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Abstract: This work is an extension of our previous work [1] where we exploited holography
to compute the complexity characteristics of Little String Theory (LST), a nonlocal,
nongravitational field theory which flows to a local 2d CFT in the IR under RG via an
integrable irrelevant (TT ) deformation. Here we look at the more general LST obtained
by UV deforming the 2d CFT by incorporating Lorentz violating irrelevant JT and TJ
deformations on top of TT deformation, in an effort to capture the novel signatures of
Lorentz violation (on top of nonlocality) on quantum complexity. In anticipation of the fact
that the dual field theory is Lorentz violating, we compute the volume complexity in two
different Lorentz frames and the comparison is drawn between the results. It turns out that
for this system the nonlocality and Lorentz violation effects are inextricably intertwined in
the UV divergence structure of the quantum complexity. The coefficients of the divergences
carry the signature of Lorentz boost violation. We also compute the subregion complexity
which displays a (Hagedorn) phase transition with the transition point being the same as
that for the phase transition of entanglement entropy [2]. These new results are consistent
with our previous work [1]. Null warped AdS3 is treated as special case of interest.
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1 Introduction & summary

Our understanding of strongly coupled gauge theories has been revolutionized by the
AdS/CFT [3–6] duality (or more generally gauge/gravity duality [7]). Strongly coupled
regimes of field theories, once considered beyond the reach of analytical control due to
breakdown of coupling constant perturbation theory, are now routinely being investigated
by going over to the dual, weakly coupled physical system in weakly curved spacetime (most
of the time constructed from the “bottom up” without the need of any details of string
theory/M-theory compactifications). Effectively one solves (in most cases numerically) a
much easier classical gravity-matter system, i.e. Einstein field equations coupled to classical
matter. This “holographic approach” of solving strongly coupled fields theories (with or
without gauge fields), has proliferated the use of GR/SUGRA tools in the fields of condensed
matter many-body physics [8–10] and QCD [11–13]. In fact, the impact of gauge/gravity
duality has been far more profound than simply providing a geometric computational toolkit
for strongly coupled regimes of field theory. Thinking about how a dual field theory encodes
various phenomena on the gravity side, such the emergent holographic (radial) direction,
spatial connectivity in/of the bulk, presence of event horizons in the bulk, formation of
gravitational singularities in the bulk etc, has led to the realization of the significance of
various concepts from the quantum information and computation (QIC) canon which are
able to capture aspects of field theory not captured by traditional observables such as
correlators of local operators, or even Wilson loop operators. To name a few such concepts:
information geometry and information metrics, Shanon or Von-Neumann entropy [14, 15] and
Renyi [16] Entropy, Mutual Information, Tensor networks [17], Computational Complexity,
Fidelity susceptibility, Quantum error correcting codes. Influx of these ideas from QIC has
turned out to be a ground-breaking enterprise leading to novel insights which might even
have resolved the information paradox [18, 19]. Combining insights from complementary
approaches such as holography, integrability or supersymmetry based arguments, lattice
based approaches and perturbative approaches, we have explored the landscape of local
quantum field theories rather comprehensively. However, the landscape of nonlocal quantum
field theories is still mostly unexplored. Nonlocal field theories arise in various contexts in
high energy physics both as effective or emergent theories (e.g. [20]) as well fundamental
(UV complete) theories (e.g. [21]), they can be finite [22] (or super-renormalizable) and
unitary. We are optimistic that holography will be as productive in demystifying many
aspects/properties of nonlocal quantum field theories such as the LST as it has been for

– 1 –



J
H
E
P
1
0
(
2
0
2
2
)
1
4
3

enhancing our understanding of strongly coupled regimes of local field theories. Another
fact is that holography beyond the traditional asymptotically AdS setting is also little
explored. Our hope is that studying set ups such as the LST will help us get an handle on
nonperturbative quantum gravity beyond pure AdS asymptotics to flat asymptotics.

Our present understanding of holography is that the bulk spacetime geometry is a
representation or form of encoding of the entanglement structure of the dual field theory
state [23, 24]. The well known Ryu-Takayanagi (RT) proposal [14, 15] was one of the earliest
major piece of evidence to point in this direction (along with Maldacena’s construction [25]
of the eternal Schwarzschild-AdS (SAdS) as a thermally entangled state of two CFTs).
Since then an impressive list of quantum entanglement related CFT observables have been
related to classical geometric features of the bulk (see e.g. [26] for a review). However,
entanglement entropy or other entanglement related concepts such as tensor networks or
error-correcting codes are yet to capture the essential features of bulk geometry which lay
hidden behind the black hole horizons. Take for instance the case of the Einstein-Rosen
Bridge (ERB) behind the black hole horizons. Entanglement entropy saturates in a short
time upon reaching thermalization whereas, ER bridge continues to grow linearly with
time even after the dual field theory attains thermalization. To explain the ERB growth,
Susskind [27] has imported another concept from quantum information theory and added
it to the holographic dictionary, namely the computational complexity of the dual CFT
state. Complexity is the property associated with the states in the Hilbert space of states
of a quantum mechanical system quantifying the difficulty of preparing a state (called the
target state), starting from the given reference state. While this is a well defined quantity
for discrete systems, like quantum circuits in information theory, it has turned out to be
enormously hard to define complexity for the continuous systems described by a QFT. It is
fair to say that a precise and unambiguous definition of complexity is still lacking for field
theories. In the approach of Nielsen et al. [28, 29] a definition of circuit complexity in field
theory has been proposed as the minimum number of unitary gates in the space of unitary
operators which has a Finsler geometry. The complexity of a target state, with respect to a
reference state, is defined to be the geodesic length in a Finsler manifold with suitable cost
functions and penalty factors, which acts like Lagrangian in typical variational problem.
These cost functions are further required to obey certain conditions such as continuity,
positive definiteness and satisfying the triangle inequality etc. Despite this attempt at
achieving precision, there is still arbitrariness in the choice of cost functions which fixes the
Finsler metric and complexity depends upon the choice of the metric. Several attempts have
been made to define complexity in the continuum limit (see e.g. [30–47] for an incomplete
but representative list). However, it is fair to say that as yet there exists neither any
universal and unanimous definition of complexity in the continuum limit nor does there exist
a complete study of the possible universality classes. In the continuum limit, complexity,
even in principle, is a UV divergent quantity because it is defined to within a tolerance (ε)
with respect to the target state. Demanding more precision of reproducing the target state
requires including more gates which leads to a dependence on the inverse tolerance which is
a divergent term. Conventionally UV divergent or quantities explicitly dependent on the
cutoff in QFT are considered unphysical as their value can be altered by simply altering
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the UV cutoff. But the characteristic UV cutoff dependence is a feature which seems to be
indispensable while defining complexity in QFT.

There are two proposals in holography, each with its own distinct motivation, as to
which bulk geometric feature represents the complexity of the dual boundary field theory
quantum state. First one prescribes the field theory complexity to be proportional to the
volume of the maximal volume spacelike hypersurface in the bulk which terminates at
the exact boundary spatial slice on which the boundary quantum state is specified [27].
This is the complexity-volume (CV ) proposal. The second proposal [48, 49] prescribes
the complexity to be proportional to the on-shell bulk SUGRA action integral supported
over the Wheeler-deWitt (WdW) patch of the boundary spatial slice on which the field
theory state is specified.1 This is the complexity-action (CA) proposal. Since the bulk is
noncompact, both these bulk geometric duals of complexity are manifestly UV divergent,
hence regularization is necessary as the lore goes in holography. In the CV proposal there
is an ambiguity — in order to make the expression dimensionless one must include a length
scale, L, characteristic of the geometry for which there is no unique candidate. For the
CA proposal, there are also couple of issues. Some boundaries of the WdW patch are
codimension one null submanifolds with edges or joints. The presence of such null boundaries
and their joints (edges) requires the inclusion of carefully defined GHY boundary terms as
discussed in [50]. In this paper, we take an alternative approach to this issue [49, 51, 52].
Since we have to regulate the WdW patch in any case, we use a special regularization which
deforms the WdW null boundary to timelike and in the process also smooths out the joints.
At the end the regulator is removed. In this way we can compute the GHY terms and
obtain a UV-regulated result in one go.

In a recent work [1] we focused our attention on the decoupled regime of the theory
of a stack of large number (k � 1) of NS5 branes wrapping T 4 × S1, the so called Little
String theory (LST) in 1 + 1 dimensions. This system is unlike the theory of a stack of
Dp branes, since the worldvolume theory living on the NS5 branes decouples from the
bulk at finite value of the string length ls =

√
α′. This implies that this decoupled theory,

namely LST living on the NS5 branes, still retains stringy nonlocality and is not a local
quantum field theory. In fact this decoupled theory living on the NS5 branes is to some
extent intermediate between string theory (which is nonlocal theory containing massless
gravitons) and a local QFT. The dual holographic background is then obtained by taking
the near horizon geometry of the NS5 branes — it is a metrically flat spacetime with a linear
dilaton R1,1 × Rφ turned on all the way to spatial infinity. Such a holographic duality has
been studied quite extensively in the past [53, 54]. Now if one introduces p� 1 F1 strings
wrapping a S1 along the NS5 directions, the near horizon geometry of the F1 strings is given
by AdS3. Thus the full geometry interpolates between AdS3 in the IR (which corresponds to
the near horizon geometry of the F1 strings) to flat spacetime with a linear dilaton in the UV
(which corresponds to the near horizon geometry of just the NS5 branes). Correspondingly,
the boundary field theory interpolates between a local CFT2 dual to AdS3 in the IR to LST

1The WdW patch of a given spatial slice on the boundary is defined to be the bulk subregion covered
by the union of all possible spacelike surfaces in the bulk which terminates on the same spatial slice at
the boundary.
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in the UV. The interpolating geometry discussed above is often referred to in the literature
asM3. In the wake of the recent developments in the subject of TT deformation [55, 56],
it was proposed in [57] that there exists an analogous deformation of string theory in AdS3
that shares many properties in common with the double trace TT deformation.This is
often referred to as the single trace TT deformation in the literature which changes the
UV asymptotics of the bulk geometry from AdS3 to flat spacetime with a linear dilaton
keeping fix the IR regime of the geometry. Analysis in [57] shows that the dual background
geometry interpolates between AdS3 in the IR to flat spacetime with a linear dilaton in
the UV. Holography in this background (often referred to as M3) can be realized as a
concrete example of holography in non-AdS background that is smoothly connected to AdS3.
Naturally this non-AdS holography set up has attracted a lot of attention and there has
been a lot of studies where holography has been exploited to investigate various aspects of
nonlocal field theories such as LST which admit gravity duals, e.g. [2, 58–62]. In our recent
work [1] we probed this theory using holographic complexity as a probe. There we computed
the volume and action complexity, both at zero and finite temperature. The complexity
expressions contained imprints of the stringy nonlocality on the UV divergence structure.
To be specific, we encountered quadratic and logarithmic divergences, evidently not to be
associated with local field theory in 1 space dimension (where we expect a linear divergence)
when the UV cutoff is smaller than the (Hagedorn) length scale, βH = 2πls

√
k λ, set by the

TT coupling λ). When the UV cutoff is held larger than the Hagedorn scale, complexity
displays a linear UV divergence, much akin to a local field theory in 1 space dimension.
For completeness we computed the holographic complexity at finite temperature as well,
however no unanticipated newer type of UV divergences were encountered in perturbation
theory around zero temperature.

The purpose of this paper is to extend the our work in [1] to a more general linear
combination of irrelevant single trace deformations, namely the single trace TT , JT and
TJ of a CFT2 which contains/involves conserved left (right)-moving current J(J). These
irrelevant deformations drive the UV theory to nonlocality, in the sense that the UV is not
a local fixed point as the high energy density of states exhibits a exponential Hagedorn
growth [61]. Moreover, the effect of turning on the irrelevant current J(J) couplings is to
explicitly break Lorentz boost symmetry in the UV. The dual gravity (string) background
was introduced in [63, 64] which interpolates between AdS3 in the IR to a linear dilaton
background in the UV. From the string viewpoint, the UV is the near horizon limit
of the stack of k NS5 branes with p F1 strings propagating in the world volume while
incorporating NS-NS H-flux along the world volume directions violating Lorentz boost
invariance [63, 65, 66]. Our main motivation to investigate this set up is to capture the
imprint of Lorentz boost symmetry violation in the holographic complexity, to be specific
in the UV divergence structure of holographic complexity. In particular, we are interested
in finding out whether the imprints of Lorentz symmetry violation and nonlocality on the
UV divergence are separate or different kind. Also since the theory does not respect boost
symmetry, we would like to know how the UV divergences in complexity change as we move
from one Lorentz frame to another. Another motivation of the present work is to study
subsystem holographic complexity [67–69] which we had omitted in our previous work [1].
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Subsystem complexity, just like entanglement entropy of a subsystem’s reduced density
matrix is expected to display phase transitions as the subsystem size is tuned. In particular,
in the work [2], which looked at entanglement entropy of this system, namely the TT ,JT
and TJ deformed CFT2, entanglement entropy undergoes a (Hagedorn) phase transition
when the subsystem size is tuned to a critical spatial size determined by the strength of the
irrelevant couplings.

The plan of the paper is as follows. In section 2, we give a briefly recap aspects of string
theory in AdS3, its single trace TT , JT , TJ deformations and highlight interesting features
of LST for the sake of completeness. We also review some features of the dual holographic
background (bulk). In this regard we would like to point out that one may work with either a
3+1-dimensional bulk as was done in the works on entanglement entropy [2], or equivalently
one can perform a KK reduction on the y circle fiber and work with an effective bulk
background in 2 + 1 dimensions [63]. Here we take the second approach because it affords
us performing immediate comparision or checks with our previous work [1] at every step. In
section 3, we set out to compute the holographic complexity of the TT , JT , TJ deformed
CFT2 by implementing the CV prescription2 in two distinct (boundary) Lorentz frames,
which we dub as the stationary frame and static frame (for reasons which will become
obvious), related to each other by a Lorentz boost. In either frame, the volume complexity
diverges quadratically with a subleading logarithmic divergence. However, anticipated, due
to lack of boost symmetry, the coefficients of the quadratic and logarithmic divergence differ
in the two frames (and even the finite piece differs). We find that the Lorentz violation
effects (governed by the parameter ε±) and nonlocality effects (governed by the parameter
λ) are inextricably linked — the UV divergence structure depends on a single parameter,
namely µ = λ− (ε+ + ε−)2 in the stationary frame, and the parameter λ′ ≡ λ− 4ε+ε− in
the static frame. There is no way to cleanly separate the effects of nonlocality and Lorentz
boost asymmetry. This is perhaps mildly disappointing since our hope was to be able to see
the effects of nonlocality and Lorentz violation in separate or independent UV divergence
structures. These results are consistent with the results obtained in [1] — setting ε± = 0
reproduces the volume complexity of the LST dual to theM3 geometry. The quadratic and
logarithmic divergences of the volume complexity immediately reveals the nonlocal nature
of the dual field theory (LST) as for a local theory the complexity is expected to scale with
volume V (here length) and hence should diverge as lattice cell volume inverse V/εd. In
either frames, the nonlocality scale is set by the respective Hagedorn length ρH ∝

√
kµ ls in

the stationary frame and β′H ∝
√
k λ′ ls in the static frame. When the lattice spacing is

larger than the Hagedorn length scales in the respective frame (ε � ρH or ε � β′H), the
complexity expression reduces to that of a local field theory with a linear divergence (volume
scaling). However if the lattice spacing is shorter than the Hagedorn length scale ε� ρH ,
or ε� λ′H , stringy physics takes over and the theory departs from behaving like a local field

2Actually we used a generalized prescription of the volume complexity put forth in our previous work [1]
in the string frame since a non-trivial dilaton field turned on in the bulk, and this modification is necessary
to get the correct powers of GN . Similar considerations led the authors in [70] to a generalization of the
Ryu-Takayanagi formula for holographic entanglement entropy for bulk backgrounds supporting a non-trivial
dilation in the string frame.
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theory. Finally we note that the logarithmic divergent pieces (subleading divergence) in the
complexity expressions in either frame which are accompanied by a dimensionless universal
constant coefficient. This coefficient can be given the interpretation of the total number of
“regularized/effective” degrees of freedom in the spacetime theory in the nonlocal stringy
regime as opposed to the true degrees of freedom of LST which naively diverges [59, 71].
Next in section 4, we proceed to evaluate the subregion complexity, in both the stationary
(section 4.3) and static (section 4.4) frames. The exact results for subregion complexity
are obtained numerically, and the results are displayed graphically, subregion complexity
plotted as function of the subregion size, CV vs L for several different choices of the set of
parameters λ, ε±. In either frame, the plots clearly show the Hagedorn phase transition
— at a critical subregion size, Lc = π

√
kλλ′ls

2√µ in the stationary frame and L′c = 1
2π
√
kλls in

the static frame. For subregion sizes larger than the critical size, the subregion complexity
grows linearly with subregion size (length), characteristic of a CFT2 while for subregion
sizes lower than the critical subregion length, subregion complexity grows quadratically
with subsystem size (length), which is more like a nonlocal LST. The reason we identify
this transition as the Hagedorn transition because the critical length, read off from the
numerics (plot), is identical to the phase transition point of entanglement entropy [2]! The
fact that the critical length is different in the two frames related by a Lorentz boost simply
reflects the boost asymmetry of the LST. In section 5 we explore a very interesting special
point in the parameter space of the couplings, namely when λ = ε+ = 0 (or λ = ε− = 0)
which is dual to the null warped AdS3 geometry (with nonvanishing dilaton and NS-NS B
field). Although this might appear to be a slight digression, we explore this case since this
falls under the same broader umbrella of sting theory in AdS3. Since this limit is singular,
instead of naively taking this limit in the final complexity expression of the general case,
and redo some of the intermediate steps. The complexity is only well defined (real) when
the UV cut off is restricted ε ≤

