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1 Introduction

Computational complexity has been recently proposed as a new entry in the holographic

dictionary between space-time geometry and quantum entanglements. Besides the total

amount of entanglement, measured by the entanglement entropy and loosely associated to

the ‘connectivity’ of emergent space-time [1–4], the sheer amount of emergent space seems

to be associated to the degree of complexity of the entanglement structure, measured with

respect to a set of elementary entanglement operations.

One motivation for this correspondence arises form the tensor network models of ge-

ometry [5–11]. In this picture, a notion of computational complexity of the state can be

associated to the volume of the tensor network making it plausible that a quantitative

volume/complexity relation may exist (cf. [12–16]):

C(t) ∝ Vol(Σt)

G
, (1.1)

where Σt is a codimension-one space-like section of the bulk with extremal volume,

parametrized by some proper-time coordinate t.1

A qualitative test of (1.1) is offered by the analysis of eternal AdS black holes,

interpreted as thermofield-double states entangling two decoupled CFTs defined on

spheres [1, 4, 11]. In this case, t can be chosen as the standard AdS time in the global

static frame, and the non-trivial time dependence of (1.1) comes from the portion of Σt

lying in the interior of the black hole. There is a saturating surface which represents a

linearly growing wormhole section, so that one finds

dC

dt
∼ T S , (1.2)

for t ≫ T−1, where T is the temperature and S the entropy of the eternal black hole. If

the wormhole is approximated by a flat tensor network, this formula can be interpreted

1See [17] and [18] for further discussion of ab initio approaches to holographic complexity.

– 1 –



J
H
E
P
1
1
(
2
0
1
5
)
1
8
1

as the growth of an effective quantum circuit of S Qbits [11, 12], a representation which

makes contact with the traditional definition of computational complexity in quantum

information theory.2

The calculation of (1.2) within the eternal black hole geometry assumes implicitly that

T is sufficiently large to neglect finite-size effects. For standard AdS black holes, this means

that Tℓ ≫ 1 where ℓ has the dual interpretation as the AdSd+1 radius of curvature in the

bulk and also the radius of the (d−1)-sphere where the d-dimensional CFTs are defined. In

this particular case the T ℓ ≪ 1 limit is on the other side of the Hawking-Page transition,

and the O(1/G) contribution to the complexity must be calculated in the vacuum AdS

manifold, giving no contribution at this order to (1.2).

Alternatively, we can remove finite-size effects by working with black branes of non-

compact horizon, where all integrated quantities, such as entropy and complexity, are

extensive in the CFT volume. In this case we implicitly refer to a ‘complexity density’.3

Black-brane metrics have the general form

ds2 = −f(r) dt2 +
dr2

f(r)
+

r2

ℓ2
dL2 , (1.3)

where dL2 stands for the spatial CFT metric and f(r) has a non-degenerate horizon at

r = r0 with Hawking temperature T , i.e. f(r) ≈ 4πT (r − r0) near the horizon. We also

require vacuum asymptotics f(r) ∼ r2/ℓ2 as r → ∞.

There are standard solutions given by

f(r) = k +
r2

ℓ2
− µ

rd−2
. (1.4)

for flat (k = 0) and hyperbolic (k = −1) CFT metrics. In the first case the usual UV/IR

relation r0 ∼ ℓ2T holds down to zero temperature, with the entropy vanishing as T d−1. In

the second case, the CFT lives on a hyperboloid of curvature radius ℓ. This system has

exotic properties at low temperatures [23], in particular a gross violation of the third law

of thermodynamics

lim
T→0

S −→ S0 = N∗ V ℓ1−d , (1.5)

where N∗ ∼ ℓd−1/G ≫ 1 is the effective number of ‘species’ in the strongly-coupled CFT.

The purpose of this note is to study some properties of the holographic complexity, as

defined by the ansatz (1.1), in such degenerate systems. In particular, we shall consider

the concrete case of thermofield double states for pairs of CFTs on hyperboloids, as defined

by AdS hyperbolic black holes [24–33]. We begin in section 2 with a review of the relevant

geometries and we continue in section 3 with the approximate calculation of the complexity.

