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Abstract: Tensor networks provide a natural framework for exploring holographic dual-

ity because they obey entanglement area laws. They have been used to construct explicit

toy models realizing many of the interesting structural features of the AdS/CFT corre-

spondence, including the non-uniqueness of bulk operator reconstruction in the boundary

theory. In this article, we explore the holographic properties of networks of random tensors.

We find that our models naturally incorporate many features that are analogous to those

of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we

show that the entanglement entropy of all boundary regions, whether connected or not,

obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the

multipartite entanglement of assistance. We also discuss the behavior of Rényi entropies in

our models and contrast it with AdS/CFT. Moreover, we find that each boundary region

faithfully encodes the physics of the entire bulk entanglement wedge, i.e., the bulk region

enclosed by the boundary region and the minimal surface. Our method is to interpret the

average over random tensors as the partition function of a classical ferromagnetic Ising

model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon

including the analog of a bulk field, we find that our model reproduces the expected cor-

rections to the Ryu-Takayanagi formula: the bulk minimal surface is displaced and the

entropy is augmented by the entanglement of the bulk field. Increasing the entanglement

of the bulk field ultimately changes the minimal surface behavior topologically, in a way

similar to the effect of creating a black hole. Extrapolating bulk correlation functions to the

boundary permits the calculation of the scaling dimensions of boundary operators, which

exhibit a large gap between a small number of low-dimension operators and the rest. While

we are primarily motivated by the AdS/CFT duality, the main results of the article define

a more general form of bulk-boundary correspondence which could be useful for extending

holography to other spacetimes.
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1 Introduction

Tensor networks have been proposed [1] as a helpful tool for understanding holographic

duality [2–4] due to the intuition that the entropy of a tensor network is bounded by an

area law that agrees with the Ryu-Takayanagi (RT) formula [5]. In general, the area law

only gives an upper bound to the entropy [1], which for particular tensor networks and

choices of regions has been shown to be saturated [6]. Tensor networks can also be used to

build holographic mappings or holographic codes [6–8], which are isometries between the

Hilbert space of the bulk and that of the boundary. In particular, some of us have recently

proposed bidirectional holographic codes built from tensors with particular properties, so-

called pluperfect tensors [8]. These codes simultaneously satisfies several desired properties,

including the RT formula for a subset of boundary states, error correction properties of bulk

local operators [9], a kind of bulk gauge invariance, and the possibility of sub-AdS locality.

The perfect and pluperfect tensors defined in refs. [6] and [8], respectively, have entan-

glement properties that are idealized version of large-dimensional random tensors, which

is part of the motivation why it is natural to study these tensor networks. In this work, we

will show that by directly studying networks of large dimensional random tensors, instead

of their “idealized” counterpart, their properties can be computed more systematically.

Specifically, we will assume that each tensor in the network is chosen independently at

random. We find that the computation of typical Rényi entropies and other quantities

of interest in the corresponding tensor network states can be mapped to the evaluation

of partition functions of classical statistical models, namely generalized Ising models with

boundary pinning fields. When each leg of each tensor in the network has dimension D,

these statistical models have inverse temperature β ∝ logD. For large enough D, they

are in the long-range ordered phase, and we find that the entropies of a boundary region

is directly related to the energy of a domain wall between different domains of the order

parameter. The minimal energy condition for this domain wall naturally leads to the RT

formula.1 Besides yielding the RT formula for general boundary subsystems, the tech-

nique of random state averaging allows us to study many further properties of a random

tensor network:

1. Effects of bulk entanglement. Using the random tensor network as a holographic

mapping rather than a state on the boundary, we derive a formula for the entropy

of a boundary region in the presence of an entangled state in the bulk. As a special

example of the effect of bulk entanglement, we show how the behavior of minimal

surfaces (which are minimal energy domain walls in the statistical model) is changed

qualitatively by introducing a highly entangled state in the bulk. When the state is

sufficiently highly entangled, no minimal surface penetrates into this region, so that

the topology of the space has effectively changed. This phenomenon is analogous to

the change of spatial geometry in the Hawking-Page transition [11, 12], where the bulk

geometry changes from perturbed AdS to a black hole upon increasing temperature.

1In our models, the RT formula holds for all Rényi entropies, which is an important difference from

AdS/CFT [10]. We will discuss this point in more detail further below.
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2. Bidirectional holographic code and code subspace. By calculating the entanglement

entropy between a bulk region and the boundary in a given tensor network, we

can verify that the random tensor network defines a bidirectional holographic code

(BHC). When the bulk Hilbert space has a higher dimension than the boundary, we

obtain an approximate isometry from the boundary to the bulk. When we restrict

the bulk degrees of freedom to a smaller subspace (“code subspace”, or “low energy

subspace”) which has dimension lower than the boundary Hilbert space dimension,

we also obtain an approximate isometry from this bulk subspace to the boundary.

This bulk-to-boundary isometry satisfies the error correction properties defined in

ref. [9]. To be more precise, all bulk local operators in the entanglement wedge of a

boundary region can be recovered from that boundary region.2

3. Correlation spectrum. In addition to entanglement entropies, we can also study prop-

erties of boundary multi-point functions. In particular, we show that the boundary

two-point functions are determined by the bulk two-point functions and the prop-

erties of the statistical model. When the bulk geometry is a pure hyperbolic space,

the boundary two-point correlations have power-law decay, which defines the scaling

dimension spectrum. We show that in large-dimensional random tensor networks

there are two kinds of scaling dimensions, those from the bulk “low energy” theory

which do not grow with the bond dimension D, and those from the tensor network

itself which grow ∝ logD. This confirms that the holographic mapping defined by

a random tensor network maps a weakly-interacting bulk state to a boundary state

with a scaling dimension gap, consistent with the expectations of AdS/CFT.

The use of random matrix techniques has a long and rich history in quantum infor-

mation theory (see, e.g., the recent review [13] and references therein). Previous work on

random tensor network states has originated from a diverse set of motivations, including

the construction of novel random ensembles that satisfy a generalized area law [14, 15], the

relationship between entropy and the decay of correlations [16], and the maximum entropy

principle [17]. The relation between the Schmidt ranks of tensor network states and mini-

mal cuts through the network has been investigated in [18]. While the primary motivation

for this work is to better understand holographic duality, its methods and even the nature

of many of its conclusions place it squarely in this earlier tradition. In the holographic con-

text, it was in fact previously shown that using a class of pseudo-random tensors known as

quantum expanders in a MERA tensor network would reproduce the qualitative scaling of

the Ryu-Takayanagi formula [19].

The remainder of the paper is organized as follows. In section 2 we define the random

tensor networks. We show how the calculation of the second Rényi entropy is mapped

to the partition function of a classical Ising model. In section 3 we investigate the RT

formula in the large dimension limit of the random tensors, and discuss the effect of bulk

entanglement. As an explicit example we study the minimal surfaces for a highly entan-

gled (volume-law) bulk state and discuss the transition of the effective bulk geometry as a

2In this work, the entanglement wedge of a boundary region refers to the spatial region enclosed by the

boundary region and the minimal surface homologous to it, rather than to a space-time region.
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function of bulk entropy density. In section 4 we study the properties of the holographic

mapping defined by random tensor networks, including boundary-to-bulk isometries and

bulk-to-boundary isometries for the code subspace, and we discuss the recovery of bulk

operators from boundary regions. In section 5 we generalize the calculation of the second

Rényi entropy to higher Rényi entropies. We show that the n-th Rényi entropy calculation

is mapped to the partition function of a statistical model with a Symn permutation group

element at each vertex. The same technique also enables us to compute other averaged

quantities involving higher powers of the density operator. In section 6 we use this tech-

nique to study the boundary two-point correlation functions. We show that the boundary

correlation functions are determined by the bulk correlations and the tensor network, and

that a gap in the scaling dimensions opens at large D in the case of AdS geometry. In

section 7 we bound the fluctuations around the typical values calculated previously and

discuss the effect of finite bond dimensions. Section 8 explains the close relationship be-

tween the random tensors networks of this paper and optimal multipartite entanglement

distillation protocols previously studied in the quantum information theory literature. In

section 9 we consider other ensembles of random states. We find that the RT formula can

be exactly satisfied in tensor networks built from random stabilizer states, which allows for

the construction of exact holographic codes. Finally, section 10 is devoted to conclusion

and discussion.

2 General setup

2.1 Definition of random tensor networks

We start by defining the most general tensor network states in a language that is suitable for

our later discussion. A rank-n tensor has components Tµ1µ2...µn with µk = 1, 2, . . . , Dk. We

can define a Hilbert space Hk with dimension Dk for each leg of the tensor, and consider the

index µk as labeling a complete basis of states |µk〉 in this Hilbert space. In this language,

Tµ1µ2...µn (with proper normalization) corresponds to the wavefunction of a quantum state

|T 〉 =
∑

{µk}
Tµ1µ2...µn |µ1〉⊗|µ2〉⊗· · ·⊗|µn〉 defined in the product Hilbert space

⊗n
k=1Hk.

A tensor network is obtained by connecting tensors, i.e., by contracting a common

index. For purposes of illustration, a small tensor network is shown in figure 1 (a). Before

connecting the tensors, each tensor corresponds to a quantum state, so that the collection of

all tensors can be considered as a tensor product state
⊗

x |Vx〉. Here, x denotes all vertices

in the network, and |Vx〉 is the state corresponding to the tensor at vertex x. Each leg of

a tensor corresponds to a Hilbert space. We will denote the Hilbert space corresponding

to a leg from x to another vertex y by Hxy, and its dimension by Dxy. If a leg is dangling,

i.e., not connected to any other vertex, we will denote the corresponding Hilbert space by

Hx∂ and its dimension by Dx∂ . (Without loss of generality we can assume there is at most

one dangling leg at each vertex.) Connecting two tensors at x, y by an internal line then

corresponds to a projection in the Hilbert space Hxy ⊗ Hyx onto a maximally entangled

state |xy〉 = 1√
Dxy

∑Dxy

µ=1 |µxy〉⊗ |µyx〉. Here |µxy〉 denotes a state in the Hilbert space Hxy

and similarly for |µyx〉. By connecting the tensors according to the internal lines of the

– 4 –



J
H
E
P
1
1
(
2
0
1
6
)
0
0
9

Figure 1. (a) A tensor network that defines a state in the Hilbert space of the dangling indices. (b)

A tensor network that defines a mapping from bulk legs (red) to boundary legs (blue). An arbitrary

bulk state (orange triangle) is mapped to a boundary state. (For simplicity, we have drawn a pure

state in the bulk. For a mixed state the map needs to be applied to both indices of the bulk density

operator.) (c) The internal lines of the tensor network can always be combined with the bulk state

and viewed as a state in an enlarged Hilbert space (enclosed by the dashed hexegon). In this view,

each tensor acts independently on this generalized bulk state and maps it to the boundary state.

tensor network, we thus obtain the state

|Ψ〉 =





⊗

〈xy〉

〈xy|





(

⊗

x

|Vx〉
)

(2.1)

in the Hilbert space corresponding to the dangling legs,
⊗

x∈∂ Hx∂ . We note that |Ψ〉 is in
general not normalized. Tensor network states defined in this way are often referred to as

projected entangled pair states (PEPS) [20].

As has been discussed in previous works [6–8], tensor networks can be used to define

not only quantum states but also holographic mappings, or holographic codes, which map

between the Hilbert space of the bulk and that of the boundary. Figure 1 (b) shows a very

simple “holographic mapping” which maps the bulk indices (red lines) to boundary indices

(blue lines), with internal lines (black lines) contracted. A bulk state (orange triangle in

the figure) is mapped to a boundary state by this mapping. Such a boundary state can

also be written in a form similar to eq. (2.1). Instead of viewing the tensor network as

defining a mapping, we can equivalently consider it as a quantum state in the Hilbert space

Hb ⊗H∂ , which is a direct product of the bulk Hilbert space Hb and the boundary Hilbert

space H∂ . Denoting the bulk state as |Φb〉, the corresponding boundary state is

|Ψ〉 =



〈Φb| ⊗
⊗

〈xy〉

〈xy|





(

⊗

x

|Vx〉
)

. (2.2)

From this expression one can see that the internal lines of the tensor network can actually

be viewed as part of the bulk state. As is illustrated in figure 1 (c), one can view the
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maximally entangled states on internal lines together with the bulk state |Φb〉 as a state

in the enlarged “bulk Hilbert space”. This point of view will be helpful for our discussion.