√
kε−ls, a trait which lends support to the claims in the

literature that the null warped AdS3 spacetime is the holographic dual to field theory which
does not possess a UV completion. For the null WAdS3, the UV divergence structure is
also special, one obtains UV divergences to all orders! In other words the complexity is
not an analytic function of the UV cut off. This alludes to the fact that the boundary
theory is highly nonlocal (and does not possess boost symmetry either). We also compute
the subregion complexity numerically for a boundary interval of length, L and present
our results graphically via subregion CV vs L plot in figure 5 for a (allowable) range of
the warping parameter ε−. The subregion complexity monotonically increases with the
subregion size and approaches the subregion complexity of a CFT2 (i.e. pure AdS3 linear
regime) as L is progressively increased. However, unlike what we found for the case of
general values of the couplings λ, ε±, there is no Hagedorn like phase transition. These
results were obtained in the stationary frame, and there is no static frame for this case since
the associated boost transformation which takes one from the stationary to static frame,
becomes singular. Next, in section 6 we set out to compute the action complexity for the LST
(i.e. the TT , JT , TJ deformed CFT2). Here we realize that the construction of null surfaces
bounding the so called Wheeler-de Witt (WdW) patch is simplest in the boosted frame in
the boundary since it leads to a static metric in the bulk. So we exclusively stick to this
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coordinate system for the entire section/calculation. We leave the construction of lightsheets
associated with the WdW patch and the subsequent evaluation of the action-complexity for
the stationary frame for future work. While computing the WdW we are confronted with a
choice, either to the use the 3+1-d bulk geometry or to work with the 2+1-d bulk geometry
by dimensionally reducing over the y-fiber. Although we present the calculation performed
in the dimensionally reduced 2 + 1-d set up, pleasantly the action complexities obtained
using the 3 + 1-d and 2 + 1-d bulk actions agree provided we retain the total derivative
terms in the lower dimensional action one gets while performing a dimensional reduction.
Usually such total derivative terms are omitted from the dimensionally reduced action
as they do not contribute to the equations of motion, but they do contribute to (action)
complexity. The action complexity results display the exact same divergence structures,
quadratic and logarithm when ε� β′H . Modulo an overall constant (courtesy the ambiguity
in the choice of the “characteristic length-scale of the geometry” in the definition of the
volume complexity), the leading quadratic divergence piece matches for both the volume
and action complexities. However we find that the subleading logarithmic divergence, while
having the same magnitude in both prescriptions, differs by a sign in the volume and action
complexity expressions. This is not a total surprise. Past studies have revealed that the
coefficients of the subleading divergent pieces might be different [52] hinting to the fact that
the two bulk/holographic prescriptions of complexity might actually correspond to different
schemes of defining complexity in the boundary field theory. These are also consistent with
the results of our previous paper [1]. As a final check, we extract the behavior of the action
complexity in the deep IR limit (i.e. ε� β′H) where it indeed reproduces the pure AdS3 or
CFT2 vacuum state complexity [69, 72] (for both prescriptions). In section 7, we revisit the
null Warped AdS3 background (with dilaton and B-field) located at point in the coupling
space, λ = ε+ = 0 and compute the action complexity of dual WCFT2 using this bulk
background. As remarked before, the static frame does not exist for this case, on cannot
obtain the results by simply plugging λ = ε+ = 0 in the results of section 6. We to tackle
the calculation in the stationary frame itself where the construction of the WdW patch
boundaries is more complicated than for a static geometry (but far simpler than that for
the more general λ, ε+ 6= 0 case). We find that the action complexity null warped AdS3
vanishes! We believe this is purely a dimensional accident, the action complexity for pure
AdSd+1 analogously vanishes [1, 72] due to an overall factor of (d− 2). Finally, in section 8
we conclude by discussing our results and provide an outlook for future work. In the
appendices, we gather some results for ready references in the main sections. In appendix A
we recap the sigma model with the TT , JT , TJ deformations and the 4d target spacetime
which follows and work out the action complexity terms for the 4d geometry. Next in
appendix B we recap the KK reduction over the y circle fiber following the conventions
of [63], and obtain the dimensionally reduced 3d metric, Dilaton, B-field and KK scalar
and KK gauge fields (the KK gauge fields obtained after reducing the 4d NS-NS B-field
were missing in [63]. Subsequently we demonstrate the action complexity integrals for the
3d background work out to be the same as those from the 4d background worked out in
the previous section provided we retain the total derivative terms in the 3d action. In
appendix C we compute the new GHY term contribution as a result of keeping the total
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derivative term in the 3d lagrangian (action) and the net GHY contribution. In appendix D
we compute the holographic entanglement entropy for the WCFT dual to null warped AdS3,
for a boundary interval of size L, thereby closing a gap in the literature. For null WCFT we
find that the entanglement entropy is log divergent, just like that of an local CFT2, but the
coefficient of the log divergence (central charge) now depends on the warping parameter.

For other interesting works on complexity in the context of double trace TT deformed
CFT see [73–75].

2 Review of string theory in AdS3, single trace TT and LST

We first consider critical superstring background AdS3×M, withM being a compact seven
dimensional spacelike manifold, which preserves N ≥ 2 supersymmetry. A classic example
of this kind of a set up consists of type II strings on AdS3 × S3 × T 4 preserving (4, 4)
supersymmetry. The worldsheet theory of strings propagating in AdS3 with NS-NS fluxes
switched on but R-R fluxes turned off is a WZW nonlinear sigma model of the noncompact
group manifold SL(2,R). The worldsheet theory is symmetric under the holomorphic (left
moving) and antiholomorphic (right moving) components of sl(2,R) current algebra with
level k. The AdS radius, RAdS, is related to the level of the current algebra by the relation
RAdS =

√
kls, ls =

√
α′ being the string length.

According to the AdS/CFT correspondence, string theory on (asymptotically) AdS3 is
dual to a two-dimensional CFT living on the conformal boundary of AdS3. For supergravity
approximation to be valid, we will have to work in the parameter regime k � 1. In the
presence of the NS-NS three form H-flux, the spacetime theory has the following properties:

1. The spacetime theory has a normalizable SL(2,C) invariant vacuum state:

• The NS vacuum, which corresponds to global AdS3 as the bulk.
• The R vacuum, that corresponds to massless spinless (M = J = 0) BTZ as

the bulk.

2. The NS sector consists of a sequence of discrete states coming from the discrete series
representation of SL(2,R) followed by a continuum of long strings. The continuum
starts above a gap of order k

2 [76].

3. The R-sector states contain a continuum above a gap of order 1
k . Here the fate of the

discrete series states is unclear.

In the discussion that follows, we focus exclusively on the long strings of the R-sector.
In [77], it was argued, that for string theory on AdS3 ×M, the theory supported on a

single long string is described by a sigma model on

M(L)
6k = Rφ ×M , (2.1)

with central charge 6k. The theory on Rφ has a dilaton field Φ that is linear in the coordinate
φ with a slope given by

Q(L) = (k − 1)
√

2
k
. (2.2)
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Thus the theory on the long string worldsheet has an effective interaction strength given by
exp(Q(L)φ) and as a result the dynamics of the long strings becomes strongly coupled as
they approach spatial infinity (boundary). But there is a wide range of positions on the
radial direction where the long strings are weakly coupled. A natural question that one
may ask at this point is: what is the full boundary theory dual to string theory in AdS3.
The answer to that question, for generic k, is unknown, but there are strong evidences to
convince that the theory on the long strings is described by the symmetric product CFT(

M(L)
6k

)p
/Sp , (2.3)

where p represents the number of fundamental (F1) strings that form the background.
String theory in AdS3 admits an operator D(x, x) [78] (where x and x are coordinates

of the two-dimensional spacetime theory), in the long string sector that has many properties
in common with the TT operator. For example D(x, x) is a (2, 2) quasi-primary operator
of the spacetime Virasoro and has the same OPE with the stress tensor as the TT operator.
However, there is an important difference between the TT operator and the operator D(x, x):
TT is a double trace whereas D(x, x) is single trace.3 In fact

D(x, x) =
p∑
i=1

TiT i , (2.4)

where TiT i can be thought of as the TT operator of the ith blockM(L)
6k in the symmetric

product CFT (M(L)
6k )p/Sp. For an elaborate discussion along this line see [63, 65]

Next, consider the deformation of the long string symmetric product by the operator
D(x, x). This deforms the ith block CFTM(L)

6k by the operator TiT i and is subsequently
symmetrized. Such a deformation is evidently irrelevant and it involves flowing up the
renormalization group (RG) trajectory. This D(x, x) deformation of the spacetime theory
translates to turning on the worldsheet a truly marginal deformation:∫

(M(L)
6k )p/Sp

d2xD(x, x) ∼
∫

Σ
d2zJ−SLJ

−
SL , (2.5)

where z, z are the complex coordinates of the worldsheet Riemann surface Σ, J−SL and J−SL
are respectively the left and right moving null sl(2,R) currents of the worldsheet theory.

The above current-anti-current deformation of the worldsheet σ−model is exactly
solvable, and standard worldsheet techniques yield the metric (in string frame), dilaton and
the B-field as [79, 80]

ds2 = f−1
(
−dt2 + dx2

)
+ kl2s

dU2

U2 ,

e2Φ = g2
s

kU2 f
−1 ,

dB = 2i
k3/2 ls U2 f

−1ε3 ,

(2.6)

3Here single trace refers to the fact that D(x, x) can be expressed as a single integral over the worldsheet
of a certain worldsheet vertex operator. The operator TT on the other hand is double trace because it can
be expressed as a product of two single trace operators in the sense just described.
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where f = λ+ 1
kU2 , λ is the dimensionless coupling4 of the marginal worldsheet deformation

and gs is the asymptotic string coupling in AdS3 with g2
s = e2Φ(U→0) ≡ e2Φ0 . This

background is popularly known as M3. The backgroundM3 (2.6) interpolates between
AdS3 in the IR (i.e. U � 1/

√
kλ) to flat spacetime with a linear dilaton, R1,1 × Rφ in the

UV (i.e. U � 1/
√
kλ). The coupling λ sets the scale at which the transition happens.

The deformed sigma model background (2.6) can also be obtained as a solution to the
equations of the motion of three dimensional supergravity action [62, 81]

S = 1
16πGN

∫
d3X
√
−ge−2(Φ−Φ0)

(
R+ 4gµν∂µΦ∂νΦ− 1

12H
2 − 4Λ

)
, (2.7)

where GN is the three-dimensional Newton’s constant in AdS3, gµν is the string frame
metric, R is the Ricci scalar (in string frame), Φ is the dilaton, H = dB is the 3-form flux
and Λ is the cosmological constant.

As an example, the above construction can be realized as follows. Let us consider a
stack of k NS5 branes in flat space wrapping a four dimensional compact manifold (e.g.
T 4 or K3). The near horizon geometry of the stack of k NS5 branes is given by R1,1 × Rφ
with a dilaton that is linear in the radial coordinate φ (where φ = log(

√
kU)). The string

coupling goes to zero near the boundary (i.e. U →∞) whereas it grows unboundedly as
one goes deep in the bulk (i.e. U → 0). Next, let’s add p (with p� 1) F1 strings stretched
along R1,1. This stabilizes the dilaton and the string coupling saturates as gs ∼ 1/√p. Thus
for large p the string coupling is weak and one can trust string perturbation theory. The
F1 strings modifies the IR geometry (i.e. U � 1/

√
kλ) to AdS3. The smooth interpolation

between R1,1 × Rφ in the UV to AdS3 in the IR corresponds to interpolation between near
horizon geometry of the NS5 brane system to that of the F1 strings [62, 82]. The spacetime
theory interpolates between a CFT2 with central charge 6kp in the IR to two-dimensional
LST in the UV. The theory is nonlocal in the sense that the short distance physics is not
governed by a fixed point.

LST can be realized as the decoupled theory on the NS5 branes. It has properties that
are somewhat intermediate between a local quantum field theory and a full fledged critical
string theory. Unlike a local field theory, at high energy E, LST has a Hagedorn density of
states ρ ∼ eβHE where βH = 2πls

√
kλ. On the other hand, LST has well defined off-shell

amplitudes [83] and upon quantization it doesn’t give rise to massless spin 2 excitation.
Both these properties are very similar to local quantum field theories. For a detailed review
of LST see [53, 54].

One can generalize this scenario further by turning on holomorphic and antiholomorphic
currents in the spacetime theory J(x), J(x)) [63, 78]. In that case, parallel to the construction
of D(x, x), one can also construct single trace operators, namely, A(x, x) and A(x, x) of
dimension (1, 2) and (2, 1) respectively [78]. A(x, x) has the same conformal dimension and
OPE’s with the currents as the irrelevant double trace J(x)T (x) operator. Analogously, the
single trace marginal A(x, x) is related to the irrelevant double trace T (x)J(x) operator in
the spacetime CFT. In the symmetric product CFT, one can think of the operator of A,A

4Note that without loss of generality, the value of λ can be set to an appropriate value as discussed
in [57].
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as
A(x, x) =

p∑
j=1

Jj(x)T j(x); A(x, x) =
p∑
j=1

Tj(x) J j(x). (2.8)

Turning on A,A(x, x), in addition to the D(x, x) operators, in the spacetime corresponds
to the perturbing the worldsheet llagrangian by the following marginal operators,

δLWS = λJ−SL(z)J−SL(z) + ε+K(z)J−SL(z) + ε− J
−
SL(z)K(z). (2.9)

One has to strictly consider the positive sign of the coupling λ because only for that sign of
the coupling the spectrum of the deformed theory is real and the theory is unitary.

The worldsheet U(1) currents K(z) and K(z) are associated with left and right-moving
momenta on a S1 in the bulk spacetime labelled by the coordinate y. Such a deformation
will lead to the sigma model action [63],

S(λ, ε+, ε−) = k

2π

∫
d2z

(
∂φ∂φ+ h∂γ∂γ + 2ε+h√

k
∂y∂γ + 2ε−h√

k
∂y∂γ + f−1h

k
∂y∂y

)
(2.10)

where f−1 = λ+e−2φ, h−1 = λ−4ε+ε−+e−2φ. This corresponds to the 4d background [63],

ds2

ls
2 = kh

(
dγ + 2ε−√

k
dy

)(
dγ + 2ε+√

k
dy

)
+ kdφ2 + dy2 (2.11)

with a dilaton
e2Φ = g2

se
−2φh, (2.12)

and a NS-NS B-field,

Bγγ = −hk2 , Byγ = −Bγy = ε+h
√
k, Byγ = −Bγy = −ε−h

√
k (2.13)

See appendix A for some of the details omitted here.

2.1 The holographic 2 + 1-d background

Upon performing a KK reduction along the y-circle [63], target space NS-NS sector back-
ground described by the 3d metric

ds2 = kl2s
h(φ)
f(φ)dφ

2 + kl2s
h(φ)2

f(φ) dγdγ − kl
2
sh(φ)2(ε+dγ + ε−dγ)2, (2.14)

and the dilaton, Φ and a 2-form gauge field H background,5

e2Φ = g2
se
−2φ

√
f(φ)h(φ), Bγγ = kh(U)l2s

2 . (2.15)

The functions h, f are defined by

h(φ) = 1
λ− 4ε+ε− + e−2φ , f(φ) = 1

λ+ e−2φ , (2.16)

5In addition there are U(1) gauge fields originating from the KK reduction of the 4d metric and 4d
B-field, refer to appendix B for the full list.
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where λ, ε± are the irrelevant dimensionless couplings for TT , JT , & JT deformations
respectively. Here φ is the radial coordinate while the γ, γ are lightlike coordinates parallel
to the boundary. In this work we will work instead with the following coordinates,

eφ =
√
kU, x =

√
kls
2 (γ + γ), t =

√
kls
2 (γ − γ)

Thus, U is the radial coordinate (RG scale) while t, x are boundary time and space coordinate.
In terms of these new coordinates metric reads,

ds2 = h(U)
f(U)

[
kl2s

dU2

U2 − h(U)
(
1 + f(U)(ε+ − ε−)2

)
dt2

− 2h(U) f(U) (ε2+ − ε2−)) dtdx+ h(U)
(
1− f(U)(ε+ + ε−)2

)
dx2

]
.

(2.17)

while the dilaton and the Kalb-Ramond field are given by,

e2Φ = g2
s√

(kλU2 + 1) (kU2 (λ− 4ε−ε+) + 1)
, dB = 2h(U)

k3/2lsU2
√

1− 4ε+ε−f(U)
ε3.

(2.18)

Here we have,

h(U) = kU2

1 + (λ− 4ε+ε−)kU2 , f(U) = kU2

1 + λkU2 ,

(We notice that if we replace λ→ λ′ = λ− 4ε+ε−, then f(U)→ h(U). This fact will be put
to use in the calculations to follow in the coming sections). This background interpolates
between AdS3 in the IR to linear dilaton flat spacetime in the UV. In the dual sense this
geometry represents an integrable RG flow connecting a Lorentz invariant local CFT (fixed
point) in the IR to a Lorentz violating nonlocal theory in the UV, namely a deformed little
string theory (LST).

