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Abstract We investigate the duality conjecture “Complex-
ity=Action” (CA) for Born–Infeld (BI) gravity model and
derive the growth rate of its action within the Wheeler–
DeWitt (WDW) patch, which is believed to be dual to the
growth rate of quantum complexity of holographic bound-
ary state. In order to find the correct on-shell action, we
use direct variational procedure to find proper boundary and
corner terms. We find out that the late-time behavior of holo-
graphic complexity is the well-known two times of energy,
as expected.

1 Introduction

The AdS/CFT proposal [1,2] in recent years inclined to relate
quantities in quantum information theory to those of (quan-
tum) gravitational theory. The first example of such relation
is the Ryu–Takayanagi proposal which provides a geomet-
rical realization of entanglement entropy in a dual CFT [3].
Another example is CA proposal [5,6], which relates the
quantum computational complexity of a boundary state to
the on-shell action on a bulk region named as the WDW
patch

C(�) = IWDW

π h̄
. (1.1)

Here, the time slice � is defined as the intersection of any
Cauchy surface in the bulk with the asymptotic boundary,
where C is to be evaluated. It is also conjectured that there
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is a bound on the growth rate of this holographic complexity
according to1:

dC
dt

≤ 2M

π h̄
, (1.2)

which is thought to be holographic dual the Lloyd’s bound
on the quantum complexity. It also was found in [5,6] that at
late times, this bound is saturated

dC
dt

= 2M

π h̄
, (1.3)

for an AdS-Schwarzschild black hole, where M is the total
mass-energy of the spacetime, and t stands for one of the
boundary times.

One may question the validity of the above proposal in
the presence of higher-derivative theories. This question has
been investigated for f (R) and critical gravities [17], Gauss-
Bonnet and Lovelock theories [18,19]. In this article we are
going to pursue this question for a model of higher-derivative
theories that includes infinite number of derivatives in gen-
eral dimensions. This model known as Born–Infield gravity
and was first proposed in [9] as an extension of New Mas-
sive Gravity (NMG) in three dimension. The importance of
higher-derivative theories in the AdS/CFT prospective is that
higher-derivative or stringy corrections in bulk space corre-
spond to considering smaller value for the ’t Hooft coupling
in the boundary side i.e., λ ∝ L4

α′2 . This suggest that investi-
gating infinite theories in spacetime means considering field
theory at weak couplings.

To study the holographic complexity, one needs to com-
pletely determine appropriate boundary and corner terms in
the gravitational action to obtain correct on-shell value of
the action [15]. In this regard the main obstacle in the way
of studying higher-derivative theories is finding these bound-
ary terms (see e.g. [8]). We note that these boundary terms

1 However we must point that as found in [16] this bound is violated
for Einstein gravity.
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are needed in order to have a well-posed variational princi-
ple, so that these terms could be found by direct variation of
gravitational action and checking consistency with Dirichlet
boundary condition [12]. This procedure is not applicable
to many higher-derivative theories. In this article we found
that, this method is applicable for an special model of higher-
derivative theories in Einstein backgrounds. As a result, we
found appropriate boundary terms to make variational princi-
ple well-posed. Interesting property that we observed is that
the boundary terms are proportional to the standard boundary
terms for Einstein–Hilbert theory. Using this fact and evalu-
ating the on-shell bulk Lagrangian enabled us to find out that
the whole on-shell action in this theory is proportional to
Einstein–Hilbert one. Therefore, we conclude that the late-
time behavior is scaled by the same factor with respect to
Einstein–Hilbert theory. At the end we show that the same
factor appears when comparing of energy in these theories.
This means that the late-time complexity growth is the same
two times of energy.

The outline of the paper is arranged as follows. In the next
section we first introduce the BI gravity action in general
dimensions. Then we use some manipulation to obtain the
equations of motion, and investigate static spherical symmet-
ric black hole solutions. In Sect. 3 we find proper boundary
terms needed to calculate the on-shell action in WDW patch
that includes null and joint terms. Finally, in Sect. 4 we use
these results to calculate action growth rate for black holes
in BI gravity.

