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Holographic duality and the resistivity of strange metals
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We present a strange metal, described by a holographic duality, which reproduces the famous linear resistivity
of the normal state of the copper oxides, in addition to the linear specific heat. This holographic metal reveals
a simple and general mechanism for producing such a resistivity, which requires only quenched disorder and
a strongly interacting, locally quantum critical state. The key is the minimal viscosity of the latter: unlike in a
Fermi liquid, the viscosity is very small and therefore is important for the electrical transport. This mechanism
produces a resistivity proportional to the electronic entropy.
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I. INTRODUCTION

The “strange metals,” as realized in high-Tc superconduc-
tors and related systems, are among the great mysteries of mod-
ern physics [1]. It is believed that these are strongly interacting
“quantum soups” controlled by an emergent temporal scale
invariance of their underlying quantum dynamics [2]. The gen-
eral principles governing such strongly interacting quantum
critical states could be captured by the holographic dualities
discovered in string theory [3]. However, an explanation of the
iconic linear resistivity [1,2] observed experimentally remains
elusive.

Holographic duality asserts that some strongly interacting
quantum field theories are mathematically equivalent to certain
classical theories of gravity in higher-dimensional curved
spacetimes [3]. This is a very useful theoretical tool as it allows
us to easily calculate, in a well-controlled way, properties of
certain strongly interacting, quantum critical states of matter
by analyzing their classical gravitational duals. Analyses of
this kind have found examples of systems, controlled by quan-
tum critical infrared fixed points, with linear resistivities [4–6],
among other interesting phenomena. While interesting, many
of these results appear to be highly dependent upon the mi-
croscopic details of the infrared fixed point being considered,
and, a priori, it is not clear whether these details are generic
and could be realized in real electron systems, or whether they
are artefacts of the kinds of highly symmetric quantum field
theories that are dual to classical theories of gravity.

In this paper, we address these issues by describing a simple
universal mechanism by which strongly interacting, quantum
critical states of matter can acquire a linear resistivity, and
we propose that this could be at work in the strange metallic
phase of the cuprates. This mechanism is at work in certain
strongly interacting field theories that have holographic duals
(specifically, those controlled by a locally quantum critical
infrared fixed point). However, it is based on general physical
principles that do not rely on the existence of a dual, classical
gravitational description of the state. Specifically, a theory
whose infrared physics is well-described by the laws of
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hydrodynamics with a “minimal” viscosity will have, when
weakly coupled to random disorder, a viscous contribution to
its resistivity that is proportional to its thermodynamic entropy.
A state with a Sommerfeld heat capacity (entropy S ∼ T ), such
as the cuprate strange metals, will therefore have a resistivity
linear in temperature T .

The physical principles that govern the transport of charge
in highly collective, charged quantum critical states of mat-
ter are rather different from those in an ordinary Fermi
liquid composed of long-lived electronic quasiparticles (see
Refs. [7–12] for some recent studies of systems of this type). In
particular, the absence of long-lived quasiparticles means that
the natural quantities to consider are the collective properties
of the system: its total electrical current and momentum. In a
system of this type, one intuitively expects that the intrinsic
decay rate of the electrical current will generically be large.
However, in the absence of a background lattice or impurities,
the dc resistivity will vanish. This is because the electrical
current carries momentum, which is conserved due to the
translational invariance of the system, and thus it cannot
decay. If we couple such a system weakly to impurities or
a background lattice, such that the intrinsic interaction rate
of the electronic fluid is much greater than the rate at which
it interacts with the impurities or lattice, the momentum will
dissipate slowly and will control the decay of electrical current
at late times. The dc resistivity is therefore controlled by the
decay rate of the total momentum of the state, in contrast
to normal metals in which the decay rate of quasiparticle
excitations plays a similar role.

We show that, if the collective state obeys the laws of
hydrodynamics, the momentum dissipation rate in the presence
of impurities is determined by the transport coefficients of
the liquid, including its viscosity, which depend upon the
microscopic details of the system. It is natural to expect
the viscosity of a fluid arising from a strongly interacting
quantum critical system to be small because, in a kinetic
theory of quasiparticles, the viscosity is proportional to the
mean free time between quasiparticle collisions. This can
be made much more precise: the “almost perfect” fluids
formed by strongly interacting, quantum critical systems are
expected to have a viscosity of the order of the entropy density
of the state, in units of �/kB [13–15]. This is a universal
feature of systems with holographic duals, and it has been
measured experimentally in strongly interacting, collective
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systems without such duals [16,17]. In this scenario, there is
a universal viscous contribution to the momentum dissipation
rate, and hence to the dc resistivity, which is proportional to
the entropy of the state.

