3.11), we find

v < 0 : f̃vac(x, z) = x2 + k z2 , (3.15)

v > 0 : f̃BH(x, z) = x2 + k z2 − 1 + k z2

xd−2
.

We note that for the planar case (i.e., k = 0), f̃(x, z) is actually independent of z.
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3.1 Complexity=action

The CA proposal (1.2) suggests that we can calculate the complexity of the CFT state

on some time slice Σ in the boundary by evaluating the action of the dual gravitational

configuration on the corresponding WDW patch in the bulk. We have already introduced

the null fluid and gravitational actions in section 2 — see eqs. (2.9) and (2.16). Further in

section 2.2, we showed that in the limit of a thin collapsing shell of null fluid, the WDW

action is given by the sum of the actions separately evaluated on the portion of the WDW

patch outside of the shell and on the portion inside the shell. As we will see below, this

greatly simplifies the calculation since the spacetime geometry is stationary in each of

these regions.

Let us begin by examining in more detail the structure of the WDW patch, as shown

in the Penrose-like diagrams of the collapsing geometries in figure 2. We anchor the WDW

patch to a constant time slice in the boundary, with some t = t0 ≥ 0 — recall that the

collapsing shell starts at the asymptotic boundary at t = 0. The future null boundary of

the WDW patch is then defined by the surface v = t0 — see eqs. (3.9) and (3.10) — and

this boundary segment terminates at the curvature singularity at r = 0. The past null

boundary of the WDW patch is defined by u = t0 = v − 2r∗BH(r), where the outgoing null

coordinate is defined in eq. (3.10). However, at this point, we must recall from eq. (3.8)

that the definition of the radial tortoise coordinate r∗(r), and hence the null coordinate

u, depends on whether we are to the future or the past of the collapsing shell. The null

boundary of the WDW patch meets the collapsing shell at r = rs which is given by

2r∗BH(rs) + t0 = 0 , (3.16)

where we are using the tortoise coordinate defined for v ≥ 0, and it will be useful in the

following to note that

d rs
d t0

= −1

2
fBH(rs) . (3.17)

Now v and r are continuous as we cross the collapsing shell, but since the form of the

tortoise coordinate changes here, there is a jump in u (and in our Penrose diagrams).

Hence to the past of the shell, the past boundary of the WDW patch is described by

u = −2r∗vac(rs) = v − 2r∗vac(r), which then reaches r = 0 at v = 2r∗vac(0)− 2r∗vac(rs). In this

description of the WDW patch, we have overlooked various cut-off surfaces, e.g., at the

UV boundary or at the curvature singularity, but these details will be the same as in [34].

In our Vaidya geometry with an infinitely thin shell, the surface v = 0 naturally divides

the WDW patch into two regions: 1) for v < 0, the geometry is simply the AdS vacuum,

and 2) for v > 0, the geometry matches that of a static AdS black hole. In section 2.2, we

smoothed out the geometry by giving the shell a (small) finite width and we were able to

rigorously show that the action of the shell (within the WDW patch) vanishes when the

width shrinks to zero. Hence in evaluating IWDW, we can simply calculate the action on

regions 1 and 2 separately, and then simply add the results together.
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3.1.1 Action calculation

The evaluation of the action (2.16) on the WDW patch was carefully analyzed in [33], and

in calculating the various contributions below. The bulk integral can be written in the r, v

coordinates as

Ibulk = − dΩk,d−1

8πL2GN

∫

WDW
rd−1 dr dv , (3.18)

with the WDW patch as described above — see also figure 2. Integrating over v first, yields

Ibulk = − dΩk,d−1

8πL2GN

[
∫ rs

0
rd−1(2r∗vac(rs)− 2r∗vac(r) + t0)dr − 2

∫ ∞

rs

rd−1r∗BH(r)dr

]

. (3.19)

Using eq. (3.17) for drs/dt0, it is possible to show that the time derivative of this integral

becomes
dIbulk
dt0

= − Ωk,d−1

8π L2GN
rds

(

1− fBH(rs)

fvac(rs)

)

. (3.20)

We can write the above expression in terms of the black hole mass using eq. (3.5) and

d > 2, which then leads to

dIbulk
dt0

= − 2M

(d− 1)

x2s
(k z2 + x2s)

, (3.21)

where we have used the dimensionless coordinate xs ≡ rs/rh.

We evaluate the GHY boundary term at the future singularity with the prescription

discussed in [34], but with total time lapse equal to t0. Therefore,

IGHY = − lim
r→0

Ωk,d−1

16πGN
rd−1

(

∂rfBH(r) +
2(d− 1)

r
fBH(r)

)

t0

dIGHY

dt0
=

dΩk,d−1

16πGN
ωd−2 =

dM

(d− 1)
. (3.22)

As usual, we demand that the null boundaries are affinely parametrized, which yields κ = 0.

Hence the null surface terms do not contribute to the WDW action or its time derivative.

The only nonvanishing joint contributions to the time derivative of the holographic

complexity arise where the past null boundary intersects with the collapsing shell, as in-

dicated by the two big red dots in figure 2. These joints are codimension-two surfaces at

the intersection of two null hypersurfaces, and so we need to define the appropriate null

normals. The null normal for the past boundary of the WDW patch was defined quite

generally in eq. (2.21). For the present geometry described by eqs. (3.2) and (3.3), this

expression becomes

kµdx
µ =

{

α
(

− dv + 2
fBH(r)dr

)

for r > rs ,

α̃
(

− dv + 2
fvac(r)

dr
)

for r < rs .
(3.23)

As we are dividing the WDW patch into two regions along the collapsing shell, we also

need to introduce two (outward-directed) null normals which we denote

v > 0 : k2µ dx
µ = −βdv ,

v < 0 : k1µ dx
µ = βdv , (3.24)
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where β is some arbitrary normalization constant.20 Combining the two joint contributions

of interest then yields

Ijoint =
Ωk,d−1

8πGN
rd−1
s log

2β α

fBH(rs)
− Ωk,d−1

8πGN
rd−1
s log

2β α̃

fvac(rs)

=
Ωk,d−1r

d−1
s

8πGN
log

[

α fvac(rs)

α̃ fBH(rs)

]

. (3.25)

However, at this point we recall that if we demand that κ = 0 all along this past boundary,

then the normalization constant α̃ must be fixed as in eq. (2.29), which yields

α̃ = α
fvac(rs)

fBH(rs)
, (3.26)

for the present situation. However, we easily see that substituting this result into eq. (3.25)

yields Ijoint = 0! Of course, this result might have been anticipated by realizing that the

past null boundary is perfectly smooth and so without our division of the WDW patch

into various regions the only way in which this boundary could contribute to IWDW would

be through the κ surface term. However, if we demand that κ = 0 everywhere along this

boundary, then all of the contributions coming from this surface must vanish. Of course,

since Ijoint vanishes, it will not contribute to the time derivative of the WDW action.

3.1.2 Time dependence of complexity, version 1

Hence combining all of the terms in eq. (2.16), we found that there are only two nonva-

nishing contributions to the time derivative of the WDW action. These come from the

bulk integral in eq. (3.20), and GHY surface term on the spacelike boundary at the future

singularity in eq. (3.22). Combining these two expressions, we find (for d > 2)

dCA
dt0

=
d− 2

d− 1

M

π

(

1 +
2

d− 2

kz2

kz2 + x2s

)

. (3.27)

For k = 0, this expression simplifies and the rate of growth of the complexity is simply

a constant,
dCA
dt0

∣

∣

∣

∣

k=0

=
d− 2

d− 1

M

π
. (3.28)

However, we observe that this growth rate is much lower than the late time limit found in

an eternal black hole background [29, 30] i.e., dCA/dt0|eternal = 2M/π as t0 → ∞.

For k = +1, the rate acquires a time dependence through the coordinate xs. At early

times, xs is close to the boundary, i.e., xs → ∞ as t0 → 0, and hence the rate of change

in eq. (3.27) starts at the same value of the planar geometry (3.28). On the other hand,

at very late times, the meeting point approaches the horizon, i.e., xs → 1 as t0 → ∞ and

hence the growth rate approaches

dCA
dt0

∣

∣

∣

∣

late time

=
d− 2

d− 1

M

π

(

1 +
2

d− 2

kz2

kz2 + 1

)

. (3.29)

20We can compare these normals to those in eq. (2.18) for the edges of the finite-width shell.
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Hence for spherical black holes (i.e., k = +1), the late time limit yields a slightly larger

growth rate that in the planar case. For very high temperatures, the increase is very small

since in this regime the horizon radius is much larger than the AdS curvature scale and

hence z = L/rh ≪ 1. The correction is largest at the Hawking-Page transition, for which

z = 1 and we find dCA/dt0 = M/π at late times. Hence the late time limit in eq. (3.29) is

always smaller than the corresponding result [29, 30] for the eternal black hole geometry

with any d and for both k = 0 and +1. This mismatch may seem somewhat surprising since

at late times, the WDW patch in figure 2 is almost entirely in region 2, where the geometry

matches that of a static black hole, as given in eq. (3.3). Further, the above expressions

suggest that the rate vanishes for d = 2. Strictly speaking the previous calculations must

be redone for the case of BTZ black holes, but the new calculations reproduce dCA/dt0 = 0

for d = 2 — see below.

We will see in a moment that adding the boundary counterterm (2.30) to the grav-

itational action restores the expected late time limit, however, we first examine the late

and early time limits in more detail. In eq. (3.27), we have written the rate of complexity

growth in terms of dimensionless boundary quantities. Hence, it is useful to write eq. (3.16)

as an equation determining xs as a function of the time (normalized by the temperature),

2x∗BH(xs, z) +
4π T t0

d+ k z2 (d− 2)
= 0 , (3.30)

where x∗BH is given by eq. (3.14) with f̃BH(x, z) in eq. (3.15). Again, the dynamical variable

in the problem is the (dimensionless) distance xs, that ranges from infinity (i.e., close to the

asymptotic boundary) at early times, to one (i.e., close to the event horizon) at late times.

Early times

We begin by examining the early time behaviour of the meeting point xs, i.e., immediately

after the shell appears with T t0 ≪ 1. Again, we restrict the analysis to d ≥ 3 and consider

d = 2 separately below. From eq. (3.30), we can expand xs for early times to find21

xs =
d+ (d− 2)kz2

2π

1

Tt0
− 2π

3

kz2

d+ (d− 2)kz2
Tt0 +O

(

T 3t30
)

. (3.31)

Substituting the above expression into eq. (3.27) then yields

dCA
dt0

∣

∣

∣

∣

early time

=
d− 2

d− 1

M

π
+

8πM

d− 1

(

kz2

d+ (d− 2)kz2

)

T 2t20 +O
(

T 4t40
)

. (3.32)

Hence to leading order, we recover the limit given by eq. (3.28) and above, we see that the

rate begins to grow at order (Tt0)
2.