3 Holographic volume complexity

In this section we employ holography to compute the computational complexity of the
LST deformed by irrelevant single trace JT and TJ deformation following the Complexity-
Volume (CV) [27] prescription. Computational complexity, just like entanglement entropy,
is a manifestly UV-divergent quantity, and for ordinary quantum field theories the UV
divergence structure of computational complexity is rigidly constrained [69, 72]. In this
section we reveal the UV-divergences which might arise in a nonlocal and lorentz violating
field theory, such as two-dimensional CFT deformed by single trace JT and TJ and compare
and contrast them with those arising in a lorentz invariant local quantum field theory (e.g. a
CFT2). The volume complexity prescription computes the complexity of the dual boundary
theory in terms of the volume of a maximal volume spacelike slice, Σ,

CV = VΣ
GN L

, with VΣ =
∫

Σ
dD−1x

√
γΣ , (3.1)
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where γµν is the pullback metric on the maximal volume slice. As mentioned before, L
represents a suitable characteristic scale of the geometry. Here, we are working in the string
frame with a non-trivial dilaton background and the volume complexity proposal needs to
be generalized. The appropriate generalization is given by [70],

CV = ṼΣ
κ2

0 L
, with ṼΣ =

∫
Σ
dD−1x e−2(Φ−Φ∞)√γΣ . (3.2)

One can check that this generalization furnishes the correct powers of GN ,6 in the
denominator using the string theory convention, κ2

0e
−2(Φ∞−Φ0) = 8πGN where eΦ∞ is the

flat space string coupling and eΦ0 is the string coupling of AdS3. In anticipation of the fact
that the dual boundary field theory is Lorentz violating, we compute the volume complexity
in two different Lorentz frames and the comparison is drawn between the results.

3.1 Volume complexity in stationary coordinates (x, t)

We specify the a spacelike hypersurface by the condition, t = t(U), ∀x. The pullback of the
ambient metric in the so called stationary coordinates (2.17) on the hypersurface becomes:

ds2
Σ =

(
kl2s
U2 −h(U)

(
1+f (U)(ε+−ε−)2

)
t′ (U)2

)
dU2−2h(U)f (U)

(
ε2+−ε2−

)
)t′ (U)dUdx

+h(U)
(
1−f (U)(ε++ε−)2

)
dx2. (3.3)

The general form of the volume of any hypersurface in string frame with appropriate
inclusion of the dilaton factors in the integral measure is,

VΣ(t∗) = e2(Φ∞−Φ0)
∫
dx dU e−2(Φ−Φ0)√γΣ,

= klsLx
e−2(Φ∞−Φ0)

∫ ∞
0

dU
√

1 + kµU2

√
1− t′(U)2U4

l2s (1 + kµU2) .

where, Lx is the IR cutoff of the boundary LST and we have defined

µ := λ− (ε− + ε+) 2 (3.4)

for later convenience. To find the maximal volume one needs to extremize this volume
functional. The corresponding Euler-Lagrange equation is,

−Ul2st′′(U)
(
1 + kµU2

)
+ l2st

′(U)
(
3kµU2 + 4

)
− 2U4t′(U)3 = 0. (3.5)

To solve this nonlinear differential equation perturbatively, we employ the near boundary
power series expansion of the form:

t(U) = T + a

U
+ b

U2 + c

U3 + d

U4 + . . . (3.6)

6See [70] for a similar prescription for the Ryu-Takayanagi formula for the entanglement entropy.
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Plugging this “large U” expansion in the Euler Lagrange equation and solving iteratively
in powers of U−1 we get all coefficients to vanish, a = b = c = d = . . . = 0. With this
knowledge, the volume VΣ of the maximal slice turns out to be:

VΣ(t∗) = klsLx
e−2(Φ∞−Φ0)

∫
dU
√

1 + kU2µ. (3.7)

Therefore by (3.1), the volume complexity turns out to be

CV ≡
VΣ(t∗)
κ2

0 L
= k ls Lx

GN L

 ls2ε
√

1 + k µ l2s
ε2

+
sinh−1

(√
k µ ls
ε

)
2
√
k µ

 . (3.8)

Note that by convention the length scale L appearing here is the characteristic length scale
associated with the geometry. Comparison with results from action complexity helps us
resolve this ambiguity L = ` =

√
k ls, the AdS radius, and the volume complexity is after

evaluating the integral is

CV (T ) = cLx
3ε

√
3ρ2

H

4π2ε2
+ 1 + 2πcLx

3
√

3γH
sinh−1

(√
3ρH

2πε

)
,

= cLx
3ρH

ρH
ε

√
1 + 3ρ2

H

4π2ε2
+ 2π√

3
sinh−1

(√
3ρH

2πε

) . (3.9)

Here as before, ε is the UV cutoff required to regularize the divergent integral by placing
the boundary at U = ls

ε and c = 3
√
kls

2GN is the Brown-Hanneaux central charge of the IR
CFT2. The expression in the first line is rewritten in terms of the Hagedorn density of
states, ρH [61] in the second line:

ρH = 2π√
3
√
kµls. (3.10)

We immediately notice that the leading divergence is quadratic followed by a logarithmic
divergence. The quadratic (and logarithmic) divergence now depend on both the parameters
controlling non-locality and lorentz violation. However it appears that the Lorentz violation
effects and nonlocality effects are combined into a single parameter, namely µ = λ −
(ε+ + ε−)2 and there is no way to cleanly separate the effects of one from the other. This is
perhaps mildly disappointing since our hope was to be able to see the effects of nonlocality
and Lorentz violation in separate UV divergence structures. Also, we see that in order
for the notion of complexity to make sense, we have to restrict µ ≥ 0. This condition
is important in ensuring the existence of a smooth dual gravity background geometry as
mentioned in earlier works [2, 64]. As a consistency check we note that the complexity
expression (3.9) smoothly reduces to the previously knownM3 expression as the lorentz
violating couplings ε± [1] are turned off.

Let’s now examine the behavior of the theory in the two opposite extreme limits.
Thinking of ρH as the distance scale below which non-local and lorentz violating effects
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kicks in, one of the interesting limit to study would be the UV limit ε/ρH � 1 where the
short distance physics is that of the non-local lorentz violating field theory:

lim
ε/ρH→0

CV = cLx√
3ρH

(
ρ2
H

2πε2 + π

3 ln
(

3ρ2
H

π2ε2

)
+O (ε/ρH)

)
. (3.11)

The divergence structure as is evident from this expression, does not match with that
of the lorentz covariant local field theory. For the latter case, the complexity being an
extensive quantity counting the degrees of freedom in the field theory is expected to diverge
linearly i.e. Lx/ε.

Another interesting regime to study is the IR behavior where, ρH/ε� 1.

lim
ρH/ε→0

CV = 2cLx
3 ε . (3.12)

This expression reproduces the expected result for a local field theory [72] by correctly
counting the total number of degrees of freedom.

3.2 Volume complexity in static (X, T ) coordinates

As alluded to in the introduction, due to the presence of additional irrelevant {ε±} couplings,
the field theory is lorentz violating. As a result, the bulk geometry also inherits this character.
Therefore we feel it is instructive to repeat the CV calculation in a different Lorentz frame,
namely the “static coordinate system” obtained after performing the following lorentz boosts
on the stationary coordinate system of the previous section,

X = 1
2√ε+ε−

((ε+ + ε−)x+ (ε+ − ε−)t),

T = 1
2√ε+ε−

((ε+ − ε−)x+ (ε+ + ε−)t), (3.13)

the resulting metric is:

ds2 = kl2s
dU2

U2 − h(U) dT 2 + f(U) dX2. (3.14)

Using CV prescription, the maximal codim-1 surface Σ is required to be given by the
equation T = T (U) with appropriate functional form which extremizes the volume element.
Since there are no crossterms of form dtdX, it is appropriate to refer this as a static
coordinate system.

The induced metric is

ds2
Σ ≡ γabdxadxb,

=
(
kl2s
U2 − h(U)T ′(U)2

)
dU2 + f(U) dX2. (3.15)

In the string frame, the volume of such a spacelike slice anchored at a time T∗ on the
boundary is,

Ṽ (T ) = e2(Φ∞−Φ0)
∫
dx dU e−2(Φ−Φ0)√γΣ,

= k3/2lsLx
e−2(Φ∞−Φ0)

∫ ∞
0

dU
kU2√

f(U)h(U)

√
f(U)

(
kl2s
U2 − h(U)T ′(U)2

)
. (3.16)
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Here Lx =
∫
dx is the spatial extent (IR cutoff) of the boundary theory target space and λ′

is defined to be
λ′ ≡ λ− 4ε+ε−. (3.17)

Extremizing this volume leads to the following Euler-Lagrange equation:

l2s

(
UT ′′(U)

(
1 + kλ′U2

)
+ T ′(U)

(
3kλ′U2 + 4

))
− 2U4T ′(U)3 = 0. (3.18)

The solution is found by employing series expansion method, lets assume the near boundary
expansion of T (U) of the form:

T (U) = T∗ + a1
U

+ a2
U2 + a3

U3 + . . . . (3.19)

And plugging back in (3.18) and solving them order by order in 1
U , we obtain the result

that all the coefficients vanish. Thus the maximal volume slice is T (U) = T∗, a result that
can be anticipated from the time reflection symmetry: T → −T , of the background. Thus,
the volume of the maximal volume slice is,

ṼΣ(T ) = k3/2 ls Lx
e−2(Φ∞−Φ0)

∫ ∞
0

dU
U√
h(U)

, (3.20)

= k ls Lx
e−2(Φ∞−Φ0)

∫ ∞
0

dU
√

1 + kU2λ′, (3.21)

which diverges as U →∞. So we impose a UV cutoff at U = ls/ε to regulate it. Also, we
have defined λ′ to be λ− 4ε−ε+. The regulated volume is then,

ṼΣ(T ) = k ls Lx
e−2(Φ∞−Φ0)

 ls
2ε

√
1 + k λ′ l2s

ε2
+

sinh−1
(√

k λ′ ls
ε

)
2
√
k λ′

 . (3.22)

As expected, due to time translation symmetry the expression is independent of T∗. Therefore
from (3.2) volume complexity turns out to be

CV ≡
ṼΣ
κ2

0 L
= k ls Lx

GN L

 ls
2ε

√
1 + k λ′ l2s

ε2
+

sinh−1
(√

k λ′ ls
ε

)
2
√
k λ′

 . (3.23)

Again following the remarks of the preceding section, L = ` =
√
k ls, the AdS radius and

the volume complexity is thus,

CV = cLx
3β′H

β′H
2ε

√
4 + β′2H

π2ε2
+ 2π sinh−1

(
β′H
2πε

) , (3.24)

where, β′H is the inverse Hagedorn temperature

β′H = 2πls
√
kλ′ . (3.25)

We would like to draw the reader’s attention to the important fact that the holographic
volume complexity expression in the static frame (3.24) does not match with that in
the stationary frame (3.9). This is the artifact of the dual field theory being Lorentz
violating in nature i.e. the complexity measured in different frames related by a Lorentz
boost transformation do not agree. Similar observation had also been made in regard to
entanglement entropy in [2]. This is indeed gratifying to note.
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3.2.1 A comment on the nonlocality and Lorentz violation

Let us recall that β′H can be thought of the length scale below which nonlocality and Lorentz
violation effects kicks in. Thus, an interesting limits to study would be ε/β′H � 1 where
the short distance physics is that of a nonlocal and Lorentz violating theory. In this limit
the volume complexity takes the form

lim
ε/β′H→0

CV = cLx
3β′H

[
β′2H

2πε2 + 2π log
(
β′H
πε

)
+ π +O

(
ε

β′H

)]
. (3.26)

Evidently the divergence structure of the volume complexity (3.26) does not appear like
that of a local quantum field theory.

For the case of a local quantum field theory, complexity being an extensive quantity
should be proportional to the degrees of freedom given by the number of lattice sites ∝ Lx/ε
i.e. scales inversely with the cutoff ε (lattice spacing). The quadratic and logarithmic
divergences in (3.26) are a reflection of the fact that the boundary theory, being a LST, is
a nonlocal, Lorentz violating field theory and fittingly a special combination of nonlocality
and Lorentz violation parameters, namely β′H , features in the coefficient of this quadratic
as well as the logarithmic divergences. One can check, that by making the nonlocality and
Lorentz violation vanish in the limit ε/β′H � 1, the volume complexity expression (3.24)
indeed reduces to that of a local field theory,

lim
ε/β′H�1

CV = 2c
3β′H

Lx
(ε/β′H) = 2c

3
Lx
ε
. (3.27)

This expression of complexity (being proportional to the product of c, the central charge i.e.
the number of degrees of freedom per lattice site, and Lx/ε, which gives the total number
of lattice sites) counts the total number of degrees of freedom in a local field theory.

This quadratic UV divergence of the LST in 1-space dimensions, i.e. a “hypervolume”
divergence is a fascinating observation. Let compare and contrast it with the divergence
structure arising in (holographic) entanglement entropy (EE). The EE for nonlocal field
theories one encounters a similar phenomenon, the RT prescription yields a volume law
instead of a perimeter (area) law for a subregion EE, e.g. see [71, 84] in addition to the
LST EE [59]. However, physical understanding of the volume dependence (divergence)
of EE for nonlocal field theories is perhaps intuitively obvious. Given a subregion, for a
local field theory the entangling degrees of freedom are localized on the boundary. Once
the theory becomes nonlocal, the entangling degrees of freedom are not only localized on
the boundary of the subregion but also along direction orthogonal to the boundary, i.e.
throughout the volume of the subregion. Hence the appearance of the volume divergence
for EE. However, for the case of complexity is qualitatively different, it is already a volume
law for local field theories, so it is not obvious intuitively why the “hypervolume” law and in
particular why the power of divergence is “volume+ 1” instead of “volume+n” for arbitrary
positive integral n. At this point we can only speculate which specific aspect of nonlocality
of LST is captured by the hypervolume divergence: in the strong dilaton region (UV), the
LST effectively behaves like it has grown an extra spatial dimension, much alike IIA string
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theory which grows an extra dimension when the dilaton turns strong (strong coupling).
This appearance of an effective extra (noncompact) spatial dimension could potentially
explain the “volume + 1” divergence structure. Although this analogy is not exact or direct
since the LST studied in our work is obtained from NS5 branes in IIB frame/theory, while
the 10 dimensional string to 11 dimensional M -theory is realized in the IIA frame, and
the emergent dimension is a compact (circle). Similar observations/ suggestions i.e. LST
behaving like it develops an extra spatial dimension at strong coupling, have been made
in early works in LST in IIA frame, e.g. in [85]. Perhaps a more definitive statement can
only be made when the holographic complexity of nonlocal field theories which are not
necessarily LST (or derived from string theory) are computed. These theories will not share
the stringy property of developing extra spatial dimensions at strong coupling and might
have a different kind of divergence structure.

Next consider the coefficient of the log term (which is universal) in the expression of
volume complexity (3.26) in the deep UV (i.e. ε� β′H), which is

Ñ = c
Lx
β′H

. (3.28)

Evidently, this coefficient counts the total number of “regularized/effective” degrees of
freedom in the theory if we regard the lattice spacing of LST to be the Hagedorn scale,
β′H instead of the UV cutoff ε of the original IR CFT, namely, N ∼ c Lxε . Regarding the
universality of the log divergence piece in volume complexity and action complexity: we
regret that the language in the draft led the referee to infer that we are claiming that the log
divergence is universal across different holographic proposals of complexity (e.g. volume and
action). There are now numerous proposals of holographic complexity (complexity=volume,
complexity=action, complexity=spacetime volume 2.0, etc., finally culminating in the claim
by Belin et al. [86] that there might be infinite number of such spatial codimension-one bulk
geometric prescriptions of holographic complexity which are as good candidates as the ones
suggested originally. It has been generally observed that although the leading divergence
pieces across different prescriptions match, the coefficients of the subleading divergences
do not match, either in sign or in magnitude. It could be that various prescriptions of
holographic complexity correspond to field theory duals which are distinct but are in the
same universality class in the sense of RG (although the study of field theory complexity is
at a very premature stage to make such classifications of universality classes under RG).
However, once we pick a proposal, the coefficient of the log divergence is universal in the
usual sense — if we rescale the UV energy scale, the coefficient of the log divergence does
not get rescaled. Such coefficients which do not get rescaled usually capture some universal
physics e.g. in the RT proposal it gives the c-function.

Another interesting fact emerges if we rewrite the quadratic UV divergence term (3.26),
in a manner which mimics a local field theory:

CV = cLxβ
′
H

6π2ε2
+ . . . = 2c̃(ε)

3
Lx
ε

+ . . . , where c̃(ε) = c
β′H

4π2ε
, (3.29)

If we pretend this is a local theory with a linear divergence structure, then the coefficient of
the linear divergence if identified as an “effective central charge” is now a UV scale dependent
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Figure 1. Static frame complexity, CV and stationary frame complexity, C′V as a function the UV
cutoff scale ε.

parameter c̃(ε), in fact it is a monotonically increasing function of UV scale (energy), 1
ε . So

this “effective central charge” diverges as the UV cutoff is withdrawn. Similar observations
have been made about LST, namely a divergent central charge, elsewhere in the literature.

Now we compare the complexity results for the static frame and the stationary frame.
They share several common features:

1. The static frame volume complexity, CV (3.24) as a function of ε/β′H and the stationary
frame complexity, C′V (3.9) as function of ε/ρH are always positive and monotonically
decreases from UV to IR.

2. In the extreme UV regime (i.e. when ε� β′H , ρH), CV diverges as (3.26), and C ′V too
diverges as (3.11).

3. In the extreme IR regime, (i.e.when ε� β′H , ρH), CV decreases to 0 as (3.27) and so
does C′V according to (3.12).

Finally we plot the static frame complexity, CV and the stationary frame complexity, C′V as
a function of the cutoff, ε in figure 1.

In conclusion, we notice that the volume complexity for the LST deformed with
Lorentz violating and nonlocal couplings leads to the exact same kind of divergences which
nonlocality by itself would have produced (quadratic and logarithmic divergences). The
distinctive signature of Lorentz boost violation is that the coefficients of the quadratic and
logarithmic divergences as well as the finite piece in complexity differ in the two frames
related by a Lorentz boost.