This hydrodynamic description of a metallic state is far
removed from the standard Fermi liquid theory of metals. The
quasiparticles of a Fermi liquid interact weakly and thus the
state has a very high viscosity [18]. This means it cannot reach
the local thermal equilibrium required for hydrodynamics to
be valid before interactions with the lattice cause the state to
lose momentum. We discuss in detail some experimentally
observable consequences of this hydrodynamic mechanism
and its potential applicability to real systems, in particular the
strange metallic phase of the cuprates.

For the reader uncomfortable with our assertion that a
strongly interacting quantum critical system could behave
like a hydrodynamic liquid with a minimal viscosity, we
provide a proof of principle by discussing a specific classical
gravitational theory, which arises as a low-energy limit of
string theory, that is dual to a field theory that exhibits this
mechanism. This theory is locally quantum critical in the
infrared, i.e., it has a dynamical critical exponent z → ∞.
Analogous holographic theories controlled by a finite-z fixed
point do not exhibit this mechanism, for reasons we will
discuss [19]. We also discuss how one can include the gross
effects of the weak interaction of this holographic strange
metal state with disorder by the inclusion of a graviton mass
[20].

The remainder of the paper is structured as follows. In
Sec. II, we briefly summarize the memory matrix approach
to transport in systems in which momentum is the only long-
lived quantity, and we use this to calculate the momentum
relaxation time, and hence the resistivity, in a hydrodynamic
state weakly coupled to random disorder. We show that this has
a viscous contribution which, in a strongly interacting quantum
critical state, will be proportional to the entropy density of the
state. The presence of this viscous contribution follows from
a simple physical argument that can be understood without
knowledge of the memory matrix formalism. In Sec. III, we
then describe a holographic system in which, at sufficiently
long distances, hydrodynamics is a good enough description
that this mechanism is at work, as well as describing how
one can directly include the main effects of quenched disorder
in this setup. Finally, in Sec. IV we close by summarizing
our results and explaining their experimental implications, the
potential applicability to real systems such as the strange metal
phase of the cuprates, as well as some interesting directions
for further work.

II. RESISTIVITY OF A HYDRODYNAMIC FLUID

As outlined in the Introduction, we are interested in highly
collective, charged states in which the intrinsic relaxation
time scale of the electrical current is small. Despite these
short relaxation time scales, the dc electrical resistivity in a
translationally invariant theory of this kind will vanish. This is
because the current carries a nonzero momentum that cannot
decay, as it is a conserved Noether charge of the system. If we
allow the momentum to decay slowly, in comparison to the
intrinsic decay rate of the electrical current, by breaking the

translational invariance of the system—for example, via weak
interactions with random impurities or a lattice—the decay
rate of the electrical current at late times, and hence the dc
resistivity of the state ρdc, will be proportional to the rate at
which momentum dissipates, �k . In the following, we will
express this dissipation rate in terms of the characteristic time
scale τk over which the momentum decays: � ≡ τ−1

k . Further-
more, assuming that the interactions that dissipate momentum
are weak (such that momentum lives for a long time), then at
leading order in a perturbative expansion, τ−1

k is determined
by the properties of the translationally invariant state.

In a hydrodynamic state in which translational invariance
is weakly broken, τ−1

k depends on the viscosity η of the state
such that the dc resistivity will have a viscous contribution
ρdc(T ) ∼ η(T ). Before we show this explicitly using the
memory matrix formalism, we outline a simple physical
argument that illustrates why this is the case. In a (relativistic)
hydrodynamic liquid, momentum diffuses with a characteristic
diffusion constant D = η/ (ε + P ), where ε and P are the
energy density and pressure of the state. In the nonrelativistic
limit, ε + P = mene, where me and ne are the electron
mass and number density, respectively [21]. If translational
invariance is broken over a characteristic length scale l, then
the characteristic time scale τk over which this diffusing
momentum relaxes will be (see also Refs. [22,23])

1

τk

= D

l2
= η

(ε + P )l2
. (1)

This mechanism produces a dc resistivity ρdc =
(ε + P ) /σ 2τk , where σ is the charge density of the
state, or in the nonrelativistic case ρdc = 1/ω2

pτk , where ωp is
the plasma frequency of the electrons.