21The corrections in eqs. (3.31) and (3.46) are slightly different for d = 3. In particular, we find xs(d =

3) = 3+kz2

2π
1

Tt0
− 2πkz2

3(3+kz2)
Tt0 +

π2(1+kz2)
(3+kz2)2

(Tt0)
2 +O(t30T

3), and dCA

dt0

∣

∣

d=3
= 2M

π

(

1
2
+

2π3(1+kz2+1)
(3+kz2)3

T 3t30 +

O(t60T
6)
)

. Note the additional O(T 2t20) term in the first expression while the O(T 5t50) correction vanishes

in the second expression.
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Late times

To examine the late time behaviour, we follow the arguments in [48]. Suppose that we

rewrite the rescaled blackening factor by factoring out the root corresponding to the hori-

zon. In this way, we find

f̃(x) = F̃ (x)(x− 1) , where F̃ (x = 1) = d+ k(d− 2)z2 . (3.33)

In the second expression, we have used eq. (3.12) to evaluate the function F̃ (x = 1) at

the horizon. At late times xs approaches 1, and we can solve the meeting condition in

eq. (3.30) in this limit by using the decomposition

1

f̃(x, z)
=

1

F̃ (1)(x− 1)
+

F̃ (1)− F̃ (x)

F̃ (1)F̃ (x)(x− 1)
. (3.34)

Then we can write the tortoise coordinate as

x∗(x) =
1

F̃ (1)
log

|x− 1|
ℓ̃

+

∫ x

dx̃
F̃ (1)− F̃ (x̃)

F̃ (1)F̃ (x̃)(x̃− 1)
, (3.35)

and ℓ̃ is some integration constant. With this decomposition, we can solve eq. (3.30) for

late times

xs = 1 + c1 e
−2πT t0 + · · · , (3.36)

and the constant c1 is given by

c1 = lim
xmax→∞

(xmax − 1) e
∫ xmax
1 dx̃

F̃ (1)−F̃ (x̃)
x̃(x̃−1) , (3.37)

which is a (finite) positive constant.

Substituting eq. (3.36) into the growth rate (3.27), the late time limit becomes

dCA

dt0

∣

∣

∣

∣

late time

=
M
(

d− 2 + dkz2
)

π(d− 1) (kz2 + 1)
− 4c1M kz2

π(d− 1) (kz2 + 1)2
e−2πt0T +O

(

e−4πTt0
)

. (3.38)

The first term matches our previous expression (3.29) for the late time limit. The second

term shows that the limiting growth rate is approached from below, and that this behaviour

corresponds to an exponential decay controlled by the thermal length scale, i.e., 1/T .

In fact, given the expression in eq. (3.27), it is not hard to show that the growth rate

(for k = +1) begins at t0 = 0 with value given in eq. (3.28) and then rises monotonically

to reach the late time rate (3.29) in a time of order t0 ∼ 1/T . Further, it is straightforward

to explicitly evaluate eq. (3.27) and plot dCA/dt0 as a function of time in various examples.

Below in figures 3 and 4, we show the growth rates (both without and with the counterterm)

for various temperatures with d = 2, and with d = 3and 4, respectively.

3.1.3 Time dependence of complexity, version 2

Next, we wish to examine the effect of adding the counterterm (2.30) for null boundaries

to the gravitational action. Recall that for an eternal black hole background, adding this

counterterm did not affect the late-time rate of growth of the holographic complexity but

it did changed the details of the transient behaviour in the time evolution [48].

– 21 –



J
H
E
P
0
6
(
2
0
1
8
)
0
4
6

In principle, this term should be evaluated on both the future and past null boundaries

of the WDW patch — see figure 2. However, the future boundary is entirely in region 2,

where the geometry is identical to that of the eternal black hole. In particular, in this

region, the time t is a Killing coordinate and so the contribution of the counterterm on

the future boundary is unchanged under time translations. That is, on this boundary, the

counterterm does not contribute to the complexity growth rate.

Therefore we only evaluate the counterterm on the past null boundary Bpast. This

calculation was discussed in section 2.3 and the required integral is given by eqs. (2.32)

and (2.34). For the present case, the limits of integration are rmax = L2/δ and rmin = 0.

Hence the result in eq. (2.36) becomes

Ict =
Ωk,d−1

8πGN

L2(d−1)

δd−1

[

log

(

(d− 1)ℓctδα

L2

)

+
1

d− 1

]

+
Ωk,d−1

8πGN
rd−1
s log

(

fvac(rs)

fBH(rs)

)

, (3.39)

where implicitly we have assumed that κ = 0 and so the normalization constant α̃ is fixed by

eq. (2.29). The first term above contributes to the UV divergences in the complexity [37, 85]

and is independent of t0. Hence only the second term contributes to the growth rate through

the variation of rs, the radius where the past boundary meets the null shell. In particular,

we recall from eq. (3.17) that
drs
dt0

= −1

2
fBH(rs) . (3.40)

As a result, the time derivative of eq. (3.39) becomes

dIct
dt0

= −Ωk,d−1(d− 1)

16πGN
rd−2
s fBH(rs) log

(

fvac(rs)

fBH(rs)

)

− Ωk,d−1

16πGN
rd−1
s fBH(rs)

[

f ′
vac(rs)

fvac(rs)
− f ′

BH(rs)

fBH(rs)

]

. (3.41)

Expressing this result in terms of the dimensionless quantities (3.11) then yields

dIct
dt0

=
dM

d− 1

(

1− 2 k z2

x2s + k z2

)

+
M xd−2

s f̃BH(xs, z)

π(1 + k z2)
log

(

f̃BH(xs, z)

f̃vac(xs, z)

)

, (3.42)

using eq. (3.6) for the mass, and the expression for f̃(x, z) in eq. (3.15).

Hence when the action (2.16) is supplemented by the counterterm (2.30), the total

time derivative of the holographic complexity is given by combining the expressions in

eqs. (3.20), (3.22) and (3.41). Alternatively, we can simply add eq. (3.42) to the previous

result in eq. (3.27), which yields

dC′
A

dt0
=

2M

π
+

M xd−2
s f̃BH(xs, z)

π (1 + k z2)
log

(

f̃BH(xs, z)

f̃vac(xs, z)

)

(3.43)

for t0 ≥ 0. The most striking feature of the new result is that at late times, the new

rate approaches the expected limit, i.e., dC′
A/dt0|t0→∞ = 2M/π [29, 30]. In particular, as

t0 → ∞, rs approach the horizon sending the blackening factor fBH(rs) to zero (i.e., at late
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times, xs → 1 and f̃BH(xs → 1, z) → 0) and hence the second term in the above expression

vanishes.

Further we note that at t0 = 0, rs begins at asymptotic infinity. As t0 increases from

zero, rs decreases monotonically — see eq. (3.40) — and at late times, rs → rh. Using the

explicit form of the blackening factors in eqs. (3.2) and (3.3), it is also straightforward to

show that the second term in eq. (3.43) is always negative and that d2C′
A/dt

2
0 ≥ 0.22 There-

fore dC′
A/dt0 is monotonically increasing and approaches the late time limit from below.

These features contrast with the corresponding results for the eternal black hole [48], and as

previously noted in [50], for the process of black hole formation, dC′
A/dt0 respects the pro-

posed bound on the rate of complexity growth suggested in [29, 30], i.e., dC′
A/dt0 ≤ 2M/π.

We observe that for k = 0, eq. (3.43) simplifies somewhat yielding

dC′
A

dt0
=

2M

π
− M

π

(

xds − 1
)

log

[

xds
xds − 1

]

, (3.44)

where xs is given by

(

1

xds − 1

)1/d

2F1

(

1

d
,
1

d
; 1 +

1

d
;− 1

xds − 1

)

=
2π T t0

d
. (3.45)

Next let us apply the previous analysis for early and late times to evaluate the be-

haviour of the complexity evaluated with the modified action. In both cases, we focus on

d ≥ 3 and consider the special case d = 2 in detail afterwards.

Early times

Here, we apply eq. (3.31) to evaluate the complexity growth rate in eq. (3.43) for T t0 ≪ 1,

dC′
A

dt0

∣

∣

∣

∣

early time

=
2M

π

(

1

2
+

(2π)d

4

1 + kz2

(d+ (d− 2)kz2)
T dtd0 +O

(

T d+2td+2
0

)

)

. (3.46)

Therefore, we see that for d ≥ 3, the early time behavior is given by M/π, for both spherical

and planar black holes, i.e.,

dC′
A

dt0

∣

∣

∣

∣

t0→0+
=

M

π
. (3.47)

That is, the rate of growth of the holographic complexity begins at precisely one-half the

late time limit. Recall that in [48], it was found that for the eternal black hole, dCA/dt0
remained zero up to a critical time, at which point it became negatively divergent. The rate

then quickly rose to positive values but this transient behaviour depended on the choice

of the normalization constant α. In the bulk, this transition corresponds to the moment

when the past boundary of the WDW patch lifts off from the white hole singularity and

the past null boundaries begin to meet at a joint above the past singularity.

22Recall that we are focusing on k = 0 and +1 in this discussion.
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Late time time expansion

Next we apply eq. (3.36) to evaluate the late time expansion of the growth rate in eq. (3.43),

dC′
A

dt0

∣

∣

∣

∣

late time

=
2M

π
− 2M

d+ (d− 2) k z2

(1 + kz2)
c1e

−2π Tt0 Tt0 + · · · . (3.48)

As argued above, we see that the late time limit is approached from below. Further, this

behaviour is an exponential decay controlled by the thermal length scale, i.e., 1/(2πT ). A

similar exponential decay is found in the eternal black hole geometry but there the late

time limit is approached from above [48].

Examples

We turn our attention to numerically evaluating eq. (3.43) in d = 3 and d = 4 with k = +1,

as well as investigating the special case of d = 2 where the collapse forms a BTZ black

hole. We start with the latter, for which the coordinate xs can be determined analytically

as a function of time.

d = 2: For d = 2, the collapsing shell produces a BTZ black hole with [89, 90]

fBH(r) = (r2 − r2h)/L
2. (3.49)

Hence the corresponding dimensionless blackening factor (3.15) simplifies to f̃BH(x) = x2−1

for v > 0. The physical parameters describing the BTZ geometry are

M =
Ωk,1 r

2
h

16πGNL2
, T =

rh
2πL2

, S =
Ωk,1rh
4GN

=
π

6
cΩk,1LT , (3.50)

where c = 3L/(2GN ) is the central charge of the boundary CFT. The choices k = 0 and

1 correspond to the Ramond and Neveu-Schwarz vacuum, respectively, of the boundary

theory [91]. While in principle, the results for the Ramond vacuum are already described

by eqs. (3.44) and (3.45) above, we consider both possibilities in the following.23 Eq. (3.30)

simplifies with d = 2, and we can solve for xs analytically,

xs = coth(πTt0) . (3.51)

First, we analyze the rate of change of complexity for BTZ black holes without the

inclusion of the counterterm. The rate of change is then given by summing eqs. (3.20)

and (3.22),
dCA
dt0

= −M

π

2kz2(x2s − 1)

x2s + kz2
. (3.52)

There are differences in the rate of change of BTZ in comparison to the higher dimensional

cases (d > 2) in eq. (3.27). First, for a collapse of the Ramond vacuum (k = 0), the rate

of change is exactly zero!