2The conditions for the tensor network to really represent a smooth wormhole geometry are not well

understood [19–21].
3This is in principle different from the strict definition of a notion of complexity for a subsystem, see [22]

for discussions in this direction.
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2 Cold hyperbolic horizons

We consider the black-brane metric (1.3) with hyperbolic horizon geometry, which has

the interpretation of a thermal state for a CFT on a spatial (d − 1)-dimensional hyper-

boloid Hd−1:

f(r) = −1 + r2 − m

rd−2
, dL2 = dH2

d−1 = dχ2 + sinh2(χ) dΩd−2 , (2.1)

where we measure lengths in units of the curvature radius ℓ = 1. Alternatively, the maxi-

mally extended geometry can be interpreted, following [1], as dual to a thermofield double

state on the direct product of two copies of the CFT on respective hyperboloids.

The mass parameter m is related to the horizon radius r0 by

m = rd−2
0 (r20 − 1) , (2.2)

and the Hawking temperature is given by

T =
r0
4π

(

d− d− 2

r20

)

. (2.3)

The case of vanishing mass parameter is special, corresponding to T = 1/2π, the Rindler

temperature. At this particular value the metric is nothing but a Rindler patch of the vac-

uum AdS manifold. The corresponding thermofield double on two decoupled hyperboloids

is conformally equivalent to the hemispherical decomposition of a single copy of the CFT

on a unit sphere (cf. for example [2, 3]). The same bulk geometries can also be interpreted

as computing properties of a certain entangled state on two static patches of a de Sitter

CFT (cf. for example [34]).

Here, we are more interested in the T → 0 limit, where the horizon drops to a mini-

mum radius

rc =

√

d− 2

d
, (2.4)

corresponding to a negative mass parameter

mc = −2

d

(

d− 2

d

)
d−2

2

. (2.5)

In this extremal case the function f(r) develops a double zero at the horizon, namely in

the vicinity of r = rc we can write

f(r)T=0 = d · (r − rc)
2 + . . .

where the dots stand for terms of order (r − rc)
3 or higher. This suggests that we can

parametrize the low-temperature geometries in terms of the radial variable ρ = r − rc.

Then, to first non-trivial order in ρ and ρ0 = r0 − rc we have

f(r) ≈ d · (ρ2 − ρ20) + . . . ,

– 3 –
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an approximation good for ρ0 ≤ ρ ≪ rc. The low-temperature horizon sits at ρ = ρ0 ≈
2πT/d+O(T 2).

The black AdS geometry changes character in the vicinity of the minimum radius

r ∼ rc, so that the region ρ0 ≪ ρ ≪ rc, arising at very low temperatures, is approximately

described by AdS1+1×Hd−1, i.e. the hyperbolic ‘space’ decouples from an asymptotic AdS2
factor. The corresponding curvature radii are given by

ℓAdS2 =
1√
d
, ℓHIR

=

√

d− 2

d
,

measured in units ℓ = 1. We will refer to this factorized geometry as the CQM region, to

signify the formal AdS2/CFT1 duality to some hypothetical Conformal Quantum Mechan-

ical (CQM) system that would describe the deep infrared regime.

3 Estimating holographic complexity

Following the formula (1.1), we compute the holographic complexity as the volume of ex-

tremal codimension-one surfaces in the given geometry, parametrized by the static asymp-

totic time variable. We shall also parametrize the absolute normalization of (1.1) as differ-

ing from the RT formula of entanglement entropy [35, 36] by a factor α.

The exact variational problem is complicated, but a useful order-of-magnitude estimate

can be obtained by an approximate description of the full metric (1.3), according to a piece-

wise approximation for the function f(r). For r ≫ r0 we can approximate the metric by

the vacuum AdSd+1 solution. In the near-horizon region r0 < r < rR, with rR an O(1)

multiple of r0, we can take the Rindler approximation, whereby the metric is expressed as

a product of two-dimensional flat space and the horizon:

ds2Rindler ≈ −(dX0)2 + (dX1)2 + r20 dH2
d−1 , (3.1)

where

X0 =

√

r − r0
πT

sinh(2πTt) , X1 =

√

r − r0
πT

cosh(2πTt) , (3.2)

a change of variables valid for r > r0 on one of the asymptotic regions. Finally, the interior

geometry is parametrized in Schwarzschild coordinates (r, t), formally continued to r < r0,

with r now denoting a time-like coordinate and t a space-like one. There is an analogous

extension of the Rindler patch to the interior, with the analogous change of variables