2 BI gravity

The BI gravity, where first was introduced in [9] as a gen-
eralization of NMG in three dimensions, is described by the
following action:

IBI = −4m2

κ2

∫
dd x

√− det g

×
[√

det(1 + σ
m2 g−1G) − λ

]
, (2.1)

where Gμν = Rμν − 1
2 Rgμν is the Einstein tensor, m2 is a

positive definite dimension-full parameter, σ = ±1 fixes the
sign of the Einstein tensor in the first term, λ is a parameter
related to the cosmological constant and κ is related to the d-
dimensional Newton gravitational constant. Expanding this
action in powers of the parameter 1/m2, which is practically
derivative expansion, has the following feature

I = −4m2

κ2

∫
dd x

√− det g
[
(1 − λ) − (d − 2)σ

4m2 R

− 1

4m4

(
Rαβ R

αβ − 1
8 (d2 − 6d + 12)R2) + O(R3)

]
.

(2.2)

The first order expansion gives the Einstein–Hilbert (EH)
action with an effective cosmological constant 
eff =
2m2(1−λ)/σ(d−2). Up to the second order in three dimen-
sions it reproduces the NMG action [10], which is a non-
chiral massive gravity in three dimension. It is also easy to
show that expanding the BI action (2.1) up to the third order
reproduces the extension of NMG theory to fourth order com-
puted in [11]. However, here we are interested in features
of this theory in general dimensions, as a model of higher
derivative with infinite number of derivatives.

To find the equations of motion, we use the following
formula for a general matrix A,

δ(
√

det A) = 1
2

√
det A Tr(A−1δA) , (2.3)

where A.A−1 = 1. Looking at action (2.1), one can identify
the matrix as Aμ

ν = δμ
ν + σ

m2 G
μ

ν , for which the variation
is given by δAμ

ν = σ
m2 δGμ

ν . To obtain the equations of
motion, it is convenient to define a tensor

Vμ
ν :=

√
− det(1 + σ

m2 g−1G)

(
1

1 + σ
m2 g−1G

)μ

ν , (2.4)

and an operator,

Pμναβ := gμνRαβ − gαμgβν(R + �)

+ gβμ∇α∇ν + gβν∇α∇μ − gμν∇α∇β

+ gμνgαβ� − gαβ∇μ∇ν . (2.5)

By which we can express the variation of Einstein tensor as:

δGμν = 1
2 Pμναβδgαβ . (2.6)

Using the above equations one may show that the equations
of motion have the following compact form,

σ

2m2 PμναβVαβ + gμν

[√
− det(1 + σ

m2 g−1G) − λ

]

= 0 . (2.7)

In order to speculate the holographic complexity of this
theory, we are interested in AdS-Schwartzshild black hole
solutions of this theory. These solutions we can consider to
be as: Rαβ = − d−1

�2 gαβ . Using this relation one can rewrite
the tensor Vμν as:

Vμν = [
1 + (d − 2)(d − 1)σ

2�2m2

] d−2
2 gμν . (2.8)

As a result, the equation of motion (2.7) simplifies to

[
1 + (d − 2)(d − 1)σ

2�2m2

] d−2
2 − λ = 0 . (2.9)

By solving this equation for �2, one arrives at

1

�2 = 2σm2(λ
2

d−2 − 1)

(d − 2)(d − 1)
. (2.10)
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This is the effective AdS radius due to the higher derivatives.
So the line element for static black holes in this theory is
given by:

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2d�2

d−2,κ , (2.11)

where f (r) = κ + r2

�2 − ωd−3

rd−3 , and κ is the curvature

of the (d − 2)-dimensional line element d�2
d−2 and is

κ = {1, 0,−1} for spherical, planar, and hyperbolic hori-
zon geometries, respectively. As a result AdS-Schwartzshild
black holes are solutions of this theory provided that the
asymptotic AdS radius is given by Eq. (2.10).

3 Boundary and joint terms for BI gravity

In the previous section we analyzed the BI theory, its equa-
tions of motion and AdS solution. When one vary an action
in order to find the equations of motion, usually deals with
a surface term that by supposing appropriate boundary or
fall-off conditions leads to a consistent variational problem.
In the case of gravitational action these surface terms con-
tain metric and its normal derivative, and fixing both on the
boundary is not consistent with equations of motion. In these
cases usually variational principle in restored by adding some
terms to the action on the boundary of spacetime. The appro-
priate boundary terms can be found by analyzing the surface
integral. In the following we analyze the surface terms on
variations of BI action in order to find its boundary terms in
different kinds of boundaries.