This reasoning is valid for any hydrodynamic liquid, but
we now specialize to the case of strongly interacting quantum
critical liquids. These have the special property that there is a
simple relationship between the shear viscosity and the entropy
density η/s = A�/kB , where A is a number of order 1 [13] that
in holographic theories is generically equal to 1/4π [14,15].
This minimal viscosity ensures that relaxation to local thermal
equilibrium takes the minimal amount of time, which may be
significantly shorter than the time scale for momentum loss
due to umklapp scattering or interactions with impurities. This
is drastically different from an ordinary metal, in which fast
umklapp scattering of quasiparticles prevents the formation of
a hydrodynamic state [24].

Combining these simple results, we arrive at a stunning
conclusion:

ρdc(T ) = A�

ω2
pmel2

Se(T )

kB

. (2)

Having assumed only that the hydrodynamic limit is approxi-
mately valid and that the viscosity is minimal, we have found
that the dc resistivity ρdc due to this mechanism is proportional
to the entropy per electron, Se.

A. Memory matrix derivation

We will now use a more rigorous memory matrix cal-
culation to confirm our intuition that this effect should be
present. Recent overviews of this formalism can be found
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in Refs. [7,9,11]. If the momentum of a system is its only
long-lived quantity, and there is overlap between the electrical
current and momentum operators in that theory, the dc
electrical resistivity is related to the momentum relaxation
time τk via [9]

ρdc = χ �P �P
χ2

�J �P
τ−1
k , (3)

where χOAOB
are the static susceptibilities of the state. The

momentum relaxation time τk is determined by the micro-
scopic processes that cause momentum to dissipate. Suppose
we perturb a translationally invariant metal by the introduction
of a spatially random potential V (�x) for an operator O in the
infrared Hamiltonian [for definiteness, we have chosen here a
(2+1)-dimensional metallic state]

δH =
∫

d2 �x V (�x)O(t,�x), (4)

where, on statistically averaging over the random potential,

〈V (�x)〉 = 0, 〈V (�x)V (�y)〉 = V̄ 2δ(2)(�x − �y). (5)

Such sources would naturally arise in the infrared theory if
there are random impurities present. Provided that the interac-
tion with disorder is weak—automatically true if the operator
O is irrelevant in the infrared—this will cause momentum to
dissipate slowly (so that it is still a long-lived quantity) and
we can compute this dissipation rate perturbatively. At leading
order, it is determined by the spectral weight of O at low
energies in the translationally invariant state [7,8]

τ−1
k = V̄ 2

2χ �P �P

∫
d2k

(2π )2
k2 lim

ω→0

ImGOO(ω,k)

ω

∣∣∣∣
V̄ →0

, (6)

where GOAOB
denotes the retarded Green’s function of two

operators. This result has a simple physical interpretation: if
translational invariance is weakly broken at a characteristic
momentum scale k by a source for O, then at leading order
in a perturbative expansion the rate at which momentum
dissipates due to this should depend on the number of low-
energy excitations of the translationally invariant state with
momentum k that overlap with the operator O, which is
what the spectral weight tells us. The above result depends
on the integral of the spectral weight over k, as the spatially
random potential breaks translational invariance at all length
scales.

It is expected that multiple operators may acquire a spatially
dependent source in the low-energy theory describing a real
metal, in the presence of impurities and a lattice. In this
situation, the above argument applies provided that all such
operators couple weakly, and the most relevant of these will
then provide the leading contribution to ρdc.

In this scenario, the microscopic quantities controlling
the dc resistivity are the low-energy spectral weights of
the relevant operators in a given theory. Suppose that the
low-energy physics of the translationally invariant state is
well-described by the laws of hydrodynamics. The important
quantities in a (relativistic) hydrodynamic theory are the
conserved energy-momentum tensor T μν and charge current
Jμ of the theory. The form of the retarded Green’s functions
of these operators is specified by the laws of hydrodynamics
(see, for example, Ref. [25]), and it is written in terms of

the transport coefficients of the theory, such as the viscosity
η, whose values are dependent upon the microscopic physics
underlying the effective hydrodynamic description.

The presence of random impurities will give rise to a
random source of energy density T tt in the low-energy
theory. If the coupling to random impurities is weak such
that momentum dissipates slowly, this will produce a dc
resistivity

ρdc = χ �P �P
χ2

�J �P
τ−1
k

= V̄ 2
T tt

2χ2
�J �P

∫
d2k

(2π )2
k2 lim

ω→0

ImGT tt T tt (ω,k)