4 Subregion volume complexity

The volume complexity computed in the last section was unable to capture the distinguishing
signatures of lorentz violation form nonlocality as far as the type of UV divergences appearing
was concerned. In the hope that the subregion complexity might have something more to
tell us about the differences between signatures of nonlocality and Lorentz violation, in this
section we explore the features of subregion volume complexity for a boundary subregion of
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size L. To this end we have to focus our attention to the portion of the maximal volume
slice which is contained within the Ryu-Takayanagi (RT) surface (curve) homologous to the
aforementioned boundary spacelike interval (of size L) following the prescription of [67].

First we briefly review the construction of the RT surface in the dimensionally reduced
2 + 1-d bulk gravity background, which is a codimension 2 surface in the bulk, homologous
to the boundary subregion. The volume functional on a codimension-2 slice (in this case a
curve) is obtained by looking at the constant time section of the U = U(x) surface.

ds2 =
(
kl2s

U ′2

U2 + h (U)
(
1− f (U) (ε+ + ε−)2

))
dx2, (4.1)

where, the prime denotes the derivative with respect to the parameter x parameterizing
the RT curve. In the string frame, this co-dimension-2 surface has the following volume
functional, which in the present case turns out to be the length of the curve∫

dxL
(
U (x) , U ′ (x) , x

)
= 1
U

√
kU ′2l2s (kλU2 + 1) (kU2λ′ + 1) + kU4 (kU2µ+ 1).

(4.2)

where, the primes over the quantities denotes their derivative with respect to x. Next,
one has to minimize this string frame length functional to obtain the RT curve. However,
instead follow the procedure of [2] and start by analyzing the integrals of motion. The
condition that lagrangian is independent of time, gives us the first integral of motion

c1 = ∂L
∂t′

(= 0), (4.3)

Since the lagrangian is cyclic in parameter x, the corresponding “hamiltonian” should
be conserved:

c2 = U ′
∂L
∂U ′
− L,

= −kU3 (kU2µ+ 1
)√

kU ′2l2s (kλU2 + 1) (kU2λ′ + 1) + kU4 (kU2µ+ 1)
,

= −
√
kU0

√
kU2

0µ+ 1,

(4.4)

c2 being a constant, we have used the boundary conditions at x = 0 to evaluate c2, i.e.
U(0) = U0 and U ′(0) = 0 to evaluate it.

Solving for U ′(x) and choosing the positive root,

U ′ (x) =
U2√kµU2 + 1

√
kµ
(
U4 − U4

0
)

+ U2 − U2
0

U0ls
√

(kλU2 + 1) (kλ′U2 + 1)
√
kµU2

0 + 1
. (4.5)

To obtain the subregion size we integrate the above equation by specifying the appropriate
limits of integration. ∫ x

0
dx′ =

∫ U

U0

dŨ

Ũ ′(x)
. (4.6)
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After the integration limits had been specified, the subregion size is given as the function of
the turning point U0 by:

L =
∫ ∞
U0

dU
dU

U ′(x) (4.7)

If we choose to look at deep linear dilatonic region, (kλU2 � 1) we obtain a simplification:

L = π
√
kλλ′ls

2√µ +O

( 1
U2

0

)
. (4.8)

We can analytically solve for L only perturbatively, but the characteristic features of
subregion length in the linear dilaton region are immediately obvious. As we move U0 closer
to the boundary, L asymptotes to a constant value:

Lc = π
√
kλλ′ls

2√µ . (4.9)

This behaviour is typical of the theory having a Hagedorn phase transition as had already
been alluded to before in the literature [2] in the context of the study of entanglement
entropy using the 3 + 1-d dual bulk background. (The critical length turns out to be
the same).

We now perform some sanity checks by reproducing established results for different
special cases from the general form equation (4.7):

• AdS (Case λ = ε± = 0): the simplest of the all is the pure AdS geometry which has
been the subject of an extensive study for which, the relation between the subregion
length and the turning point is well known:

L = 2ls
U0
. (4.10)

• WAdS (Case λ = ε+ = 0): the next case is when only the JT coupling is turned
on. This case had also been thoroughly investigated and the gravity dual is warped
AdS (WAdS) spacetime [87].

∫ L/2

0
dx
′ =

∫ ls
ε

U0
dU

U0ls
√

1− kU2
0 ε

2
−

U2
√

1− kU2ε2−

√
U2 − U2

0 + kε2−(−U4 + U4
0 )

(4.11)

⇒ L = 2ls
U0

+ 2kU0lsε
2
− ln

( 2ls
U0ε

)
+O

(
ε4−

)
. (4.12)

Upon turning off the coupling (ε− → 0), one simply recovers the pure AdS result.

• M3 (Case ε+ = ε− = 0): when only TT coupling is turned on,

∫ L/2

0
dx′ =

∫ ls/ε

U0
dU

U0ls
√
kλU2 + 1

√
kλU2

0 + 1

U2
√(

U2 − U2
0
) (
kλ
(
U2 + U2

0
)

+ 1
) ,

L = 1
2π
√
kλls +O

( 1
U2

0

)
,

(4.13)
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we recover the result already encountered earlier in [59].

Alternatively, treating coupling as the perturbation parameter,

L = 2ls
U0

+ k2λ2U3
0 ls ln

( 2ls
U0ε

)
+O

(
λ3
)
. (4.14)

With λ→ 0, we again recover the AdS result.

Thus we have successfully reproduced the features of the RT curves for the special
cases of the pure AdS, warped AdS and theM3 from our general formula relating the RT
curve turning point and the subregion length (4.7). We will use this relation to obtain the
expression for the subregion volume complexity next. This will be done numerically, since
the analytic expressions can only be obtained perturbatively. Since we are not interested in
perturbative answers, we will do this exactly but numerically. Just as we have done for the
RT curve, before presenting the final results for the general case, we first perform sanity
checks by studying various special cases where the effects of locality and Lorentz violation
are removed and comparing those expressions to existing results in the literature obtained
in the contexts where the boundary dual is a local CFT2, instead of an LST2.

4.1 Subregion volume (complexity) for λ = ε± = 0: Poincare patch of AdS3

The first check is the maximal volume corresponding to the subregion size (V(L)) for the
simplest of the cases — pure AdS2+1. This can be evaluated analytically exactly. The
induced metric on a codimension-1 submanifold of a constant time slice is

ds2 = kl2s
z2

(
dz2 + dx2

)
. (4.15)

Then subregion volume is,

V(L) =
∫ ls/ε

0
dz

∫ x(z)

0
dx′e−2(Φ(z)−Φ∞)√γ,

= kl2s

(
L

2ε −
π

2

)
.

(4.16)

The linear UV divergence is expected of any lorentz covariant local CFT in one spatial
dimension. This is a well known result [67].

4.2 Subregion volume complexity ε± = 0: TT deformation orM3

The next case we treat is a new result, although appropriately it belongs to the subject matter
of the preceding work [1] on pureM3 complexity. Since the subregion complexity calculation
was omitted there, for the sake of completeness, we reproduce here the corresponding result
for subregion complexity. In this case, the pullback of the ambient metric on codimension-1
surface bounded by the RT curve for the pureM3 case is:

ds2 = kl2s
dU2

U2 + h(U)dx2. (4.17)
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Figure 2. Subregion volume complexity (CV ) vs. subregion size (L) graphs for TT deformed CFT2
(LST) for different values of the deformation parameter (TT coupling) λ exhibiting Hagedorn phase
transition. The critical suregion size at the transition point increases monotonically with λ.

The volume corresponding to this subregion of the (maximal volume slice) as the function
of the turning point U0 is given by

V =
∫ ls/ε

U0
dU

∫ x(U)

0
dx e−2(Φ(U)−Φ0)√γ,

= kls

∫ ls/ε

U0
dU
√

1 + kλU2
∫ U

U0

dŨ

Ũ ′(x)
.

(4.18)

We have to eliminate U0 in favor of L to express the maximal volume in terms of subregion
length. However if we insist on analytical expression, then the inversion can only be achieved
iteratively or perturbatively. In order to not compromise on precision, we instead perform the
calculations numerically to illustrate the quantitative features of the subregion complexity.

In figure 2 we present the numerical plots demonstrating the dependence of complexity
(modulo the factor of 8πGN

√
kls) on the subregion length L for three different values

(differing orders of magnitude) of λ, the TT deformation coupling parameter. All plots
display the following universal traits

• The subregion volume complexity is a monotonically increasing function of the
subregion size.

• The subregion volume complexity undergoes a sharpe (phase) transition as the
subregion size is increased beyond a certain critical size as depicted by the presence
of a kink in each of the plots.

• Once the subregion size is larger than the critical subregion (kink), the subregion
volume complexity grows linearly with subregion size. This is characteristic of the
AdS geometry as pointed out in the previous subsection 4.1. The RT curve extends
deep into bulk where the geometry is close to AdS3.

• The parabolic portion of the curve, for subregion size (length) is less than the critical
length, pertains to the linear dilaton region because that is where the subregion size
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slowly approaches to a constant value Lc regardless of the position of the turning
point U0 of the RT curve. The RT curve here remains stuck mostly in the deep UV
region i.e. near the boundary.

The linear growth of the complexity with the subregion size when the subregion size is
larger then the Hagedorn scale (see next section for more details) is plausible because in
this situation the LST behaves more like a local CFT and the number of degrees of freedom
in the Lorentz covariant local theory can be thought of as uniformly distributed along
the boundary subregion. The kink signifies the termination of the linear dilaton geometry
and bulk being subsequently taken over by the AdS geometry. It will turn out that same
universal features will emerge when we introduce Lorentz violating effects in the system
i.e. when the couplings ε± are nonzero. In order to avoid repetition, we will leave further
quantitative discussion to the next section where we tackle the case when Lorentz violating
effects are turned on.

4.3 Subregion volume complexity for nonzero λ, ε±: TT , JT and JT LST

Armed with the hints and insights from the previous sections for the various subcases (i.e.
pure AdS andM3), we are now ready to tackle the most general case with both the locality
violating, and Lorentz violating couplings turned on and obtain the general characteristics
for the subregion volume complexity. As was done in the previous section, we first record
the pullback of the ambient metric on codimension two maximal volume surface, namely
the constant t surface, bounded by RT curve for the general case of the nonlocal as well as
both of the Lorentz violating couplings turned on:

ds2 = kl2s
dU2

U2 + h (U)
(
1− f (U) (ε+ + ε−)2

)
dx2. (4.19)

The maximal volume arising from the above geometry is given by:

V =
∫ ls/ε

U0
dU

∫ x(U)

0
dxe−2(Φ(U)−Φ0)√γ,

= kls

∫ ls/ε

U0
dU
√

1 + kµU2
∫ U

U0

dŨ

Ũ ′(x)
.

(4.20)

For the reasons alluded to earlier in the previous subsection, we again opt for a numerical
approach to uncover the features of subregion complexity. The corresponding plots for
V vs L (note that modulo the factor of 8πGN

√
kls, the complexity CV and maximal slice

volume V are the same) for various values of the Lorentz violating couplings against the
fixed value of λ = 170, are appended below in figure 3. In all the plots we notice some
features which are in common with theM3 (TT deformation) set up, namely

• The subregion volume complexity is a monotonically increasing function of the
subregion size

• The subregion complexity undergoes a phase transition as the subregion size is varied.
For small subregions, we encounter a parabolic growth up to a kink at some critical
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Critical subregion size for complexity for λ = 170
Lorentz violating cou-
plings (ε+,ε−)

Entanglement entropy
transition point length
Lc (in units of AdS ra-
dius)

Subregion complexity
transition point from
graphs (in units of AdS
radius)

(0,0) 20.48 20.47
(6,0) 23.06 23.05
(12,0) 52.37 52.33
(7,6) 28.96 28.94
(10,3) 144.82 144.9
(13,0) 267.03 266.84

Table 1. Table comparing the critical subregion size for phase transition in Entanglement entropy
from theory and the critical subregion size for subregion volume complexity extracted from the plots.

subregion length, followed by the linear growth which is characteristic of dual AdS
geometry in the deep IR. The parabolic region of the curve corresponds to the UV
region i.e. linear dilaton geometry because that is where, the subregion length slowly
approaches zero.

• For fixed λ (i.e. nonlocality scale held fixed), the critical subregion size at the phase
transition point in the plots increases (shifts rightwards) as the Lorentz-violating cou-
pling ε+ (ε−) is increased. Interestingly the critical subregion size changes (increases)
even if just one of the couplings ε+ is made nonzero. We will keep this in mind when
we are looking at the static frame complexity where it will turn out that the critical
subregion size is a function of the product ε+ε−.

In order to facilitate comparisons, its convenient to scale all the diagrams in a single plot by
plotting the logarithms of complexity (modulo the factor of 8πGN

√
kls) and the subregion

size L. From the graphs, one can directly appreciate the appearance of the transition
point Lc where the complexity characteristics transitions sharply from parabolic to the
AdS like linear dependence. A phase transition in the holographic entanglement entropy
as a function of subregion size for this same system has been shown in [2]. However,
what is interesting is that, complexity not only undergoes an analogous phase transition,
but that the subregion complexity phase transition occurs at the exact same critical
subregion length as that of the entanglement entropy phase transition, as evident
from table 1 displaying the numerical value of the critical length extracted from the plots
and the theoretical expression for the critical subregion length for entanglement entropy
(refer to eq. (4.9)).

This fact that the subregion complexity undergoes a phase transition for the exact
same the transition point (critical region size) as entanglement entropy, lends credence
to the claim that complexity is a very effective physical observable (perhaps more useful
that entanglement entropy) capable of detecting phase transitions (in the present case the
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Figure 3. Subregion volume complexity (CV ) vs. subregion size (L) graphs for TT , JT & JT

deformed CFT2 (LST) for fixed values of the deformation parameter (TT coupling) λ = 170
exhibiting Hagedorn phase transition. The last plot is a log-log graph clearly displaying the scaling
exponents (slopes).
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Hagedorn phase transition) which perhaps cannot always be captured by usual field theory
probes such as correlation functions of local operators.

4.4 Subregion volume complexity in static frame

Lorentz violating effects are our principal object of interest in this paper and in particular
for the system under study i.e. LST our aim is to disentangle the effects of Lorentz violating
from nonlocality. One way to perhaps isolate the characteristics of complexity corresponding
to Lorentz violating effects in field theories is to examine complexity in different inequivalent
Lorentz (boosted) frames. With such hope in this section we compute subregion complexity
in a boosted frame (static frame) eq. (3.14). To determine the RT curve we will first need
the pullback (γab) of the static metric on the one dimensional prospective RT curve is

ds2
γ =

(
kl2s

U ′2

U2 + f(U)
)
dX2. (4.21)

The length functional for this curve, parameterized as U = U(X), in the string frame is
given by∫

dX L
(
U(X), U ′(X), X

)
=
∫
dXe−2(Φ−Φ0)√γ =

∫
dX

kU2√
f(U)h(U)

√
kl2s

U ′2

U2 + f(U).

(4.22)

Employing the same set of steps employed in the previous section we first compute the
integrals of motion.

C2 = U ′
∂L
∂U ′
− L = − kU3√f(U)√

h(U)
√
U2f(U) + kU ′2l2s

= − kU3√kU2λ′ + 1√
kU ′2l2s (kλU2 + 1) + kU4

(4.23)

Integrals of motion after applying boundary conditions U(0)) = U0 and U ′(0) = 0 at the
turning point to the above equation is

C2 = −
√
kU0

√
kU2

0λ
′ + 1. (4.24)

Equating and solving for U ′(X) gives

U ′ =
U
√
f(U)

√
U4h (U0)− U4

0h(U)
√
kU2

0
√
h(U)ls

(4.25)

Inverting this, the subregion size can be expressed in terms of the turning point U0 as

L = 2
∫ L/2

0
dX = 2

∫ ∞
U0

dU

U ′
= 2
√
kU2

0 ls

∫ ∞
U0

√
h(U)

U
√
f(U)

√
U4h (U0)− U4

0h(U)
(4.26)

In the linear dilaton region, (kU2 � 1), one can perturbatively solve the above equation
to obtain

L = 1
2π
√
kλls +O

(
1/U2

0

)
(4.27)
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This limiting value of L in the static frame, named L′c gives critical length of the subregion
at the point of Hagedorn phase transition

L′c = 1
2π
√
kλls (4.28)

This is the critical subregion size where entanglement entropy (RT curve) undergoes the
Hagedorn phase transition in the static frame. An important thing to note here that
despite the Lorentz violating couplings, ε±, being turned on this leading order expression
is independent of ε±, and instead depends just on the nonlocality parameter λ. The issue
of whether this is true to all orders will be settled After determining the RT curve, now
we determine the subregion complexity as the string frame area of the co-dimension one
maximal area spacelike surface bound from the inside by the RT curve. The (pullback)
metric on the maximal area (spacelike) hypersurface is:

ds2 = kl2s
dU2

U2 + f(U)dX2. (4.29)

Thus the maximal volume arising from the above hypersurface bounded between the RT
curve and the boundary is:

V =
∫ ls/ε

U0
dU

∫ X(U)

0
dX̃e−2(Φ(U)−Φ∞)√γ = kls

∫ ls/ε

U0
dU
√

1 + kU2λ′
∫ U

U0

dŨ

Ũ ′
(4.30)

We again opt for exact but numerical means in computing the subregion volume (complexity)
instead of an analytic but perturbative (approximate) approach. The plots for subregion
complexity vs. subregion size for various representative values of the Lorentz violating
couplings ε± and a fixed value the TT coupling λ = 170 are displayed in figure 4.

Here we list the salient features of these plots:

• Subregion volume complexity is a monotonically increasing function of the subregion
size and it undergoes a phase transition as the subregion size is varied (just like subre-
gion complexity in the stationary frame) beyond a certain critical length, which turns
out to be L′c of eq. (4.28), i.e. the same critical subregion size at which entanglement
entropy undergoes a phase transition (refer to table 2 ).