Further, for the collapse from the Neveu-Schwarz vacuum (k = +1), the rate of change

begins with negative values,

dCA
dt0

∣

∣

∣

∣

early time

= −2Mkz2

π
+ 2Mkz2π(1 + kz2)T 2t20 +O

(

T 4t40
)

. (3.53)

23Recall that the ground state energy vanishes for the Ramond vacuum, but for the Neveu-Schwarz

vacuum, it is negative: ER,0 = −1/(8πGN ) = −c/(12πL).
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In fact, the time derivative never becomes positive and instead approaches the late time

limit (i.e., 0) from below,

dCA
dt0

∣

∣

∣

∣

late time

= − 8kz2M

π(1 + kz2)
e−2πTt0 +O

(

e−4πTt0
)

. (3.54)

We show the full profile of the rate of change of complexity for various temperatures in the

left panel of figure 3.

Next, we evaluate the rate of change of complexity including the contribution of the

boundary counterterm. Continuing with either k = 0 or 1, we have f̃vac(x) = x2+kz2 from

eq. (3.15). The time derivative of complexity then reads

dC′
A

dt0
=

2M

π
− M

π
(x2s − 1) log

(

x2s + kz2

x2s − 1

)

. (3.55)

Using eq. (3.51) for the early time limit (in which case, xs → ∞), eq. (3.55) yields

dC′
A

dt0

∣

∣

∣

∣

t0→0+
=

M

π

(

1− k

4π2 L2 T 2

)

, (3.56)

where we substituted z = 1/(2πLT ), from eq. (3.12) with d = 2. Recall that for higher

dimensional black holes (i.e., with d ≥ 3), this limit was always M/π, as shown in eq. (3.47).

The above result matches this previous limit for the Ramond vacuum (with k = 0), but for

the Neveu-Schwarz vacuum (with k = 1), the initial rate is reduced by a factor depending on

the temperature. Notice that the correction factor (i.e., the factor in brackets) in eq. (3.56)

is positive above the Hawking-Page transition (i.e., for 2πLT > 1), and it vanishes at

precisely 2πLT = 1.

In the late time limit, combining eqs. (3.51) and (3.55) yields

dC′
A

dt0
=

2M

π

(

1− 4πTt0 e
−2πTt0 + · · ·

)

. (3.57)

Hence the growth rate approaches its late time value from below in more or less the same

way as in eq. (3.48) for higher dimensions.

We show the full time evolution of dC′
A/dt0 for a range of temperatures beginning with

the Neveu-Schwarz vacuum (i.e., k = +1) in figure 3. For small temperatures, it starts

at a different rate from the higher dimensional examples, as shown in eq. (3.56), but the

rate starts at approximately M/π for higher temperatures. In addition, the rate of growth

increases monotonically from the initial rate and the late time limit is approached from

below as well. Further, the dC′
A/dt0 essentially reaches 2M/π at a time t0 ∼ 1/T

d = 3: Next, we turn our attention to evaluating numerically the growth rate of complex-

ity with a spherical collapsing shell in d = 3. The dimensionless tortoise coordinate given

by eq. (3.14) reads

x∗BH(x, z) =

√
4kz2 + 3

(

2 log
(

|x−1|√
kz2+x2+x+1

))

+
(

4kz2 + 6
)

tan−1
(

2x+1√
4kz2+3

)

2 (kz2 + 3)
√
4kz2 + 3

. (3.58)
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Figure 3. The growth rate for the complexity, evaluated without (left) and with (right) the

boundary counterterm in d = 2. In both plots we have the collapse from Neveu-Schwarz vacuum

(i.e., k = +1) with temperatures LT = 0.16 (blue, solid), LT = 0.25 (orange dashed) and LT = 1.0

(green dot-dashed). The collapse from Ramond vacuum (i.e., k = 0) is shown in red. For the NS

vacuum, the growth rate always starts at different values for different temperatures, as given by

eq. (3.53) (left) and eq. (3.56) (right). In both cases, the high temperature limit of the NS collapse

approaches the Ramond collapse. At late times, independent of the temperature, the rate of change

approaches zero on the left, and 2M/π on the right.

We can then solve numerically the transcendental equation (3.30) for xs, and evaluate

eq. (3.43).

We show the time dependence of both dCA/dt0 and dC′
A/dt0 for the spherical boundary

geometry (i.e., k = +1) in the left panel of figure 4 for several temperatures. Recall

that z is determined in terms of LT by eq. (3.13). As discussed above, dC′
A/dt0 (with the

counterterm) approaches 2M/π from below at late times and starts with M/π immediately

after the shell is injected from the boundary. For dCA/dt0 (without the counterterm), the

late time limit is much lower (i.e., it does not match that found with eternal black holes)

and depends on the value of the temperature, as in eq. (3.29).

d = 4: For d = 4, the relevant dimensionless tortoise coordinate in eq. (3.14) reads

x∗BH(x, z) = − 1

2kz2 + 4

[

√

kz2 + 1

(

π − 2 tan−1

(

x√
kz2 + 1

))

− log

(

x− 1

x+ 1

)]

. (3.59)

Therefore, we can solve numerically eq. (3.30) for the meeting point xs, which then allows

us to evaluate the complexity growth rates with and without the inclusion of the boundary

counterterm (2.30) in eqs. (3.43) and (3.27), respectively. Recall that z is determined in

terms of LT by eq. (3.13). We show dCA/dt0 and dC′
A/dt0 for several temperatures (and the

spherical geometry with k = +1) in the right panel of figure 4. Again, as discussed above,

we see that when the counterterm is included, dC′
A/dt0 starts with M/π at t0 = 0 and rises

monotonically to 2M/π at late times. Without the counterterm, the late time growth rate

does not match the eternal black hole geometry, and it depends on the temperature, as

given by eq. (3.29).
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Figure 4. The growth rate for the complexity in d = 3 (left) and d = 4 (right) and spherical

geometry (k = +1), evaluated without (red and orange curves) and with (blue and cyan curves) the

boundary counterterm (2.30). In both case, we evaluate the growth rate for temperatures TL = 0.35

(solid), TL = 0.5 (dashed) and TL = 2.0 (dot-dashed) in the left and TL = 0.5 (solid), TL = 0.8

(dashed) and TL = 1.5 (dot-dashed) in the right figure. In both dimensions, dCA/dt0 (without the

counterterm) starts at the value of the planar rate of change given by eq. (3.32) and approaches

the late time limit from below in eq. (3.29). The late time growth rate in this case is smaller than

the one for the eternal black hole, and it depends on the temperature. With the inclusion of the

counterterm, dC′

A/dt0 starts at half of its late time limit, then it grows at times of the order of the

thermal length, and approaches the eternal black hole bound from below.

3.2 Complexity=volume

In this section, we evaluate the holographic complexity following the CV conjecture (1.1)

for the same Vaidya spacetime describing the formation of a black hole with the collapse

of a(n infinitely) thin shell of null fluid. Our calculations closely follow those in the CV

section of [48]. The maximal volume surfaces take the form illustrated in figure 5.

We are again working with the Vaidya metric in eq. (2.1) with fP (v) = ωd−2H(v),

as in eq. (3.1). To find the maximal volume slices anchored to the boundary time slice at

v = t0, we must extremize the following

V = Ωk,d−1

∫

L dλ = Ωk,d−1

∫

dλ rd−1
√

−F v̇2 + 2v̇ṙ , (3.60)

where we have taken advantage of the “rotational” symmetry to integrate out spatial

boundary directions. The remaining radial direction on the (codimension-one) bulk surfaces

is parameterized by λ above and the surface is defined by its trajectory in the rv-plane,

(r(λ), v(λ)).

Our metric is independent of the coordinate v in each part of the spacetime, i.e., v > 0

and v < 0, separately. Hence, in each of these regions, we have the conserved “momentum,”

P =
∂L
∂v̇

=
rd−1(ṙ − F v̇)√
−F v̇2 + 2v̇ṙ

. (3.61)

Now the expression in eq. (3.60) is invariant under reparametrizations of λ and we make

the following convenient gauge choice:
√

−F v̇2 + 2v̇ṙ = rd−1 . (3.62)
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= 0v

= 0r
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0

r

Figure 5. Penrose-like diagram of maximal volume surfaces at different times embedded in the

Vaidya AdS spacetime. Constant time slices are indicated by thin dashed gray lines and the maximal

volume surfaces asymptote them near the boundary. The event horizon extends past the shell, as we

have indicated by a thick dashed gray line. Since the momentum (3.61) of the surfaces is positive,

they evolve towards decreasing time outside the horizon. Surfaces lie on constant time slices in the

vacuum part of spacetime to avoid a conical singularity at r = 0.

We can use this condition to simplify the v-momentum (3.61) as follows

P = ṙ − F v̇ . (3.63)

We can then use eqs. (3.62) and (3.63) to express ṙ and v̇ in terms of r and P

ṙ = ±
√

F (r)r2(d−1) + P 2 ,

v̇ =
ṙ − P

F (r)
=

1

F (r)

(

−P ±
√

F (r)r2(d−1) + P 2

)

,
(3.64)

where in principle, either sign may play a role since r may be increasing or decreasing as

we move along the surface. However, we will see that ṙ (as well as v̇) will be positive in

general for the solutions of interest, and P will be positive. Since P is not conserved in

the full spacetime (due to the H(v) in the profile (3.1)), it is convenient to have the full

equations of motion:

v̈ = (d− 1)r2d−3 − v̇2

2
∂rF ,

r̈ =
v̇2

2
∂vF +

1

2
∂r

(

r2d−2F
)

,

(3.65)

where we simplified these expressions using eq. (3.62). Here we see that ∂vF only enters on

the right-hand side of the equation for r̈. Hence integrating eq. (3.65) over an infinitesimal

interval around the shell at v = 0, we conclude that v̇ is continuous across the shell while
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ṙ jumps discontinuously with

ṙBH(rs) = ṙvac(rs) +
v̇(rs)

2
(fBH(rs)− fvac(rs)) , (3.66)

where rs denotes the value of the radial coordinate at which our extremal volume surface

meets the collapsing shell. It is also useful to recast the ṙ equation as follows:

ṙ2 − F (r) r2(d−1) = P 2 . (3.67)

This equation takes the form of a classical Hamiltonian constraint for a particle of mass

m = 2 and with energy E = P 2 moving in a potential U(r) = −F (r)r2(d−1). This gives us

an intuitive picture to understand the evolution of the surface on either side of the collapsing

shell.24 The effective potential is depicted in figure 6 for the black hole geometry. We see

that depending on the value of P 2
BH certain values of r may not be accessed. It will be useful

in what follows to keep in mind the maximal value of the black hole potential UBH,max ≡ P 2
m

and the value r = rm for which it is obtained. They are obtained by solving the following

equations:

∂r

[

fBH(rm) r2(d−1)
m

]

= 0 , P 2
m = −fBH(rm) r2(d−1)

m . (3.68)

The boundary conditions for our surface are determined as follows: in order for the

extremal surfaces to avoid a conical singularity at r = 0, we require that ṫ = v̇ − ṙ/f = 0

there.25 Eq. (3.63) then fixes Pvac = 0, the conserved momentum in the vacuum part of

the spacetime (v < 0). When the surface crosses the collapsing shell at r = rs, eq. (3.64)

then determines

ṙvac(rs) = rd−1
s

√

fvac(rs), v̇(rs) =
rd−1
s

√

fvac(rs)
. (3.69)

Hence the value of the v-momentum and ṙ on the black hole side of the shell can be read

from eqs. (3.63) and (3.66),

PBH = rd−1
s

fvac(rs)− fBH(rs)

2
√

fvac(rs)
=

rs ω
d−2

2
√

fvac(rs)
, ṙBH(rs) = rd−1

s

fBH(rs) + fvac(rs)

2
√

fvac(rs)
. (3.70)

The last boundary condition is that we are anchoring the extremal surface to the boundary

time slice at v = t0 > 0. Hence using eq. (3.64), we integrate from the shell to the

asymptotic boundary

t0 =

∫ t0

0
dv =

∫ ∞

rs

v̇

ṙ
dr =

∫ ∞

rs

(

1− PBH
√

fBH(r)r2(d−1) + P 2
BH

)

dr

fBH(r)
. (3.71)

24Note that this picture also agrees with eq. (3.65), which away from the shell can be cast in the form:

m r̈ = ∂rU(r). Of course, we must keep in mind that both U(r) and E will jump discontinuously at r = rs
where the extremal surface crosses the shell.