ω

∣∣∣∣
V̄T tt →0

∼ V̄ 2
T tt

σ 2

∫
dk k(ηk2 + · · · ), (7)

where we have used the known spectral weight of T tt in a
relativistic hydrodynamic theory with a conformally invariant
vacuum [25], i.e., the stress-energy tensor is traceless (the pres-
sure is related to the energy density by ε = 2P , and the bulk
viscosity vanishes). This case is relevant for the holographic
theories we will discuss shortly. In the final step of Eq. (7), we
have neglected order 1 numerical prefactors. The leading term
in the small-k expansion on the right-hand side is precisely the
viscous contribution identified in Eq. (1), but now derived in a
rigorous manner. For a hydrodynamic theory with a minimal
viscosity, this produces a dc resistivity ρdc (T ) ∼ s (T ). We are
assuming that hydrodynamics is a good effective description
down to a temperature-independent microscopic length scale,
which acts as a ultraviolet cutoff on the momentum integrals,
resulting in a controlled hydrodynamic momentum expansion.

If the random impurities lead to a significant source
of charge density J t in the low-energy theory, there will
be additional contributions to the dc resistivity, taking the
form

ρdc ∼ V̄ 2
J t

σ 2

∫
dk k

{
1

σQ

[
2

σ 2

ε + P
−

(
dσ

dμ

)
T

]2

+ k2 σ 2

(ε + P )2
η + · · ·

}
, (8)

where we have again used the spectral weight of J t in a
relativistic hydrodynamic theory with a conformally invariant
vacuum [25]. There is also a viscous contribution in this case,
in addition to a contribution inversely proportional to the
“universal conductivity” transport coefficient σQ. Despite its
name, the temperature dependence of σQ is not universal. This
illustrates an important point: there are various contributions to
the dc resistivity of a hydrodynamic liquid, which will depend
upon the microscopic details of the specific theory under
consideration. We have highlighted the role of the viscous term
because there are good theoretical and experimental reasons to
expect it to make a universal contribution ρdc (T ) ∼ η (T ) ∼
S (T ), independent of such details, in strongly interacting,
quantum critical systems. Additional contributions to Eqs. (7)
and (8) will also arise if one relaxes the requirement of a con-
formally invariant vacuum, includes higher-order terms in the
constitutive relations, or includes nonanalytic effects [26,27].
Furthermore, if there are inhomogeneities sourced by a more
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relevant operator in the hydrodynamic theory than the energy
density, their effects will be more important than those dis-
cussed here. These should be evaluated on a case-by-case basis.

We have shown rigorously, using the memory matrix
formalism, that there should be a viscous contribution to the
dc resistivity ρdc (T ) ∼ η(T ) when a hydrodynamic state is
weakly coupled to disorder. Results of this nature have been
derived previously by other methods [22,23]. We note in
particular Ref. [23], in which an expression similar to Eq. (8)
was found, but with the leading term inversely proportional
to the thermal conductivity. This is consistent, as the thermal
conductivity is proportional to the universal conductivity σQ

in the type of theories we have considered here [28]. In the
cuprates, it is realistic that this term is small [in comparison
to the contribution from neutral disorder in Eq. (7)] due to the
chemistry of these systems [23,29].

III. HOLOGRAPHIC REALIZATION
OF THIS MECHANISM

We have shown that if the low-energy physics of a system
is well-described by hydrodynamics with a minimal viscosity
η ∼ s, there will be a viscous contribution to the dc resistivity
such that ρdc ∼ η ∼ s, when this theory is weakly coupled
to disorder. To motivate the applicability of these results to
strongly correlated electron systems, and, in particular, the
strange metal phase of the cuprates, we will now describe
a well-controlled example of a strongly interacting, quantum
critical state of matter with these features. We give this example
as a proof of principle, although we do not expect that its
specific properties—in particular, that it can be described
by a dual, classical theory of gravity—are necessary for the
existence of the effective hydrodynamic description that is
required. For the reader unfamiliar with using holographic
techniques to study strongly interacting states, Refs. [28,30–
32] provide informative introductions to this topic.

A. Translationally invariant theory

As indicated above, the example we give of a strongly
interacting, quantum critical state with these properties is
equivalent, by a holographic duality, to a classical theory
of gravity in a curved, higher-dimensional spacetime. This
(2+1)-dimensional “strange metal” is a finite density state
that exhibits local quantum criticality at low energies. Local
quantum criticality is an emergent quantum temporal scale
invariance but with short-ranged spatial correlations, and is
closely related to the marginal Fermi liquid phenomenology
proposed to explain experimental observations in the cuprates
[2]. States with this property are common in holography, and
they typically exhibit superconducting instabilities [33,34],
non-Fermi-liquid behavior of fermionic two-point functions
[35–38], and interesting power laws in the mid-infrared optical
conductivity in the presence of a lattice [39–41].