More generally, one can also have a mixed bulk state with density operator ρb, instead of

the pure state |Φb〉. The most generic form of the boundary state is given by the density

operator

ρ = trP

(

ρP
∏

x

|Vx〉〈Vx|
)

, (2.3)

ρP = ρb ⊗
⊗

〈xy〉

|xy〉〈xy| . (2.4)

Here the partial trace trP is carried over the bulk and internal legs of all tensors (i.e., over

all but the dangling legs). In this compact form, one can see that the state ρ is a linear

function of the independent pure states of each tensor |Vx〉〈Vx|.
In this work, we study tensor network states of the form (2.3), where the tensors

|Vx〉 are unit vectors chosen independently at random from their respective Hilbert spaces.

We will mostly use the “uniform” probability measure that is invariant under arbitrary

unitary transformations. Equivalently, we can take an arbitrary reference state |0x〉 and

define |Vx〉 = U |0x〉 with U a unitary operator. The random average of an arbitrary

function f (|Vx〉) of the state |Vx〉 is then equivalent to an integration over U according to

the Haar probability measure
∫

dUf (U |0x〉), with normalization
∫

dU = 1.

All nontrivial entanglement properties of such a tensor network state are induced by

the projection, i.e., the partial trace with ρP . However, the average over random tensors

can be carried out before taking the partial trace, since the latter is a linear operation.

This is the key insight that enables the computation of entanglement properties of random

tensor networks.

2.2 Calculation of the second Rényi entropy

We will now apply this technique to study the second Rényi entropies of the random tensor

network state ρ defined in eq. (2.3). For a boundary region A with reduced density matrix

ρA, the second Rényi entropy S2(A) is given by e−S2(A) = tr ρ2A/(tr ρ)
2.3 It is helpful to

write this expression in a different form by using the “swap trick”,

e−S2(A) =
tr [(ρ⊗ ρ)FA]

tr [ρ⊗ ρ]
. (2.5)

Here we have defined a direct product ρ ⊗ ρ of two copies of the original system, and the

operator FA is defined on this two-copy system and swaps the states of the two copies in

the region A. To be more precise, its action on a basis state of the two-copy Hilbert space

is given by FA(|nA〉1 ⊗ |mĀ〉1 ⊗ |n′A〉2 ⊗ |m′
Ā
〉
2
) = |n′A〉1 ⊗ |mĀ〉1 ⊗ |nA〉2 ⊗ |m′

Ā
〉
2
, where Ā

denotes the complement of A on the boundary.

3In the quantum information theory literature, the Rényi entropy is usually defined with logarithm

in base 2, Sn(A) = 1/(1 − n) log2
tr ρn

A

(tr ρA)n
. Here we use base e to keep the notation consistent with the

condensed matter and high energy literature.

– 6 –
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We are now interested in the typical values of the entropy. Denote the numerator and

denominator resp. of eq. (2.5) by

Z1 = tr [(ρ⊗ ρ)FA] , (2.6)

Z0 = tr [ρ⊗ ρ] . (2.7)

These are both functions of the random states |Vx〉 at each vertex. We would like to average

over all states in the single-vertex Hilbert space. The variables Z1 and Z0 are easier to

average than the entropy, since they are quadratic functions of the single-site density matrix

|Vx〉〈Vx|. The entropy average can be expanded in powers of the fluctuations δZ1 = Z1−Z1

and δZ0 = Z0 − Z0:

S2(A) = −log
Z1 + δZ1

Z0 + δZ0

= − log
Z1

Z0

+
∞
∑

n=1

(−1)n−1

n

(

δZn
0

Z0
n − δZn

1

Z1
n

)

. (2.8)

We will later show in section 7 that for large enough bond dimensions Dxy the fluctuations

are suppressed. Thus we can approximate the entropy with high probability by the separate

averages of Z1 and Z0:

S2(A) ≃ − log
Z1

Z0

. (2.9)

Throughout this article we use ≃ for asymptotic equality as the bond dimensions go to

infinity. In the following we will compute Z1 and Z0 separately and use (2.9) to determine

the typical entropy. To compute Z1, we insert eq. (2.3) into eq. (2.6) and obtain

Z1 = tr

[

(ρP ⊗ ρP )FA

∏

x

|Vx〉〈Vx| ⊗ |Vx〉〈Vx|
]

. (2.10)

In this expression we have combined the partial trace over bulk indices in the definition

of the boundary state ρ and the trace over the boundary indices in eq. (2.6) into a single

trace over all indices. In the expression it is now transparent that the average over states,

one at each vertex, can be carried out independently before couplings between different

sites are introduced by the projection. The average over states can be done by taking an

arbitrary reference state |0x〉 and setting |Vx〉 = Ux |0x〉. Then the average is equivalent to

an integration over Ux ∈ SU (Dx) with respect to the Haar measure. The result of this

integration can be obtained using Schur’s lemma (see, e.g., ref. [21]):

|Vx〉〈Vx| ⊗ |Vx〉〈Vx| =
∫

dUx

(

Ux ⊗Ux

)

(|0x〉〈0x| ⊗ |0x〉〈0x|)
(

U †
x ⊗U †

x

)

=
Ix+Fx

D2
x+Dx

. (2.11)

Here, Ix denotes the identity operator and Fx the swap operator defined in the same way

as FA described above, swapping the two copies of Hilbert space of the vertex x (which

means all legs connecting to x). The Hilbert space dimension is Dx =
∏

y n.n. xDxy, the

product of the dimensions corresponding to all legs adjacent to x, including the boundary

dangling legs. It is helpful to represent eq. (2.11) graphically as in figure 2 (a) and (b).

Carrying out the average over states at each vertex x, Z1 then consists of 2N terms if

there are N vertices, with an identity operator or swap operator at each vertex. We can

– 7 –
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then introduce an Ising spin variable sx = ±1, and use sx = 1 (sx = −1) to denote the

choice of Ix and Fx, respectively. In this representation, Z1 becomes a partition function

of the spins {sx}:
Z1 =

∑

{sx}

e−A[{sx}],

where

e−A[{sx}] ≡ 1
∏

x (D
2
x +Dx)

tr



(ρP ⊗ ρP )FA

∏

x with sx=−1

Fx



 .

For each value of the Ising variables {sx}, the operator being traced is now completely

factorized into a product of terms, since Fx acts on each leg of the tensor independently.

This fact is illustrated in figure 2 (c). The trace of the swap operators with ρP ⊗ ρP is

simply exp [−S2 ({sx = −1} ; ρP )] with S2 ({sx = −1} ; ρP ) the second Rényi entropy of ρP
in the Ising spin-down domain defined by sx = −1. The trace on boundary dangling legs

gives a factor that is either D2
x∂ or Dx∂ , depending on the Ising variables sx and whether

x is in A. To be more precise, we can define a boundary field

hx =

{

+1, x ∈ Ā

−1, x ∈ A
(2.12)

Then the trace at a boundary leg x∂ gives D
1
2
(3+hxsx)

x∂ . Taking a product of these two kinds

of terms in the trace, we obtain the Ising action

A [{sx}] = S2 ({sx = −1} ; ρP )−
∑

x∈∂

1

2
logDx∂ (3 + hxsx) +

∑

x

log
(

D2
x +Dx

)

.

The form of the action can be further simplified by recalling that ρP has the direct product

form in eq. (2.4). Therefore the second Rényi entropy factorizes into that of the bulk

state ρb and that of the maximally entangled states at each internal line xy. The latter

is a standard Ising interaction term, since the entropy of either site is logDxy while the

entropy of the two sites together vanishes. Therefore

A [{sx}] = −
∑

〈xy〉

1

2
logDxy (sxsy − 1)−

∑

x∈∂

1

2
logDx∂ (hxsx − 1)

+ S2 ({sx = −1} ; ρb) + const.

(2.13)

Here we have omitted the details of the constant term since it plays no role in later discus-

sions. Eq. (2.13) is the foundation of our later discussion. The same derivation applies to

the average of the denominator Z0 = tr [ρ⊗ ρ] in eq. (2.5), which leads to the same Ising

partition function with a different boundary condition hx = 1 for all boundary sites, since

there is no swap operator FA applied. One can define F1 = − logZ1, F0 = − logZ0, such

that F1 and F0 are the free energy of the Ising model with different boundary conditions.4

Then eq. (2.9) reads

S2(A) ≃ F1 − F0.

4The standard definition of free energy should be −β−1 logZ1 but it is more convenient for us to define

it without the temperature prefactor.
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Figure 2. (a) Graphic representation of the single site density operator |Vx〉〈Vx| for a vertex in

the tensor network shown in figure 1. (b) The average over the state |Vx〉〈Vx| ⊗ |Vx〉〈Vx| in the

Hilbert space (see eq. (2.11)). On the right side of the equality, the dashed line connected to the

black dot stands for a sum over an Ising variable sx = ±1. When sx = 1 (sx = −1), each green

rectangle represents an operator Ix (Fx), respectively. (c) The state average of Z1 in eq. (2.10) for

the simple tensor network shown in figure 1. We consider a region A consisting of a single site,

and the green rectangle with X represents the swap operator FA. After contracting the doubled

line loops one obtains the partition function of an Ising model, with the blue arrows representing

the Ising variables. The dashed lines in the right of last equality represent three different terms

in the Ising model contributed by the links, the bulk state (middle triangle) and the choice of

boundary region A.

That is, the typical second Rényi entropy is given by the difference of the two free energies,

i.e., the “energy cost” induced by flipping the boundary pinning field to down (−1) in

region A, while keeping the remainder of the system with a pinning field up (+1).

In summary, what we have achieved is that the second Rényi entropy is related to

the partition function of a classical Ising model defined on the same graph as the tensor

network. Besides the standard two-spin interaction term, the Ising model also has an

additional term in its energy contributed by the second Rényi entropy of the bulk state

ρb, and the Ising spins at the boundary vertices are coupled to a boundary “pinning field”

hx determined by the boundary region A. If the bulk contribution from ρb is small (which

means major part of quantum entanglement of the boundary states is contributed by the

tensor network itself), one can see that the parameters logDxy and logDx∂ determine

the effective temperature of the Ising model. For simplicity, in the following we assume

Dxy = Dx∂ = D for all internal legs and boundary dangling legs. In this case we can take

β = 1
2 logD as the inverse temperature of the classical Ising model.

3 Ryu-Takayanagi formula

Once the mapping to the classical Ising model is established, it is easy to see how the

Ryu-Takayanagi formula emerges. In the large D limit, the Ising model is in the low-

temperature long-range ordered phase (as long as the bulk has spatial dimension ≥ 2), so

that the Ising action can be estimated by the lowest energy configuration. The boundary
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pinning field hx leads to the existence of an Ising domain wall bounding the boundary

region A, and in the absence of a bulk contribution the minimal energy condition of the

domain wall is exactly the RT formula. In this section we will analyze this emergence of

the Ryu-Takayanagi formula and corrections due to bulk entanglement in more detail.

3.1 Ryu-Takayanagi formula for a bulk direct-product state

We first consider the simplest situation with the bulk state a pure direct-product state

ρb =
⊗

x |φx〉〈φx|. In this case one can contract the bulk state at each site with the

tensor of that site, which leads to a new tensor with one fewer legs. Since each tensor is

a random tensor, the new tensor obtained from contraction with the bulk state is also a

random tensor. Therefore the holographic mapping with a pure direct-product state in

the bulk is equivalent to a purely in-plane random tensor network, similar to a MERA,

or a “holographic state” defined in ref. [6]. The second Rényi entropy of such a tensor

network state is given by the partition function of Ising model in eq. (2.13) without the ρb
term. Omitting the constant terms that appears in both Z0 and Z1, the Ising action can

be written as

A [{sx}] = −1

2
logD





∑

〈xy〉

(sxsy − 1) +
∑

x∈∂

(hxsx − 1)



 . (3.1)

In the large D limit, the Ising model is in the low temperature limit, and the partition

function is dominated by the lowest energy configuration. As illustrated in figure 3 (a),

the “energy” of an Ising configuration is determined by the number of links crossed by

the domain wall between spin-up and spin-down domains, with the boundary condition

of the domain wall set by the boundary field hx. For the calculation of denominator Z0,

hx = +1 everywhere, so that the lowest energy configuration is obviously sx = +1 for all

x, with energy F0 = 0. For F1, the nontrivial boundary field hx = −1 for x ∈ A requires

the existence of a spin-down domain. Each link 〈xy〉 with spins anti-parallel leads to an

energy cost of logD. Therefore the Rényi entropy in large D limit is

S2(A) = F1 − F0 ≃ logD min
Σ bound A

|Σ| ≡ logD |γA| . (3.2)

The minimization is over surfaces Σ such that Σ ∪ A form the boundary of a spin-down

domain, and |Σ| denotes the area of Σ, i.e., the number of edges that cross the surface.