• For subregion size less than the critical size, L′c, complexity grows quadratically with
subregion size while for subregion sizes greater than L′c, complexity grows linearly
as evident from the log-log plot. The physics of this is the same as in that of the
stationary frame — for small subregion sizes the RT curve is confined to the near
boundary linear dilaton region, i.e. the deep UV regime of the boundary theor which
is a nonlocal theory (LST on scales comparable to the string length scale), while for
large subregion sizes the RT curve is well inside the bulk where the geometry is AdS,
i.e. the deep IR regime of the boundary theory — LST on length scales far larger
than the string scale and hence can be regarded as local CFT.

• Unlike in the stationary frame, in the static the critical subregion size at the transition
point, extracted from the location of the kinks in the plots, does not change as the
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(f) ln CV vs. lnL for λ = 170.

Figure 4. Static frame subregion volume complexity (CV ) vs. subregion size (L) graphs for TT ,
JT & JT deformed CFT2 (LST) for fixed λ = 170 exhibiting Hagedorn phase transition. The last
plot is a log-log graph clearly displaying the scaling exponents (slopes).
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Location of the critical length L′c for λ = 170
Lorentz violating cou-
plings (ε+,ε−)

Critical suregion size
for entanglement en-
tropy (EE) L′c computed
from eq. (4.28)

Critical subregion size
for subregion complexity
in static frame extracted
from CV -L graphs fig-
ure 4

(0,0) 20.48 20.47
(6,0) 20.48 20.48
(12,0) 20.48 20.49
(7,6) 20.48 20.48
(10,3) 20.48 20.48
(13,0) 20.48 20.48

Table 2. Table comparing the critical subregion size for phase transition in Entanglement entropy
from theory and the critical subregion size for subregion volume complexity extracted from the plots
in the static Lorentz frame.

Lorentz violating couplings ε± are varied while keeping the nonlocality scale λ fixed.
Refer to the table This strongly hints that perhaps the static frame complexity is a
probe which is better suited to isolate or extract the effects of nonlocality while the
complexity in the stationary frame manifests a mixed characteristic of both nonlocality
and Lorentz violation.

• When either one or both of Lorentz violating couplings ε± vanish, their graphs
overlap to overlap. This is potentially due to the fact that the static frame subregion
complexity becomes effectively the function of λ′ = λ− 4ε+ε−, so that it is insensitive
to distinguish between the various values of λ′ for vanishing value of the product ε+ε−.
So the characteristic signatures of Lorentz violation in the divergence structure is the
one which is accompanied by the coefficient ε+ε−.

As before, in the case of stationary frame subregion complexity, here we find it instructive
to supply the table listing the critical subregion size from the plots for various cases of
Loerntz violating couplings at a fixed λ and compare it with the perturbatively calculated
analytical estimate eq. (4.28). It is evident form table 2 subregion volume complexity
displays a phase transition at the exact same critical subregion size as that of entanglement
entropy in the static frame. Thus, we can echo the same message from the end of the
previous section regarding the utility of complexity as a physical probe for detecting phase
transitions (perhaps even in those circumstances where other probes such as correlators of
local operators might fail). However, unfortunately as long as λ remains nonzero it appears
one cannot isolate the effects of Lorentz violation from nonlocality in this system (LST) in
this static frame. In fact, to the contrary, what we have seen in this exercise is that even
if ε± are not both zero, but if the product ε+ε− vanishes, then the subregion complexity
phase transition point is a pure function of the nonlocality scale λ i.e. in this boosted frame,
the phase transition is independent of the Lorentz violating effects.
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5 Holographic volume complexity of null WAdS3

In this section we consider a special limit in the parameter space of the irrelevant couplings
of the LST, for which the bulk dual is the null Warped AdS geometry, which is smoothly
realised by sending λ→ 0 and one of the Lorentz violating coupling (say ε−) to zero. In
this limit, the (stationary frame) bulk metric eq. (2.17) becomes,

ds2 = kl2s
dU2

U2 − h(U)
(
1 + f(U)ε2−

)
dt2 + 2h(U) f(U) ε2− dt dx+ h(U)

(
1− f(U) ε2−

)
dx2

(5.1)
The Lorentz parameter ε− can be identified with the warping parameter ε−. The boundary
theory in this case is a warped CFT [88, 89], a highly nonlocal Lorentz violating field theory
with the CFT symmetry algebra now reduced to a semidirect product of Virasoro (left)
and a U(1) Kac-Moody algebra (right). In particular, for the null warped WAdS3, the dual
warped CFT is not UV complete, beyond a certain critical energy (deep UV) the theory is
nonunitary since the energy spectrum is complex [61]. Although correlation functions are
hard compute in this warped CFT, we demonstrate that this feature (UV incompleteness)
easily captured by complexity.

5.1 Volume complexity

The maximal volume spacelike slice does not need to be worked out afresh as it can treated
as a special case of the stationary frame metric of the generic TT , JT -JT deformed bulk
geometry. However this limit could be singular so instead of indirectly evaluating the volume
(complexity) by taking the naive λ, ε+ → 0 limit of the maximal volume expression of the
string frame (3.22) (or complexity (3.23)) we compute the integral directly,

VΣ(T ) = Lxkls

∫
dU
√

1− ε2−kU2 = Lxkl
2
s

2ε

√
1− kε2−l

2
s

ε2
+
√
klsLx
2ε−

sin−1
(√

kε+ls
ε

)

⇒ CV = Lx
√
kls

2GN ε

√
1− kε2−l

2
s

ε2
+ Lx

2ε−GN
sin−1

(√
kε−ls
ε

) (5.2)

Here, we see that the resultant complexity, unlike for the generic case, (3.9), fails to remain
real unless ε >

√
kls ε−. Thus the UV cut off cannot be made arbitrarily small. This

validates our faith that complexity successfully captures the UV incompleteness of the
warped CFT dual to null warped AdS3. In the limit of a small warping parameter ε− (to
be precise expanding in ε−

√
kls/ε), the leading term is linearly divergent,

CV ∼
Lx
√
k ls

GN ε
−
Lx

(√
kls
)3
ε2−

6GN ε3
(5.3)

i.e. like a local field theory in one space dimensions (or pure AdS bulk)! Again this is a
reflection that the UV regime (near boundary region) where the nonlocality effects kicks in
is excluded from consideration. The complexity characteristics of Warped CFT in general
from both the holographic and field theory methods has been taken up in greater detail in
a separate paper [90].
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5.2 Subregion volume complexity for null WAdS3

Finally we work out the subregion volume complexity for the interesting special case of null
warped AdS3. In this case first the result will be obtained analytically in the approximation
of small warping ε− to underscore the fact that subregion complexity is a better probe
of nonlocality in this example compared to other probes such as subregion entanglement
entropy. Then the exact result will be presented by evaluating the subregion complexity
integral numerically without any approximations. First, recall that In this case, the turning
point of the RT surface (curve) in terms of the subregion size is already worked out by
inverting (4.11),

U0 = 2ls
L

+ 8kl3sε2−
L3 ln

(
L

ε

)
+O

[
ε4−

]
(5.4)

In terms of the turning point, the subregion volume complexity calculation of null WAdS3
is given by the nested integral,

CV =
√
kls

8πG

∫ ls
ε

U0
dU
√

1−kU2ε2−

∫ U

U0
dŨ

U0
√

1−kU2
0 ε

2
−

Ũ2
√

1−kŨ2ε2−

√
Ũ2−U2

0 +kε2−
(
−Ũ4+U4

0

) (5.5)

=
√
kls

8πG

∫ ls
ε

U0

√U2−V 2

UV
−

kU
√
U2−U2

0

2U0
−kU0 ln

U+
√
U2−U2

0

U0

ε2−+O
(
ε4−

)dU
(5.6)

=
√
kls

8πG

[(
1+ 4kl2s

L2 ε2−

)
L

2ε−
kl2sL

12ε3 ε
2
−−

π

2O
(
ε4−

)]
(5.7)

In order to get eq. (5.7), we have expanded the integrands in equation (5.5) in a Taylor
series with respect to ε−. In the above expression of CV , we can clearly see that if we take
the warping factor to be zero, equation (5.7) reproduces the subregion complexity for the
pure AdS3. For, pure AdS3, we recover the expression for subregion volume complexity [67],

CV =
√
kls

8πG

[
L

2ε −
π

2

]
(5.8)

Another very important feature of this result (5.7) is that the subregion CV (the divergence
structure) reflects the nonlocal nature of the dual warped conformal field theory unlike
the holographic entanglement entropy in the appendix D. While we are using a string
background with all NS-NS sector fields turned on in the bulk, this local theory like
divergence structure (linear divergence) of EE for Warped AdS3 has been reported using
other holographic backgrounds where the bulk theory is either topologically massive gravity
(TMG) [91, 92] or new massive gravity (NMG) [93]. Thus in this example, we see that
subregion complexity is a more sensitive or refined probe of nonlocality and Lorentz violation
compared to entanglement entropy.
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Figure 5. Subregion Volume Complexity vs L plot for null warped AdS3. For this plot we have set
k = 104, ls = 10−2 and ε = 10−5. Here, the y-axis represents Complexity∗ = Complexity × 8πGN
while the x-axis is the subregion size L in units of the AdS radius (

√
kls = 1.0). The orange curve is

the plot for pure AdS3 while the blue curve is the plot for null WAdS3.

Next we present the plot7 of Subregion CV as a function of L in the figure below
obtained by direct numerical evaluation of (5.5).

The value of ε− = 10−6 is used for this plot because from eq. (5.2), it is clear that the
value of ε− has to be smaller than the value of ε. Also note that here, the y-axis is actually
complexity scaled by the universal constant 8πGN . We summarize the salient features of
this plot

• Subregion complexity monotonically increases as a function of the subregion size.

• Unlike in the case of generic nonvanishing λ, ε+ the subregion complexity does not
undergo any phase transition.

• The effect of nonlocality or Lorentz violation is very small in general and only
prominent when the subregion is orders of magnitude smaller than the AdS radius.
For larger generic subregion sizes the WAdS subregion CV coincides with that for pure
AdS3 (this part needs to be discussed later.)

• Sensible plots are only obtained when the cut off ε > ε−.8 This is again a reflection of
the fact that the dual boundary theory is not a UV complete theory, it is best thought
of as an effective theory with the spectrum truncated at high energies.

7We have used parametric plot function in mathematica here and used eq. (4.11) for the expression
of L as,

L =
∫ ls

ε

U0

dU
2U0ls

√
1− kU2

0 ε
2
−

U2
√

1− kU2ε2
−

√
U2 − U2

0 + kε2
−(−U4 + U4

0 )
(5.9)

8To be precise one must keep ε > ε−
√
kls but here we have set

√
kls = 1 so effectively we must keep ε− < ε.
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Figure 6. Penrose diagram of the dual bulk geometry with the Wheeler-deWitt (WdW) patch
shaded in pink for the boundary time T . The brown curves are timelike surfaces which can be
continuously deformed into the null boundaries of the WdW patch by means of a regulator parameter.

One might ask whether one can switch to the static frame and evaluate the complexity
of LST dual to null warped AdS3 in the that frame just like it was done in the case of
generic JT , JT couplings to demonstrate/check for boost symmetry violation. However in
this regard we would like to point out that boost transformation ((3.13)) is singular in the
null warped AdS3 limit, i.e. when ε+ → 0. Thus neither such a boost transformation and
by extension, nor does a static frame exist for null warped AdS3. In this special point of
the parameter space, we will have to be content with the volume complexity, subregion
volume complexity and action complexity in the stationary coordinate system exclusively.

6 Action complexity

In this section we compute the action complexity, CA, for the LST obtained by TT , JT , JT
deformation of a CFT2 using the holographic dual metric, dilaton and Kalb-Ramond
background. Action complexity is an alternative prescription of holographically evaluating
the dual boundary theory complexity which offers distinct advantages over volume complexity
in that (A) no arbitrary length scales appearing in its definition, just the fundamental
constants ~ and GN , and (B) one does need to solve a variational problem which can
be challenging exercise in general for Lorentzian signature spacetimes. Instead one just
performs (action) integrals over the WdW patch. The WdW patch is defined as the union
of all spacelike hypersurfaces in the bulk anchored at a fixed timeslice on the boundary:

CA = SWdW

π~
. (6.1)

The Penrose diagram of the dual bulk geometry (suppressing the transverse boundary
direction) is identical to that of theM3 spacetime, presented in our previous work [1]. For
completeness, we reproduce the Penrose diagram here with the WdW patch displayed in
pink The bulk action in the string frame is:
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S = 1
16πGN

∫
M
dd+1X

√
−ge−2(Φ−Φ0)

(
R+ 4gµν∂µΦ∂νΦ− H2

12 − 4Λ
)

+ 1
8πGN

∫∑
∂M

√
γ (· · · ) + 1

8πGN

∫
∩∂M

√
h (· · · ) .

(6.2)

The (· · · )’s represent the supplementary surface/boundary (∪∂M) terms and joint (∩ ∂M)
terms necessary for the variation of the action to be well defined, as well as reparametrization
invariant. Since (some) boundaries of the WdW patch are null, the usual GHY terms are
not the suitable ones. The issue of determining the boundary terms for null boundaries
was settled in [50]. However, we will take an alternative prescription spelled out in [52]9
where the null boundaries of the WdW patch are first deformed into a single smooth
timelike surface using a deformation parameter (regulator), and then we are free to use
the usual GHY term. After working out the GHY term we remove the regulator and
obtain the result for the null WdW boundary. This affords an enormous simplification
as it eliminates the necessity to compute the joint terms (i.e. terms in the action from
joints or edges along which two null surfaces intersect) as well as preserving diffeomorphism
and reparametrization invariance of the GHY contribution from beginning to end. Our
regularization reproduces the same results as the prescription of [50] for the well known
cases of pure AdS, AdS-Schwarzschild, AdS-RN etc. but the status of the equivalence of
these two prescriptions for arbitrary generic geometries is yet unexplored. In general the
issue of different regularization prescriptions is still being investigated e.g. for a comparison
of the two regularizations introduced in [69], see [73, 74].

Just to remind the reader, that unlike for theM3 case, here one has to make a choice:
one can either work with the full 4 dimensional bulk action, or one might dimensionally
reduce (over the y-direction fiber) and work with an effective 3 dimensional bulk action.
While computing the entanglement entropy for this system, the authors of [2] found that the
4d and 3d results disagree and they opted to work with the full 4d bulk. Happily for us, it
turns out that both 4d and 3d actions deliver identical results for complexity, provided one
does not drop the total derivative terms in the dimensionally reduced action. Conventionally
in the literature these total derivative terms are dropped since they do not contribute to
the classical equations of motion. However while computing complexity these terms do
contribute and one cannot discard them if the complexity before and after dimensional
reduction has to match. In appendix section B, the KK reduction is reviewed and the exact
match between the 4D and 3D actions is carried out after retaining all total derivative
terms in the dimensionally reduced (3D) action.

S(3D) = 1
16πGN

∫
d3x
√
−g e−2(Φ−Φ0)

(
R− (∂σ)2 − 2�σ − 1

4e
2σF2 − 4Λ

+ 4gµν∂µΦ∂νΦ + 4gµν∂µΦ∂νσ

− 1
12H̃

2 − 1
4e
−2σF̃ 2

)
. (6.3)

9See also [51].
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It is evident that after dimensionally reducing to 3 dimensions the KK scalar, σ contributes
to the action a term which has a second order derivative, namely �σ (This is a total
derivative term which is usually dropped). This will also to lead an extra contribution to
the surface terms (GHY terms) in the string frame, apart from the usual GHY surface term
arising from the metric. The full surface term contribution for the 2 + 1-dimensional bulk
in string frame is

SGHY = 1
8πGN

∫
d2x
√
−γ e−2(Φ−Φ0) (K + nµ∂µσ) (6.4)

For the derivation, the reader may refer to appendix C. For the action complexity calculation,
in the first order of business is to determine the WdW patch, i.e. the light cones emanating
from the boundary timeslice. However, solving the WdW patch is very complicated in
the stationary frame coordinates (2.17) where constant t surfaces are not orthgonal to the
vector ∂/∂t. Life is much simpler in the static frame coordinates (3.14) as the constant
T surfaces are orthogonal to the time direction vector ∂/∂T . So we perform the action
complexity calculation exclusively in the static frame (3.14).

6.1 Volume (EH) pieces of the onshell action

In this section we present the volume piece contributions (“EH terms”) to the action
complexity using the dimensionally reduced 2 + 1-d background. As mentioned previously,
the evaluation of the gravitational action (“EH terms”) in the string frame in 4 dimensional
and the dimensionally reduced 3 dimensional backgrounds give identical results, for this
equivalence, the reader is referred to the section B.2.

First we have to determine the WdW patch. As we have mentioned earlier, the
calculation is most straightforward in the static coordinates (T,X,U) because the lightcones
are easy to determine. The Wheeler-deWitt patch (WdW) for the boundary time T = T∗ is
bounded by the null rays

dt± = ∓
√
k ls

1
U
√
h(U)

dU, (6.5)

obeying boundary condition, T (U →∞) = T∗. The T -integrals in the volume terms (6.3)
(Einstein-Hilbert plus matter type terms) can be readily done:

T+(U)− T−(U) = 2
√
k ls

∫ ∞
U

dŨ
1

Ũ
√
h(Ũ)

. (6.6)

This integral is divergent and hence we will modify our WdW patch to begin at a UV-cutoff
surface U = ls/ε instead of spatial infinity:

T+(U)− T−(U) = 2
√
k ls

∫ ls/ε

U
dŨ

1

Ũ
√
h(Ũ)

. (6.7)

Having determined the WdW patch, we list the various bulk action term contributions (6.3)
along with their UV and IR limits are listed as follows.
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The Ricci scalar sector term: these terms are from the 4 dimensional Ricci scalar or
equivalently in 3 dimensions from the full KK reduced sector derived from the 4 dimensional
metric. For details the reader is referred to section B.2.4.