3.1 Spacelike and timelike boundaries

In finding the equations of motion (2.7) we have used integra-
tion by part. The total derivative of this integration leads to the
term

∫
∂M

√−h nα Jα on the boundary, where the expression
for Jα is as following

Jα = σ
[ − δgγ

γ ∇αVβ
β + δgβγ ∇αVβγ − Vβγ ∇αδgβγ

+ Vβ
β∇αδgγ

γ + δgγ
γ ∇βVα

β + Vβγ ∇βδgαγ

− Vβ
α∇βδgγ

γ + Vβγ ∇γ δgαβ − Vβ
β∇γ δgα

γ

− δgβγ ∇γVα
β − δgβγ ∇γVβ

α + δgαγ ∇γVβ
β

]
.

(3.1)

Although the above expression seems complicated and find-
ing proper boundary terms for general metric background is
impossible, but for an Einstein space background and using
Eq. (2.8) it simplifies to:

Jα = (d − 2)
[
1 + (d − 2)(d − 1)σ

2�2m2

] d−2
2 σ

×(∇βδgα
β − ∇αδgβ

β) , (3.2)

which upon using the equations of motion (2.9) it becomes:

Jα = (d − 2)λσ(∇βδgα
β − ∇αδgβ

β) . (3.3)

This surface integral is nothing but the surface integral of EH
action under variations by a factor (d−2)σλ. It is well-known
that using these terms one can obtain the Gibbons–Hawking–
York (GHY) term and the Brown–York (BY) stress tensor,
(see e.g. [12]). In fact if we have a spacelike or timelike
boundary, it can be shown that:

∫
M

dd x
√−g∇α

(
∇αδgβ

β − ∇βδgβ
α

)

= 2
∫

∂M
dd−1xδ(

√|h|K ) + 2
∫
C

dd−2x δ(
√|q|ϑ)

+
∫

∂M
dd−1x

√|h|(Kab − habK )δhab , (3.4)

where hab is induced metric in the boundary ∂M, and Kab

is its extrinsic curvature. ϑ is angle or rapidity defined in
regions where two segments of boundary reach each other
non-smoothly and are shown by C . The second line of this
expression vanishes for example by choosing the Dirichlet
boundary condition i.e., δhab = 0. As a result this equation
says that in order to have an action with a well-posed varia-
tional principle, we must subtract a boundary GHY term from
the action on timelike or spacelike boundaries. Furthermore,
if the boundary is not smooth or two segments of boundary
join together, a so called “joint terms” on these co-dimension
surfaces are needed in order to variational principle become
well-posed [13] (for details one also can refer to [14,15]).
The second line can be used to find the BY stress tensor. If
hab be the induced metric on a timelike boundary, accord-
ing to Brown and York [22], differentiation with respect to
it gives the quasilocal definition for energy of gravitational
field. We will use this expression also to find correct energy
of black holes in this theory in Sect. 4. Therefore we conclude
that appropriate boundary term for BI theory on timelike or
spacelike boundary is given by:

Sb = −2(d − 2)λσ

∫
∂M

dd−1x
√|h|K − 2(d − 2)λσ

×
∫
C

dd−2x
√|q|ϑ. (3.5)

3.2 Null boundaries

Similar analysis can be done for the case of null boundaries.
Decomposing the surface term on null boundaries gives us
corresponding term for a well-posed variational principle
[15,20] and a similar stress tensor is defined on such bound-
aries [21]. The corresponding expression in the case of null
boundaries is [14]:
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∫
dd x

√−g∇α
(
∇αδgβ

β − ∇βδgβ
α

)

= 2
∫

dd−1x δ
(√

q[(� + κ)]) + 2
∫

dd−2x δ
(√

q ln A
)

+
∫

dd−1x
√
q

×
([

�ab − qab (� + κ)
]
δqab + 2 ωa δβa − 2� δB

)

+
∫

dd−2x
√
q(ln Aqab)δqab . (3.6)

Here the null boundary is specified by φ = const., and its
normal given by �α = A∇αφ . In order to describe a null
hypersurface, in addition to �α we need a second auxiliary
null vector ka which is transverse to the null boundary and is
normalized according to the relation �aka = −1. The quan-
tities �ab, �ab, ωa and κ are geometric objects which repre-
sent extrinsic geometry of the hypersurface and are defined
as:

�ab = qca q
d
b ∇a�b , �ab = qca q

d
b ∇a kb,

ωa = −qca k
b ∇c�b, κ = −�a kb ∇a�b . (3.7)