Therefore the minimal area surface, denoted by γA, is the geodesic surface bounding A

region. Here we have assumed that the geodesic surface is unique. More generally, if there

are k degenerate minimal surfaces (as will be the case for a regular lattice in flat space),

F1 is modified by − log k.

With this discussion, we have proved that Ryu-Takayanagi formula applies to the

second Rényi entropy of a large dimensional random tensor network, with the area of

geodesic surface given by the graph metric of the network. As will be discussed later in

section 5, the higher Rényi entropies take the same value in the large D limit, and it

can also be extended to the von Neumann entropy, at least if the minimal geodesics are

unique (see section 7). However, the triumph that the second Rényi entropy is equal to
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the area of the minimal surface in the graph metric is in fact a signature that the random

tensor construction deviates from the holographic theory. The holographic calculation

of the second Rényi entropy amounts to evaluating the Euclidean action of the two-fold

replica geometry, which satisfies the Einstein equation everywhere in the bulk. Thus, in

general, the second Rényi entropy does not exactly correspond to the area of the minimal

surface in the original geometry. Due to the back-reaction of the gravity theory, the n-fold

replica geometry is in general different from the geometry constructed by simply gluing

n copies of the original geometry around the minimal surfaces, the discrepancy between

which can be seen manifestly from the n-dependence of the holographic Rényi-n entropy.

We will see in section 5 that our random tensor model can reproduce the correct Rényi

entropies for a single boundary region if we replace the bond states |xy〉 by appropriate

short-range entangled states with non-trivial entanglement spectrum. However, this does

not resolve the problem for multiple boundary regions, for which we will have a more

detailed discussion in section 5.

To compare with the RT formula defined on a continuous manifold, one can consider a

triangulation of a given spatial manifold and define a random tensor network on the graph

of the triangulation. (See [22, appendix A] for further discussion of the construction of

the triangulation graph.) Denoting by lg the length scale of the triangulation (the average

distance between neighboring triangles), the area |γA| in our formula is dimensionless and

the area |γcA| defined on the continuous Riemann manifold is given by |γcA| = ld−1
g |γA|

(when the spatial dimension of bulk is d). Therefore S(A) = l1−d
g logD |γcA|, and we see

that l1−d
g logD corresponds to the gravitational coupling constant 1

4GN
.

Compared to previous results about the RT formula in tensor networks [6, 8], our proof

of RT formula has the following advantages: firstly, our result does not require the boundary

region A to be a single connected region on the boundary. Since the entropy in the large D

limit is always given by the Ising spin configuration with minimal energy, the result applies

to multiple boundary regions. Secondly, our result does not rely on any property of the

graph structure, except for the uniqueness of the geodesic surface (if this is not satisfied

then the entropy formula acquires corrections as discussed above; cf. section 9). If we

obtain a graph by triangulation of a manifold, our formula applies to manifolds with zero

or positive curvature, even when the standard AdS/CFT correspondence does not apply.

In addition to these two points, we will also see in later discussions that our approach

allows us to study corrections to the RT formula systematically. Notice that we are not

limited to two-dimensional manifolds. One can consider a higher dimensional manifold and

construct a graph approximating its geometry. It follows from our results that the entropy

of a subregion of the boundary state is given by the size of the minimum cut on the graph,

i.e., the area of the minimal surface in the bulk homologous to the boundary region.

3.2 Ryu-Takayanagi formula with bulk state correction

If we do not assume the bulk state to be a pure direct-product state, the bulk entropy term

in eq. (2.13) is nonzero. If we still take the D → ∞ limit, the Ising model free energy is

still determined by the minimal energy spin configuration, which is now determined by a

balance between the area law energy logD |Σ| for a domain wall Σ, and the energy cost from
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Figure 3. (a) An example of Ising spin configuration with boundary fields down (hx = −1) in

A region and up (hx = +1) elsewhere. γA is the boundary of minimal energy spin-down domain

configuration. Σ (black dashed line) is an example of other domain wall configurations with higher

energy. The spin-down domain EA is called the entanglement wedge of A. (b) The minimal surfaces

bounding two far-away regions A and B, which are also the boundary of the entanglement wedge

of the completement region CD. (c) The effect of bulk entanglement in the same configuration as

panel (b). The entanglement wedges are deformed.

bulk entropy. We can define the spin-down region in such a minimal energy configuration

as EA, which bounds the boundary region A, and corresponds to the region known as the

entanglement wedge in the literature [23, 24]. The second Rényi entropy is then given by

S2(A) ≃ logD |γA|+ S2 (EA; ρb) . (3.3)

The bulk contribution has two effects. First it modifies the position of the minimal energy

domain wall |γA|, and thus modified the area law (RT formula) term of the entropy. Second

it gives an additional contribution to the entanglement entropy of the boundary region.

This is similar to how bulk quantum fields contribute corrections to the RT formula in

AdS/CFT [25].

To understand the consequence of this bulk correction, we consider an example shown

in figure 3 (b) and (c), where A and B are two distant disjoint regions on the boundary.

If the bulk entanglement entropy vanishes, the RT formula applies and the entanglement

wedges EA and EB are disjoint. Therefore we find that S2(A) + S2(B) = S2(AB) and so

the “mutual information” between the two intervals I2(A : B) = S2(A) + S2(B)− S2(AB)

vanishes in the large D limit.5 When the bulk state is entangled, if we assume the entan-

glement is not too strong, so that the entanglement wedges remain disjoint, the minimal

energy domain walls γA and γB may change position, but remain disconnected. Therefore:

S2(AB) ≃ logD (|γA|+ |γB|) + S2(EA ∪ EB; ρb),

I2(A : B) ≃ S2(EA; ρb) + S2(EB; ρb)− S2(EA ∪ EB; ρb) = I2(EA : EB; ρb).

From this equation, we see that even if a small bulk entanglement entropy may only lead

to a minor correction to the minimal surface location, it is the only source of mutual in-

5The mutual information for Rényi entropy is generally not an interesting quantity, but it is meaningful

in our case since it approaches the von Neumann mutual information for large D.
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formation between two far-away regions in the large D limit. (If we consider a large but

finite D, and include spin fluctuations of the Ising model, we obtain another source of

mutual information between far-away regions, which vanishes exponentially with logD.)

The suppression of mutual information between two far-away regions implies that the cor-

relation functions between boundary regions A and B are suppressed, even if each region

has a large entanglement entropy in the large D limit. In the particular case when the

bulk geometry is a hyperbolic space, the suppression of two-point correlations discussed

here translates into the scaling dimension gap of boundary operators, which is known to

be a required property for CFTs with gravity duals [26–28]. A more quantitative anal-

ysis of the behavior of two-point correlation functions and scaling dimension gap will be

postponed to section 6.

3.3 Phase transition of the effective bulk geometry induced by bulk

entanglement

We have shown that a bulk state with nonzero entanglement entropy gives rise to correc-

tions to the Ryu-Takayanagi formula. In the discussion in section 3.2, we assumed that

the bulk entanglement was small enough that the topology of the minimal surfaces re-

mained the same as those in the absence of bulk entanglement. Alternatively, one can also

consider the opposite situation when the bulk entanglement entropy is not a small pertur-

bation compared to the area law term logD |γA|, in which case the behavior of the minimal

surfaces may change qualitatively. In this subsection, we will study a simple example of

this phenomenon, with the bulk state being a random pure state in the Hilbert space of

a subregion in the bulk. As is well-known, a random pure state is nearly maximally en-

tangled [29], which we will use as a toy model of a thermal state (i.e., of a pure state that

satisfies the eigenstate thermalization hypothesis [30, 31]). The amount of bulk entangle-

ment can be controlled by the dimension of the Hilbert space Db of each site. We will show

that the topologies of minimal surfaces experience phase transitions upon increasing Db

which qualitatively reproduces the transition of the bulk geometry in the Hawking-Page

phase transition [11, 12]. To be more precise, the entropy of the boundary region receives

two contributions: the area of the minimal surfaces in the AdS background and the bulk

matter field correction. However, above a critical value of Db, the minimal surface tends to

avoid the highly entangled region in the bulk, such that there is a region which no minimal

surface ever penetrates into, and the minimal surface jumps discontinuously from one side

of the region to the other side as the boundary region size increases to half of the system.

This is qualitatively similar to how a black hole horizon emerges from bulk entanglement.

(A black hole cannot be identified conclusively in the absence of causal structure, however,

so our conclusions in this section are necessarily tentative.)

We consider a tensor network which is defined on a uniform triangulation of a hyper-

bolic disk. Each vertex is connected to a bulk leg with dimension Db in addition to internal

legs between different vertices. Then we take a disk-shaped region, as shown in figure 4 (a).

We define the bulk state to be a random state in the disk region, and a direct-product
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Figure 4. (a) Illustration of the setup. The orange disk-shaped bulk region of radius b is in a

random pure state. We study the second Rényi entropy of a boundary region θ ∈ [−ϕ,ϕ] at radius
r = 1 − ǫ. (b) The phase diagram of the boundary state as parametrized by the bond dimensions

D and Db, corresponding to in-plane and bulk degrees of freedom, respectively. The blue line,

obtained numerically, describes the phase boundary that separates the perturbed AdS phase and

the small black hole phase. The red line distinguishes the small black hole phase and the maximal

black hole phase. The three phases are discussed in more detail in the main text.

state outside:

|Ψ〉bulk =





⊗

|~x|>b

|ψ~x〉



⊗ |ψ|~x|<b〉 .

The second Rényi entropy of a boundary region is determined by the Ising model partition

function with the action (2.13).6

The bulk contribution S2 ({sx = −1} ; ρb) for a random state with large dimension only

depends on the volume of the spin-down domain in the disk region, since all sites a play

symmetric role. After an average over random states, the entropy of a bulk region with N

sites is given by [32]

S2 (N) = log

(

DNT

b + 1

DN
b +DNT−N

b

)

,

in which NT is the total number of sites in the disk region. Therefore the Ising action

contains two terms, an area law term and the bulk term which is a function of the volume

of spin-down domain. For simplicity, we can consider a fine-grained triangulation and

approximate the area and volume by that in the continuum limit. If we denote the average

distance between two neighboring vertices as lg, as in previous subsections, we obtain

A [M↓] = logD · l−1
g |∂M↓|+ log





D
VT /l2g
b + 1

D
|M↓|/l2g
b +D

(VT−|M↓|)/l2g
b



 .

6For readers more comfortable with the graph theoretic description, here is a sketch in that language

of the entropy calculation in the presence of a bulk random state. Because any vertex corresponds to

projection to a random state, the insertion of a random bulk state amounts to connecting the bulk dangling

legs to a single new vertex. Therefore, the study of entropies will be equivalent to the study of minimum

cuts in the modified graph.
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Here M↓ is a spin-down region bounding a boundary region A, and ∂M↓ is the boundary

of this region in the bulk (which does not include A). VT = NT l
2
g is the total volume of

the disk region in the bulk.

Consider the Poincaré disk model of hyperbolic space, with the metric ds2 = 4(dr2 +

r2dθ2)/(1− r2)2. The boundary is placed at r = 1− ǫ with ǫ > 0 a small cutoff parameter.

The disk region is defined by r ≤ b. Choose a boundary region θ ∈ [−ϕ,ϕ], with ϕ ≤ π/2

so that the boundary region is smaller than half the system size. (Boundary regions that

exceed half the system size have the same entropy as their complement, since the whole

system is in a pure state.) If we assume the minimal surface ∂M↓ to be a curve described

by r = r(θ) (i.e., for each θ there is only one r value), the volume and area of this curve

can be written explicitly as

S2(ϕ) = min
r(θ)







∫ ϕ

−ϕ
dθ

2l−1
g logD

1−r2(θ)

√

(r′(θ))2+r2(θ)+log
D

VT /l2g
b +1

D
Vr(θ)/l

2
g

b +D
(VT−Vr(θ))/l2g
b







, (3.4)

Vr(θ) =

∫ ϕ

−ϕ
dθ

∫ b

min{b,r(θ)}
dr

4r

(1− r2)2
, VT =

∫ 2π

0
dθ

∫ b

0
dr

4r

(1− r2)2
=

4πb2

1−b2 .