25We observe that this boundary condition yields ṫ = 0 throughout the vacuum region. Further, we note

that while this boundary condition is obvious for k = +1, it is more subtle in the planar geometry with

k = 0. In the latter case, we need to introduce a timelike regulator surface at some r = ǫ0 and consider the

limit ǫ0 → 0, as in [34].
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Figure 6. Generic form of the potential U(r) = −fBH(r)r
2(d−1) (yellow curve) as a function of r

for black holes with k = 1 and d ≥ 3, or for BTZ black holes in d = 2. The peak of the potential

corresponds to rm (dashed gray line) and the corresponding energy P 2
m

(green line) is defined in

eq. (3.68). The blue curve corresponds to the energy in the black hole side as a function of rs where

the shell is crossed, for k = 1 and d ≥ 3 or for BTZ black holes in d = 2 with the Neveu-Schwarz

vacuum. The point where the yellow and blue curves meet indicates a change in the direction of

the velocity ṙBH(rs). To reach the asymptotic boundary we require P 2
BH ≥ P 2

m
. That is, rs should

be larger than the value at the intersection of the blue and green curves — see inset.

Now eqs. (3.70) and (3.71) relate the boundary time t0, the momentum PBH in the black hole

part of spacetime (v > 0), and the radius rs at which our extremal surface crosses the shell.

We can use these equations to prove that the momentum PBH on the black hole side

is always positive. As a consequence the surfaces outside the black hole cross decreasing

time slices. It is also easy to show that P 2
BH − U(r) is in general positive, so that the

Hamiltonian constraint (3.67) is consistent with ṙ2BH > 0 and so we have shown that the

extremal surface is always able to cross the shell. Figure 6 depicts the effective potential

U(r) = −fBH(r) r
2(d−1) (yellow line) and also the effective energy P 2

BH as a function of the

crossing radius rs (blue line), using eq. (3.70). We note that if the latter energy is below the

peak of the potential, i.e., P 2
BH < P 2

m from eq. (3.68), then the trajectory cannot escape the

potential barrier and terminates on the singularity at r = 0. A special point in the figure is

where the yellow and blue curves meet — see inset. At that point ṙBH(rs) vanishes and in

fact, this is the point where the direction of ṙ is flipped. That is, ṙBH(rs) is positive for larger

values of rs, while it is negative for smaller values of rs and the extremal surface is headed

towards the singularity at r = 0 right after the crossing. In any event, we are only interested

in extremal surfaces which reach the asymptotic boundary and so we require P 2
BH ≥ P 2

m.

We can see from eq. (3.71) that as the latter inequality is saturated the boundary time

diverges, i.e., t0 → ∞ when P 2
BH → P 2

m. This does not happen exactly at rs = rm but

rather at a slightly lower value of rs — see the inset in figure 6 where the energy PBH(rs)
2
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(blue line) crosses P 2
m (green line). To prove that the point for which the momentum is

equal to Pm occurs with rs < rm we can use the following general argument: first we note

from general consideration that ṙBH is a monotonic function of rs. In addition, we can

check that ṙBH(rs = rm) is positive. To do that we use eq. (3.68) for rm

2r2m
L2

+ 2k − ωd−2

rd−2
m

=
2k

d
, (3.72)

as well as eq. (3.70) for the velocity ṙBH after the crossing

ṙBH(rs = rm) =
rd−2
m

2
√

r2m/L2 + 1

(

2r2m
L2

+ 2k − ωd−2

rd−2
m

)

=
rd−2
m k

d
√

r2m/L2 + 1
. (3.73)

The latter is strictly positive when k = 1 (and is exactly zero for k = 0). In fact, the blue

curve for k = 0 becomes a line of constant energy P 2 = P 2
m.

With the gauge choice in eq. (3.62), the maximal volume (3.60) becomes V =

Ωk,d−1

∫

dλ r2d−2. We evaluate the latter as

V = Ωk,d−1

[
∫ rs

0

dr

ṙ
r2d−2 +

∫ ∞

rs

dr

ṙ
r2d−2

]

= Ωk,d−1

∫ rs

0

dr rd−1

√

fvac(r)
+ Ωk,d−1

∫ rmax

rs

dr r2(d−1)

√

fBH(r)r2(d−1) + P 2
BH

(3.74)

and we have introduced the UV cutoff rmax to produce a finite volume. It is convenient to

use eq. (3.71) to re-express the second integral as follows

V = Ωk,d−1

[

∫ rs

0

dr rd−1

√

fvac(r)
+

∫ rmax

rs

dr

[

√

fBH(r)r2(d−1) + P 2
BH

fBH(r)
− PBH

fBH(r)

]

+ PBHt0

]

.

(3.75)

We note that our expressions for the time and volume match those found in appendix A

of [49] for the case of d = 2 and rh = L.

With all this technology in hand, we are ready to compute the time derivative of the

holographic complexity using eq. (1.1). It is straightforward to check that the continuity of

v̇ across the shell implies that the contributions from differentiating the limits of integration

vanish. Using again eq. (3.71), a second cancellation arises from the derivative of the

momentum inside the second integral and in the last term of (3.75). We are finally left with

dCV

dt0
=

1

GNL

dV
dt0

=
Ωk,d−1

GNL
PBH . (3.76)

This surprisingly simple result bears some similarity to the expression for the rate of change

of the volume complexity in the eternal black hole [48]. However, we note that the expres-

sion (3.70) relating the PBH and rs is different here than that relating the momentum and

rmin there.

The above result (3.76) is implicit because in general it still requires solving eqs. (3.71)

and (3.70) for PBH (or equivalently rs) given the boundary time t0. However, these equations

are simply solved for the planar geometry with k = 0 and one obtains

PBH =
rdh
2L

,
dCV

dt0
=

8πM

d− 1
. (3.77)
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Hence for the planar geometry, holographic complexity begins growing as soon as t0 > 0

and the rate of growth is a fixed constant for all times. Further, this constant rate matches

the late time rate of growth found for the eternal black hole in [28, 48]. Our results for

the spherical geometry confirm that the interpretation presented in appendix A of [49] for

BTZ black holes also holds in higher dimensions. Namely that the main contribution in

the late time limit comes from the extremal surface wrapping around a surface of constant

r = rm while the contributions coming from the smaller value of r reached by our surface,

as well as the portions reaching to the boundary, are approximately constant and do not

influence the time derivative of the holographic complexity.

Early time behaviour

We can evaluate analytically the early time limit t0 → 0. For early times we know that

rs → ∞ and using eq. (3.70), we see that for black holes in d > 2:

lim
t0→0

PBH =
Lωd−2

2
, (3.78)

where as given in eq. (3.6), ωd−2 = rd−2
h (r2h/L

2 + k). Now using eq. (3.76), this leads to

lim
t0→0

dCV

dt0
=

8πM

d− 1
. (3.79)

That is, as noted above for the planar geometry, the rate of growth of the holographic

complexity immediately jumps to a nonvanishing (positive) value for t > t0. We also

observe that the early time rate in eq. (3.79), which holds for both k = 0 and +1, matches

the k = 0 result in eq. (3.77), which holds for all times.

Late time behaviour

Another limit that we consider is the late time limit t0 → ∞: in the late time limit, we have

already explained that the value of the momentum reaches Pm defined in eq. (3.68). In this

case, our surface wraps around the surface of constant r = rm, but the volume required

to reach the minimal value of rs below rm and to reach the boundary above rm remains

(approximately) constant. The contribution to the increasing growth of complexity at late

times comes from the part of the surface which wraps around the r = rm surface. This

will give us the value of PBH in the late time limit for our numerical solutions below. One

then finds that the rate of growth of the holographic complexity (for d > 2) at late times

satisfies

lim
t0→∞

(d− 1)

8πM

dCV
dt0

=
2Pm

ωd−2L
. (3.80)

In general, eq. (3.68) cannot be solved analytically. However we can solve it in a large

temperature expansion (or equivalently for small z = L/rh — see eq. (3.11))

rm =
rh

2
1
d



1−
(

22/d(d− 1)− d
)

d2
kz2 (3.81)

+
(d− 1)

(

−d2 + 2
2
d
+1d+ 24/d(d− 3)(d− 1)

)

2 d4
k2z4 +O(z4)



 .

– 32 –



J
H
E
P
0
6
(
2
0
1
8
)
0
4
6

It is then possible to extract Pm using eq. (3.68) and to use eq. (3.80) to determine the late

time rate of change of the holographic complexity. Finally relating z to the temperature

with eq. (3.12), we conclude

lim
t0→∞

(d− 1)

8πM

dCV

dt0
= 1− 2

2
d
−1d2k

(4π)2(LT )2
+

2
2
d (γ − d(d− 3)) d2k2

(4π)4(LT )4
+O

(

1

L6T 6

)

, (3.82)

where we have introduced the parameter γ ≡ 2
2
d
−3(3d− 2)(d− 2). Hence with a spherical

spatial geometry (i.e., k = +1), there are curvature corrections which reduce the late

time growth rate of the holographic complexity. That is, dCV/dt0 begins with the value

8πM/(d − 1) shown in eq. (3.79), but then it decreases to a smaller growth rate at late

times — see also figure 8. However, for the planar geometry (i.e., k = 0), the growth rate

remains a fixed constant, as shown in eq. (3.77).

Two boundary dimensions (d = 2)

The collapse with d = 2 forms a BTZ black hole with fBH(r) = (r2−r2h)/L
2 [89, 90]. Recall

that the mass, temperature and entropy are given in eq. (3.50) and the choices k = 0 or

1 in fvac(r) correspond to the Ramond and Neveu-Schwarz vacuum, respectively, in the

boundary theory.