SR ≡
1

16πGN

∫
WdW

d3x
√
−g e−2(Φ−Φ0)

(
R(3) − 2 (∂σ)2 − 2�σ − 1

4e
2σF2

)
,

= Lxk

8πGN

∫ ls/ε

0
dU U

(
8λ′kU2 − 6

)
(λ′kU2 + 1)2

∫ ls/ε

U
dU ′

1
U ′
√
h(U ′)

.

(6.8)

The above integral can be performed analytically but the full expression is a bit cumbersome.
In the deep UV (i.e. when ε/βH � 1), SR takes the following form

lim
ε/βH�1

SR =− cLx
6β′H

(7 + 8 log 2) log
(
β′H
πε

)
+ 2cLx

3β′H
log2

(
β′H
πε

)

+ Lxc

18β′H
(π2 + 24 log 2) +O

( ε

β′H

)2
 .

In the IR (i.e. when ε/βH � 1), SR takes the form

lim
ε/βH�1

SR = − cLx
4πβ′H

β′H
ε

+ 7cLx
288π3β′H

(
β′H
ε

)3
+O

((
β′H
ε

)4)
. (6.9)

The dilaton kinetic term in the action: we refer the reader to section B.2.2 for
the details.

SΦ ≡
1

16πGN

∫
WdW

d3x
√
−g e−2(Φ−Φ0)4gµν∂µΦ∂νΦ,

= λ′2k3LX
2πGN

∫ ls
ε

0
dU

U5

(1 + λ′ kU2)2

∫ ls
ε

U

dU ′

U ′
√
h(U ′)

.

(6.10)

In the UV regime, SΦ takes the following form:

lim
ε�β′H

SΦ = cLx
24π2β′H

(
β′H
ε

)2
+ (3 + 8 ln 2) cLx6β′H

ln
(
β′H
πε

)
− 2cLx

3β′H
ln2
(
β′H
πε

)

+
(
3− 2π2 − 48 ln 2

) cLx
36β′H

+O

(
ε

β′H

)
..

(6.11)

One might be a bit alarmed at the appearance of the “log squared” divergences in the
expressions (6.1) and (6.11), which did not arise in the volume complexity cases but as it
will turns out, such log squared divergent contributions will cancel out among each other.

In the IR, SΦ takes the form

lim
ε/βH�1

SΦ = 0 +O
(
β5
H/ε

5
)
. (6.12)
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The cosmological constant term in the action: the details are worked out in sec-
tion B.2.3. Here we present the main results starting from the 3 dimensional action,

SΛ ≡
1

16πGN

∫
d3x
√
−ge−2(Φ−Φ0) (−4Λ) ,

= Lxk

2πGN

∫ ls/ε

0
dU U

∫ ls/ε

U
dU ′

1
U ′
√
h(U ′)

.

(6.13)

In the UV, SΛ takes the following form

lim
ε/β′H�1

SΛ = c

24π2
Lx
β′H

(
β′H
ε

)2
+ c

6
LX
β′H

ln
(
β′H
πε

)
+ c

12
Lx
β′H

+O

(
ε

β′H

)
. (6.14)

In the IR, SΦ takes the form

lim
ε�βH

IΛ = cLx
6πε + cLx

144π3β′H

(
β′H
ε

)3
+O

((
β′H
ε

)5)
. (6.15)

The Kalb-Ramond term in the action: finally the spacetime volume type contribution
from the Kalb-Ramond field in 4 dimensions or the full Kalb-Ramond derived fields in 3
dimensions after dimensional reduction (a Kalb-Ramond two-form field and a Kalb-Ramond
one-form gauge field). The details including the matching before and after dimensional
reduction are worked out in the appendix section B.2.1. The main results starting with the
action piece are presented here,

SH ≡
1

16πGN

∫
d3x
√
−ge−2(Φ−Φ0)

(
− 1

12H̃
2 − 1

4e
−2σF̃ 2

)
,

= Lx
4πGNk

∫
dU

h2(U)
U3

∫ ls
ε

U
dU ′

1
U ′
√
h(U ′)

.

(6.16)

In the UV, SH takes the following form

lim
ε/βH�1

SH = cLx
6β′H

ln
(
β′H
πε

)
+O

(
ε

β′H

)
. (6.17)

In the IR, SH takes the form

lim
ε/βH�1

SH = cLx
12πβ′H

(
β′H
ε

)
− cLx

288π3β′H

(
β′H
ε

)3
+O

((
β′H
ε

)5)
. (6.18)

6.1.1 Action contributions from the null boundaries of the WdW patch

The WdW patch action receives surface contributions (GHY terms) from the boundaries of
the WdW patch. The Poincaré horizon and the two joint terms (intersection of the null
boundaries of the WdW patch with the Poincaré horizon) make vanishing contributions.
The only non trivial contribution comes from the two null boundaries of the WdW patch.

The null boundaries of the WdW patch are defined by

(T − T∗) = ∓
√
klsA(U) ; where A(U) =

∫ U

ls/ε

dŨ

Ũ
√
h(Ũ)

. (6.19)
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However, we will deform the pair of null surfaces to a single smooth timelike surface by
introducing a dimensionless parameter, ε,10

(T − T∗)2

kl2s
− (1 + ε)A2(U) = 0 . (6.20)

Taking differentials of both sides leads to,

h(U)dT 2 = (1 + ε)kl2s
dU2

U2 . (6.21)

Using (6.21), the induced metric on this timelike surface can be written as

ds2 = −εkl2s
dU2

U2 + h(U)(1− 4ε+ε−f(U))dX2 . (6.22)

The negative sign in the first term clearly indicates that this is a timelike surface. The unit
outward normals to the surface (6.20) are,

nT = −(T − T∗)√
(1 + ε)2A2(U)− (T−T∗)2

kl2s

1√
kls
√
h(U)

,

nU = −(1 + ε)A(U)√
(1 + ε)2A2(U)− (T−T∗)2

kl2s

U√
kls

,

nX = 0. (6.23)

The trace of the extrinsic curvature,

K ≡ ∇LnL = ∂Ln
L + ΓLLMnM = ∂Tn

T + ∂Un
U + ΓLLUnU , (6.24)

takes the form
K = 1

√
ε
√
kls(1 + kU2λ)

+ 1
√
ε
√
kls(1 + kU2λ′)

. (6.25)

Thus the GHY term for this surface in the null limit (ε→ 0) is

S∂WdW
GHY = 1

8πGN

∫
∂WdW

d2x
√
−γe−2(Φ−Φ0) (K + nµ∂µσ) ,

= lim
ε→0

Lx
√
k

4πGN

∫ ls/ε

0

dU√
1 + kU2λ′

,

= cLx

3β′H
ln

√1 + β
′2
H

4π2ε2
+ β

′
H

2πε

 .

(6.26)

In the UV, S∂WdW
GHY diverges as

lim
ε/βH�1

S∂WdW
GHY = Lxc

3β′H
ln
(
β
′
H

πε

)
+O

(
ε/β

′
H

)
. (6.27)

In the IR one can write

lim
ε/βH�1

S∂WdW
GHY = Lxc

6πβ′H

(
β
′
H

ε

)
− Lxc

144π3β
′
H

(
β
′
H

ε

)3

+O
(
β
′4
H/ε

4
)
. (6.28)

10This is distinct from the UV regulator, ε.
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Figure 7. Comparison between CV and CA at zero temperature. For large ε/βH , the action
complexity decays much faster than volume complexity.

6.2 Action complexity

Gathering all the pieces, the full on-shell action over the WdW patch is obtained by summing
over the contributions (B.24), (B.21), (6.13), (6.16), and (6.26). In the UV regime or the
linear dilaton region (i.e. when ε/βH � 1), the action complexity (obtained by summing
over the contributions (6.1), (6.11), (6.14), (6.17),and (6.27)) diverges as

CA = Lxc

3π2β′H

[
β′H

2

2πε2 − 2π log
(
β′H
πε

)
+ π +O

(
ε

β′H

)]
. (6.29)

Comparison this action complexity result with the (static frame) volume complexity expres-
sion (3.26) reveals that the leading divergence structure (i.e. the quadratic divergent term)
and the constant term in both cases are identical. The subleading logarithmic divergences
differ by a negative sign. In the IR (i.e. when ε/β′H � 1) the action complexity takes
the form

lim
ε/β′H�1

CA = cLx
18π3β′H

(
β′H
ε

)2
+O

(
β′H

5
/ε5
)
. (6.30)

Thus in pure AdS3 limit, i.e. β′H = 0, the action complexity vanishes. This is in precise
agreement with the analysis performed in [72], a dimensional accident (there is a coefficient
Cd = d − 2 in the pure AdSd+1 action complexity). Unlike the volume complexity, the
action complexity decreases faster. A comparison between volume complexity and action
complexity is presented in figure 7. Thus overall, both the volume complexity and the
action complexity diverges quadratically in the UV (i.e. when ε/βH → 0). However, as
ε/βH increases, the action complexity decreases (much faster than volume complexity)
monotonically eventually going to 0 in the deep IR. This discrepancy can be traced back to
the boundary being 1 + 1 dimensional, the action complexity has a coefficient Cd = d− 2.
But in general it is understood that complexity is arbitrary or ambiguous up to such
numerical factors and in general dimensions the volume and action complexity divergences
will match both in the UV and IR.
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7 Action complexity for null WAdS3

We conclude this work by presenting the results for the action complexity of the null warped
AdS3 defined by the limit λ = ε+ = 0. We cannot taking this (singular) limit directly in
the action complexity expressions e.g. in (6.29), because the static frame does not exist in
this special case. So instead work it out from scratch in the stationary Lorentz frame in
the boundary, for which the dual metric is also stationary. In this case the dilaton field
is simply a constant e2Φ. = g2

s , which points out to the fact the dual boundary theory, a
WCFT has a scale (Weyl) symmetry. The null WAdS3 metric in stationary coordinates is

ds2 = k l2s
dU2

U2 − kU
2
(
1 + kU2ε2−

)
dt2 + 2

(
kU2

)2
ε2− dt dx+ kU2

(
1− kU2ε2−

)
dx2.

To construct the boundaries of the WdW patch for this stationary metric, we first reorganize
the null WAdS3 metric in the form

ds2 = kU2

1− kU2ε2−

[
l2s
(
1− kU2ε2−

)
(U2)2 dU2 − dt2

]
+ kU2

(
1− kU2ε2−

) [
dx+ kU2ε2−

1− kU2ε2−
dt

]2

.

(7.1)
So the light rays (ds2 = 0) are then given by the equations/conditions,

dt2 = l2s
(
1− kU2ε2−

)
(U2)2 dU2,

dx = − kU2ε2−
1− kU2ε2−

dt.

These equations can be simultaneously solved by

t± (U) = T0 ± ls
∫ ls/ε

U
dU

√
1− kU2ε2−

U2 , (7.2)

x±(U) = x0 ∓ k lsε2−
∫ ls/ε

U

dU√
1− kU2ε2−

. (7.3)

Here the ± refer to the future and past directed light rays starting from the cutoff surface
at x = x0, t = T0. The WdW patch boundary at time T0 is then described by the null
surface obtained by the collection of null rays obtained by varying U and x0. Assuming the
range of x is from [−Lx/2,+Lx/2], one sees that for a fixed U ,

dx = dx0.

As a result for the spacetime volume terms in the action (Ricci, cc, Kalb-Ramond piece
etc.) the ranges of integration are ∫

dx =
∫
dx0 = Lx ,

and ∫ t+(U)

t−(U)
dt = 2ls

∫ ls/ε

U
dU

√
1− kU2ε2−

U2 . (7.4)
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7.1 Bulk action terms

The supergravity action we are going to evaluate in the volume is

S = 1
16πGN

∫
dUdtdx

√
−ge−2(Φ(U)−Φ(0))

(
R− 4Λ− 1

12H̃
2 + 4gµν∂µΦ∂νΦ

)
.

Integral measure appearing in the string frame metric turns out to be

e−2(Φ(U)−Φ0)√−g = k3/2lsU .

• Einstein Hilbert term in the action

SEH = 1
16πGN

∫
dUdtdx

√
−ge−2(Φ(U)−Φ(0)) (R− 4Λ) ,

= −
√
kLx

4πGN

∫
dU U

∫ l/ε

U
dU ′

√
1− ε2−kU ′2

U ′2
,

= − cLx

24π
√
kε−ls

√kε−ls
ε

√
1− kε2−l

2
s

ε2
+ sin−1

(√
kε−ls
ε

) . (7.5)

• Kalb Ramond term in the action

SKR = 1
16πGN

∫
dUdtdx

√
−ge−2(Φ(U)−Φ(0))

(
− 1

12H̃
2
)
,

= −Lx
√
k

4πGN

∫
dU U

∫ ls/ε

U
dU ′

√
1− ε2−kU ′2

U ′2
,

= − cLx

24π
√
kε−ls

√kε−ls
ε

√
1− kε2−l

2
s

ε2
+ sin−1

(√
kε−ls
ε

) (7.6)

• Dilaton term in the action

SKR = 1
16πGN

∫
dUdtdx

√
−ge−2(Φ(U)−Φ(0)) (4gµν∂µΦ∂νΦ) . (7.7)

On account of dilaton being trivially a constant, the dilaton has vanishing contribution
towards the gravitational action.

• Gravitational action volume contribution

S = 1
16πGN

∫
dUdtdx

√
−ge−2(Φ(U)−Φ(0))

(
R− 4Λ− 1

12H̃
2 + 4gµν∂µΦ∂νΦ

)
,

= − cLx

12π
√
kε−ls

√kε−ls
ε

√
1− kε2−l

2
s

ε2
+ sin−1

(√
kε−ls
ε

) , (7.8)

= −cLx6πε + ckε2−l
2
sLx

36πε3 +O(ε4−) .

The choice of the coupling is bounded from above by the UV cutoff via ε > ε−
√
kls.
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7.2 GHY surface terms from null boundaries of WdW patch

Now for the GHY calculation let’s first check that there is no mixed/cross term in the
induced metric from the t, x part of the metric (7.1) by plugging in (7.2), (7.3). For the
future boundary of the WdW patch, keeping in mind that dU < 0,

dt+ = −

√
1− kU2ε2−

U2 dU,

and,

dx+ = dx0 + ls
kε2− dU√
1− kU2ε2−

.

Then, the t, x part of the metric simplifies to

kU2
(
1− kU2ε2−

) [
dx+ + kU2ε2−

1− kU2ε2−
dt+

]2

= kU2
(
1− kU2ε2−

)
dx2

0.

Similarly, one can also show that for the past boundary of the WdW patch, the t, x part of
the metric (7.1) becomes,

kU2
(
1− kU2ε2−

) [
dx− + kU2ε2−

1− kU2ε2−
dt−

]2

= kU2
(
1− kU2ε2−

)
dx2

0.

Now we can turn on the timelike deformation (note that this timelike deformation is a
separate/disjoint deformation of the future and past null surfaces),

(t− T0)2 = (1 + δ) l2s A2(U), where, A(U) ≡
∫ ls/ε

U
dU

√
1− kU2ε2−

U2 .

Plugging this in the t, U part of the metric (7.1), the timelike (near null) part of the induced
metric on the deformed surface is

kU2

1− kU2ε2−

[
l2s
(
1− kU2ε2−

)
(U2)2 dU2 − dt2

]
= −δ k l

2
s

U2 dU
2.

Thus the induced metric on the timelike deformed surfaces is,

ds2
γ = −δ k l

2
s

U2 dU
2 + kU2

(
1− kU2ε2−

)
dx2

0, (7.9)

and so √
−γ =

√
δk ls

√(
1− kU2ε2−

)
.

(The range of x-integration for this GHY term is
∫
dx =

∫
dx0 = Lx.)

Now to figure out the normal to the surface we first recall that on the timelike deformed
surfaces the changes in dt, dx, dU are constrained by the equations

dt = ∓
√

(1 + δ)ls

√
1− kU2ε2−

U2 dU, dx+ = dx0 ± ls
kε2− dU√
1− kU2ε2−

.
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So on the deformed surface the (near null) timelike tangent vector can be taken to be,

Tµ1 ∝

1, ∓
√

(1 + δ)ls

√
1− kU2ε2−

U2 , ±ls
kε2−√

1− kU2ε2−


while the spacelike tangent vector can be taken to be,

Tµ2 ∝ (0, 0, dx0) = (0, 0, 1) .

Let the components of the normal vector be,

Nµ = (nU , nt, nx)

So the normal vector components satisfy the equation NµT
µ
1 = NµT

µ
2 = 0 or,

nU ∓
√

(1 + δ)ls

√
1− kU2ε2−

U2 nt ± ls
kε2−√

1− kU2ε2−

nx = 0.

and
nx = 0.

Thus only nU and nt are non-zero. Thus the unnormalized normals can be taken to be,

nU = 1 nt = ± U2
√
δ + 1ls

√
1− kU2ε2+

nx = 0.

Let’s first start working with the upper portion of the timelike (near null) surface (regulating
surface). The normalised outward normal to the upper portion of the regulating timelike
surface is

nU =
√
δ + 1U√
δ
√
kls

, nt = −

√
1− kU2ε2−√
δ
√
kU

, nx =
√
kUε2−√

δ
√

1− kU2ε2−

.

The trace of the extrinsic curvature is

K = ∇µnµ = ∂Un
U + ∂tn

t + ∂xn
x + (ΓUUU + ΓttU + ΓxUx)︸ ︷︷ ︸

1
U

nU ,

= 2
√
δ + 1√
δ
√
kls

,

= 2√
δ
√
kls

+O
(
δ1/2

)
. (7.10)

Now for the lower portion of the deformed timelike surface, the outward unit normal is

nU =
√
δ + 1U√
δ
√
kls

, nt =

√
1− kU2ε2−√
δ
√
kU

, nx = −
√
kUε2−√

δ
√

1− kU2ε2−

.
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The normalization constant and the extrinsic curvature are same as that for the upper
portion of the regulating surface.