X0 =

√

r0 − r

πT
cosh(2πTt) , X1 =

√

r0 − r

πT
sinh(2πTt) . (3.3)

Within this prescription we view the portion of the extremal surface lying outside the

horizon as composed of two pieces: an asymptotic component ΣUV which is well approx-

imated by a constant t surface in AdSd+2, and a ‘Rindler piece’ ΣR, parametrized by a

curve on the (X0, X1) plane of (3.1). Within the Rindler patch, local volume for fixed X1

interval is maximized by the X0 = constant surfaces, and thus we take this ansatz for ΣR.

For t = 0, this is all there is, since the extremal surface is just the t = 0 section of the

– 4 –
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Figure 1. Piecewise decomposition of Σt, represented by space like sections at different times.

For generic times, straight tilted segments correspond to ΣUV, horizontal segments give ΣR and

hyperbolic segments on the r = rm surface correspond to ΣWH. The t = 0 surface lacks an interior

component. As t increases from zero, an interior component begins to develop gradually, as ΣR

eventually transmutes into ΣR ∪ ΣWH.

extended geometry, with the two exterior geometries glued by the horizon. However, as t

grows, the surface enters the horizon at higher values of X0 and tends to extend through

the interior patch of the black brane geometry. The X0 = constant ansatz continues to be

reasonable as long as the complete surface stays inside the interior Rindler region. Since

the only length scale controlling the width of the Rindler region is T−1, the approximation

X0 = constant must break down for large times, t ≫ T−1.

At very long times, there is a natural answer for the variational problem in the interior,

since the surfaces r = constant are invariant under the t-translation isometry. The volume

of a ∆t portion of such r = constant surfaces is proportional to

∆t rd−1
√

|f(r)| ,

so that stationary points rm of this function determine extremal surfaces far from the ‘exit

point’, i.e. for large ∆t. In all cases studied in this paper, one finds |r0 − rm| ∼ |rR − r0|,
implying that rm is always close to the inner edge of the Rindler region and, in particular,

it is roughly symmetrical of the r = rR surface by a reflection through the horizon (see

figure 1). As a consequence, the ‘exit point’ from the r = rm surface is approximately

given by texit ≈ t, where t is the time label of the exterior asymptotic surface ΣUV.

The approximate ansatz for the extremal surface is thus ΣWH∪ΣR∪ΣUV, where ΣWH

is the r = rm surface along the ‘wormhole’ in the interior, cut off at texit ∼ t, with total

t-length of order ∆t ∼ 2t.

Within this construction, the volume of ΣUV is independent of t, whereas the volume

of ΣR vanishes at large t, being delimited by two curves (interior and exterior) asymptotic

to the same horizon. Therefore, the rate of growth of the complexity is controlled by ΣWH

at large times. A graphical representation of the piecewise decomposition of Σt is shown

in figure 1.

– 5 –



J
H
E
P
1
1
(
2
0
1
5
)
1
8
1

3.1 High temperatures

At high temperatures T ≫ 1 we have f(r) ≈ r2 − rd0/r
d−2 and r0 ≈ 4πT/d. Evaluating

the volume of Σt, we find the standard result (1.2) for the long-time growth rate, with

S ∼ N∗V T d−1 the high temperature entropy of the large-N∗ CFT on the hyperboloid. At

t = 0, we can distinguish two qualitatively different contributions. First we have the UV

contribution of ΣUV,

CUV = 2α
V

4G

∫ rΛ

rR

dr rd−1

√

f(r)
∼ N∗ V

(

Λd−1 − T d−1
)

, (3.4)

where we can as well neglect the T -dependent term coming from the lower limit of the

integral, since we are assuming Λ ≫ T . Second, we have a threshold contribution coming

form ΣR:

CR

∣

∣

t=0
= 2α

V

4G

∫ rR

r0

dr rd−1

√

f(r)
∼ N∗ V T d−1 ∼ S , (3.5)

where we have used the Rindler approximation to the metric to estimate the integral in

order of magnitude. In this expression, as well as others that follow, the matching ambiguity

coming from the precise location of rR and the various errors from the piecewise matchings

of Σt can be estimated by shifting rR an amount of O(1), resulting in an additive ambiguity

of order S for CR.