For fixed l−1
g logD, when we gradually increase l−2

g logDb, there are three distinct

phases: the perturbed AdS phase, the small black hole phase, and the maximal black

hole phase. The phase diagram can be obtained numerically, as shown in figure 4 (b). In

the calculation, we fix b = tanh(1/2), which means that the radius of the disk in proper

distance is 1 (i.e., the AdS radius). In the perturbed AdS phase, although the minimal

surfaces are deformed due to the existence of the bulk random state, there is no topological

change in the behavior of minimal surfaces. As the size of the boundary region increases,

the minimal surface swipes through the whole bulk continuously (figure 5 (a)). In the small

black hole phase, the minimal surface experiences a discontinuous jump as the boundary

region size increases. There exists a region with radius 0 < rc < b that cannot be accessed

by the minimal surfaces of any boundary regions (figure 5 (b)). Qualitatively, the minimal

surfaces therefore behave like those in a black hole geometry, which always stay outside the

black hole horizon. As logDb increases, rc increases until it fills the whole disk (rc = b).

Further increase of logDb does not change the entanglement property of the boundary

anymore, since the entropy in the bulk disk region has saturated at its maximum. This is

the maximal black hole phase (figure 5 (c)).

More quantitatively, the two phase boundaries in figure 4 (b) are fitted by l−2
g logDb =

0.937
√

l−1
g logD (blue line) and l−1

g logDb/ logD = (1+b2)/2b (red line), respectively. The

square root behavior of the blue line can be understood by taking the maximal boundary

region of half the system size ϕ = π
2 . At the critical l

−2
g logDb, the diameter of the Poincaré

disk goes from the minimal surface bounding the half system to a local maximum. For

more detailed discussion, see appendix A. The second transition at the red line is roughly

where the entanglement entropy of the bulk region reaches its maximum. However, more

work is required to obtain the correct coefficient (1+ b2)/2b, as we show in appendix A. In

figure 6 (a), we present the evolution of the black hole size rc/b when l−2
g logDb increases

and l−1
g logD = 10 is fixed.
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Figure 5. Configuration of the minimal surfaces calculated numerically in the bulk for different

boundary regions in the three phases. The random pure state is supported at the orange region.

The parameters are set to l−1
g logD = 10, b = tanh(1/2). Depending on the value of l−2

g logDb,

the phases of the system are given by (a) l−2
g logDb = 1, perturbed AdS phase; (b) l−2

g logDb = 5,

small black hole phase; (c) l−2
g logDb = 15, maximal black hole phase.

Figure 6. (a) Evolution of the black hole size rc with respect to l−2
g logDb, where l

−1
g logD is fixed

to be 10. (b) Entropy profile of the boundary system r = 1 − ǫ, θ ∈ [−ϕ,ϕ] with respect to the

different boundary region size ϕ ≤ π. The blue data points, black data points and the red data

points correspond to the boundary entropy profile in the perturbed AdS space, the small black hole

phase and the maximal black hole case, respectively. The parameters are set as the same as the

three phases in figure 5.

Figure 6 (b) provides another diagnostic to differentiate the geometry with and without

the black hole. The entanglement entropy S2(ϕ) is plotted as a function of the boundary

region size. In the perturbed AdS phase (blue curve), S2(ϕ) is a smooth function of ϕ,

just like in the pure AdS space. In the small black hole phase (black curve) and the

maximal black hole phase (red curve), there is a cusp in the function S2(ϕ) at ϕ = π
2 ,

as a consequence of the discontinuity of the minimal surface. For ϕ ≤ π
2 , S2(ϕ) shows a

crossover from the AdS space behavior (which corresponds to the entanglement entropy of

a CFT ground state) to a volume law. Such behavior of S2(ϕ) is qualitatively consistent

with the behavior of a thermal state (more precisely a pure state with finite energy density)

on the boundary.
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In summary, we see that a random state in the bulk region is mapped by the random

tensor network to qualitatively different boundary states depending on the entropy density

of the bulk. This is a toy model of the transition between a thermal gas state in AdS

space and a black hole. In a more realistic model of the bulk thermal gas, the thermal

entropy is mainly at the IR region (around the center of the Poincaré disk), but there

is no hard cutoff. Therefore there is no sharp transition between small black hole phase

and maximal black hole phase. The size of black hole will keep increase as a function of

temperature. In contrast, the lower phase transition between perturbed AdS phase and the

small black hole phase remains a generic feature, since the minimal surface will eventually

skip some region in the bulk when the volume law entanglement entropy of the bulk states

is sufficiently high. From this simple example we see how the bulk geometry defined by a

random tensor network has nontrivial response to the variation of the bulk quantum state.

Finding a more systematic and quantitative relation between the bulk geometry and bulk

entanglement properties will be postponed to future works.

At last, we comment on the case of two-sided black holes. As is well-known, an eternal

black-hole in AdS space is the holographic dual of a thermofield double state [33], which

is an entangled state between two copies of CFTs, such that the reduced density matrix of

each copy is thermal. As a toy model of the eternal black hole we consider a mixed bulk

state with density matrix

ρb =





⊗

|x|>b

ρpurex



⊗





⊗

|x|<b

ρmix
x



 .

Here ρpurex is a pure state density matrix while ρmix
x is a mixed state with finite entropy.

This density matrix described a bulk state in which all qudits in the disk region |x| < b

are entangled with some thermal bath. The behavior of the geometry can be tuned by

the entanglement entropy of ρmix
x for each site, which plays a similar role as logDb in the

single-sided black hole case. The analyis of minimal surfaces for a boundary region in

this state can be done exactly in parallel with the single-sided case. Therefore, instead

of repeating the similar analysis, we only comment on two major differences between the

single-sided and two-sided case:

1. Because the bulk state is not a pure state, the entropy profile of the boundary sys-

tem with respect to the different boundary region size is not symmetric at half the

system size. However, there is still a phase transition as a function of entropy density

of the bulk, above which a cusp appears in the entropy profile. This phase tran-

sition corresponds to the transition between thermal AdS geometry and AdS black

hole geometry [12].

2. Similar to the single-sided case, there is a second phase transition where further

increase of bulk entropy density does not change the boundary entanglement feature

any more. The transition point for two-sided case occurs at a slightly different value

l−2
g S(ρmix

x ) = 1
b l

−1
g logD. When the bulk entropy exceeds this value, the boundary

state is a mixed state with entropy l−1
g logD 4πb

1−b2
, which is given by the boundary

area of the disk region in the bulk. The boundary of the disk plays the role of the

black hole horizon.
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While the behavior observed here is consistent with black hole formation, it is im-

portant to stress that the conclusion is actually ambiguous. Geodesics can be excluded

from regions of space even in the absence of a black hole.7 The presence of a black hole

is ultimately a feature of the causal structure, so resolving the ambiguity would require

introducing time into our model.

4 Random tensor networks as bidirectional holographic codes

In the previous section we discussed the entanglement properties of the boundary quantum

state obtained from random tensor networks. In this section we will investigate the proper-

ties of random tensor networks interpreted as holographic mappings (or holographic codes).

In ref. [8], the concept of a bidirectional holographic code (BHC) was introduced,

which is a holographic mapping with two different kinds of isometry properties. A BHC is

a tensor network with boundary legs and bulk legs. We denote the number of boundary legs

as L and the number of bulk legs (i.e., the number of bulk vertices) as V , and denote the

dimension of each boundary leg as D and that of each bulk leg as Db. The first isometry is

defined from the boundary Hilbert space with dimension DL to the bulk Hilbert space with

dimension DV
b . The physical Hilbert space is identified with the image of this isometry

from the boundary to the bulk, so that the full bulk Hilbert space is redundant in the sense

that it contains many non-physical states. The condition identifying these physical states

can be formulated as a gauge symmetry. The second isometry is defined from a subspace

of the bulk Hilbert space to the boundary. The physical interpretation of this subspace is

as the low energy subspace of the bulk theory. The bulk theory is intrinsically nonlocal

in the space of all physical states, but locality emerges in the low energy subspace. More

precisely, the degrees of freedom at different locations of the low energy subspace are all

independent, and a local operator acting in the low energy subspace can be recovered from

certain boundary regions, satisfying the so-called “error-correction property” [6, 9]. For

this reason, the low energy subspace is also referred to as the code subspace.

In this section, we will investigate the properties of random tensor networks and show

that they satisfy the BHC conditions in the large D limit and moreover have properties

that are even better than the BHC constructed using pluperfect tensors in ref. [8].

4.1 Code subspace

We start from the holographic mapping in the low energy subspace, or “code subspace” in

the language of quantum error correction [9]. Physically, the code subspace is a subspace

of the Hilbert space which corresponds to small fluctuations around a classical geometry in

the bulk. More precisely, the criterion of “small fluctuations” states that these states are

described well by a bulk quantum field theory with the given geometrical background. In

other words, in the code subspace the bulk fields (operators) at different spatial locations

are independent and the Hilbert space seems to factorize with respect to the bulk position.

The fact that one cannot take the code subspace to be the entire Hilbert space, i.e. that

7We thank Aron Wall for bringing this point to our attention.
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locality in the bulk fails if we consider the entire Hilbert space, is the essential feature of

a theory of quantum gravity (defined as the holographic dual of a boundary theory), as

compared to an ordinary quantum field theory in the bulk.

In general, the choice of code subspace is not unique. However, the random ten-

sor network approach allows for a simple and explicit choice. We define the code sub-

space to be the tensor product of lower-dimensional subspaces at each vertex of the graph:

Hcode =
⊗

xHx (Db). Here, Hx (Db) is a Db-dimensional space at site x in the bulk. The

holographic mapping restricted to this subspace is simply a tensor network with a smaller

bond dimension Db for each bulk leg. In the following, we investigate the condition for

the bulk-to-boundary map to be an isometry, which thus determines the value of Db that

makes such a subspace an eligible code subspace.

When we view the tensor network as a linear map M from the bulk to the boundary,

the isometry condition means M †M = I is the identity operator. To apply the results we

obtained for the second Rényi entropy, it is more convenient to view the tensor network

as a pure state. Choose an orthonormal basis {|α〉} of the bulk and a basis {|a〉} for the

boundary. The linear map M with matrix element Mαa = 〈α|M |a〉 can then be identified

with the pure quantum state

|ΨM 〉 = D
−V/2
b

∑

α,a

Mαa |α〉 ⊗ |a〉 . (4.1)

In terms of the state, the requirement thatM †M = I is equivalent to the statement that the

bulk reduced density matrix ρb = tr∂ (|ΨM 〉〈ΨM |) = D−V
b I is maximally mixed. Therefore,

the isometry condition can be verified by an entropy calculation.

For that purpose we calculate the second Rényi entropy of the whole bulk. In the large

D limit, this is mapped to an Ising model partition function in the same way as in the

RT formula discussion, except that there is now a pinning field everywhere in the bulk, in

addition to the boundary:

A [{sx}] = −1

2
logD





∑

〈xy〉

(sxsy − 1) +
∑

x∈∂

(hxsx − 1)



− 1

2
logDb

∑

x

(bxsx − 1) . (4.2)

For computation of the bulk-boundary entanglement entropy, we should take bx = −1 for

all x, and hx = +1 for all boundary sites. (We have written eq. (4.2) in this general form

because other configurations of hx, bx will be used in our later discussion.)

In this action, the effect of the bulk pinning field bx competes with the boundary

pinning field hx. The relative strength of these two pinning fields is determined by the

ratio logDb/ logD. If logDb ≪ logD, the lowest energy configuration will be the one with

all spins pointing up. In the opposite limit logDb ≫ logD, all spins point down. For the

purpose of defining a code subspace with isometry to the boundary, we consider the limit

logDb ≪ logD. In that case all spins are pointing up, and the only energy cost in the

Ising action (4.2) comes from the last term, leading to the entropy

S2,bulk = V logDb, (4.3)

– 19 –



J
H
E
P
1
1
(
2
0
1
6
)
0
0
9

which is the maximum possible for a state on the bulk Hilbert space since its dimension is

DV
b . In the limit logDb ≪ logD, D → ∞, the bulk is therefore in a maximally mixed state,

so the corresponding holographic mapping from the bulk to the boundary is isometric. The

isometry condition is equivalent to the condition that the lowest energy configuration of

the Ising model has all spins pointing up.

Instead of requiring logDb ≪ logD, we can write down more precisely the isometry

condition by requiring that the all-up configuration has the lowest energy. Consider a

generic spin configuration with a spin-down domain Ω. The energy of this configuration is

A(Ω) = (V − |Ω|) logDb + |∂Ω| logD. Here |Ω| and |∂Ω| are the volume and the surface

area of Ω, respectively. In order for the all-up configuration to be stable, we need A(Ω) >

V logDb for all nontrivial Ω, which requires

|Ω| logDb < |∂Ω| logD, for all regions Ω. (4.4)

For example, if the bulk is a (triangulation of) hyperbolic space (with curvature radius

R = 1), a disk with boundary area |∂Ω| = 2πR/lg has volume |Ω| = 2π
(√

R2 + 1− 1
)

/l2g .