This state is dual to a black brane solution of a (3+1)-
dimensional Einstein-Maxwell-Dilaton (EMD) theory of clas-
sical gravity that was first studied in this context by Gubser
and Rocha [38], and which can be uplifted to a solution of

11-dimensional supergravity [42],

SEMD = 1

2κ2
4

∫
d4x

√−g

[
R − 1

4
eφFμνF

μν

− 3

2
∂μφ∂μφ + 6

L2
cosh φ

]
. (9)

The charged black brane solution of this theory is

ds2 = r2g(r)

L2
[−h(r)dt2 + dx2 + dy2] + L2

r2g(r)h(r)
dr2,

h(r) = 1 − (Q + r0)3

(Q + r)3
,

At (r) =
√

3Q(Q + r0)

L2

(
1 − Q + r0

Q + r

)
,

φ(r) = 1

3
log[g(r)], g(r) =

(
1 + Q

r

) 3
2

. (10)

As usual, the “holographic” coordinate r labels the additional
dimension in which the gravitational theory is defined com-
pared to the field theory, and r0 denotes the location of the
black brane horizon.

Note that in addition to the minimal ingredients required for
a holographic dual of a quantum field theory at nonzero density
[the metric gμν and a U(1) gauge field Aμ], we include a scalar
field φ (the dilaton), which means that the field theory contains
a neutral scalar operator with nontrivial dynamics. Although
the gravitational theory is simpler in the absence of the dilaton,
the price of this simplicity is that it is dual to a field theory state
that is unrealistic: it has a finite zero-temperature entropy. The
presence of the dilaton changes the ground state, which now
has vanishing zero-temperature entropy. At finite temperature,
it has an entropy density that is linear in temperature s ∼ T at
low T . We note here that there are many other locally quantum
critical, holographic examples of this mechanism that produces
ρdc ∼ s—we have chosen to describe a case in which s ∼ T ,
as this is the case relevant to the experimental system we are
addressing: the strange metal phase of the cuprates.

The low-energy, local quantum criticality of this state
is encoded in the near-horizon geometry of the dual black
brane solution at zero temperature [43]. This geometry is
conformal to AdS2 × R2 and therefore transforms covariantly
(the line element transforms as ds2 → λ−1ds2) under a scaling
symmetry that acts on the temporal coordinate t , but not on
the spatial coordinates (x,y), of the strongly interacting state

t → λt, x → x, y → y, r → λ−2r. (11)

This state violates hyperscaling, and in the standard clas-
sification in terms of a dynamical critical exponent z and
hyperscaling violation exponent θ , this state has z → ∞ with
the ratio −θ/z = 1 fixed [44–46].

B. Weak interactions with random disorder

The low-energy spectral functions of operators in the
thermal state of this theory are of the form [9,10]

lim
ω→0

ImGOO(ω,k,T ) ∼ H (k) lim
ω→0

ImG infrared
OO (ω,k,T )

∼ H (k) ω T 2νO (k)−1. (12)
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At low ω and T , the ω and T dependence of the spectral
function is contained in the “infrared spectral function”
G infrared (ω,k,T ), whose form is determined by the near-
horizon geometry in the dual gravitational theory. The in-
frared local quantum criticality of this state means that this
infrared spectral function is a power law in ω and T , and is
approximately momentum-independent. The only momentum
dependence is in the exponent νO (k), which is determined by
the mass, in the near-horizon geometry, of the excitation of
the field dual to the operator O. To determine the low-energy
spectral function of an operator in the field theory, one must
additionally determine the momentum-dependent “matching
function” H (k) by matching the solutions of the field equations
for excitations in the near-horizon geometry to the asymptotic
region of the geometry.

The advantage of the decomposition of the Green’s function
given in Eq. (12) is that, to determine the leading T dependence
of the spectral function of O, the matching to the asymptotic
region does not need to be explicitly performed. One must
only determine the exponent νO (k), which is related to the
scaling dimension of O at the locally critical infrared fixed
point and is fixed by the near-horizon properties of the dual
gravitational theory. This property can be used to determine
the dc resistivity of these states [9,10], as we will now review.