The analysis follows identically to the previous case, with the obvious replacement of

the blackening factors. For the early time limit we may use eq. (3.70) with rs → ∞ to obtain

lim
t0→0

PBH =
L

2

(

r2h
L2

+ k

)

. (3.83)

Next, using eq. (3.76) for the rate of change of the holographic complexity, we obtain:

lim
t0→0

dCV

dt0
= 8πM

(

1 + k
L2

r2h

)

= 8πM

(

1 +
k

(2πLT )2

)

. (3.84)

For the late time limit, we can solve eq. (3.68) analytically and obtain

rm =
rh√
2
, Pm =

r2h
2L

(3.85)

and hence we find

lim
t0→∞

dCV

dt0
= 8πM , (3.86)

which is independent of the value of k. For the Ramond vacuum (i.e., k = 0), dCV/dt0 is a

fixed constant for all times, as expected from eq. (3.77) for the planar geometry. However,

we see that for the Neveu-Schwarz vacuum (i.e., k = 1), the early rate of growth is higher

that the late time rate of growth.26 In figure 7, we numerically evaluate the rate of growth

of the holographic complexity for intermediate times.

26Our results for the BTZ black hole are the same as those in appendix A of [49]. There the authors have

set rh = L and the early and late time limits in their eqs. (A.65) and (A.69) match with ours above.
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Figure 7. Rate of change of complexity evaluated from the complexity=volume conjecture in the

Vaidya-AdS spacetime for the BTZ black hole with the Neveu-Schwarz vacuum for several values

of the temperature, i.e., for TL = 0.16 (blue), TL = 0.32 (red, dashed) and TL = 0.64 (purple,

dot-dashed).
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Figure 8. Rate of change of complexity evaluated from the complexity=volume conjecture in the

spherical (k = 1) Vaidya-AdS spacetime in d = 3 (left) for TL = 0.32 (blue), TL = 0.52 (red,

dashed) and TL = 0.98 (purple, dot-dashed) and d = 4 (right) for TL = 0.48 (blue), TL = 0.72

(red, dashed) and TL = 1.32 (purple, dot-dashed).

Numerical results

We evaluated numerically the rate of growth of the holographic complexity for the spherical

geometries with d = 3 and 4, shown in figure 8. We note a number of interesting features:

first, of course, the early and late time rates match those discussed above. Second, in all

of the cases shown, the rate of growth decreases at early times and the late time limit is

approached from above. Recall from eq. (3.84), that the rate of growth is highest at early

times for the Neveu-Schwarz vacuum in d = 2 — see also figure 7.

4 Discussion

In section 3, we examined holographic complexity in the Vaidya geometry (2.1) for the case

where a shell of null fluid is injected into empty AdS and collapses to form a black hole.

Hence these geometries describe one-sided black holes, a situation which was previously

considered in, e.g., [49, 50] in the context of holographic complexity. Of course, using either
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the CA or CV approaches, we found that holographic complexity remains constant until

the moment when the thin shell is injected. After that the complexity immediately begins

to grow and the rate of growth monotonically approaches the corresponding late time limit.

In fact, using the CV conjecture, we found that for planar geometries in d ≥ 3, the

complexity grows at a constant rate which is equal to the late time rate of planar eternal

black holes [28, 48], i.e.,
dCV

dt
=

8πM

d− 1
. (4.1)

For spherical geometries, the growth rate at early times is the same as the above expression,

but the rate then decreases monotonically, as shown in figure 8. Hence the (positive) cur-

vature of the boundary geometry reduces the late time growth rate below that in eq. (4.1),

but this reduction is smaller for high temperature black holes. In eq. (3.82) for large

temperatures, we expressed the final rate in terms of an expansion in 1/(LT )2, i.e., the

curvature of the boundary geometry divided by the temperature, and we can see that the

late time rate approaches eq. (4.1) for very high temperatures. Comparing eq. (3.82) to

eq. (3.26) in [48], we can see that the curvature corrections for the present one-sided black

holes precisely match those found for the analogous eternal black hole backgrounds. This

agreement becomes obvious when we realize that eq. (3.68) which determines late time

limit (3.80) is identical to the corresponding equation for the eternal black hole [48].

Similar results were found for the BTZ black hole. In particular, beginning with the

Ramond vacuum (with k = 0), the growth rate is a fixed constant for all t0 > 0 and matches

the expression in eq. (4.1) with d = 2. Starting with the Neveu-Schwarz vacuum (with

k = +1), the growth rate decreases, similar to what was observed above for d ≥ 3. However,

in this case, the initial rate is increased, as shown in eq. (3.84), and the final rate (3.86)

matches eq. (4.1), corresponding to the final rate for the eternal black hole background

— see also figure 7. The rate of change in complexity relaxes to its late time limit at

times of the order of t ∼ 1/T . All of these results are in accord with the expectations

and calculations presented in [49]. In particular, the geometry of a one-sided black hole

naturally includes regions behind the event horizon where time slices are growing to infinite

volume (or as we discuss below, where the gravitational action grows without bound).

Above, we highlighted ways in which the CV results were the same for the one-sided

and eternal (two-sided) black holes. However, we must also point out how the complexity

for the Vaidya geometry differs from that for the eternal black holes [48, 92]. First, for

planar black holes, the rate of growth of complexity in the eternal case had a transient

period in which the rate of change in complexity gradually rose to its final value. As

noted above for the collapsing shell, the growth rate jumps discontinuously at t0 = 0 to a

value in eq. (4.1) and remains constant. For spherical eternal black holes, the growth rate

increased towards the final late time rate [48], while here we observed a decreasing rate

which approaches the late time limit from above.

Turning to the CA proposal (1.2), we began in section 2 by constructing an action (2.5)

for the null fluid, which sources the Vaidya metric (2.1).27 With this construction, we con-

firmed that when evaluated on a solution of the equations of motion, the null fluid action

27We remind the reader that a similar action was derived in [80] using complementary variables.
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vanishes. As a result, in applying the CA conjecture (1.2) to evaluate the holographic

complexity of the Vaidya metric in section 3 (as well as in [60]), the only nonvanishing

contributions come from the gravitational action (2.16). While this simplifies the task of

evaluating the WDW action, we also carefully examined the contribution of the spacetime

region containing a narrow shell of null fluid and we found that it vanishes as the width

of the shell shrinks to zero. We note that this vanishing result required a precise cancel-

lation of the κ surface term and joint terms on the past null boundary, as indicated in

eq. (2.28). Hence with an infinitely thin shell, the WDW action can be evaluated as the

sum of the actions for two separate regions, the first inside the shell and the second out-

side the shell. We might observe that a similar statement holds for the calculations with

the CV proposal (1.1), where the extremal volume was found by evaluating separately

the corresponding equations of motion inside and outside of the shell. Further in passing,

we note that the vanishing of the gravitational action for the spacetime region containing

the null fluid shell, was an implicit assumption in various previous studies of holographic

complexity, e.g., [50–52].

In evaluating the holographic complexity on the collapsing null shell geometry in sec-

tion 3.1, one of our most striking results was that the late time growth rate did not match

that found in an eternal black hole background. To be precise, the result in eq. (3.29) for

d ≥ 3 was evaluated using the gravitational action (2.16) and the standard prescription that

the generators of the null boundaries are affinely parameterized (i.e., κ = 0).28 Perhaps

even more striking is the result for d = 2. Combining eqs. (3.51) and (3.52), we have

dCA
dt0

= −2M

π

k

4π2L2T 2 + (4π2L2T 2 + k) sinh2(πTt0)
, (4.2)

where we have also substituted z = 1/(2πLT ) from eq. (3.13). Hence with k = 0, the

growth rate simply vanishes in d = 2, while with k = +1, it is actually negative and only

approaches zero at late times. That is, for k = +1 and d = 2, the standard CA prescription

yields a holographic complexity that decreases in time!

Clearly, this is an unsatisfactory result, however, we also found that the situation was

corrected by adding the boundary counterterm (2.30) on the null surfaces. In particular,

with this slightly modified prescription, the late time rate of growth was identical to that

found for eternal black holes. That is, eq. (3.43) yields dC′
A/dt0|t0→∞ = 2M/π for both

k = 0,+1 and any d ≥ 3. Hence, both the CV and CA approaches yield a late time growth

rate which matches the rate found for the analogous eternal black hole backgrounds, as

long as the gravitational action includes the extra counterterm. Further, from eq. (3.55),

we can see that for d = 2,

dC′
A

dt0
=

2M

π
− M

π sinh2(πTt0)
log

[

1 +

(

1 +
k

4π2L2T 2

)

sinh2(πTt0)

]

. (4.3)

Hence for both k = 0 and +1, there is a transient behaviour at early times but the growth

rate reaches the expected late time limit by t0 ∼ 1/T . We also note that eq. (4.3) yields

28Recall that this prescription also fixes the relative normalization of the null normals on the two sides

of the shell, see eq. (2.29).
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dC′
A/dt0 which is positive for all times. Hence adding the boundary counterterm repairs

the previous problematic result (4.2) for d = 2. Therefore, we conclude that it is essential

in defining the CA proposal (1.2) to supplement the gravitational action (2.16) with the

boundary counterterm (2.30). This conclusion will be reinforced by our analysis of shock

waves in an eternal black hole background in [60] — see further comments below.

We also discuss this conclusion further below, but first let us examine the behaviour

of the holographic complexity, using the modified prescription, for the collapsing null shell

in more detail. Of course, as observed above, the modified prescription yields the same

universal late time limit as found for the eternal black holes [29, 30]. But closer examination

of eq. (3.43) shows that dC′
A/dt0 begins at precisely half this rate at t0 = 0 for d ≥ 3 (as

well as d = 2 with k = 0) and that the growth rate increases monotonically towards the

late time limit. As shown in eq. (3.48), dC′
A/dt0 relaxes to this limit with an exponential

decay controlled by the thermal time scale 1/(2πT ). Generally, as shown in figure 4, the

growth rate has essentially reached this late time limit at t ∼ 1/T .

We might recall that when the CA approach was applied to study the time evolution

of the holographic complexity in the eternal black hole geometry [48, 92], a number of

unusual features arose. First, the holographic complexity does not change at all until some

tc ∼ 1/T for d ≥ 3. Second, at tc, there is a sudden spike in dCA/dt where it actually

becomes (infinitely) negative. After this spike, dCA/dt grows rapidly and overshoots the

late time rate. Then the growth rate approaches the late time limit with an exponential

decay from above. Further, we note that the details of this transient behaviour depend on

α, the parameter appearing in the normalization of the null normals on the boundaries of

the WDW patch. Of course, these calculations were found using the standard prescription

which did not include the null boundary counterterm. However, including the counterterm

contributions does not modify the above description in any essential way, e.g., see appen-

dices A and E of [48], except that the undetermined normalization constant α is replaced

the undetermined scale ℓct, appearing in eq. (2.30).29 Hence it is interesting to observe

that these unusual features are absent in dC′
A/dt0 calculated for the formation of a black

hole, rather than an eternal black hole. In particular, we emphasize the counterterm scale

ℓct does not come into play in the time evolution of the complexity for the collapsing shell.