Here we have measured both area and volume by the triangulation scale lg. Therefore the

isometry condition requires

logDb

logD
< lg

R√
R2 + 1− 1

, ∀R⇒ logDb

logD
≤ lg. (4.5)

There is a finite range ofDb which satisfies the isometry condition, which is a consequence of

the fact that the area/volume ratio is finite in hyperbolic space. For comparison, the same

discussion for a disk in flat space with boundary area 2πR will require logDb

logD < 2
R lg. There-

fore the ratio logDb/ logD must scale inversely with the size of the whole system Rmax.
8

A useful remark is that the isometry condition (4.4) (or more precisely, a slightly weaker

condition with < replaced by ≤) is obviously necessary by a counting argument: in order

for an operator defined in region Ω to be mapped to the boundary isometrically, it needs

to be first mapped to the boundary of Ω, so that the dimension of the Hilbert space at the

boundary D|∂Ω| must be at least as large as the dimension of the bulk Hilbert space D
|Ω|
b .

With this observation, what we see from the Ising model representation is that the large-D

random tensor network is an optimal holographic code, in the sense that an isometry is

defined as long as the counting argument does not exclude it. Of course one should keep

in mind that this optimal property is only true asymptotically in the large D limit.

4.2 Entanglement wedges and error correction properties

Having shown that the holographic mapping M defines an isometry from the bulk to the

boundary degrees of freedom for suitable ratios logDb/ logD, it is natural to ask whether

this isometry has the error correction properties proposed in ref. [9], i.e., whether operators

in the bulk can be recovered from parts of the boundary instead of from the whole boundary.

8In the pluperfect tensor work [8], the code subspace was defined by selecting some of the bulk sites,

each having Db = D2. In contrast, the properties of random tensor networks considered in this work enable

us to make a uniform choice of small Db at every site, which is more convenient.
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Specifically, consider an operator φC in the bulk which only acts nontrivially in a region

C. Denote the complement of C in the bulk by C. We say that φC can be recovered from

a boundary region A if there exists a boundary operator OA such that [6]

OAM =MφC . (4.6)

We note that condition (4.6) is composable: for example, if φC and φ′C′ can be recovered

from A and A′, respectively, then OAO
′
A′M = OAMφ′C′ = MφCφ

′
C′ for the corresponding

boundary obervables OA and O′
A′ . It follows that

〈φCφ′C′〉ρb = tr ρbφCφ
′
C′ = tr ρbM

†MφCφ
′
C′ = tr ρbM

†OAO
′
A′M = 〈OAO

′
A′〉ρ ,

for any bulk state ρb and the corresponding boundary state ρ =MρbM
†. In the same way,

an arbitrary n-point function in the bulk can be obtained from a corresponding correlation

function on the boundary.

In the language of quantum error correction, eq. (4.6) states that the logical operator

φC acting on the degrees of freedom in C can be realized by an equivalent physical operator

acting on the degrees of freedom in A only. We are now interested in understanding when

all operators φC in the region C can be recovered from A. That is, we would like the

quantum information stored in subsystem C to be protected against erasure of the degrees

of freedom in B, the complement of A on the boundary. This amounts to another entropic

condition, namely, that in the pure state |ΨM 〉 defined in eq. (4.1) there is no mutual

information between C and the region BC [34], which ensures that the mutual information

between A and C is maximal:

S(C) + S(BC) = S(BCC). (4.7)

For the reader’s convenience, we recount a short proof of this fact in appendix B.

In general it is important that eq. (4.7) is evaluated in terms of von Neumann entropies

rather than Rényi entropies. In the limit of large D, however, both entropies are closely

approximated by the Ryu-Takayanagi formula as long as the minimal surfaces are unique

(see section 7). What is more, we may even arrange for the Ryu-Takayanagi formula to be

satisfied exactly, without any assumption on the uniqueness of minimal surfaces, by using

ensembles of random stabilizer states instead of Haar random states (see section 9). In the

following we shall therefore evaluate the quantum error correction condition (4.7) in terms

of second Rényi entropies and assume (for simplicity) that the RT formula holds exactly.

To understand when the error correction condition holds, we consider the configuration

shown in figure 7. The calculation of S2(C) is straightforward. Given the isometry condi-

tion (4.4), the whole bulk is in a maximally mixed state after tracing over the boundary,

so that S2(C) also takes the maximal value |C| logDb. In the calculation of S2(BC), the

pinning field is set to bx = −1 for x ∈ B and hx = −1 for x ∈ C. The boundary spin-down

field in B will pin a spin-down domain (orange region in figure 7). We consider the case

when C is in the spin-up (blue) domain, in which case the energy cost gives the entropy

S2(BC) = |γA| logD+(|EA| − |C|) logDb. Here γA is the domain wall bounding region A,

and EA is the spin-up domain, which is the entanglement wedge of A. The first term is

the area law energy cost of the domain wall, and the second term is the volume law energy

cost. S2(BCC) can be computed similarly by flipping the pinning field in C to downwards.
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AA
A

C C

B B B

C

SC = |C| logDb

C C

C

C

C

(a)	 (b)	 (c)	

S
BC

= |γA| logD

+ (|EA| − |C|) logDb

S
BCC

= |γA| logD + |EA| logDb

= SC + S
BC

Figure 7. The bulk-to-boundary isometry from a code subspace with small Db satisfying condi-

tion (4.4). The three panels show the Ising spin configurations for the calculation of (a) S2(C), (b)

S2(BC) and (c) S2(BCC). C is the complement of C in the bulk, and B is the complement of A on

the boundary. The blue arrows are pinning fields (hx on the boundary and bx in the bulk), and the

red arrows are the direction of Ising spins. The entropy is given by the energy of the configuration,

which is contributed by the region with Ising spins anti-parallel with the pinning field. The blue

(orange) regions are Ising spin-up (down) domains, respectively.

Due to the isometry condition (4.4), flipping the field in C does not create new spin-down

domains, so that the only difference between S2(BCC) and S2(BC) is an additional en-

ergy cost in the C region that is exactly S2(C). Therefore condition (4.7) holds, and the

operators in C can be recovered from A. As a final note, observe that the domain wall γA
is generally not the minimal surface, due to the presence of the bulk pinning field, but our

conclusion holds as long as C is in the spin-up domain and is disconnected from γA.

For comparison, we can consider the same configuration in figure 7 and ask whether

operators in C can be recovered from B. This requires the calculation of S2(C) +

S2(AC) − S2(ACC). Following an analysis similar to the previous paragraph, one can

obtain S2(AC) = |γA| logD+(|EB|+ |C|) logDb, and S2(ACC) = |γA| logD+ |EB| logDb.

Here EB is the complement of EA in the bulk, which is the entanglement wedge of B.

Therefore the mutual information I2(C : AC) = 2S2(C) > 0, so that C cannot be recov-

ered from B.

From the two cases studied above, we can see that operators in a bulk region C can

be recovered from a boundary region A if and only if C is included in the entanglement

wedge EA of A. It should be noted that this statement only applies to small bulk Db, or for

sufficiently small regions C if Db is larger, when the entanglement wedge EA (spin-down

domain in the Ising model) is independent of the direction of the pinning field in C.

4.3 Gauge invariance and absence of local operators

In the two subsections above, we showed how a largeD and smallDb random tensor network

defines bulk-to-boundary isometries with error correction properties. In this subsection we

would like to investigate the other direction of the BHC, i.e., the boundary-to-bulk isometry.

To define this isometry, we need to require that the boundary-bulk entanglement entropy
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be equal to |A| logD, which is the maximum possible entropy for the boundary. This

requires the opposite condition from eq. (4.4):

|Ω| logDb > |∂Ω| logD, for all regions Ω. (4.8)

To satisfy this condition, we can take Ω = {x} as a single site in the bulk, for which

the condition is reduced to Db > Dnx , with nx the number of links connected to x. If

this condition is satisfied for each site, eq. (4.8) also applies to other regions, since |∂B| ≤
∑

x∈B nx always holds. Therefore the condition ensuring a boundary-to-bulk isometry is

Db > Dnx , ∀x. (4.9)

This is similar to the condition proposed in ref. [8], with the difference that ref. [8] has

Db = Dnx because each tensor is required to be rigorously a unitary mapping from the

in-plane legs to the bulk leg.

When this isometry condition is satisfied, the boundary-to-bulk isometry maps each

boundary state isometrically to a bulk state in a larger Hilbert space with dimension DV
b .

It should be clarified that the physical Hilbert space is always that of the boundary, and

that the DV
b -dimensional Hilbert space, which is factorizable into a direct product of each

bulk site, is just an auxiliary tool. The situation is very similar to a gauge theory, in which

one can embed gauge invariant states into a larger auxiliary Hilbert space by treating the

gauge vector potential as a physical field. In fact, it was shown in ref. [8] that the physical

Hilbert space — the image of the boundary Hilbert space under the holographic mapping

— can be defined by a gauge invariance condition. The discussion also applies to the

random tensor network satisfying condition (4.9).

The main property of the boundary-to-bulk isometry is that the bulk theory is intrin-

sically nonlocal. To be more precise, consider an arbitrary region C that disconnected from

the boundary, as shown in figure 8. We would like to show that any operator φC supported

in C is mapped to the boundary trivially, i.e.,

MφCM
† = cIA.

Here, we have denoted the whole boundary as region A, while IA is the identity operator

on the boundary, and c is a constant. This statement is equivalent to the statement

I(A : C) = S(A) + S(C) − S(AC) = 0, which means there is no mutual information

between C and the whole boundary. Following an argument similar to that of the previous

subsection, and using condition (4.8) one can easily conclude that

S2(C) = |∂C| logD, S2(A) = |A| logD, S2(AC) = S2(A) + S2(C),

as is illustrated in figure 8. Therefore all purely bulk operators are trivial, and only

those in regions adjacent to the boundary contain nontrivial information about boundary

physical operators. As was discussed in ref. [8], this property is a consequence of the

gauge symmetry of the tensor network. For all tensor networks, there is a gauge symmetry

induced by acting unitarily on each internal leg while preserving the physical state after
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A A
A

C C C

SC = |∂C| logD SA = |A| logD SAC = (|A|+ |∂C|) logD

C C C

  

Figure 8. Boundary-to-bulk isometry with a large Db satisfying condition (4.9). The three panels

show the Ising spin configurations for the calculation of (a) S2(C), (b) S2(A) and (c) S2(AC). Here

A represents the whole boundary. The blue arrows are pinning fields, and the red arrows are the

direction of Ising spins. The blue (orange) regions are Ising spin-up (down) domains, respectively.

contraction. However, for tensor networks with the boundary-to-bulk isometry property,

this gauge symmetry is isometrically mapped to constraints on the bulk legs.

In summary, we have shown that a BHC can be built from a large D random tensor

network with bulk leg dimension Db satisfying condition (4.9). The boundary theory is

mapped isometrically to a nonlocal theory in the bulk, with the physical (boundary) Hilbert

space defined by gauge constraints. A code subspace is defined by a local projection at

every bulk site to a smaller subspace with dimension D′
b which satisfies condition (4.4). A

bulk-to-boundary isometry is defined in the code subspace, and a bulk local operator in

the code subspace can be recovered from a boundary region as long as the entanglement

wedge of this region encloses the support of this bulk operator. In this way, random tensor

networks can be used to define a bulk theory with intrinsic nonlocality and emergent locality

in a subspace, as is desired for a theory of quantum gravity.

5 Higher Rényi entropies

In this section, we will generalize the second Rényi entropy calculation to higher Rényi

entropies, and show that the higher Rényi entropies of a random tensor network are also

mapped to partition functions of classical spin models, with the spin now living in a different

target space, the permutation group Symn of {1, . . . , n}. For n = 2, the permutation group

Sym2 = Z2 reduces to the target space of the Ising model.

The derivation is in exact parallel with that for the second Rényi entropy in section 2.2

For the random tensor network state given by eq. (2.3), the n-th Rényi entropy is:

Sn(A) =
1

1− n
log

tr ρnA
(tr ρ)n

.

Again we use the natural logarithm to define higher Rényi entropies. We now define:

Z
(n)
1 = tr ρnA = tr

[

ρ⊗n C(n)
A

]

, (5.1)

Z
(n)
0 = (tr ρ)n = tr

(

ρ⊗n
)

.
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Here ρ⊗n denotes the direct product of n-copies of ρ, and C(n)
A is the permutation operator

that permutes the n copies cyclically in A region. For a basis |mA〉 of region A, a basis of

the direct product space is given by |m1A〉 ⊗ |m2A〉 ⊗ · · · ⊗ |mnA〉, and the action of C(n)
A

is given by C(n)
A (|m1A〉 ⊗ |m2A〉 ⊗ · · · ⊗ |mnA〉) = |m2A〉 ⊗ |m3A〉 ⊗ · · · ⊗ |mnA〉 ⊗ |m1A〉.