The translationally invariant state dual to the solution in
Eq. (10) has a vanishing dc resistivity due to the conservation
of momentum. If spatially random sources are added for O,
they cause momentum to dissipate at a rate

�k ≡ τ−1
k ∼ V̄ 2

O

χ �P �P

∫
dk k3 H (k) T 2νO (k)−1, (13)

provided that O is weakly coupled at the low energies and
temperatures of interest, and we can therefore use Eq. (6). The
introduction of random impurities in a sample will induce a
spatially random source of energy density T tt , which therefore
produces a dc resistivity

ρdc = χ �P �P
χ2

�J �P
τ−1
k ∼ V̄ 2

T tt

σ 2

∫
dk k3 H (k) T 2νT tt (k)−1, (14)

where the appropriate exponent for this operator is

νT tt (k) ≡ ν(k) =

√√√√11

3
+ 4

k2

μ2
− 8

3

√
1 + 3

k2

μ2
, (15)

where μ = √
3Q/L2 is the chemical potential of the state. At

leading order in T , the dominant contribution to this integral
comes from the homogeneous k = 0 mode of the disorder such
that

ρdc(T ) ∼ T 2ν(0)−1 ∼ T . (16)

Including the weak momentum dependence of ν (k) in the
integral produces small logarithmic corrections to this leading-
order result such that ρdc ∼ T log (μ/T )−1. For more general
locally critical holographic states, it is implicitly contained in
the results of Ref. [10] that this calculation yields ρdc (T ) ∼
s (T ) at leading order. The operators J t and T tt have the same
exponent ν (k), as their dual fields are coupled in the infrared
geometry, and thus a spatially random source for charge
density will also produce a contribution ρdc (T ) ∼ s (T ).

Finally, we note that both of these operators are (marginally)
irrelevant at low energies and thus this approach is consistent.

When analyzed in this way, it appears that the linear resis-
tivity of this state is highly dependent upon the microscopic
details of the theory, in particular the dimensions of operators
in the low-energy theory, which are calculated from masses of
field excitations in a higher-dimensional gravitational theory.
It is not obvious whether these features could realistically
be expected in real electron systems, such as in the strange
metal phase of the cuprates, or whether they arise only in the
special class of strongly interacting field theories that have
dual gravitational descriptions.

We can get another perspective on this result by revisiting
the spectral functions of these holographic locally critical
quantum field theories. By explicitly calculating the “matching
functions” H (k) numerically, one finds that the Green’s
functions of these theories are consistent with those of
hydrodynamics, with a minimal viscosity, down to length
scales k � μ [47–49]. The most explicit verification of this
is in the simplest example of the Reissner-Nordstrom-AdS4

solution of Einstein-Maxwell theory, where one can analyt-
ically compute the matching functions H (k) and determine
that hydrodynamics is a good description of this theory,
in the limit where the finite-k corrections to ν (k) can be
neglected [47]. We expect this to be true more generally in
holographic locally critical states, and it would be interesting
to explicitly verify this. There is therefore a contribution to
the dc resistivity ρdc (T ) ∼ s (T ) via the viscous mechanism
described in Sec. II. This gives a more physical understanding
of the result in Eq. (16). Fundamentally, if the state is described
by hydrodynamics, then the scaling dimensions of T tt , J t , etc.,
which were used to compute ρdc in Ref. [10], are not arbitrary
numbers but are constrained by the transport coefficients (such
as the viscosity) of the hydrodynamic description.

The finite-k corrections to ν (k) in these theories, which are
not captured by hydrodynamics, produce small, logarithmic
corrections to this result, as previously explained. These cor-
rections reflect the fact that at low energies and finite momenta,
this holographic state has slightly less spectral weight than
relativistic hydrodynamics (since νk � ν0), and it would be
interesting to search for such corrections experimentally via
precision measurements of ρdc over a large range of T . We note
that coupling a hydrodynamic liquid to a periodic potential will
also give a viscous contribution to the dc resistivity ρdc ∼ s

with l in Eq. (2) given by the lattice spacing. In the state
dual to the gravitational solution (10), one instead finds that
the dc resistivity ρdc ∼ T 2ν(kL)−1 obeys a power law where
the power depends upon kL [10]. In these circumstances, the
nonhydrodynamic finite-k corrections to ν (k) are important,
and thus an effective hydrodynamic description is not accurate
enough. An exception to this is when kL 
 μ, in which case
ν (kL) ∼ ν (0), in which case ρdc ∼ T , as was noted in a
footnote in Ref. [10].

Finally, we note that although the hydrodynamic under-
pinning should ensure the universality of our mechanism,
its subsequent expression for the resistivity does rely on the
additional assumption of local quantum criticality. For critical
theories with a finite dynamical critical exponent z—where
locally quantum critical means z = ∞—the ultraviolet cutoff
in the momentum integral in the memory matrix expressions
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(7) and (8) may become temperature-dependent; see, e.g.,
Ref. [19] for an example of this in a different setup.