Our conclusion above was that without the null surface counterterm (2.30), evaluating

the gravitational action on the WDW patch did not yield an observable that could be

associated with complexity in the boundary theory. For example, eq. (3.29) shows that

the late time growth rate after the formation of a black hole does not match that found

for an eternal black hole, i.e., 2M/π. This discrepancy is somewhat surprising since at

late times, the largest portion of the WDW patch is above the shell, where the geometry

is precisely that of a static black hole — see figure 2. However, recall that in evaluating

dCA/dt in the eternal black hole geometry, an essential contribution comes from the joint

where the two past null boundaries meet behind the past event horizon [33, 48]. Of course,

there is no counterpart of this joint contribution in the Vaidya geometry describing black

29The counterterm (2.30) was introduced to ensure the reparameterization invariance of the action and

hence when this term is included, the action is completely independent of α.
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hole formation.30 However, upon adding the counterterm, an extra boundary contribution

appears where the past boundary of the WDW patch crosses the null shell (see eqs. (2.36)

and (3.39)), and then its time derivative provides precisely the extra contribution needed

to restore the late time growth rate for the holographic complexity (see eq. (3.42)).

Holographic complexity using the CA proposal has recently been applied in a number

of situations involving null shells, e.g., [50–52, 55, 93]. In particular, we should also compare

our results with those of [50], which evaluates the holographic complexity using the CA

proposal for precisely the same Vaidya geometries (with k = 0) that were studied here. In

fact, we can see that the results for the growth rate are precisely the same by comparing

eq. (3.44) with eq. (56) of [50]. The primary way in which the two calculations differ is that

in [50], the author sets α̃ = α and so implicitly the null generators of the past boundary

are not affinely parameterized as they cross the null shell. However, this choice does not

affect the final answer. Imagine that we allow α and α̃ to be arbitrary constants. Then

the counterterm contribution at r = rs appears in eq. (2.35) while the corresponding joint

contributions appear in eq. (3.25). It is straightforward to see that combining these two

contributions yields

Ijoint + Ict =
Ωk,d−1r

d−1
s

8πGN
log

[

fvac(rs)

fBH(rs)

]

, (4.4)

which is completely independent of both α and α̃. One might note that in fact the coun-

terterm contribution at rs vanishes with the choice α̃ = α, as in [50]. Hence although some

of the intermediate steps may differ, the final results for the holographic complexity here

and in [50] agree.

In some of the other recent studies of the CA proposal with null shells, the countert-

erm (2.30) was included [52, 93] but in other, it was not [51, 55]. In all of these cases,

it was assumed that the contribution of the (infinitely thin) null shell was zero, as we

explicitly demonstrated in section 2.2, and so the WDW action was determined by adding

together the action evaluated separately on the regions above and below the shell, as in

our calculation. It is particularly interesting to compare [51] and [52], which both studied

holographic complexity in hyperscaling violating geometries, but the first did not include

the counterterm while the second did. The same simple but ad hoc prescription for the

normalization of the null boundary normals was chosen in [51] as in [50], i.e., α̃ = α. The

observation above was that with this choice, the counterterm contribution generated at rs
vanishes and so it is not surprising the main results for the growth rate in [51] and [52]

agree. However, we note that differences appear in the transient behaviour if this ad hoc

prescription is applied for a null shell falling into an eternal black hole [60]. Further, there

is no obvious covariant principle which produces the choice α̃ = α, i.e., this parameteriza-

tion appears to be an arbitrary coordinate-dependent choice. For example then, it is not

clear what the corresponding prescription for a null shell of finite width should be.

30Geometrically, the closest analog of this joint would be where the past null boundary reaches r = 0 in

the AdS vacuum region. However, this point does not contribution to the gravitational action, as discussed

in [34].
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Future directions

One of our key results was that if the gravitational action evaluated on the WDW patch

is to properly describe the complexity of the boundary state, then one must include the

counterterm (2.30) on the null boundaries. This counterterm was originally constructed

in [33] to ensure that the action did not depend on the parametrization of the null bound-

aries. In particular, this term does not play a role in producing a well-defined variational

principle for the gravitational action. Previous studies of holographic complexity using

the CA proposal focused on stationary spacetimes, e.g., eternal black hole backgrounds,

and it was found that this extra surface term does not modify the essential properties of

the holographic complexity, e.g., the complexity of formation [34] or the late-time rate of

growth [48]. This points out the importance of testing various proposal for holographic

complexity in dynamical spacetimes, such as the Vaidya geometries (2.1). We extend the

present work with a study of holographic complexity for shock waves falling into an eternal

black hole in a companion paper [60]. In this case, we find that including the counterterm

on the null boundaries of the WDW patch is an essential ingredient in order to reproduce

the “switchback effect”.

Additional topics to explore would include extending our results to collapsing charged

shells, to shells of finite width, to shells of other kinds of matter, including higher curvature

corrections as in [94] or to localized shocks as in [31].

As emphasized in [50], the growth rate for the collapsing null shell calculated using

the (modified) CA proposal always obeys the bound dC′
A/dt ≤ 2M/π. It was proposed

in [29, 30] that this bound may be related to Lloyd’s bound for the maximum rate of

computation for a system with a fixed energy [95]. However, as noted above, transient

violations of the proposed bound were already identified in studying the time evolution

of complexity in an eternal black hole background [48]. Further, even stronger violations

were found in the dual of a noncommutative gauge theory [47] and in hyperscaling violating

geometries [51, 52].31 Therefore, while the proposed bound can not be universal, it remains

an interesting question to understand the situations when it does apply and when not, and

the underlying reasons for this.

Another interesting direction would be to study the evolution of complexity for quan-

tum quenches in a field theory context. Some initial studies of this question appear

in [98, 99], which examine the evolution of the complexity through a mass quench in a

free scalar field theory (analogous to those studied in [86–88]). A remarkable feature of

these quenches is that the scalar field remains in a Gaussian state throughout the entire

process, and so methods developed in [44–46] can still be applied to evaluate the complex-

ity. The comparison of our holographic results with those in [98] is not straightforward

since, e.g., the initial and final masses are nonvanishing (i.e., neither the initial nor final

scalar theories are CFTs). However, we might note that the QFT calculations suggest that

the complexity growth rate at early times increases as the energy injected by the quench

increases. Hence this behaviour would be in rough agreement with our holographic results

where the initial growth rate is proportional to the energy carried by the null shell, i.e.,

31Violations of the analogous bound proposed for systems with a chemical potential were also found in

certain instances [30, 96, 97].

– 39 –



J
H
E
P
0
6
(
2
0
1
8
)
0
4
6

see eqs. (3.46) and (3.56) for the CA proposal, and eq. (3.79) for the CV proposal. On

the other hand, in [98], the authors found that in most instances, the complexity quickly

saturated (at least approximately) while, of course, the holographic complexity contin-

ues to grow linearly at late times. Further, the complexity in the QFT quench showed a

strong dependence on the mass scale M associated with the unentangled reference state.

In [44, 45], it was suggested the dependence on M could be associated with dependence

of the holographic complexity α, which seems to be traded for the dependence on scale ℓct
with the addition of the boundary counterterm [60]. However, the holographic growth rate,

e.g., in eq. (3.43) shows no dependence on ℓct at all, and so this points to another mismatch

between the holographic and QFT results. One possible way to improve the comparison of

the holographic and QFT quenches would be to consider CFT-to-CFT quenches for a free

scalar (in which the initial and final masses both vanish) using the protocol described in

section 3.2 of [88]. Another simple extension of this work would be to study the complexity

for a mass quench of a free fermion, using the techniques of [46].

Let us close with the following comments: the present project and the many previous

studies of the CA and CV proposals indicate that both of these proposals yield a holographic

observable which seems to behave like the complexity of the boundary state. Of course, one

might ask if one proposal is correct while the other is wrong. However, at present, it seems

equally likely that both proposals simply encode different definitions of complexity, e.g., see

discussion in [34, 44, 45]. The precise numerical value of the complexity will depend on a

number of choices at the microscopic level, e.g., the set of universal gates used in preparing

the states, and therefore the latter is an inherently ambiguous quantity. Hence it may not

be surprising to find more than one holographic observable that describes complexity in the

boundary theory. However, these new gravitational observables should certainly be studied

in further to better understand their commonalities and their differences. Ultimately, one

would like to establish a concrete translation of the new observables in the bulk to a

specific quantity in the boundary theory, but this probably requires new insights into how

complexity can be formulated in quantum field theories. Some interesting progress in this

direction can be found in [39–41].

Acknowledgments

We would like to thank Alice Bernamonti, Adam Brown, Dean Carmi, Lorenzo Di Pietro,

Federico Galli, Minyong Guo, Robie Hennigar, Juan Pablo Hernandez, Nick Hunter-Jones,

Shan-Ming Ruan, Sotaro Sugishita, Brian Swingle, Beni Yoshida and Ying Zhao for useful

comments and discussions. Research at Perimeter Institute is supported by the Government

of Canada through the Department of Innovation, Science and Economic Development

and by the Province of Ontario through the Ministry of Research, Innovation and Science.

HM and RCM thank the Kavli Institute for Theoretical Physics for its hospitality at one

stage of this project. At the KITP, this research was supported in part by the National

Science Foundation under Grant No. NSF PHY17-48958. SC acknowledges support from

an Israeli Women in Science Fellowship from the Israeli Council of Higher Education. RCM

is supported by funding from the Natural Sciences and Engineering Research Council of

Canada and from the Simons Foundation through the “It from Qubit” collaboration.

– 40 –



J
H
E
P
0
6
(
2
0
1
8
)
0
4
6

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972) 737 [INSPIRE].

[2] J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

[3] R.D. Sorkin, 1983 paper on entanglement entropy: “On the Entropy of the Vacuum outside a

Horizon”, in Tenth International Conference on General Relativity and Gravitation, Padova,

4–9 July 1983, Contributed Papers, vol. II, pp. 734–736 [arXiv:1402.3589] [INSPIRE].

[4] T. Jacobson, Thermodynamics of space-time: The Einstein equation of state, Phys. Rev.

Lett. 75 (1995) 1260 [gr-qc/9504004] [INSPIRE].

[5] M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939

[INSPIRE].

[6] M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42

(2010) 2323 [arXiv:1005.3035] [INSPIRE].

[7] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories,

string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

[8] M. Ammon and J. Erdmenger, Gauge/gravity duality: Foundations and applications,

Cambridge University Press (2015).

[9] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[10] S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006)

045 [hep-th/0605073] [INSPIRE].

[11] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement

entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

[12] M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy, Lect. Notes Phys.

931 (2017) 1 [arXiv:1609.01287] [INSPIRE].

[13] B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D 86 (2012) 065007

[arXiv:0905.1317] [INSPIRE].

[14] R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011)

125 [arXiv:1011.5819] [INSPIRE].