Here also qab is a projection on a codimension-two surface
on the null boundary defined by qab = δba + �akb + �bka .
Furthermore, we point that {δqab, δβa, δB} are variation of
metric components along the boundary, and accordingly can
be fixed by choosing a Dirichlet boundary condition [21]. As
a result second line in Eq. (3.6) vanishes due to the boundary
condition and we are left with the first line. In fact the terms
in the first line of Eq. (3.6) indicate those terms that are
needed to be subtracted on a null boundary to have a well-
posed variational principle. So in order to have a well-defined
variational principle, we must have the following terms on
the null boundary for BI theory:

Sb = −2(d − 2)λ

∫
∂M

dd−1x
√
q[(� + κ)] − 2(d − 2)λ

×
∫
C
dd−2x

√
q ln A . (3.8)

Finally the whole well-posed action in BI theory for AdS-
Schwartzshild background is given by:

I = − 4m2

κ2

∫
dd x

√− det g

[√
det(1 + σ

m2 g−1G) − λ

]

+ (d − 2)λσ

κ2(∫
dd−1xKt +

∫
dd−1xKs

+
∫

dd−1xKn +
∫

dd−2xa

)
, (3.9)

where Ks, Kt , Kn respectively denote boundary terms for
spacelike, timelike and null in Einstein theory, and a stands
for joint terms. We also must note that similar to the Ein-
stein theory, the boundary terms in (3.8) have an ambiguity
under reparametrization of null generators. This ambiguity
for Einstein theory has been discussed in detail in [15,16]. To
overcome this ambiguity, the usual method is to add a further
counterterm to the action on the null boundary. For Einstein
theory this counterterm is given by [15]:

Sct =
∫

∂M
dd−1x

√
q� ln(lct�) . (3.10)

Here we argue that the corresponding term for BI theory in
this paper is also proportional to the above term. In order to
deduce that, we note that the algorithm for finding such terms,
as presented in [15], is to consider the effect of infinitesimal
reparametrization of null generators as: �α → �α + β(x)�α

and kα → kα − β(x)kα . Under these reparametrizations Sb
changes according to Sb → Sb + δSb and counterterms are
found such that their transformations cancel the δSb term. So
we can easily see that since Sb in our theory is proportional
to the Einstein theory, the corresponding counterterm is also
the above term with the same factor of proportionality.

4 Holographic complexity

Having found necessary boundary terms in the theory, we can
now go for the calculation of the on-shell action. According to
CA holographic complexity proposal the value of the on-shell
action in a WDW patch of spacetime correspond to complex-
ity of the dual theory. WDW patch of AdS-Schwarzschild
black hole spacetime is shown by blue color in the Penrose
diagram Fig. 1. As we see the region contains several null
segments and spacelike boundary as a cut off near the sin-
gularity as well as some joint of null segments. Using the
relations (2.9) and (2.10), and after some algebra one can
find the following value for the on-shell bulk Lagrangian:

Lon−shell = −2λσ(d − 2)(d − 1)
1

�2 . (4.1)

If we compare this result with the on-shell action in EH the-
ory, we observe that

Lon−shell = σλ(d − 2)LEH . (4.2)

Note that the value of on-shell action in EH theory is
−2(d − 1)/�2. So the whole on-shell bulk Lagrangian com-
paring to the Einstein theory has an extra factor σλ(d − 2).
Interestingly enough this is the same factor we have found
for boundary terms comparing to the Einstein theory. This
important property helps us to conclude the following rela-
tion for holographic complexity in BI theory:

CBI = σλ(d − 2)CEH . (4.3)
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Fig. 1 Penrose diagram and
WDW patch of an
AdS-Schwarzschild black hole

According to this relation, one may deduce that the late-time
complexity rate to be:

dC
dt

= σλ(d − 2)
2M

π h̄
. (4.4)

Although this relation is mathematically true, but the point
is that the parameter M appearing in the metric (2.11) is the
total energy of black hole spacetime in Einstein gravity, but
it is not total energy in BI theory. The energy of a black
hole system can be obtained using BY stress tensor when
properly regularized [23]. In the other words, according to
this method, the energy is calculated by the relation

E =
∫
S

dd−2x
√
qTi j u

i u j . (4.5)

The advantage of our procedure is that according to relation
(3.4) it shows that the stress tensor is also factorized by (d −
2)σλ and as a result the energy of black holes in BI theory
is a factor of energy of same solution in Einstein theory.
Therefore, at the late time we recover the same relation for
complexity growth rate, namely,

dC
dt

= 2E

π h̄
. (4.6)

This shows that the late-time growth rate is the same two
times of energy in BI theory.