The GHY integral evaluates to be

SδGHY = 1
8πGN

∫ −L/2
L/2

dx0

∫ ls/ε

0
dU e−2(Φ−Φ0)√−γ(K + nµ∂µσ) ,

=
√
kLx

4πGN

∫ ls/ε

0
dU

√
1− kU2ε2− ,

= c

12π
√
kε−ls

√kε−ls
ε

√
1− kε2−l

2
s

ε2
+ sin−1

(√
kε−ls
ε

) . (7.11)

Full action complexity obtained by summing (7.8) and (7.11) evaluates to be zero.

8 Discussion & outlook

In this work, we investigated aspects of the little string theory (LST), which is the holographic
(boundary) dual of a string theory in a target space that interpolates between AdS3 in
the IR to an anisotropic spacetime with a linear dilaton and NS-NS B-field that violates
Lorentz isometry in the UV. This LST can be regarded as a nonlocal Lornetz (boost)
noninvariant UV deformation of a local CFT2 by “single trace” analogue of the usual
irrelevant TT , JT , TJ operators. Our tool of investigation was holographic complexity,
specifically the holographic volume complexity (CV) and holographic action complexity
(CA) prescriptions. Our aim was to identify and, if possible, isolate the signatures of the
Lorentz-violation in holographic complexity. This work extends our previous work [1] in two
respects. In our previous work we looked at LST with just nonlocality (TT deformation)
without turning on Lorentz-violating couplings (JT , JT deformations), and we omitted the
interesting or informative case of subregion complexity. Here we summarize of our findings:

• Volume complexity was evaluated for two different frames related by a boost — namely
the stationary and static frame, while the action complexity was evaluated only in the
static frame. Both the volume complexity and action complexity are UV divergent
and hence manifestly regulator dependent. In the regime where the UV cutoff (lattice
spacing) is shorter than the Hagedorn scale of the LST, the leading piece diverges
quadratically with the UV cutoff (cf eq. (3.11), (3.26), and eq. (6.29)). We identify
this leading quadratic divergence as the characteristic signature of nonlocal nature of
the LST. Modulo an overall factor ambiguity (which is well known in the literature)
the leading divergences for both complexities (volume and action) in the static frame
agree and have the same sign.

• There are subleading logarithmic divergences in both volume complexity (3.26) and
action complexity expressions (6.29) which have the same magnitude but differ in
sign. The universal coefficient (3.28) of this log divergent term can be interpreted
as the total number of degrees of freedom in the LST with the Hagedorn scale, βH
treated as the lattice spacing.
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• The characteristic length scale of nonlocality is different in the stationary
and static frames. For the stationary frame, this nonlocality scale is given
by ρH = 2π√

3 ls

√
k
(
λ− (ε+ + ε−)2

)
while in the static frame it is given by

β′H = 2πls
√
k (λ− 4ε+ε−). This effect of changing the nonlocality scale upon boosting

to a different Lorentz frame is the characteristic signature of the fact that the theory
is not boost invariant.

• In the opposite regime, i.e. when the UV cutoff is much larger than the nonlocality
scale, the volume complexity expectedly reduces to that of a local field theory i.e.
having linear divergence (corresponding to a single spatial dimension) (3.27) matching
that of a CFT with the central charge equal to the Brown-Henneaux expression
derived from a pure AdS3 calculation. Similarly, in this limit the action complexity
too reproduces the expected pure AdS3 answer (6.30) [69, 72].

• The subregion volume complexity as a function of the subregion size (length), in both
the stationary and static frames, displays a sharp transition as the subregion size is
varied across a critical subregion size in both frames. In the stationary frame this
critical length is Lc = π

√
k λλ′

2√µ ls) while in the static frame this critical scale is L′c =
π
√
k λ

2 ls where λ′ ≡ λ−4ε+ε− and µ ≡ λ−(ε+ + ε−)2. We identify this phase transition
of subregion volume complexity with the Hagedorn phase transition which have been
previously observed in entanglement entropy as well as the thermodynamics [2, 61].

• Upon setting λ = ε+ = 0, one obtains null warped AdS3 metric in the bulk (with
nonzero dilaton and B-field turned on). This point in the parameter space is out
of the unitarity regime and hence corresponds to a boundary dual WCFT which
does not admit a UV completion. Nevertheless, one can still study it as an effective
theory, which violates locality and Lorentz boost symmetry. The volume complexity
expression confirms that the UV cutoff (lattice spacing) cannot be made arbitrarily
small and is bounded by the warping parameter ε−, namely ε >

√
klsε−. Below this the

volume complexity does not make sense (turns imaginary). The action complexity on
the other hand vanishes, perhaps due to a dimensional accident akin to the unwarped
AdS3 case. The subregion volume complexity is a monotonically increasing function
of the subregion size L, but there is no Hagedorn like phase transition. Surprisingly,
the holographic entanglement entropy of this null warped AdS3 solution dual to the
highly nonlocal, Lorentz violating WCFT has a logarithmic divergence, same as that
of pure AdS3 dual to local CFT2. The universal coefficient of the log divergence
however receives a contribution from the warping parameter.

The analysis of holographic Wilson loop [60], holographic entanglement entropy [2, 59,
94, 95] and thermodynamics [61, 82] for the LST naturally reveals the nonlocality scale
through some pathologies in the physical observables. For example, the free energy and
the entropic c-function diverges as the RG scale approaches the nonlocality scale of LST.
The partition function in the thermodynamic limit develops a branch cut singularity as
the temperature approaches the Hagedorn temperature of LST. So it is perhaps natural
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to expect that the subregion complexity would also show such singular/pathological traits
when the subregion size approaches the nonlocality scale. This was one of the main reasons
to include the subregion complexity in this work. But to the contrary, In our analysis of
holographic complexity, we didn’t come across such pathologies.

It would be interesting to work out the action complexity in the stationary frame. This
will entail solving a more involved technical problem of constructing WdW patches for
stationary metrics [96, 97]. Although we don’t expect any radically different answers for the
action complexity in the stationary frame compared to volume complexity (as evidenced by
the strong similarities in static frame counterparts), it will still be nice to close this gap.
We leave this exercise for a future work as well.

So far everything we have done here corresponds to the zero temperature case. Since the
LST is a nonlocal theory for which we do not have much intuition, there might appear novel
exotic divergences compared to the zero temperature case — so perhaps it is important that
one studies the finite temperature case. In fact such a computation was performed in our
previous paper [1] for the LST dual toM3. There we computed the finite temperature the
action complexity using the bulk dual black hole geometry. In particular, we consider the
thermofield double state of two LST’s for which the dual bulk geometry is an eternal M3
black hole. Qualitatively, the action complexity11 at finite temperature showed the same
behavior as that of the zero temperature case. More importantly, no newer divergences
compared to the zero temperature case was found (perturbatively up to second order in finite
temperature corrections). For the JT , TJ deformed theory, such a black brane background
dual to finite temperature LST with JT , TJ deformations (thermofield double) was recently
worked out [98]. It would be interesting to carry out the computation of action complexity
for this eternal black blane geometry — although from the insights gathered from our past
paper and the patterns established in the current work, we do not expect to see novel
UV divergence structures because for this LST Lorentz violating effects seem to be mixed
with nonlocality effects and they come in a single joint package. We leave this exercise for
future work.

Finally, one needs to study the characteristics of holographic complexity for a larger
class of nonlocal theories, not necessarily LST as was done for the case of entanglement
entropy [71, 84]. This will help us settle the issue of the hypervolume UV divergence
structure i.e., whether one should always expect a general “volume + 1” scaling for the
leading term or something more complicated related to the cause or origin of the nonlocality.

A well known issue in the holographic proposals for evaluating circuit complexity of
the boundary theory is that there is neither any direct specification of the reference state
nor the unitary gates (operators) which constitute the circuits. These issues are still not
settled in the holography literature. The only thing one can definitively state is that In the
AdS/CFT case the reference state is clearly not the CFT vacuum, since the holographic
complexity is nonzero for pure AdS geometry (equivalently the CFT vacuum state). We
are unable to shed any further light on these issues in our current work. However, at the

11For such a black brane bulk background analytic calculations of the maximal volume slice without
any approximations are not possible, and so we abandoned the volume complexity scheme. Instead we
numerically computed the action complexity exactly.
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end of the day, the LST2 we study is obtained by deforming a CFT2 by a set of irrelevant
deformations. Hence, we might as well use the exact same set of unitary gates and the
exact same reference state as used for the initial CFT2 which we UV-deformed. This is
sensible since the LST complexity obtained here smoothly go over to the CFT (pure AdS)
complexity once the UV deformation parameters are set to zero. We can comment on the
target state though. In the CFT2 case the target state was the CFT vacuum, invariant
under the SL(2,R) × SL(2,R) symmetry. For the LST2 case obtained by a single trace
TT deformation of the CFT2 which was the subject of our last paper [1], the target state
was the “no string” vacuum state, i.e.the vacuum of the BRST cohomology of the coset
SL(2,R)×U(1)

U(1) at zero temperature [62]. For the LST in this paper, obtained after further
breaking the Lorentz boost symmetry, it is not yet clear that a coset description can be
provided. The states can be labeled by the left over symmetry generators corresponding to
time translations, translation in the x-direction and the U(1) left and right moving sector
charges J, J . In fact the vacuum here has nontrivial quantum numbers, U(1) charge(s) since
after dimensional reduction of the y-circle the 3d bulk has nontrivial KK U(1) gauge fields
turned on.

Since this correspondence between LST and String backgrounds with asymptotically
linear dilaton backgrounds is a non-AdS/non-CFT case of holography, perhaps a more direct
exercise would be to work out the holographic dictionary in the vein of GKPW and/or as
HKLL [99–101]. As we have already remarked in our previous work [1], one anticipates some
surprising twists in the bulk-boundary map/dictionary in this case because such maps will
reconstruct local supergravity excitations in the bulk, from nonlocal excitations of the LST
in the boundary. In the traditional AdS/CFT setting such local bulk reconstruction maps
are to a great extent determined by the (conformal) symmetry preserved by the boundary
state, as well as locality/microcausality properties of the boundary CFT correlators, e.g.
in the HKLL recipe locality in the bulk directions parallel to the boundary is a simple
and direct consequence of boundary (CFT) locality, and the nontrivial challenge was to
understand bulk locality in the emergent radial (holographic) direction from the locality
in the boundary (transverse) directions. However in the case of LST, the field theory is
nonlocal and Lorentz symmetry is broken. It will be interesting to identify which alternative
properties of a nonlocal theory such as the LST plays the crucial role in emergence of the
quasilocal semiclassical bulk space in both radial as well transverse directions.
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A The σ-model and the 4 dimensional background

The euclidean signature worldsheet (bosonic) sigma model action (ignoring the dilaton piece
α′ΦR at leading order in α′) is,

I = 1
4π

∫
d2σ
√
g
(
gabGµν + iεabBµν

)
∂aX

µ∂bX
ν . (A.1)

where we have set α′ = 1. Working in conformal gauge, i.e. with the worldsheet metric

g11 = g11 = g22 = g22 = 1, g12 = g21 = g12 = g21 = 0.

and the Levi-Civita tensor,

ε12 = 1, ε21 = −1, ε11 = ε22 = 0.

⇒ ε12 = 1, ε21 = −1, ε11 = ε22 = 0.

Substituting these in (A.1), we get

I = 1
4π

∫
d2σ [Gµν (∂1X

µ∂1X
ν + ∂2X

µ∂2X
ν) + iBµν (∂1X

µ∂2X
ν − ∂2X

µ∂1X
ν)] .

(A.2)
Switching to lightcone worldsheet coordinates, z = σ1 + iσ2 and z = σ1 − iσ2, the sigma
model action,

I = 1
2π

∫
d2z

[
Gµν +Bµν

2 ∂Xµ ∂Xν + Gµν −Bµν
2 ∂Xµ ∂Xν

]
(A.3)

To compare this with eq. (4.5) of [63] we have to use a 4-dimensional target space, i.e. Xµ’s
can be the four coordinates φ, y, γ, γ, whereby we readily read off,

Gφφ = k, Gyy = h

f
, (A.4)

and,

Gγγ −Bγγ = hk, Gγγ +Bγγ = 0,
Gyγ +Byγ = 2ε+h

√
k, Gyγ −Byγ = 0,

Gyγ −Byγ = 2ε−h
√
k, Gyγ +Byγ = 0. (A.5)

Solving these we obtain the 4 dimensional metric components,

Gγγ = Gγγ = hk

2 , Gyγ = Gγy = ε+h
√
k, Gγy = Gyγ = ε−h

√
k, (A.6)
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or more conventionally the 4 dimensional line element.

ds2
4 = k dφ2 + h

f
dy2 + hk dγ dγ + 2ε+h

√
k dy dγ + 2ε−h

√
k dy dγ. (A.7)

This line element expression is exactly the same as in eq. (4.9) of [61] with α′ = 1 and
modulo the decoupled T 3 and S3 directions. In U, γ, γ coordinates,

ds2 = k

U2dU
2 + h

f
dy2 + hk dγ dγ + 2ε+h

√
k dy dγ + 2ε−h

√
k dy dγ, (A.8)

while the 4 dimensional B-field components,

Bγγ = −hk2 , Byγ = −Bγy = ε+h
√
k, Byγ = −Bγy = −ε−h

√
k. (A.9)

or in component-basis form,

B = −hk2 dγ ∧ dγ + ε+h
√
k dy ∧ dγ − ε−h

√
k dγ ∧ dy. (A.10)

The 4 dimensional field strength, H is thus

H = dB = −h
′k

2 dU ∧ dγ ∧ dγ + ε+h
′√k dU ∧ dy ∧ dγ − ε−h′

√
k dU ∧ dy ∧ dγ. (A.11)

where h′ = dh
dU . The components of the H 3-form field strength tensor,

HUγγ = −h
′k

2 , HUyγ = ε+h
′√k, HUyγ = −ε−h′

√
k. (A.12)

From these we compute that

−H2 = 6U2 h′(U)2

k l2s h(U)2 . (A.13)

Here we have restored factors of ls. The 4 dimensional volume element is,
√
Gd4x = hk3/2l3s

2U dU dγ dγdy. (A.14)

Thus the 4 dimensional onshell Lagrangian contribution of the three form field strength
H is,

√
G

(
− 1

12H
2
)

= ls
√
k

4

(
Uh′2

h

)
. (A.15)

The vanishing of the worldsheet beta functions give the Dilaton, e−2(Φ(4)−Φ0) = kU2h−1,
and thus the H term contribution to the 4-dimensional gravity action is,

1
16πG(4)

N

∫ √
G d4x e−2(Φ(4)−Φ0)

(
− 1

12H
2
)

= 1
16πGN

(
ls√
k

)∫
dU

h2

U3

∫
dγ dγ .

(A.16)
Here we have already performed the y-integration:

∫
dy = 2πRy, Ry being the radius of the

y-circle. Here the 3 dimensional Newton’s constant is defined as,

GN = G(4)

2πRy
. (A.17)
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Next we switch to X and T defined by,

X =
√
kls

2√ε+ε−
(ε+γ + ε−γ) ,

T =
√
kls

2√ε+ε−
(ε+γ − ε−γ) .

In such case we have

dXdT = kl2s
2 dγ dγ

and we have the H-field contribution (A.16),

1
16πG(4)

N

∫ √
G d4x e−2(Φ(4)−Φ0)

(
− 1

12H
2
)

= 1
16πGN

(
ls√
k

)∫
dU

h2

U3

(2
∫
dX dT

kl2s

)

= Lx
8πGN lsk3′2

∫
dU

h2

U3

∫
dT. (A.18)

B Kaluza-Klein reduction on the y circle

Here we repeat the exercise of KK reduction of the y-circle to fill in some of the details,
in particular, the KK reduced 3 dimensional Kalb-Ramond field and the associated KK
one-form gauge field expressions were omitted in [63], as well as with the aim to check the
equivalence of the 4 dimensional and the 3 dimensional (onshell) actions. The equivalence of
the 4 dimensional and 3 dimensional actions guarantee that the action complexity remains
the same before and after the KK reduction. For the KK reduction we closely follow Pope’s
review [103] but departing from its convention by setting

α = 0, β = 1, (B.1)

and calling the KK scalar σ following [63]. This convention is advantageous because
it implies,

√
−Ge−2Φ(4) =

√
−g e−2Φ. (B.2)

The 4 dimensional metric in this convention is split up as,

ds2
4 = ds2

3 + e2σ (dy +Aµdxµ)2

from which we can determine the 3 dimensional metric components, gµν and the gauge field
components, Aµ

Gyy = e2σ,

Gyµ = e2σAµ,
Gµν = gµν + e2σAµAν .
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Using (A.4) and (A.5) we identify,

e2σ = h

f
,

Aγ = ε+f
√
k, Aγ = ε−f

√
k, Aφ = 0,

gφφ = k, gγγ = −ε2+hfk, gγγ = −ε2−hfk, gγγ = hk

2 (1− 2ε+ε−f) .

Thus the 3 dimensional line element is,

ds2
3 = k

[
dφ2 − ε2+hfdγ2 − ε2−hfdγ2 + h (1− 2ε+ε−f) dγdγ

]
(B.3)

= k
(
dφ2 + h dγdγ − fh (ε+dγ + ε−dγ)2

)
For this 3 dimensional metric we note that,

√
−g = k3/2√fh

2 . (B.4)

With this choice of α, β obviously, one needs to change the Dilaton, such that the action
has same normalization for the Ricci and the c.c. term

√
−Ge−2Φ(4)

R(4) =
√
−ge−2Φ (R+ . . .)