As in section 2.2, we approximate the typical Rényi entropy by

Sn(A) =
1

1− n
log

Z
(n)
1

Z
(n)
0

≃ 1

1− n
log

Z
(n)
1

Z
(n)
0

and compute Z
(n)
1 and Z

(n)
0 . By inserting the definition of ρ in eq. (2.3) into eq. (5.1), the

first average can be written as

Z
(n)
1 = tr

[

ρ⊗n
P C(n)

A

∏

x

|Vx〉〈Vx|⊗n

]

. (5.2)

The average of |Vx〉〈Vx|⊗n results in a projector onto the symmetric subspace of the n-fold

tensor power Hilbert space (e.g., [21]):

|Vx〉〈Vx|⊗n =
1

Cn,x

∑

gx∈Symn

gx. (5.3)

Here gx runs over all permutation group elements and we identify gx with its action on the n-

copy single site Hilbert space. This action is defined by permuting the n copies of systems,

similar to the definition of C(n)
A . The normalization constant is Cn,x =

∑

g∈Symn
tr g =

∑n
k=1 c(n, k)D

k
x = (Dx+n−1)!/(Dx−1)!, with c(n, k) the Stirling number of the first kind.

Using this result in eq. (5.2), we obtain a sum over permutation elements {gx} on each

vertex, and thus Z
(n)
1 becomes a partition function of classical spin model:

Z
(n)
1 =

∑

{gx}

e−A(n)[{gx}], (5.4)

e−A(n)[{gx}] =
1

∏

xCn,x
tr

[

ρ⊗n
P C(n)

A

⊗

x

gx

]

. (5.5)

The statistical weight of a configuration {gx} is determined by the expectation value of

this permutation (multiplied by the additional cyclic permutation C(n)
A on the boundary)

in the state ρ⊗n
P . In general, this expectation value is not related to the Rényi entropy

of any bulk region, which is a key difference from the case of second Rényi entropy. One

can view such expectation values of permutation operators as generalized multi-partite

entanglement measures that contains more information than Rényi entropies.9

In our case, ρP = ρb⊗
∏

〈xy〉 |xy〉〈xy| by eq. (2.4). Thus the action A(n) [{gx}] becomes

a sum of bond contributions and contributions of the bulk state ρb, similar to (2.13) in the

9This is because they are invariant under local unitary transformations that only act on a domain with

the same permutation value gx = g. Such quantities are known as LU invariants in the quantum information

literature (see, e.g., ref. [35] and references therein).

– 25 –



J
H
E
P
1
1
(
2
0
1
6
)
0
0
9

case of the second Rényi entropy:

A(n) [{gx}] = −
∑

〈xy〉

logDxy

(

χ(g−1
x gy)− n

)

−
∑

x∈∂

logDx∂χ(g
−1
x hx)

− log

[

tr

(

ρ⊗n
b

⊗

x

gx

)]

+
∑

x

logCn,x.

(5.6)

Here, χ(g) denotes the number of cycles in a permutation g (including cycles of length

one). The boundary pinning field hx takes the value

hx =

{

C(n)
x , x ∈ A

Ix, x ∈ A

with C
(n)
x the cyclic permutation acting on site x. For n = 2, it is straightforward to check

that (5.6) reduces to the Ising action (2.13). The EPR pairs on the internal legs contribute

a two-spin interaction energy

− logDxy

(

χ(g−1
x gy)− n

)

, (5.7)

which vanishes only if gx = gy. In this sense, the interaction is “ferromagnetic”, which

prefers all gx to align.

We first consider the case when the bulk is a pure direct-product state, so that the

contribution of ρb to eq. (5.6) vanishes. We also take Dxy = Dx∂ = D for simplicity,

as in previous sections. The action (5.6) describes a Symn-spin model with ferromagnetic

interaction and a boundary pinning field, at inverse temperature β = logD. Some examples

of {gx} configurations are shown in figure 9. Each domain wall between two different values

of gx has an energy cost which is proportional to the area of the domain wall and χ(g−1
x gy).

Up to this point, the derivation applies to arbitrary values of D. In the large D limit,

the partition function is dominated by the lowest energy contribution. If the entanglement

wedge EA is unique (i.e., if the Ising model used to evaluate the second Rényi entropy

has a unique minimal energy configuration) then the spin model with action (5.6) likewise

has a unique minimal energy configuration. It is given by setting gx equal to the cyclic

permutation throughout region EA and to the identity elsewhere (see figure 9 (b) for an

illustration in the case n = 3). We give a detailed proof of this fact in appendix C. Since

the boundary of EA in the bulk is the geodesic surface γA, we obtain

Z
(n)
1

∣

∣

∣

∣

D→∞

≃ const.× e(1−n) logD|γA|,

where the constant prefactor is independent from the choice of region A and will be canceled

by the same factor in the denominator Z
(n)
0 . The factor (1−n) comes from the fact that the

cyclic permutation contains one loop. Therefore we conclude that the typical n-th Rényi

entropy of the random tensor network state is given by

Sn(A) ≃ logD |γA| .
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If the bulk is in an entangled state ρb then we need to consider the corresponding

contribution to the action (5.6), which is given by

− log

[

tr

(

ρ⊗n
b

⊗

x

gx

)]

. (5.8)

As long as the bulk dimension is not too large, we may think of (5.8) as a perturbation to

the statistical model for the direct product case. In the minimal energy configuration of the

unperturbed model, the contribution (5.8) is precisely equal to (n−1)Sn(EA; ρb), i.e., (n−1)

times the n-th Rényi entropy of the reduced density matrix of the entanglement wedge in

the bulk state. For a general configuration {gx}, however, (5.8) cannot be interpreted

as an entropy. In fact, the corresponding statistical weight tr
(

ρ⊗n
b

⊗

x gx
)

can even be

a complex number, so that the interpretation of the action (5.6) requires suitable care.

However, we note that the partition function (5.4) is by definition an average of the positive

quantities (5.1) and therefore always positive. The choice of branch for the logarithm

in (5.8) is also irrelevant for the resulting statistical weight and so does not concern us

further. The key observation now is that |tr
(

ρ⊗n
b

⊗

x gx
)

| ≤ 1 by the Cauchy-Schwarz

inequality. Thus the real part of (5.8) is always non-negative: the bulk correction only ever

increases the real part of the energy levels. In particular, the only way that the (real part

of the) energy gap can decrease in the perturbed model is due to the bulk corrections in the

minimal energy configuration of the unperturbed model. Since Sn(EA; ρb) ≤ logDb|EA|,
the energy gap can therefore be lower bounded by logD − (n − 1) logDb|EA|. As long as

this gap diverges for large D, the minimal energy configuration remains unchanged and

dominates the partition sum, so that

Z
(n)
1

∣

∣

∣

∣

D→∞

≃ const.× e(1−n) logD|γA|+(1−n)Sn(EA;ρb).

We conclude that, for an entangled bulk state of sufficiently low dimension and large D,

the typical n-th Rényi entropy of the random tensor network state is given by

Sn(A) ≃ logD|γA|+ Sn(EA; ρb). (5.9)

It should be noted that these conclusions only hold when there is a unique minimal geodesic

surface, as discussed above. When there are multiple degenerate minimal surfaces, the

entropy is reduced by a factor logN with N the number of minimal energy configurations.

An example of degenerate minimal energy configurations are shown in figure 9 (c) for a

square lattice in flat space.

The fact that in leading order all Rényi entropies approach the same value in the large

D limit tells us an important difference between a large D random tensor network state

and a large central charge CFT ground state.10 When A is a length-l interval, the Rényi

entropy of A in a (1 + 1)-dimensional CFT ground state is given by [36, 37]

Sn(A) =

(

1 +
1

n

)

c

6
log l, (5.10)

10We would like to thank Juan Maldacena and Aron Wall for reminding us of this point.
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Figure 9. Examples of different spin configurations {gx} for n = 3. The permutation elements

gx ∈ Sym3 are denoted by their cycle structure. For example (1)(2)(3) is identity and (123) is the

cyclic permutation. The boundary pinning field is hx = (123) in the A region and h = (1)(2)(3) in

the complement. When the bulk is a pure direct-product state, the minimal energy configuration

is given in panel (b), with the two domains separated by the minimal surface γA. (c) is an example

illustrating that there can be multiple configurations with the same contribution to the partition

function Z
(n)
1 if the minimal surface is degenerate.

which shows that in the large central charge limit, the n dependence remains nontrivial. In

term of the eigenvalue spectrum of the reduced density matrix ρA, this difference tells us

that in a random tensor network state, the eigenvalues of ρA are more strongly concentrated

than that in a CFT ground state, although the density of states is also highly peaked in

the latter case.

From the point of view of the dual gravity theory, the nontrivial n-dependence is

enforced by the requirement that the dual geometry of tr[ρn] ought to satisfy the equations

of motion. To be more specific, if we naively constructed the dual geometry of tr[ρn] by

gluing n copies of the original bulk geometry around the minimal surfaces (in view of

eq. (5.1), this is quite literally what the calculation of the Rényi entropy of the tensor

network state amounts to) then there will be no n-dependence of the Rényi entropy [38].

The problem here is that this naively replicated geometry does not satisfy the equations of

motion. In other words, the geometry does not backreact and converge to the saddle point

of some gravitational action.

If we are interested in modifying the random tensor network to realize the same Rényi

entropy behavior (5.10) as a CFT ground state, the simplest way is by replacing the

maximally entangled EPR pair state |xy〉 at each internal leg by a more generic state. For

a more generic link state |Lxy〉, the calculation of Z
(n)
1 still applies, with the link terms (5.7)

in the action (5.6) replaced by

− log tr
[

|Lxy〉〈Lxy|⊗n gx ⊗ gy
]

. (5.11)

Since such terms are always non-negative, and only vanish if gx = gy, the qualitative be-

havior of the Symn-spin model remains ferromagnetic, and the lowest energy configuration

in large D limit still only contains a single domain wall with minimal area bounding A, as

shown in figure 9 (b). In this case one obtains the following formula for the Rényi entropies,

Sn(A) ≃ Sn (|Lxy〉) |γA| ≈
2

lg
Sn (|Lxy〉) log l, (5.12)
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with Sn (|Lxy〉) the Rényi entropy of the bond state |Lxy〉 with the partition between

x and y. As a reminder, lg is the area occupied by each leg of the tensor, in units of

the AdS radius R. Therefore the Rényi entropy behavior is identical to that of a CFT

ground state if the tensor network is a triangulation of the hyperbolic space, and the

bond state |Lxy〉 satisfies Sn (|Lxy〉) = lg
c
12

(

1 + 1
n

)

. For example, one can take lg = 2
c ,

and define the state |Lxy〉 as a thermofield double state of the free boson CFT. In this

case, the reduced density matrix ρx = try |Lxy〉〈Lxy| is a thermal density matrix of the

free boson CFT on the torus with aspect ratio β
L of order one. The aspect ratio can be

chosen to fit the entropy Sn = 1
6

(

1 + 1
n

)

. The random tensors on each site impose random

projections acting on these simple free CFT states, each of which is defined on a small

circle. This random projection defines a state on the boundary which for single intervals

has the Rényi entropy behavior of a strongly correlated CFT in 1+1 dimensions. However,

for more complicated subsystems, such as a disjoint union of two distant intervals [39], the

Rényi entropy Sn exhibits a dependence on n that cannot be accommodated by a suitable

choice of link state (which only affects the Rényi entropy per bond but not the minimal

surface or the replica geometry itself).11 Besides, it is not quite clear whether the above

modification will reproduce the correct Rényi entropies even for a single region if we go to

the higher dimensions. More systematic investigation of the comparison between random

tensor networks and CFT ground states will be reserved for future works.

The mapping we derived from the calculation of n-th Rényi entropy to classical Symn-

spin models applies to more general situations. For example, studying the second-order

correction terms in the calculation of average second Rényi entropy, eq. (2.8), involves the

computation of δZ2
1 and δZ2

0 . These quantities are quartic in
∏

x |Vx〉〈Vx|, so that one can

apply formula (5.3) and translate δZ2
1 into a partition function of Sym4-spin model. The

only difference between δZ2
1 and Z

(4)
1 in the 4-th Rényi entropy calculation is the value

of boundary field. In the calculation of δZ2
1 the value of boundary field should be chosen

as permutation (12)(34) in region A, and identity elsewhere. We will use this strategy

in section 7 to bound the fluctuations of the Rényi entropies around their semiclassical

value (5.9). Another important application of this mapping with n > 2 is the calculation

of boundary two-point functions, which will be discussed in next section.