5 Conclusion

In this paper we examined the holographic complexity pro-
posal for a model of higher derivative with infinite number
of terms when expanded in terms of curvature terms. We
have four proper boundary terms for this theory in order to
have a well-posed variational principle. We have shown that
on-shell bulk and boundary terms scale with the same factor
when compared with Einstein theory. Our results also show
that the late-time rate of holographic complexity is the same
two times of energy for AdS-Schwarzschild black holes. This
result confirms universality of holographic complexity pro-
posal, an infinite derivative theory in gravity side correspond
to a field theory with small ’t Hooft coupling.

Acknowledgements The work of H.B. has been financially supported
by the research deputy of Sirjan University of Technology. The ten-
sor calculations in this paper has been carried out by the Mathematica
package “xTras” [24].

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Author’s comment: The results in this
paper are obtained analytically, hence, it does not use any data.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not

123



208 Page 6 of 6 Eur. Phys. J. C (2020) 80 :208

included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. J.M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999). https://doi.
org/10.1023/A:1026654312961

2. J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998). https://
doi.org/10.4310/ATMP.1998.v2.n2.a1. hep-th/9711200

3. S. Ryu, T. Takayanagi, Phys. Rev. Lett. 96, 181602 (2006). https://
doi.org/10.1103/PhysRevLett.96.181602. hep-th/0603001

4. A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle, Y. Zhao,
Phys. Rev. Lett. 116(19), 191301 (2016). https://doi.org/10.1103/
PhysRevLett.116.191301. arXiv:1509.07876 [hep-th]

5. A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle, Y. Zhao, Phys.
Rev. D 93(8), 086006 (2016). https://doi.org/10.1103/PhysRevD.
93.086006. arXiv:1512.04993 [hep-th]

6. D. Stanford, L. Susskind, Phys. Rev. D 90(12), 126007 (2014).
https://doi.org/10.1103/PhysRevD.90.126007. arXiv:1406.2678
[hep-th]

7. S. Lloyd, Nature 406, 1047 (2000). arXiv:quantph/9908043
8. E. Dyer, K. Hinterbichler, Phys. Rev. D 79, 024028 (2009). https://

doi.org/10.1103/PhysRevD.79.024028. arXiv:0809.4033 [gr-qc]
9. I. Gullu, T.C. Sisman, B. Tekin, Class. Quant. Grav. 27,

162001 (2010). https://doi.org/10.1088/0264-9381/27/16/
162001. arXiv:1003.3935 [hep-th]

10. E.A. Bergshoeff, O. Hohm, P.K. Townsend, Phys. Rev. Lett. 102,
201301 (2009). https://doi.org/10.1103/PhysRevLett.102.201301.
arXiv:0901.1766 [hep-th]

11. A. Sinha, JHEP 1006, 061 (2010). https://doi.org/10.1007/
JHEP06(2010)061. arXiv:1003.0683 [hep-th]

12. T. Padmanabhan, Mod. Phys. Lett. A 29(08), 1450037 (2014).
https://doi.org/10.1142/S0217732314500370

13. G. Hayward, Phys. Rev. D 47, 3275 (1993). https://doi.org/10.
1103/PhysRevD.47.3275

14. S. Aghapour, G. Jafari, M. Golshani, Class. Quant. Grav.
36(1), 015012 (2019). https://doi.org/10.1088/1361-6382/aaef9e.
arXiv:1808.07352 [gr-qc]

15. L. Lehner, R.C. Myers, E. Poisson, R.D. Sorkin, Phys. Rev.
D 94(8), 084046 (2016). https://doi.org/10.1103/PhysRevD.94.
084046. arXiv:1609.00207 [hep-th]

16. D. Carmi, S. Chapman, H. Marrochio, R.C. Myers, S.
Sugishita, JHEP 1711, 188 (2017). https://doi.org/10.1007/
JHEP11(2017)188. arXiv:1709.10184 [hep-th]

17. M. Alishahiha, A. Faraji Astaneh, A. Naseh, M.H. Vahidinia, JHEP
1705, 009 (2017). https://doi.org/10.1007/JHEP05(2017)009.
arXiv:1702.06796 [hep-th]