The UV contribution to the complexity is constant in time. Denoting the rest of the

complexity by ∆C(t) = C(t)− CUV we find the following behavior at high temperatures:

∆C(t) = O(S) for t < T−1 , ∆C(t) ∼ S T t for t ≫ T−1 . (3.6)

3.2 Low temperatures

Our main interest is the low-temperature regime, T ≪ 1 in ℓ = 1 units, where the thermo-

dynamics becomes more exotic. In evaluating the volume of extremal surfaces, we must

distinguish the qualitatively different regions of the bulk geometry, namely for r ≫ rc we

have an approximately AdSd+1 geometry with a time slicing adapted to the R × Hd−1

CFT frame, and for ρ0 ≪ ρ ≪ rc we have a AdS1+1 × Hd−1 geometry. Accordingly, the

codimension-one surfaces split as (see figure 2)

Σt ∼ ΣWH ∪ ΣR ∪ ΣCQM ∪ ΣUV .

Here ΣUV extends for r ≫ rc. The new portion extending along the AdS1+1 radial slice

ρ0 ≪ ρ ≪ rc will be denoted ΣCQM. Finally, in the deep infrared region we have the

Rindler portion ΣR given by the interval ρ0 < ρ < ρR, with ρR an O(1) multiple of ρ0.

In the interior we find the wormhole portion ΣWH along r = rm. For all partitions except

ΣUV we can regard the hyperbolic Hd−1 factor as an spectator.

We first discuss the situation at t = 0, where ΣWH is absent. The contribution from

ΣUV is the standard N∗V Λd−1. The contribution from ΣCQM is interesting because the

complexity picks equal contributions for every region of the CQM region,

CCQM(0) ≈ 2α
rd−1
c V

4G

∫ rc

ρR

1√
d

dρ

ρ
=

2α√
d
S0 log(1/T ) , (3.7)

– 6 –
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Figure 2. The global structure of the hyperbolic black hole interior is similar to that of charged

black holes. There is an inner horizon r
−

which separates the space-like and time-like character of

fixed-r surfaces in the interior. For instance, one has the inequalities 0 < ra < r
−

< rm < r+ =

r0 < rR. The intermediate AdS2 region develops only for low temperatures.

leading to a logarithm with a characteristic coefficient controlled by the zero-temperature

entropy of the system. The O(1) ambiguities at the endpoints of the integral amount to

an additive error of order S0. Notice however that the coefficient of the logarithm, given

by 2αS0/
√
d, is robust in the low T limit.

Finally, the Rindler contribution coming from ΣR is of order

CR(0) ≈ 2α
rd−1
c V

4G

∫ ρR

ρ0

1√
d

dρ
√

ρ2 − ρ20
∼ S0 , (3.8)

where the matching errors are also of order S0.

As before, the exterior surfaces in both the CQM and UV regions have a time-

independent volume. Hence the time development of the complexity proceeds by the

gradual deformation of ΣR into ΣWH ∪ ΣR. As can be seen from figure 2, the volume

of ΣR is negligible at large times, whereas that of ΣWH is controlled by the local maximum

of rd−1
√

|f(r)|. Since we are working at very low temperatures, it is tempting to pick the

O(1) radius r = ra which maximizes the T = 0 function

rd−1

√

∣

∣

∣
1− r2 +

mc

rd−2

∣

∣

∣
.