√
−Ge−2Φ(4)Λ =

√
−ge−2ΦΛ

Acccording to (1.14) of Pope, √
−G = eσ

√
−g.

and the unnumbered equation in the passage before (1.11),
√
−GR(4) = eσ

√
−gR.

Thus we can consistently choose, Φ = Φ(4) − σ
2 or,

e2Φ = g2
se
−2φ√fh = g2

s

√
fh

kU2 . (B.5)

This coincides with eq. (4.8) of [63].

B.1 KK reduction of the Kalb-Ramond field

Now we perform the KK reduction of the 4 dimensional three-form field strength, H to the
3 dimensional three-form field strength H̃ and two-form field strength F̃ . But before we do
that, we note that in 4 dimensions, the term in the action is,

√
−Ge−2(Φ(4)−Φ0)

(
H(4)

)2
.

Under the current convention this term becomes,
√
−Ge−2(Φ(4)−Φ0)

(
H(4)

)2
=
(
eσ
√
−g
) (
e−2(Φ−Φ0)e−σ

) (
H(4)

)2
=
√
−ge−2(Φ−Φ0)

(
H(4)

)2
.
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Now, the first step in the KK reduction for the H2 term as per the recipe of [103] is to
split up the 4 dimensional NS-NS B-field potential (A.10) using eq. (1.18) of [103]:

B = −hk2 dγ ∧ dγ + ε+h
√
k dy ∧ dγ − ε−h

√
k dy ∧ dγ

= −hk2 dγ ∧ dγ +
(
−ε+h

√
k dγ + ε−h

√
k dγ

)
∧ dy

= A(2) +A(1) ∧ dy

where,
A(2) = −hk2 dγ ∧ dγ, A(1) = −ε+h

√
k dγ + ε−h

√
k dγ. (B.6)

We have previously noted that from the Ricci sector,

A = f
√
k (ε+ dγ + ε− dγ) . (B.7)

Next step is to substitute (B.6), (B.7) in eq. (1.21) of [103] to get the 3-dimensional field
strengths, H̃ and F̃ :

F̃ = dA(1) =
√
kh′ (−ε+dU ∧ dγ + ε− dU ∧ dγ) . (B.8)

H̃ = dA(2) − dA(1) ∧ A = −h
′fk

2h dU ∧ dγ ∧ dγ = −h
′fk

2h ε̃. (B.9)

where ε̃ is the 3 dimensional Levi-Civita symbol (nontensor). In terms of components,

H̃Uγγ = −h
′fk

2h , (B.10)

and,
iF̃γγ = 0, iF̃Uγ = −ε+

√
kh′, iF̃Uγ = ε−

√
kh′. (B.11)

B.2 Matching the 4d action terms with the 3d action terms

The volume terms in the bulk action (6.2) are

S4D = 1
16πG(4)

N

∫
d4x
√
−Ge−2(Φ(4)−Φ(4)

0 )
(
R(4) + 4Gµν∂µΦ(4)∂νΦ(4) − 1

12H
2 − 4Λ

)
.

(B.12)
Here we demonstrate that this 4 dimensional action is equal to the following 3 dimensional
action as a consistency check,

S(3D) = 1
16πGN

∫
d3x
√
−g e−2(Φ−Φ0)

(
R− (∂σ)2 − 2�σ − 1

4e
2σF2 − 4Λ

+ 4gµν∂µΦ∂νΦ + 4gµν∂µΦ∂νσ

− 1
12H̃

2 − 1
4e
−2σF̃ 2

)
. (B.13)

One might wonder why are we keeping total derivative terms like �σ in the 3 dimensional
action upon KK reduction since they do not contribute to the equation of motion. The
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reason we have to keep these terms is that these total derivative terms do not vanish on-shell
and in fact make non-trivial contributions to action complexity, including introducing new
surface (GHY) counterterms. Similar phenomenon was first pointed out in [102].

By separately considering equality of blocks of terms in the actions, (B.17), (B.20), (B.22)
and (B.32), in the following subsections and upon summing over both sides of those terms,
we demonstrate the equality of the two actions (B.12) and (B.13).

B.2.1 Matching the contributions of the Kalb-Ramond field sector before and
after KK reduction

From (B.9) we obtain,

−H̃2 = HλµνHρστg
λρgµσgντ

=
(
−h
′fk

2h

)2
ε̃λµν ε̃ρστg

λρgµσgντ︸ ︷︷ ︸
=3!g−1

=
(
h′fk

2h

)2 3!
g
. (B.14)

and from (B.8) we get,

−F̃ 2 = iF̃µνiF̃ρσg
µρgνσ

= tr
(
F̃ g−1F̃ g−1

)
= 8h′2U2ε+ε−

hk
. (B.15)

So the r.h.s. of (1.24) of [103] using eq. (1.23) works out in this case to be,

√
−ge−2Φ

(
− 1

12H̃
2 − 1

4e
−2σF̃ 2

)

= e−2Φ(4)

((
h′fk

2h

)2 eσ

2√−g + 2h′2U2ε+ε−
hk

e−σ
√
−g
)

= e−2Φ(4)
h′2k2f2

4h2

√
h
fU

k3/2√fh
+ 2e−2Φ(4)h′2ε+ε−U

2

hk

√f

h

(k3/2

2U
√
fh

)

= e−2Φ(4)h′2f
√
kU

4h2 + e−2Φ(4)h′2f
√
kUε+ε−

h

= e−2Φ(4)
h′2f
√
kU

4h2 (1 + 4ε+ε−h)︸ ︷︷ ︸
=h/f

= e−2Φ(4)

√
kUh′2

4h︸ ︷︷ ︸
=−
√
−GH2/12

= −
√
−Ge−2Φ(4)

H2

12 . (B.16)

– 54 –



J
H
E
P
1
0
(
2
0
2
2
)
1
4
3

Thus we have just verified that the l.h.s. and r.h.s. of eq. (1.24) of [103] are consistent for
this special string background. From (B.16) of last section and integrating out the y-circle
leads to the equivlanece of the H2 term in 4d and to the H̃2, F̃ 2 terms in 3d,

SH = 1
16πG4

N

∫
d3x dy

√
−Ge−2(Φ(4)−Φ0)

(
−H

2

12

)

= 1
16πGN

∫
d3x
√
−ge−2(Φ−Φ0)

(
− 1

12H̃
2 − 1

4e
−2σF̃ 2

)
. (B.17)

Plugging in the background fields and integrating over the (regularized) WdW patch, this
contribution can be expressed as a nested integral,

SH = LX
4πGNk

∫
dU

U3 h
2(U)

∫ ls
ε

U

dU ′

U ′
1√
h(U ′)

, (B.18)

where we have used, h′h = 2h
kU3 . M3 If we set ε± = 0, h = f , then the above contribution

becomes,

SH = − LX
4πGNk

∫ ls
ε

0

dU

U3 f
2(U)

∫ ls
ε

U

dU ′

U ′
1√
f(U ′)

,

which is the exact same expression as eq. (3.34) of our previous paper [1] onM3 complexity.

B.2.2 Matching the contributions of the dilaton sector before and after KK
reduction

Since Φ = Φ(U), the Dilaton contribution to the 4d action simplifies to

SΦ = 1
16πG(4)

N

∫
WdW

d4x
√
−G e−2(Φ(4)−Φ0) 4GUU ∂UΦ(4) ∂UΦ(4). (B.19)

In our conventions,
√
−Ge−2(Φ(4)−Φ0) = √−ge−2(Φ−Φ0) and GUU = gUU while Φ(4) = Φ+ σ

2 .
Substituting all this in the 4 dimensional action (B.19) and then integrating over the y-circle
we get the desired 3d action,

SΦ = 1
16πG(4)

N

∫
WdW

d4x
√
−G e−2(Φ(4)−Φ0) 4GUU ∂UΦ(4) ∂UΦ(4)

= 1
16πGN

∫
WdW

d3x e−2(Φ−Φ0) √−g gUU
(
4∂UΦ ∂UΦ + 4∂UΦ ∂σ + (∂Uσ)2

)
. (B.20)

As a nested integral this is,

SΦ = λ′2k3LX
2πGN

∫ ls
ε

0
dU

U5

(1 + λ′ kU2)2

∫ ls
ε

U

dU ′

U ′
√
h(U ′)

. (B.21)

Again we can explicitly check that setting ε± = 0, i.e. λ′ = λ, h = f reproduces the M3
dilaton action-complexity contribution eq. (3.28) of our previous paper [1].
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B.2.3 Matching the contributions of the cosmological constant term before
and after KK reduction

Next consider the contribution to the action from the cosmological constant term. Here
we will see again for this term the 3 and 4 dimensional calculations match exactly. Our
convention for the change of metric and Dilaton under KK reduction (B.2) implies,

√
−Ge−2(Φ(4)−Φ0) =

√
−g e−2(Φ−Φ0)

and hence we get the desired match between cc terms in the 4 dimensional and 3 dimensional
actions:

SΛ = 1
16πG(4)

N

∫ √
−Ge−2(Φ(4)−Φ0) (−4Λ) = 1

16πGN

∫
d3x
√
−ge−2(Φ−Φ0) (−4Λ) .

(B.22)
Here we have again integrated out the y-circle in going from the l.h.s. to the r.h.s. and set
the 3d Newton’s constant GN = G4

N/2πRy. In the static coordinates we get

√
−g =

√
kls
U

f,

and recall that in 3 dimensions the dilaton factor is

e−2(Φ−Φ0) = kU2
√
fh
.

Finally using,
Λ = − 1

kl2s

we get the 3 dimesional cosmological term contribution as a nested integral

SΛ = LXk

2πGN

∫ ls
ε

0
dU U

∫ ls
ε

U

dU ′

U ′
√
h(U ′)

. (B.23)

M3 limit check: again setting ε± = 0 and h = f we get,

SΛ = LXk

2πGN

∫ ls
ε

0
dU U

∫ ls
ε

U

dU ′

U ′
√
f(U ′)

,

which is the same as eq. (3.31) of our previous [1] paper.

B.2.4 Matching the contributions of the Ricci scalar sector before and after
KK reduction

Finally consider the Ricci scalar term In 4 dimensions. Upon KK reduction this term gets
split up into action term contributions from the 3 dimensional Ricci scalar, the KK-scalar,
σ and the KK gauge field, A. To this end recall equation (1.14) of [103]. In our convention,
i.e. β = 1, α = 0, and for our case, D = 3, it reduces to

R(4) = R(3) − 2 (∂σ)2 − 2�σ − 1
4e

2σF2. (B.24)
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For the string background under consideration the Ricci scalar is,

R(4) = −6 + 8λ′ k U2

k l2s (1 + λ′ k U2)2 , (B.25)

and the dilaton is given by,

Φ(4) = Φ(4)
0 + 1

2 log
(
h(U)
k U2

)
. (B.26)

On the other hand, for the 3 dimensional background, the Ricci scalar works out to be

R=
8λk3 (λ2+8ε2+ε2−−6λε+ε−

)
U6−2k2 (−5λ2+16ε2+ε2−+20λε+ε−

)
U4+4k(2ε+ε−−λ)U2−6

k (λkU2+1)2 ((λ−4ε+ε−)kU2+1)2

(B.27)
while the 3 dimensional dilaton factor is,

e−2(Φ−Φ0) =
√
λkU2 + 1

√
(λ− 4ε+ε−) kU2 + 1, (B.28)

the KK-gauge field strength contribution,

F2 = 64kU4ε2+ε
2
−

(λkU2 + 1)4 , (B.29)

and the KK scalar σ contributions,

(∂σ)2 = 16kU4ε2+ε
2
−

(λkU2 + 1)2 ((λ− 4ε+ε−)kU2 + 1)2 (B.30)

�σ = 8U2ε+ε−
(
k2λU4(4ε+ε− − λ) + kU2(λ− 2ε+ε−) + 2

)
(λkU2 + 1)2 ((λ− 4ε+ε−) kU2 + 1)2 (B.31)

From (B.25)–(B.31) one can explicity verify (B.24). Now that we have checked (B.24), it is
easy to verify (in light of (B.2)) that,

SR = 1
16πG(4)

N

∫
d4x
√
−Ge−2(Φ4−Φ0)R(4)

= 1
16πGN

∫
d3x
√
−g e−2(Φ−Φ0)

(
R(3) − 2 (∂σ)2 − 2�σ − 1

4e
2σF2

)
(B.32)

after integrating out the y-circle. Restricting the integral over the 3 dimensional WdW
patch, this contribution can be expressed as the nested integral,

SR = k LX
4πGN

∫ ls
ε

0
dU U

−3 + 4λ′kU2

(1 + λ′kU2)2

∫ ls
ε

U

dU ′

U
√
h(U ′)

. (B.33)

M3 limit check: on setting ε± = 0 and h = f, λ′ = λ, we get,

SR = k LX
4πGN

∫ ls
ε

0
dU U

−3 + 4λkU2

(1 + λkU2)2

∫ ls
ε

U

dU ′

U
√
f(U ′)

which is the same as eq. (3.25) of our previous [1] paper.
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Full nonperturbative result for the Ricci sector:

SR = LX

4πGN
√
λ′

−π2

6 −
7

2
√

1+ ε2

λ′kl2
S

+ 7
2

√
ε2

λ′kl2s
+1−

7 ε2

λ′kl2s

2
√

1+ ε2

λ′kl2
S

−2
√

1+ ε2

λ′kl2S
ln
(

1+ λ′kl2s
ε2

)

− 7
2sinh−1

(√
λ′kls
ε

)
+4ln

(√
1+ λ′kl2s

ε2 +
√
λ′kls
ε

)
+2ln

(
1+ λ′kl2s

ε2

)
sinh−1

(√
λ′kls
ε

)

+2
(

sinh−1
(√

λ′kls
ε

))2
−4ln

1+
(√

1+ λ′kl2s
ε2 +

√
λ′kls
ε

)2
sinh−1

(√
λ′kls
ε

)

−2Li2

−(√1+ λ′kl2s
ε2 +

√
λ′kls
ε

)2
 . (B.34)

C GHY type surface terms in 3 dimensions

Since the 3 dimensional action has the a second derivative term from the KK scalar σ, one
will need a boundary term to cancel its variation. Here we work out that term,

− 1
8πGN

∫
M

√
−ge−2(Φ−Φ0)� (δσ) = − 1

8πGN

∫
M

√
−g∇µ

[
e−2(Φ−Φ0)∇µ (δσ)

]
+ 1

8πGN

∫ √
−g∇µe−2(Φ−Φ0)∇µ (δσ)

= − 1
8πGN

∫
∂M

√
−γ nµ

[
e−2(Φ−Φ0)δ (∇µσ)

]
− . . .

= − 1
8πGN

∫
∂M

δ
(√
−γ nµe−2(Φ−Φ0)∇µσ

)
− . . . .

This first term can be canceled if we add the surface counter term,

IGHY ;σ = 1
8πGN

∫
∂M

√
−γ e−2(Φ−Φ0) nµ∂µσ.

In addition we also have the usual GHY term for the string frame metric variation to be
well defined,

IGHY ;g = 1
8πGN

∫
∂M

√
−γe−2(Φ−Φ0)K.

Thus the full GHY term is,

IGHY = 1
8πGN

∫
∂M

√
−γe−2(Φ−Φ0) (K + nµ∂µσ) . (C.1)

D Holographic entanglement entropy

The holographic entanglement entropy of WCFT dual to null warped AdS3 (following the
prescription for nontrivail dilaton turned on in the bulk [70]) is,

SA = 1
4GN

∫
e−2(Φ(U)−Φ∞)dx

√
γ (D.1)

= 1
4GN

∫ ls
ε

U0
dx

√
kl2s
U2

(U4(1− kU2ε2−)(U2 − V 2 − kε2−(U4 − U4
0 ))

U2
0 l

2
s(1− kU2

0 ε
2
−) + kU2(1− kU2ε2−)

(D.2)
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Figure 8. Holographic Entanglement Entropy vs L plot. The values used here are following,
k = 104, ls = 0.01 and ε = 10−5.

After simplifying and replacing dx as dU
U ′

the equation for our metric becomes,

SA = 1
4GN

√
kls

∫ ls
ε

U0
dU

√
1− kU2ε2−√

U2 − U2
0 − kε2−(U4 − U4

0 )
(D.3)

For, Warped AdS, after expanding the integrand in equation (D.3) in a Taylor series
with respect to ε−, we get the entanglement entropy to be,

SA =
√
kls

4GN

(
1 + 6kl2s

L2 ε2−

)
ln
(
L

ε

)
+O

(
ε4−

)
(D.4)

Here, we have used eq. (5.4) to replace U0 as a function of L. Also, we can see that, putting
warping parameter, ε− → 0 gets us the result back for pure AdS which is, SA =

√
kls

4GN ln
(
L
ε

)
.

This is also can be seen in [92] from the comparison of equation (3.23) and (3.27).
Through numerical integration of eq. (D.3), we have found the nature of the Holographic

Entanglement Entropy as a function of L for Warped AdS3. We have used parametric plot
here and used eq. (5.9) for the expression of L. Here again, we used the value of the warping
factor as, ε− = 10−6 for the same reason mentioned at the end of section 5.2.

One curious fact to note is that the holographic entanglement entropy doesn’t display
any on-locality in terms of the UV divergences appearing — for any value of the warping
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the only type of UV divergence appearing is the log divergence, much akin to a local field
theory like CFT2. This is polar opposite of the pattern of UV divergences appearing in
subregion volume complexity (all orders of UV divergences appear there). The fact that the
entanglement entropy of a WCFT2, a highly nonlocal and Lorentz boost violating theory,
but has the exact same UV divergence structure as that of the entanglement entropy of a
local CFT2 has been noted in earlier works [92, 93].
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