[15] D.D. Blanco, H. Casini, L.-Y. Hung and R.C. Myers, Relative Entropy and Holography,

JHEP 08 (2013) 060 [arXiv:1305.3182] [INSPIRE].

[16] X. Dong, Holographic Entanglement Entropy for General Higher Derivative Gravity, JHEP

01 (2014) 044 [arXiv:1310.5713] [INSPIRE].

[17] T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from

Entanglement in Holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].

[18] A. Almheiri, X. Dong and D. Harlow, Bulk Locality and Quantum Error Correction in

AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].

– 41 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/BF02757029
https://inspirehep.net/search?p=find+J+%22Lett.NuovoCim.,4,737%22
https://doi.org/10.1103/PhysRevD.7.2333
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D7,2333%22
https://arxiv.org/abs/1402.3589
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.3589
https://doi.org/10.1103/PhysRevLett.75.1260
https://doi.org/10.1103/PhysRevLett.75.1260
https://arxiv.org/abs/gr-qc/9504004
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9504004
https://arxiv.org/abs/0907.2939
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2939
https://doi.org/10.1007/s10714-010-1034-0
https://doi.org/10.1007/s10714-010-1034-0
https://arxiv.org/abs/1005.3035
https://inspirehep.net/search?p=find+EPRINT+arXiv:1005.3035
https://doi.org/10.1016/S0370-1573(99)00083-6
https://arxiv.org/abs/hep-th/9905111
https://inspirehep.net/search?p=find+EPRINT+hep-th/9905111
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://inspirehep.net/search?p=find+EPRINT+hep-th/0603001
https://doi.org/10.1088/1126-6708/2006/08/045
https://doi.org/10.1088/1126-6708/2006/08/045
https://arxiv.org/abs/hep-th/0605073
https://inspirehep.net/search?p=find+EPRINT+hep-th/0605073
https://doi.org/10.1088/1126-6708/2007/07/062
https://arxiv.org/abs/0705.0016
https://inspirehep.net/search?p=find+EPRINT+arXiv:0705.0016
https://doi.org/10.1007/978-3-319-52573-0
https://doi.org/10.1007/978-3-319-52573-0
https://arxiv.org/abs/1609.01287
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.01287
https://doi.org/10.1103/PhysRevD.86.065007
https://arxiv.org/abs/0905.1317
https://inspirehep.net/search?p=find+EPRINT+arXiv:0905.1317
https://doi.org/10.1007/JHEP01(2011)125
https://doi.org/10.1007/JHEP01(2011)125
https://arxiv.org/abs/1011.5819
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5819
https://doi.org/10.1007/JHEP08(2013)060
https://arxiv.org/abs/1305.3182
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3182
https://doi.org/10.1007/JHEP01(2014)044
https://doi.org/10.1007/JHEP01(2014)044
https://arxiv.org/abs/1310.5713
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.5713
https://doi.org/10.1007/JHEP03(2014)051
https://arxiv.org/abs/1312.7856
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.7856
https://doi.org/10.1007/JHEP04(2015)163
https://arxiv.org/abs/1411.7041
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.7041


J
H
E
P
0
6
(
2
0
1
8
)
0
4
6

[19] F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting

codes: Toy models for the bulk/boundary correspondence, JHEP 06 (2015) 149

[arXiv:1503.06237] [INSPIRE].

[20] B. Czech, L. Lamprou, S. McCandlish and J. Sully, Integral Geometry and Holography,

JHEP 10 (2015) 175 [arXiv:1505.05515] [INSPIRE].

[21] J. de Boer, M.P. Heller, R.C. Myers and Y. Neiman, Holographic de Sitter Geometry from

Entanglement in Conformal Field Theory, Phys. Rev. Lett. 116 (2016) 061602

[arXiv:1509.00113] [INSPIRE].

[22] D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative

entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].

[23] B. Czech, L. Lamprou, S. Mccandlish and J. Sully, Modular Berry Connection for Entangled

Subregions in AdS/CFT, Phys. Rev. Lett. 120 (2018) 091601 [arXiv:1712.07123] [INSPIRE].

[24] L. Susskind, Entanglement is not enough, Fortsch. Phys. 64 (2016) 49 [arXiv:1411.0690]

[INSPIRE].

[25] J. Watrous, Quantum Computational Complexity, in Encyclopedia of Complexity and

Systems Science, R.A. Meyers ed., Springer (2009), pp. 7174–7201 [arXiv:0804.3401].

[26] S. Aaronson, The Complexity of Quantum States and Transformations: From Quantum

Money to Black Holes, [arXiv:1607.05256] [INSPIRE].

[27] L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016)

24 [Addendum ibid. 64 (2016) 44] [arXiv:1402.5674] [INSPIRE].

[28] D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D 90

(2014) 126007 [arXiv:1406.2678] [INSPIRE].

[29] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity

Equals Bulk Action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].

[30] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and

black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].

[31] D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051

[arXiv:1409.8180] [INSPIRE].

[32] R.-G. Cai, S.-M. Ruan, S.-J. Wang, R.-Q. Yang and R.-H. Peng, Action growth for AdS black

holes, JHEP 09 (2016) 161 [arXiv:1606.08307] [INSPIRE].

[33] L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null

boundaries, Phys. Rev. D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].

[34] S. Chapman, H. Marrochio and R.C. Myers, Complexity of Formation in Holography, JHEP

01 (2017) 062 [arXiv:1610.08063] [INSPIRE].

[35] M. Alishahiha, Holographic Complexity, Phys. Rev. D 92 (2015) 126009 [arXiv:1509.06614]

[INSPIRE].

[36] O. Ben-Ami and D. Carmi, On Volumes of Subregions in Holography and Complexity, JHEP

11 (2016) 129 [arXiv:1609.02514] [INSPIRE].

[37] D. Carmi, R.C. Myers and P. Rath, Comments on Holographic Complexity, JHEP 03 (2017)

118 [arXiv:1612.00433] [INSPIRE].

– 42 –

https://doi.org/10.1007/JHEP06(2015)149
https://arxiv.org/abs/1503.06237
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.06237
https://doi.org/10.1007/JHEP10(2015)175
https://arxiv.org/abs/1505.05515
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.05515
https://doi.org/10.1103/PhysRevLett.116.061602
https://arxiv.org/abs/1509.00113
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.00113
https://doi.org/10.1007/JHEP06(2016)004
https://arxiv.org/abs/1512.06431
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.06431
https://doi.org/10.1103/PhysRevLett.120.091601
https://arxiv.org/abs/1712.07123
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.07123
https://doi.org/10.1002/prop.201500095
https://arxiv.org/abs/1411.0690
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.0690
https://arxiv.org/abs/0804.3401
https://arxiv.org/abs/1607.05256
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.05256
http://dx.doi.org/10.1002/prop.201500092
http://dx.doi.org/10.1002/prop.201500092
https://arxiv.org/abs/1402.5674
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.5674
https://doi.org/10.1103/PhysRevD.90.126007
https://doi.org/10.1103/PhysRevD.90.126007
https://arxiv.org/abs/1406.2678
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.2678
https://doi.org/10.1103/PhysRevLett.116.191301
https://arxiv.org/abs/1509.07876
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.07876
https://doi.org/10.1103/PhysRevD.93.086006
https://arxiv.org/abs/1512.04993
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.04993
https://doi.org/10.1007/JHEP03(2015)051
https://arxiv.org/abs/1409.8180
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.8180
https://doi.org/10.1007/JHEP09(2016)161
https://arxiv.org/abs/1606.08307
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.08307
https://doi.org/10.1103/PhysRevD.94.084046
https://arxiv.org/abs/1609.00207
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.00207
https://doi.org/10.1007/JHEP01(2017)062
https://doi.org/10.1007/JHEP01(2017)062
https://arxiv.org/abs/1610.08063
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.08063
https://doi.org/10.1103/PhysRevD.92.126009
https://arxiv.org/abs/1509.06614
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.06614
https://doi.org/10.1007/JHEP11(2016)129
https://doi.org/10.1007/JHEP11(2016)129
https://arxiv.org/abs/1609.02514
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.02514
https://doi.org/10.1007/JHEP03(2017)118
https://doi.org/10.1007/JHEP03(2017)118
https://arxiv.org/abs/1612.00433
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.00433


J
H
E
P
0
6
(
2
0
1
8
)
0
4
6

[38] A.R. Brown and L. Susskind, Second law of quantum complexity, Phys. Rev. D 97 (2018)

086015 [arXiv:1701.01107] [INSPIRE].

[39] P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Anti-de Sitter Space

from Optimization of Path Integrals in Conformal Field Theories, Phys. Rev. Lett. 119

(2017) 071602 [arXiv:1703.00456] [INSPIRE].

[40] P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Liouville Action as

Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFT, JHEP 11 (2017)

097 [arXiv:1706.07056] [INSPIRE].

[41] B. Czech, Einstein Equations from Varying Complexity, Phys. Rev. Lett. 120 (2018) 031601

[arXiv:1706.00965] [INSPIRE].

[42] A. Reynolds and S.F. Ross, Complexity in de Sitter Space, Class. Quant. Grav. 34 (2017)

175013 [arXiv:1706.03788] [INSPIRE].

[43] K. Hashimoto, N. Iizuka and S. Sugishita, Time evolution of complexity in Abelian gauge

theories, Phys. Rev. D 96 (2017) 126001 [arXiv:1707.03840] [INSPIRE].

[44] R. Jefferson and R.C. Myers, Circuit complexity in quantum field theory, JHEP 10 (2017)

107 [arXiv:1707.08570] [INSPIRE].

[45] S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski, Toward a Definition of

Complexity for Quantum Field Theory States, Phys. Rev. Lett. 120 (2018) 121602

[arXiv:1707.08582] [INSPIRE].

[46] L. Hackl and R.C. Myers, Circuit complexity for free fermions, arXiv:1803.10638 [INSPIRE].

[47] J. Couch, S. Eccles, W. Fischler and M.-L. Xiao, Holographic complexity and

noncommutative gauge theory, JHEP 03 (2018) 108 [arXiv:1710.07833] [INSPIRE].

[48] D. Carmi, S. Chapman, H. Marrochio, R.C. Myers and S. Sugishita, On the Time

Dependence of Holographic Complexity, JHEP 11 (2017) 188 [arXiv:1709.10184] [INSPIRE].

[49] L. Susskind and Y. Zhao, Switchbacks and the Bridge to Nowhere, arXiv:1408.2823

[INSPIRE].

[50] M. Moosa, Evolution of Complexity Following a Global Quench, JHEP 03 (2018) 031

[arXiv:1711.02668] [INSPIRE].

[51] B. Swingle and Y. Wang, Holographic Complexity of Einstein-Maxwell-Dilaton Gravity,

arXiv:1712.09826 [INSPIRE].

[52] M. Alishahiha, A. Faraji Astaneh, M.R. Mohammadi Mozaffar and A. Mollabashi,

Complexity Growth with Lifshitz Scaling and Hyperscaling Violation, arXiv:1802.06740

[INSPIRE].