However, there is a subtlety. This O(1) maximum at r = ra survives for small but non-zero

T , but in fact we have f(ra) > 0, implying that r = ra is a time-like surface (shown in

figure 2). It turns out that there is a small T -dependent local maximum of rd−1
√

|f(r)|,

– 7 –



J
H
E
P
1
1
(
2
0
1
5
)
1
8
1

Figure 3. The function rd−1
√

|f(r)| at low temperatures, showing the small maximum of O(T )

at r = rm in the near-horizon (Rindler) region, and the O(1) maximum at r = ra. In the high-T

regime the Rindler bump grows larger than the local maximum at r = ra, which becomes a small

detail near the singularity.

with height of O(T ), within the interior Rindler region (see figure 3). The corresponding

r = rm surface is space-like, since f(rm) < 0. In this regime the function to be maximized

is approximately given by

(rc + ρ)d−1
√

d|ρ20 − ρ2| ,

which is maximized close to ρm = 0, so that the WH surface is given by ρ ≈ 0. Again, it is

roughly the symmetrical of the ρ = ρR surface by a reflection with respect to the horizon,

implying that texit ∼ t and thus a ’wormhole length’ of order ∆t ≈ 2t. The resulting large

t complexity is

CWH(t) = 2 t α
V rd−1

c

4G

√
d ρ0 ≈ α

4πT√
d

S0 t . (3.9)

Grouping together these results and restoring the curvature radius ℓ, we find a total low-

temperature subtracted complexity given by

∆C(t) ≈ 2α√
d
S0 log(1/ℓ T ) , for t < T−1 , (3.10)

at small times and

∆C(t) ≈ 2α√
d
S0 log(1/ℓ T ) +

4πα√
d
S0 T t for t ≫ T−1 . (3.11)

at long times. It should be noted that, while we have kept the coefficient found in (3.9), it

must be understood as an estimate with O(S0) additive ambiguities, unlike the coefficient

of the time-independent logarithmic term, which is a robust prediction for the strongly

coupled CFT.

4 Conclusions

We have studied the structure of low-temperature thermofield double states in strongly

coupled CFTs defined on hyperboloids. In particular, we have focused on properties char-

acterized by the gravitational description in terms of AdS hyperbolic black holes. We have

– 8 –
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found that, in addition to the known zero-temperature entropy of order N∗, these states

have a large holographic complexity, as measured by extremal bulk volumes.

The low-temperature geometry develops a AdS2 throat contributing a time-

independent complexity of order

CCQM =
2αS0√

d
log(1/T ℓ) +O(S0) , (4.1)

where ℓ is the radius of curvature of the hyperboloid and S0 is the zero-temperature limit

of the entropy. This expression was derived up to additive ambiguities of O(S0), but the

coefficient of the logarithm is a reliable strong-coupling prediction in the low-T limit, once

we define the absolute normalization of the complexity, which entails fixing the value of α.

This means that tensor network representations of these states should incorporate this

logarithmic tube. It would be interesting to find an explicit tensor model realizing this

fact. Perhaps these ideas can be checked at weak coupling, searching for vestiges of the

large low-temperature complexity directly in the perturbative field theory wave functions.

Since the behavior (4.1) is controlled by the emergence of the AdS2 throat, it is tempt-

ing to take it at face value, as a general property of any near-extremal geometry of Reissner-

Nordstrom type. This includes the benchmark model of AdS/CMT, the near extremal

charged AdS4 black brane, with either chemical potential µ or magnetic field B (cf. [37]

for a review). In those systems, the same expression (4.1) follows, with the substitution

of the curvature scale 1/ℓ by an effective mass of the order of µ and/or
√
B (cf. [38] for a

discussion of peculiar properties of entanglement entropy in these systems). On the other

hand, it is also known that consistent string theory embeddings of these finite-density sys-

tems tend to show perturbative instabilities, the near extremal black holes being unstable

to the condensation of clouds of classical charged hair (see [18] for a discussion of possible

relations to complexity).

The low-temperature hyperbolic black holes studied in this note show no sign of any

perturbative instability when embedded in string theory, but they are not free from poten-

tial non-perturbative instabilities. As shown in [39], if these black holes carry N units of

RR charge, they can super-radiate it spontaneously, causing the fragmentation of the black

hole by brane emission (see also [40–43]). This process was studied in [39] for compact hy-

perbolic horizons, but it may take place in the present non-compact set up by nucleation

of critical bubbles just hovering above the horizon, leading to a sort of condensation of RR

hair. It would be interesting to further clarify these issues and their possible impact on

the prediction (4.1).
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