C. Explicit inclusion of momentum dissipation

As we have just reviewed, although random disorder
breaks translational invariance on all length scales, the leading
contribution to the momentum dissipation rate �k and hence
to ρdc in these holographic locally quantum critical states
is from the homogeneous k = 0 mode of this disorder. We
can explicitly incorporate its effects on ρdc in the holographic
theory via the inclusion of a graviton mass term in the action
[20,50,51]

S = 1

2κ2
4

∫
d4x

√−g

[
R − 1

4
eφFμνF

μν − 3

2
∂μφ∂μφ

+ 6

L2
cosh φ − 1

2
m2[Tr(K)2 − Tr(K2)]

]
, (17)

where Kμ
αKα

ν = gμαfαν , and the nonzero elements of the fixed
reference metric fμν are fxx = fyy = 1. This explicit breaking
of diffeomorphism invariance in the gravitational theory is
equivalent to the loss of momentum conservation in the dual
field theory. This theory has a planar black hole solution,

ds2 = r2g(r)

L2
[−h(r)dt2 + dx2 + dy2] + L2

r2g(r)h(r)
dr2,

At (r) =
√

3Q(Q + r0)

L2

(
1 − m2L4

2(Q + r0)2

) (
1 − Q + r0

Q + r

)
,

φ(r) = 1

3
log[g(r)],

h(r) = 1 − m2L4

2(Q + r)2
− (Q + r0)3

(Q + r)3

(
1 − m2L4

2(Q + r0)2

)
,

g(r) =
(

1 + Q

r

) 3
2

, (18)

where the radial coordinate r spans the range between r0, the
location of the horizon, and ∞, the boundary of the spacetime.
The temperature T and chemical potential μ of the dual field
theory are

T =
r0

(
6(1 + Q/r0)2 − m2L4

r2
0

)
8πL2(1 + Q/r0)3/2

,

μ =
√

3Q(Q + r0)
(
1 − m2L4

2(Q+r0)2

)
L2

. (19)

Even with m �= 0, the zero-temperature near-horizon geometry
of (18) retains the scaling symmetries (11).

For the chemical potential μ to be real, we require that
m2L4 � 2 (Q + r0)2, and therefore T/μ ∝ √

r0/Q at low
T/μ. The linear entropy density s of the system at low T

can be made transparent by writing it as a function of r0/Q

and m̄ ≡ m/μ,

s/μ2 = 2πL2

3κ2
4

√
r0/Q

√
1 + r0/Q

(
1 + 3m̄2

2(1 + r0/Q)

)
∼ T/μ at low T , (20)

and the charge density σ is

σ/μ2 = L2

2
√

3κ2
4

√
1 + r0/Q

√
1 + 3m̄2

2(1 + r0/Q)

∼ (T/μ)0 at low T , (21)

where we have calculated these from the area of the horizon
and Gauss’ law, respectively.

The universal result of Blake and Tong [51] then ensures a
linear resistivity ρdc at low temperatures,

ρdc = s

4πσ 2
m2 = 2κ2

4

L2

1√
1 + Q/r0

m2

μ2
∼ T/μ at low T ,

(22)

as in the cuprate strange metal phase. The graviton mass
produces a nonzero ρdc by coupling the momentum to a
uniform operator, i.e., one with no characteristic periodic
length scale [50]—one consequence of this is that the planar
black hole solution is homogeneous and isotropic. This
operator plays the role of the homogeneous mode sourced by
random disorder in T tt (or J t ), producing a dc resistivity linear
in T . The arbitrary dimensionful parameter in the holographic
setup (the graviton mass m) corresponds to the energy scale
characterizing the impurities, i.e., l−1 in Eq. (2) or V̄ in Eq. (7).
It must be small, m 
 μ, for the coupling to impurities to be
weak in the infrared.

There is a lot of evidence that massive theories of gravity
arise generically as the effective description of the low-energy
physics in holographic systems in which momentum dissipates
slowly. That is, translational symmetry breaking generates an
effective mass for metric components that controls the dc resis-
tivity of the state. This is certainly the case when translational
symmetry is broken by sources for a scalar operator [19,52–
55]. One way to generate a graviton mass like that above
[52] (rather than by inserting it by hand into the action) is to
break translational invariance explicitly, in a homogeneous and
isotropic way, via the introduction of linear sources for two ad-
ditional scalar fields ϕi = mxi . This effective theory does not
capture the subleading effects of the nonhomogeneous compo-
nents of the disorder: see Ref. [19] for work in this direction.
It would be interesting to try and generalize these results to the
cases in which translational invariance is explicitly broken in
the ultraviolet not by scalars but by the metric or gauge field.
This would constitute an explicit proof that theories of massive
gravity are always the relevant low-energy effective theory for
holographic systems with slow momentum dissipation.