6 Boundary two-point correlation functions

As we discussed in section 3, the mutual information between two distant regions

(figure 3 (b)) does not grow with logD (if the bulk state ρb remains D-independent),

although the entropy of each region is proportional to logD. This observation indicates

that two-point correlation functions between A and B are suppressed, as a consequence of

strong multi-partite correlation in the random tensor network state. In this section we will

investigate the behavior of two-point correlation functions more systematically, making use

of the state averaging techniques.

11We would like to thank Xi Dong for explaining this to us.
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We consider two small regions A and B, whose entanglement wedges are disconnected,

as was shown in figure 3 (b). Here the bulk has a given state ρb and the entanglement

wedges are defined with respect to the Ising action (2.13) corresponding to this bulk state.

For two operators OA and OB supported in A and B respectively, the correlation function

is given by 〈OAOB〉 = tr [ρOAOB] / tr ρ. It is not appropriate to directly consider the state

average of this quantity for fixed OA and OB, since local unitary transformations acting on

vertices in A or B will transform OA and OB and thus may average over two-point functions

with very different behaviors. To define a more refined measure of two-point correlations,

we introduce a complete basis of Hermitian operators in A labeled by Oα
A, and similarly a

basis in B labeled by Oβ
B. When the Hilbert space dimension of A region is DA, the index

α runs from 1, 2, . . . , D2
A. Choose these operators to satisfy the orthonormality conditions

tr
[

Oα
AO

β
A

]

= δαβ ,
∑

α

[Oα
A]ab [O

α
A]cd = δadδbc. (6.1)

For example, if A consists of N qubits, a choice of Oα
A are the 4N direct products of Pauli

matrices or identity operator acting on each site, with proper normalization.

Given a choice of basis operators, we define the correlation matrix

Mαβ =
tr
[

ρOα
AO

β
B

]

tr ρ
. (6.2)

Two arbitrary operators FA, FB in A and B can be expanded in this basis as FA =
∑

α fAαO
α
A, FB =

∑

β fBβO
β
B, such that 〈FAFB〉 =

∑

αβ fAαM
αβfBβ is determined by

the correlation matrix. Therefore Mαβ contains complete information about correlation

functions between A and B.

To define a basis-independent measure of correlation, one natural choice is the sin-

gular value spectrum of Mαβ . Denote the singular value decomposition of M as Mαβ =
∑

s UαsλsVβs, with λs ≥ 0 real singular values, and U, V unitary matrices. This decompo-

sition tells us that there is a particular set of operators

KAs =
∑

α

U∗
αsO

α
A, KBs =

∑

β

V ∗
βsO

β
B, (6.3)

which satisfies

〈KAsKBt〉 = δstλs. (6.4)

This set of operators can be considered as the analogs of the quasi-primary fields in a

conformal field theory, and the singular values λs are basis-independent measures of two-

point correlations between A and B.

Instead of directly carrying out singular value decomposition of M and studying λs, it

is more convenient to consider the following quantity:

C2n = tr
[(

M †M
)n]

≡
∑

s

λ2ns . (6.5)

Knowing C2n for all integers n determines the singular values λs, in the same way that

the eigenvalue spectrum of a density matrix is determined by all Rényi entropies. On

– 30 –



J
H
E
P
1
1
(
2
0
1
6
)
0
0
9

the other hand, using the orthonormality condition (6.1), C2n can be reexpressed into the

following form:

C2n =
tr
[

ρ⊗2n(XA ⊗ YB)
]

(tr ρ)2n
. (6.6)

Here XA and YB are two permutation operators

XA = (1 2)(3 4) . . . (2n−1 2n), YB = (2 3)(4 5) . . . (2n− 2 2n− 1)(2n 1), (6.7)

which means XA permutes each copy with an odd label 2k − 1 with copy 2k, and YB

permutes each copy 2k + 1 with copy 2k. The details of this derivation are presented in

appendix D. In this way, we have expressed C2n in a form similar to the 2n-th Rényi entropy,

with a different permutation operator. Once we obtain eq. (6.6) it is straightforward to

perform the state average, which maps C2n in largeD limit to the same classical Sym2n-spin

model as in the 2n-th Rényi entropy calculation:

C2n ≃ Z
(2n)
1 [hx]

Z
(2n)
0

, (6.8)

in which Z
(n)
1 [hx] is the same partition function defined in eq. (5.6), with a different

boundary field hx. hx takes the value of the two permutations in eq. (6.7) for x in A and

B respectively, and identity elsewhere. The denominator is the same as that of the 2n-th

Rényi entropy. In the large D limit, the minimal energy configuration that dominates

Z
(2n)
1 [hx] is shown in figure 10. The minimal energy domain walls are the same as in the

2n-th Rényi entropy, which are minimal sufaces bounding A and B. However, the prefactor

of the area law term is different, since trXA = trYB = Dn. Therefore we obtain

C2n

∣

∣

D→∞
≃ D−n(|γA|+|γB |) tr

[

ρ⊗2n
b (XEA

⊗ YEB
)
]

. (6.9)

Here XEA
and YEB

are the same permutations as XA and YB in eq. (6.7), respectively,

but acting in the bulk regions EA and EB. Interestingly, the bulk state contribution

tr[ρ⊗2n
b (XEA

⊗ YEB
)] is exactly the same expression as C2n in eq. (6.6), but for the bulk

state ρb. In other words, we can define an orthonormal basis φαEA
and φβEB

in the bulk

regions EA and EB, and define the bulk correlation matrix

Mαβ
b = tr

[

ρb φ
α
EA
φβEB

]

. (6.10)

Following the same derivation as eq. (6.5) and eq. (6.6) we obtain the bulk correlation

moments

Cbulk
2n = tr

[(

M †
bMb

)n]

=
∑

s

λ2ns,bulk = tr
[

ρ⊗2n
b (XEA

⊗ YEB
)
]

, (6.11)

where λs,bulk are the singular values of the bulk correlation matrixMb. (Note that tr(ρb)=1

so that the denominator for Cbulk
2n is trivial.) Therefore eq. (6.9) can be interpreted as the

following relation between the boundary correlation matrix and the boundary one:
∑

s

λ2ns ≃ D−n(|γA|+|γB |)
∑

s

λ2ns,bulk

⇒ λs ≃ D− 1
2
(|γA|+|γB |)λs,bulk. (6.12)
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Therefore in large D limit, the singular values of the boundary correlation matrix Mαβ are

given by those of the bulk correlation matrix Mαβ
b between the two entanglement wedges

EA and EB, multiplied by a constant factor that is independent of the distance between

the two regions (as long as their joint entanglement wedge EAB stays disconnected).

Eq. (6.12) has several important consequences. Firstly, it tells us that in a proper

basis choice, there is a one-to-one correspondence between bulk two-point correlators and

boundary ones. When we take the limit that both A and B are small (compared with the

extrinsic curvature radius of the boundary), the entanglement wedges EA and EB become

narrow regions near the boundary. In this limit the two-point correlation functions between

EA and EB can be viewed as the boundary limit of bulk two-point functions. Therefore

eq. (6.12) shows that the boundary two-point functions between local operators are, up

to a constant prefactor, equal to the bulk two-point functions with both points approach-

ing the boundary. In other words, the holographic mapping defined by a random tensor

network gives a bulk-boundary correspondence consistent with the usual “dictionary” of

holographic duality. Secondly, if ρb is taken to be independent from D, the bulk correlation

spectrum {λs,bulk} is D-independent. Therefore the boundary correlation spectrum is also

D-independent (except for the prefactor), although the total number of operators in A and

B are both increasing with D.

To understand the consequences of this observation more explicitly, we consider the

special case that the bulk is the Poincaré patch of hyperbolic space, and the state ρb is

also invariant with respect to the isometry group of the bulk geometry. If we take the

limit of small A and B (much smaller than the AdS radius), the bulk entanglement wedges

approach the boundary, and the bulk two-point functions all decay as a power law of the

boundary distance due to scale invariance. Therefore, in this limit

λs,bulk =
Cs

|x− y|∆s
, (6.13)

with {∆s} defining the spectrum of scaling dimensions. According to eq. (6.12), the bound-

ary two-point functions also decay as a power law, with the same set of scaling dimensions.

Compared with the situation in the AdS/CFT corresondence, we see that the boundary

operators with scaling dimension ∆s are analogs of low-dimensional operators with scaling

dimensions independent of N . The number of low-dimensional operators is determined by

the bulk theory.

It is natural to ask whether there are also high-dimensional operators in the random

tensor network state, which are the analog of “stringy” operators in AdS/CFT with scaling

dimensions growing with N . To address this question, one needs to consider the finite D

fluctuations. In the following we will provide some arguments about finite D corrections

to the correlation spectrum which are not rigorous but may be helpful for physical under-

standing. At finite D the partition function Z
(2n)
1 receives a contribution from other spin

configurations with higher energy. Many low energy spin configurations are separate defor-

mations of the domain walls bounding A and that bounding B. Although such fluctuations

will renormalize the correlation functions, they do not change the correlation length since

there is no distance dependence. The lowest energy configuration which contributes non-
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Figure 10. (a) The minimal energy spin configuration in the calculation of C2n in eq. (6.6). The

red and green regions are domains with permutation XA and YB defined in eq. (6.7), respectively.

The blue region is the identity domain. (b) The lowest energy spin configuration that contributes

nontrivially to the connected correlation between A and B. The regions are defined in the same

way as in (a). W is the narrowest throat separating the two geodesic surfaces connecting A and B.

trivially to the distance dependence of correlation function is the one shown in figure 10 (b).

This configuration contains two domains E1 and E2 with permutations the same as XA

and YB in eq. (6.7). The boundary of E1 ∪ E2 consists of the connected geodesics bound-

ing A and B, and the interface between E1 and E2 is chosen as the narrowest “throat”

between the two geodesics. There are many configurations with similar energy, so that it

is difficult to give a quantitative estimate of the finite D correction to C2n. However as a

rough estimate if we only consider the contribution of this configuration, we obtain

C2n ∼ D−n(|γA|+|γB |)Cbulk
2n + const.×D−2ndAB . (6.14)

The constant term is of order 1, given by D−(2n−2)|W | tr[ρ⊗2n
b (XE1 ⊗ YE2)], with |W | the

width of the throat. Since E1 and E2 are adjacent to each other, the bulk correlation

term tr[ρ⊗2n
b (XE1 ⊗YE2)] will be dominated by short-range correlations, and thus does not

decay with the distance dAB. For hyperbolic space, at long distance dAB ∝ 1
lg
log |x − y|,

with lg the discretization scale. Therefore the finite D correction due to this domain con-

figuration contributes new power laws with the scaling dimension ∆ = 1
lg
logD. With

this new contribution to C2n, the scaling dimension spectrum of the boundary state now

contains
{

∆s,
1
lg
logD

}

, which consists of the low-lying scaling dimensions ∆s that are

D-independent, and the high scaling dimension that grows linearly with logD. Such a

separation in scaling dimensions is consistent with the requirement in AdS/CFT for CFT’s

with a gravitational dual, known as the scaling dimension gap [26–28]. Although the anal-

ysis here is clearly incomplete, it is reasonable to believe that the separation of two types

of operators remains valid in a more detailed analysis, since there are two different origins

of power law correlations, those from the bulk state and those from the spin fluctuations

in the classical statistical model.

7 Fluctuations and corrections for finite bond dimension

In preceding sections, we have shown that the unnormalized state averages Z
(n)
1 and Z

(n)
0

are mapped to Ising partition functions with inverse temperature β = logD and differ-
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ent boundary conditions. In the large D limit, these Ising partition function are domi-

nated by the contribution of the lowest energy spin configuration, which gave rise to the

Ryu-Takayanagi formula for the Rényi entropies assuming that Sn(A) = logZ
(n)
1 /Z

(n)
0 ≃

logZ
(n)
1 /Z

(n)
0 . In this section we will make this step precise and quantify how well the

Rényi entropies Sn(A) are approximated by the Ryu-Takayanagi formula. Before going

into the details, we first present our conclusion:

1. For a system with volume (i.e., number of bulk vertices) V , for an arbitrary small

deviation δ > 0, one can define a critical bond dimension

Dc = αδ−2ec2nV ,

with α and c2n constants independent from the volume. The meaning of the exponent

c2n will be explained below. In the limit D ≫ Dc the deviation satisfies

|Sn(A)− SRT
n (A)| < δ, with a high probability P (δ) = 1− Dc

D
, (7.1)

where

SRT
n (A) ≡ logD |γA|+ Sn(EA; ρb) (7.2)

is the RT formula for the n-th Rényi entropy, including the bulk correction. We will

always assume that the bulk dimension Db is finite, so that in the large D limit the

minimal surface γA is determined by minimizing the area.