[53] Y. Zhao, Uncomplexity and Black Hole Geometry, arXiv:1711.03125 [INSPIRE].

[54] Z. Fu, A. Maloney, D. Marolf, H. Maxfield and Z. Wang, Holographic complexity is nonlocal,

JHEP 02 (2018) 072 [arXiv:1801.01137] [INSPIRE].

[55] C.A. Agón, M. Headrick and B. Swingle, Subsystem Complexity and Holography,

arXiv:1804.01561 [INSPIRE].

[56] B. Chen, W.-M. Li, R.-Q. Yang, C.-Y. Zhang and S.-J. Zhang, Holographic subregion

complexity under a thermal quench, arXiv:1803.06680 [INSPIRE].

– 43 –

https://doi.org/10.1103/PhysRevD.97.086015
https://doi.org/10.1103/PhysRevD.97.086015
https://arxiv.org/abs/1701.01107
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.01107
https://doi.org/10.1103/PhysRevLett.119.071602
https://doi.org/10.1103/PhysRevLett.119.071602
https://arxiv.org/abs/1703.00456
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.00456
https://doi.org/10.1007/JHEP11(2017)097
https://doi.org/10.1007/JHEP11(2017)097
https://arxiv.org/abs/1706.07056
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.07056
https://doi.org/10.1103/PhysRevLett.120.031601
https://arxiv.org/abs/1706.00965
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.00965
https://doi.org/10.1088/1361-6382/aa8122
https://doi.org/10.1088/1361-6382/aa8122
https://arxiv.org/abs/1706.03788
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.03788
https://doi.org/10.1103/PhysRevD.96.126001
https://arxiv.org/abs/1707.03840
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.03840
https://doi.org/10.1007/JHEP10(2017)107
https://doi.org/10.1007/JHEP10(2017)107
https://arxiv.org/abs/1707.08570
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.08570
https://doi.org/10.1103/PhysRevLett.120.121602
https://arxiv.org/abs/1707.08582
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.08582
https://arxiv.org/abs/1803.10638
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.10638
https://doi.org/10.1007/JHEP03(2018)108
https://arxiv.org/abs/1710.07833
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.07833
https://doi.org/10.1007/JHEP11(2017)188
https://arxiv.org/abs/1709.10184
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.10184
https://arxiv.org/abs/1408.2823
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2823
https://doi.org/10.1007/JHEP03(2018)031
https://arxiv.org/abs/1711.02668
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.02668
https://arxiv.org/abs/1712.09826
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.09826
https://arxiv.org/abs/1802.06740
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.06740
https://arxiv.org/abs/1711.03125
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.03125
https://doi.org/10.1007/JHEP02(2018)072
https://arxiv.org/abs/1801.01137
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.01137
https://arxiv.org/abs/1804.01561
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.01561
https://arxiv.org/abs/1803.06680
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.06680


J
H
E
P
0
6
(
2
0
1
8
)
0
4
6

[57] P.C. Vaidya, The External Field of a Radiating Star in General Relativity, Curr. Sci. 12

(1943) 183.

[58] P.C. Vaidya, The gravitational field of a radiating star, Proc. Indian Acad. Sci. (Math. Sci.)

33 (1951) 264.

[59] A. Wang and Y. Wu, Generalized Vaidya solutions, Gen. Rel. Grav. 31 (1999) 107

[gr-qc/9803038] [INSPIRE].

[60] S. Chapman, H. Marrochio and R.C. Myers, Holographic Complexity in Vaidya Spacetimes

II, arXiv:1805.07262 [INSPIRE].

[61] S. Bhattacharyya and S. Minwalla, Weak Field Black Hole Formation in Asymptotically AdS

Spacetimes, JHEP 09 (2009) 034 [arXiv:0904.0464] [INSPIRE].

[62] S.R. Das, T. Nishioka and T. Takayanagi, Probe Branes, Time-dependent Couplings and

Thermalization in AdS/CFT, JHEP 07 (2010) 071 [arXiv:1005.3348] [INSPIRE].

[63] J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic Evolution of Entanglement

Entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].

[64] V. Balasubramanian et al., Thermalization of Strongly Coupled Field Theories, Phys. Rev.

Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].

[65] V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, E. Keski-Vakkuri

et al., Holographic Thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683]

[INSPIRE].

[66] D. Garfinkle and L.A. Pando Zayas, Rapid Thermalization in Field Theory from

Gravitational Collapse, Phys. Rev. D 84 (2011) 066006 [arXiv:1106.2339] [INSPIRE].

[67] V.E. Hubeny and H. Maxfield, Holographic probes of collapsing black holes, JHEP 03 (2014)

097 [arXiv:1312.6887] [INSPIRE].

[68] V.E. Hubeny and H. Maxfield, Holographic probes of collapsing black holes, JHEP 03 (2014)

097 [arXiv:1312.6887] [INSPIRE].

[69] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067

[arXiv:1306.0622] [INSPIRE].

[70] S.H. Shenker and D. Stanford, Multiple Shocks, JHEP 12 (2014) 046 [arXiv:1312.3296]

[INSPIRE].

[71] J.D. Brown, Action functionals for relativistic perfect fluids, Class. Quant. Grav. 10 (1993)

1579 [gr-qc/9304026] [INSPIRE].

[72] S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, Phys. Rev.

D 83 (2011) 046003 [arXiv:1008.2828] [INSPIRE].

[73] B.F. Schutz, Perfect Fluids in General Relativity: Velocity Potentials and a Variational

Principle, Phys. Rev. D 2 (1970) 2762 [INSPIRE].

[74] S. Dubovsky, T. Gregoire, A. Nicolis and R. Rattazzi, Null energy condition and

superluminal propagation, JHEP 03 (2006) 025 [hep-th/0512260] [INSPIRE].

[75] S. Dubovsky, L. Hui, A. Nicolis and D.T. Son, Effective field theory for hydrodynamics:

thermodynamics and the derivative expansion, Phys. Rev. D 85 (2012) 085029

[arXiv:1107.0731] [INSPIRE].

– 44 –

http://www.currentscience.ac.in/Downloads/download_pdf.php?titleid=id_012_06_0183_0185_0
http://www.currentscience.ac.in/Downloads/download_pdf.php?titleid=id_012_06_0183_0185_0
https://link.springer.com/article/10.1007/BF03173260
https://link.springer.com/article/10.1007/BF03173260
https://doi.org/10.1023/A:1018819521971
https://arxiv.org/abs/gr-qc/9803038
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9803038
https://arxiv.org/abs/1805.07262
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.07262
https://doi.org/10.1088/1126-6708/2009/09/034
https://arxiv.org/abs/0904.0464
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.0464
https://doi.org/10.1007/JHEP07(2010)071
https://arxiv.org/abs/1005.3348
https://inspirehep.net/search?p=find+EPRINT+arXiv:1005.3348
https://doi.org/10.1007/JHEP11(2010)149
https://arxiv.org/abs/1006.4090
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.4090
https://doi.org/10.1103/PhysRevLett.106.191601
https://doi.org/10.1103/PhysRevLett.106.191601
https://arxiv.org/abs/1012.4753
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.4753
https://doi.org/10.1103/PhysRevD.84.026010
https://arxiv.org/abs/1103.2683
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.2683
https://doi.org/10.1103/PhysRevD.84.066006
https://arxiv.org/abs/1106.2339
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.2339
https://doi.org/10.1007/JHEP03(2014)097
https://doi.org/10.1007/JHEP03(2014)097
https://arxiv.org/abs/1312.6887
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.6887
https://doi.org/10.1007/JHEP03(2014)097
https://doi.org/10.1007/JHEP03(2014)097
https://arxiv.org/abs/1312.6887
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.6887
https://doi.org/10.1007/JHEP03(2014)067
https://arxiv.org/abs/1306.0622
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.0622
https://doi.org/10.1007/JHEP12(2014)046
https://arxiv.org/abs/1312.3296
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.3296
https://doi.org/10.1088/0264-9381/10/8/017
https://doi.org/10.1088/0264-9381/10/8/017
https://arxiv.org/abs/gr-qc/9304026
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9304026
https://doi.org/10.1103/PhysRevD.83.046003
https://doi.org/10.1103/PhysRevD.83.046003
https://arxiv.org/abs/1008.2828
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.2828
https://doi.org/10.1103/PhysRevD.2.2762
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D2,2762%22
https://doi.org/10.1088/1126-6708/2006/03/025
https://arxiv.org/abs/hep-th/0512260
https://inspirehep.net/search?p=find+J+%22JHEP,0603,025%22
https://doi.org/10.1103/PhysRevD.85.085029
https://arxiv.org/abs/1107.0731
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.0731


J
H
E
P
0
6
(
2
0
1
8
)
0
4
6

[76] P. Kovtun, G.D. Moore and P. Romatschke, Towards an effective action for relativistic

dissipative hydrodynamics, JHEP 07 (2014) 123 [arXiv:1405.3967] [INSPIRE].

[77] F.M. Haehl, R. Loganayagam and M. Rangamani, The Fluid Manifesto: Emergent

symmetries, hydrodynamics and black holes, JHEP 01 (2016) 184 [arXiv:1510.02494]

[INSPIRE].

[78] M. Crossley, P. Glorioso and H. Liu, Effective field theory of dissipative fluids, JHEP 09

(2017) 095 [arXiv:1511.03646] [INSPIRE].

[79] D. Montenegro and G. Torrieri, Lagrangian formulation of relativistic Israel-Stewart

hydrodynamics, Phys. Rev. D 94 (2016) 065042 [arXiv:1604.05291] [INSPIRE].

[80] J. Bicak and K.V. Kuchar, Null dust in canonical gravity, Phys. Rev. D 56 (1997) 4878

[gr-qc/9704053] [INSPIRE].

[81] J.W. York Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev.

Lett. 28 (1972) 1082 [INSPIRE].

[82] G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum

Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

[83] G. Hayward, Gravitational action for space-times with nonsmooth boundaries, Phys. Rev. D

47 (1993) 3275 [INSPIRE].

[84] D. Brill and G. Hayward, Is the gravitational action additive?, Phys. Rev. D 50 (1994) 4914

[gr-qc/9403018] [INSPIRE].

[85] A. Reynolds and S.F. Ross, Divergences in Holographic Complexity, Class. Quant. Grav. 34

(2017) 105004 [arXiv:1612.05439] [INSPIRE].

[86] S.R. Das, D.A. Galante and R.C. Myers, Universal scaling in fast quantum quenches in

conformal field theories, Phys. Rev. Lett. 112 (2014) 171601 [arXiv:1401.0560] [INSPIRE].

[87] S.R. Das, D.A. Galante and R.C. Myers, Universality in fast quantum quenches, JHEP 02

(2015) 167 [arXiv:1411.7710] [INSPIRE].

[88] S.R. Das, D.A. Galante and R.C. Myers, Quantum Quenches in Free Field Theory:

Universal Scaling at Any Rate, JHEP 05 (2016) 164 [arXiv:1602.08547] [INSPIRE].

[89] M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time,

Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].
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