IV. DISCUSSION

In summary, we have presented a simple mechanism that
can explain how strange metals with a linear in tempera-
ture electronic entropy can acquire a linear in temperature
resistivity. It relies upon the assumption that the electronic
system is well described by the laws of hydrodynamics
with a minimal viscosity, a feature that arises naturally in
systems with a holographic dual. While experimental tests
will ultimately determine whether this explanation is correct,
holography has once again proved to be a valuable tool
for thinking about old problems in new ways. We outline
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below some of the implications of our mechanism and some
experimental tests of it. As we have previously mentioned, a
hydrodynamic description is not applicable at short distances
in a conventional metal, and it would be very interesting
to determine further “smoking gun” experimental signals of
hydrodynamic behavior in metals. We hope to return to this
point in the future.

The mechanism we have described offers remarkably
simple explanations for some mysterious experimental facts in
the high-Tc cuprate superconductors. First, the linear resistivity
of the strange metal phase is due to its linear electronic
entropy [56]. Second, the vanishing residual resistivity (see,
for example, Ref. [57]) is due to the vanishing entropy when
T = 0: in this limit, η vanishes and thus this perfect fluid does
not dissipate momentum. Experimentally [58], it is known that
1/τk 
 �/kBT , and using Eq. (2), we estimate that l 
 10−9

m, remarkably close to the Ioffe-Regel limit (l 
 a, the lattice
constant). This sheds new light on the long-standing puzzle of
why the strong chemical disorder that is known to be intrinsic
to cuprate crystals is not imprinted on their residual resistivity.
It may also explain why the effects of electron-phonon
couplings appear to be invisible in the electronic transport
properties. At nonzero temperatures, there should be a strongly
temperature-dependent contribution to momentum relaxation
due to inelastic scattering against phonons, but in a dirty metal
this is overwhelmed by the temperature-independent elastic
scattering. If we can incorporate both effects by an effective
mean free path l in Eq. (1), the effects of the electron-phonon
interactions will be invisible.

The mechanism we have described here may be tested
experimentally. The T 2 resistivity of the cuprates in the
pseudogap regime [57,59] coincides with a reduction in the
electronic specific heat to a form that looks quadratic in
temperature [56]. If the entropy law (2) is controlling this
resistivity, then systematic, precision measurements over a
large range of T should show a very close correlation between
these quantities. The pseudogap regime is associated with
ordering phenomena [60]. To have ρdc ∼ s in this regime,
we require some novel, emergent, quantum critical degrees of
freedom to be present. Although these are alien to the conven-
tional theories of ordering, symmetry breaking is a ubiquitous
phenomenon in holographic theories, where these infrared
degrees of freedom abound. A second experimental signature
of hydrodynamic behavior in metals is a strong violation of
the Wiedemann-Franz law [11]. To measure this would require
suppressing Tc with a large magnetic field in order to isolate
the electronic contribution to the thermal conductivity.

Finally, let us emphasize one of our key assumptions, and
some questions that remain to be addressed. We argued that,
unlike a Fermi liquid, a strongly interacting quantum critical
system can form a hydrodynamic state before its interactions
with a periodic potential become important, due to its minimal
viscosity. However, given that the cuprates can form Mott
insulators, the effects of a periodic potential are, a priori,
expected to be large. For the holographic state studied here, the
time scale τU over which momentum is lost due to interactions
with a periodic potential is τ−1

U ∼ T 2ν(kL)−1, and this time scale
may be significantly longer than the corresponding time scale
due to quenched disorder in Eq. (1) [9]. This is required for
our explanation to be valid.

Our mechanism cannot explain either the high value of Tc

or the T dependence of the Hall angle [61,62] in the cuprates.
In particular, an explanation of the Hall angle may require the
presence of an independent relaxation time associated with
Hall transport, unlike in the hydrodynamic model we have
outlined, in which all transport is controlled by the momentum
relaxation time. Furthermore, as highlighted in Ref. [63], linear
resistivities with a “Planckian” momentum relaxation rate
occur in a large variety of systems, including simple metals
in the phonon-dominated regime, and heavy-fermion-like
systems. Phonon domination is the most deadly adversary of
the hydrodynamic liquid we have described, while the heavy
fermion systems acquire their name from their large specific
heats that tend to diverge upon decreasing the temperature
toward their quantum critical points. Moreover, these systems
are much cleaner than the cuprates, and we therefore do not
see any reason to believe that our mechanism applies in these
cases.
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