18. R.G. Cai, S.M. Ruan, S.J. Wang, R.Q. Yang, R.H. Peng, JHEP
1609, 161 (2016). arXiv:1606.08307 [gr-qc]

19. P.A. Cano, R.A. Hennigar, H. Marrochio, Phys. Rev. Lett. 121(12),
121602 (2018). https://doi.org/10.1103/PhysRevLett.121.121602.
arXiv:1803.02795 [hep-th]

20. K. Parattu, S. Chakraborty, B.R. Majhi, T. Padmanabhan,
Gen. Rel. Grav. 48(7), 94 (2016). https://doi.org/10.1007/
s10714-016-2093-7. arXiv:1501.01053 [gr-qc]

21. G. Jafari, Phys. Rev. D 99, 104035 (2019). https://doi.org/10.1103/
PhysRevD.99.104035. arXiv:1901.04054 [hep-th]

22. J.D. Brown, J.W. York Jr., Phys. Rev. D 47, 1407 (1993). https://
doi.org/10.1103/PhysRevD.47.1407. gr-qc/9209012

23. V. Balasubramanian, P. Kraus, Commun. Math. Phys. 208, 413
(1999). https://doi.org/10.1007/s002200050764. hep-th/9902121

24. T. Nutma, Comput. Phys. Commun. 185, 1719 (2014). https://doi.
org/10.1016/j.cpc.2014.02.006. arXiv:1308.3493 [cs.SC]

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.116.191301
https://doi.org/10.1103/PhysRevLett.116.191301
http://arxiv.org/abs/1509.07876
https://doi.org/10.1103/PhysRevD.93.086006
https://doi.org/10.1103/PhysRevD.93.086006
http://arxiv.org/abs/1512.04993
https://doi.org/10.1103/PhysRevD.90.126007
http://arxiv.org/abs/1406.2678
http://arxiv.org/abs/quantph/9908043
https://doi.org/10.1103/PhysRevD.79.024028
https://doi.org/10.1103/PhysRevD.79.024028
http://arxiv.org/abs/0809.4033
https://doi.org/10.1088/0264-9381/27/16/162001
https://doi.org/10.1088/0264-9381/27/16/162001
http://arxiv.org/abs/1003.3935
https://doi.org/10.1103/PhysRevLett.102.201301
http://arxiv.org/abs/0901.1766
https://doi.org/10.1007/JHEP06(2010)061
https://doi.org/10.1007/JHEP06(2010)061
http://arxiv.org/abs/1003.0683
https://doi.org/10.1142/S0217732314500370
https://doi.org/10.1103/PhysRevD.47.3275
https://doi.org/10.1103/PhysRevD.47.3275
https://doi.org/10.1088/1361-6382/aaef9e
http://arxiv.org/abs/1808.07352
https://doi.org/10.1103/PhysRevD.94.084046
https://doi.org/10.1103/PhysRevD.94.084046
http://arxiv.org/abs/1609.00207
https://doi.org/10.1007/JHEP11(2017)188
https://doi.org/10.1007/JHEP11(2017)188
http://arxiv.org/abs/1709.10184
https://doi.org/10.1007/JHEP05(2017)009
http://arxiv.org/abs/1702.06796
http://arxiv.org/abs/1606.08307
https://doi.org/10.1103/PhysRevLett.121.121602
http://arxiv.org/abs/1803.02795
https://doi.org/10.1007/s10714-016-2093-7
https://doi.org/10.1007/s10714-016-2093-7
http://arxiv.org/abs/1501.01053
https://doi.org/10.1103/PhysRevD.99.104035
https://doi.org/10.1103/PhysRevD.99.104035
http://arxiv.org/abs/1901.04054
https://doi.org/10.1103/PhysRevD.47.1407
https://doi.org/10.1103/PhysRevD.47.1407
https://doi.org/10.1007/s002200050764
https://doi.org/10.1016/j.cpc.2014.02.006
https://doi.org/10.1016/j.cpc.2014.02.006
http://arxiv.org/abs/1308.3493

	Holographic complexity of Born–Infeld gravity
	Abstract 
	1 Introduction
	2 BI gravity
	3 Boundary and joint terms for BI gravity
	3.1 Spacelike and timelike boundaries
	3.2 Null boundaries

	4 Holographic complexity
	5 Conclusion
	Acknowledgements
	References