2. We subsequently show that under a plausible physical assumption on the free energy

of the statistical models, the bound given in eq. (7.1) can be improved by reducing

the critical bond dimension to

Dc = α′δ−2V 2/∆2n ,

with α′ a non-universal constant. The meaning of the exponent ∆2n will be explained

below.

7.1 The general bound on fluctuations

To start, we denote the Ising action (5.6) of the minimal energy spin configuration with

a boundary field hx by A(n)
min [{hx}]. We shall assume throughout this section that the

minimal energy configuration is unique (otherwise see section 9 and appendix F). In

the large D limit, Z
(n)
0,1 approaches Z

(n),∞
0,1 ≡ e−A

(n)
min[h0,1], with h0,1 denoting the bound-

ary field configuration for the calculation of Z
(n)
0 and Z

(n)
1 , respectively. We note that

A(n)
min[h1] = (n− 1) logD|γA|+ (n− 1)Sn(EA; ρb) + logCn,x and A(n)

min[h0] = logCn,x, with

Cn,x defined in eq. (5.3) and the text below it. Thus the RT formula (7.2) can also be

written as

SRT
n (A) = − 1

n− 1
log

Z
(n),∞
1

Z
(n),∞
0

=
1

n− 1

(

A(n)
min[h1]−A(n)

min[h0]
)

. (7.3)
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To bound the fluctuations of Z
(n)
1 away from Z

(n),∞
1 , we consider

(

Z
(n)
1

Z
(n),∞
1

− 1

)2

=





(Z
(n)
1 )2

(Z
(n),∞
1 )2

− 1



− 2





Z
(n)
1

Z
(n),∞
1

− 1



 ≤ (Z
(n)
1 )2

(Z
(n),∞
1 )2

− 1, (7.4)

where we have used that Z
(n)
1 ≥ Z

(n),∞
1 since at finite temperature the partition function re-

ceives contributions from all spin configurations, not just the minimal energy configuration.

The key insight now is that the second moment of Z
(n)
1 , (Z

(n)
1 )2, can be interpreted as

the partition function of an Sym2n-spin model with boundary field hx = (1 . . . n)(n+1 . . . 2n)

for x ∈ A and hx = I elsewhere, as was discussed at the end of section 5. In the large D

limit, the lowest energy spin configuration is given by the same minimal energy surface as

that in the Ising model for the Z
(n)
1 calculation, with corresponding energy

A(2n)
min [{hx}] = 2A(n)

min[h1] +
∑

x

log
C2n,x

C2
n,x

. (7.5)

The last term comes from the different normalization factors in the average Z
(n)
1 and

(

Z
(n)
1

)2
. Thus the ground state energy of this Sym2n-spin model is essentially two times

that of the Symn-Ising model. More precisely, it follows from (7.5) that

(Z
(n)
1 )2

(Z
(n),∞
1 )2

−1 =
(Z

(n)
1 )2

e−2A
(n)
min[h1]

−1 =
(Z

(n)
1 )2

e−A
(2n)
min [{hx}]

(

∏

x

C2
n,x

C2n,x

)

−1 ≤ (Z
(n)
1 )2

e−A
(2n)
min [{hx}]

−1. (7.6)

To bound the right-hand side term, we use that by assumption the minimal energy con-

figuration is unique; all other configurations incur an additional energy cost of at least

logD − (2n− 1) logDb V (cf. the discussion before eq. (5.9)). Since there are (2n)! config-

urations at each bulk site this leads to the conservative upper bound

(Z
(n)
1 )2

e−A
(2n)
min [{hx}]

− 1 ≤ ((2n)!)V
D

(2n−1)V
b

D
=
ec2nV

D
, (7.7)

where c2n ≡ log (2n)! + (2n − 1) logDb. By combining eqs. (7.4), (7.6) and (7.7) we

obtain that
(

Z
(n)
1

Z
(n),∞
1

− 1

)2

≤ ec2nV

D
. (7.8)

The same conclusion holds for Z
(n)
0 = (tr ρ)n (corresponding to a boundary field with

hx = I everywhere). By Markov’s inequality, it follows that

Prob

(∣

∣

∣

∣

∣

Z
(n)
1

Z
(n),∞
1

− 1

∣

∣

∣

∣

∣

≥ δ

4

)

≤

(

Z
(n)
1

Z
(n),∞
1

− 1

)2

(

δ
4

)2 =
16

δ2
ec2nV

D
, (7.9)
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and likewise for Z
(n)
0 . The union bound thus implies that both |Z(n)

1 /Z
(n),∞
1 − 1| < δ/4

and |Z(n)
0 /Z

(n),∞
0 − 1| < δ/4 with probability at least 1− 32 ec2nV /Dδ2. In this case we can

bound the deviation of the n-th Rényi entropy from the Ryu-Takayanagi formula (7.3) by

|Sn(A)− SRT
n (A)| = 1

n− 1

∣

∣

∣

∣

∣

log
Z

(n)
1

Z
(n)
0

− log
Z

(n),∞
1

Z
(n),∞
0

∣

∣

∣

∣

∣

=
1

n− 1

∣

∣

∣

∣

∣

log
Z

(n)
1

Z
(n),∞
1

− log
Z

(n)
0

Z
(n),∞
0

∣

∣

∣

∣

∣

≤ 1

n− 1

(∣

∣

∣

∣

∣

log
Z

(n)
1

Z
(n),∞
1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

log
Z

(n)
0

Z
(n),∞
0

∣

∣

∣

∣

∣

)

≤ 1

n− 1

(

δ

2
+
δ

2

)

≤ δ,

where we have used δ ≤ 2 such that log(1 ± δ/4) ≤ δ/2. We have thus proved that the

desired bound (7.1) holds with probability at least 1 − Dc

D , where Dc = 32δ−2ec2nV .

Interestingly, the above results for the Rényi entropies can be used to show corre-

sponding statements for the von Neumann entropy. For a bulk direct product state, this

is easy to see: here, the Ryu-Takayanagi formula amounts to SRT
n (A) ≡ logD |γA|. Since

S(A) ≥ Sn(A) for any quantum state and S(A) ≤ log rank ρA ≤ logD|γA| in any tensor

network state, we have essentially matching upper and lower bounds for the von Neumann

entropy, and hence S(A) ≃ logD|γA| with high probability. This result can be established

more generally even in the presence of an entangled bulk state as long as Db ≪ D by

adapting the techniques of [40] (cf. section 8).

7.2 Improvement of the bound under a physical assumption

The above results establish rigorously that the entropies approximate the Ryu-Takayanagi

formula in the limit of large D. However, the technique lead to a rather conservative

estimate of the finite D correction, since it only proves that the entropy is close to the RT

value for exponentially large bond dimension D ≫ ec2nV . In this subsection we would like

to argue based on a plausible physical assumption that actually the RT formula applies to

a much larger range of D, as long as D is bigger than some power law function of V .

To start, let us reinvestigate eq. (7.7), which was the basis of the general bound (7.1).

In obtaining eq. (7.7) we replaced the energy of all higher energy spin configurations by

their minimum log D
DV

b

. This leads to a very conservative bound since most configura-

tions certainly have an energy much higher than that. Since the statistical model has a

local action, the number of excitations with lowest energy is actually proportional to V

rather than exponential of V . Although the number of slightly higher energy excitations

are super-extensive, it is still true that the free energy of the spin model is extensive at

finite temperature. Furthermore, the free energy approaches the ground state energy in

the lo temperature (large D) limit exponentially, since the probability of lowest energy

excitation with energy Eg is suppressed by the Boltzman weight e−βEg = D−Eg/2. Using

these plausible physical observations we can write the asymptotic form of the free en-

ergy F = − log
(

Z
(n)
1

)2
≃ A(2n)

min [{hx}]− C(logD)aD−Eg/2V , with C a constant. Note that

there is generically a power law term (logD)a multiplying the exponential factor in the

free energy density. However, this power law correction is not important for our bound,
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since we can choose an energy ∆2n slightly smaller than Eg, such that

− log
(

Z
(n)
1

)2
≥ A(2n)

min [{hx}]− CD−∆2n/2V. (7.10)

In the limit D ≫ V 1/∆2n this implies that

(Z
(n)
1 )2

e−A
(2n)
min [{hx}]

− 1 ≤ C ′V

D∆2n/2

by choosing a constant C ′ slightly larger than C. If we substitute this estimate for the

conservative bound (7.7) then eq. (7.8) becomes

(

Z
(n)
1

Z
(n),∞
1

− 1

)2

≤ C ′V

D∆2n/2
,

and likewise for Z
(n)
0 . We may now proceed as above and conclude that, under the assump-

tion (7.10) on the Ising models, the Rényi entropies satisfy the RT formula to arbitrary

precision and with arbitrarily high probability if D ≫ V 2/∆2n . This improves the depen-

dency of the bond dimension on the system size from an exponential function of V to a

power law.

To illustrate the behavior of the free energy (7.10) in an explicit example, we consider

an Ising model on the square lattice. (It should be noted that the Ising model case does not

directly apply to the discussion above since Sym2n-spin models are used there. However the

behavior of free energy is generic for gapped spin models.) Specifically, we shall consider a

cylindrical geometry given by an M ×N square lattice with periodic boundary conditions

along the first direction and open boundary conditions along the second one. In this setup,

the minimal surface bounding a boundary region is unique. As the boundary region we

choose a single interval of length L < M . Z1/Z
∞
1 and Z0/Z

∞
0 can be computed exactly

using Onsager’s solution [41, 42]. The asymptotic behavior for large D is given by

Z0

Z∞
0

≃ 1 +D−4MN + o(D−4),

Z1

Z∞
1

≃ 1 + 2LD−1 + o(D−1).

Therefore eq. (7.10) holds with exponent ∆2n = 2. More details about this calculation are

presented in appendix E.

7.3 Possible effects of even smaller bond dimension

WhenD does not satisfy the condition D ≫ (CV )1/∆, the deviation of the entropy from the

RT value can be large. An interesting question is whether the correction to the RT formula

is simply a renormalization of the coefficient of the area law, or if there is a qualitative

change. For the second Rényi entropy, the quantity − logZ1/Z0 is the free energy cost

induced by the boundary pinning field hx in the Ising model. The behavior of this free
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energy cost depends on the strength of the fluctuations of the domain wall configuration.

If the domain wall only fluctuates mildly around the minimal energy configuration, one

can naturally expect the energy cost of the domain wall is still proportional to its area,

although the coefficient may be renormalized to be different from the bare value given by

the lowest energy configuration. In contrast, if the domain wall is strongly fluctuating, the

energy of the domain wall may have a qualitatively different dependence in the minimal

area |γA|. Interestingly, the behavior of the domain wall in the Ising model was studied

a long time ago. If the bulk spatial dimension d ≥ 3, it was found that there is a finite

critical temperature Tr (which is lower than the phase transition temperature Tc of the

Ising model), below which the fluctuations of a domain wall configuration have a finite

range. The transition at Tr is known as the roughening transition [43, 44].12 It is natural

to expect that the RT formula for second Rényi entropy applies for any logD > T−1
r , which

remains finite even if the system size V goes to infinity. However, it is not clear how to

bound the deviation of S2(A) from − log Z1

Z0
, given by the fluctuation terms in eq. (2.8).

When the bulk spatial dimension is d = 2, the domain wall is one-dimensional, and thus

the fluctuation of its position is always strong. Consequently, the RT formula does not

apply to any finite D if we take V → ∞ first.

8 Relation to random measurements and the entanglement of assistance

The average over random tensors that has played a central role in this work has appeared

previously in the quantum information literature, but with a very different motivation. The

definition of the boundary state |Ψ〉 in eq. (2.2) involves contracting the random vertex

states
⊗

x |Vx〉 at the bulk vertices with a bulk state |Φb〉 as well as a collection of Bell

pairs
⊗

〈xy〉 |xy〉 for the internal edges and ⊗x |x∂x〉 connecting boundary vertices to their

boundary connecting points ∂x. To obtain a new physical interpretation for the state |Ψ〉,
one can start with the state

|Φ〉 = |Φb〉 ⊗
⊗

〈xy〉

|xy〉 ⊗
⊗

x

|x∂x〉 , (8.1)

and perform a random measurement at every bulk vertex x. The post-measurement state

on the unmeasured boundary vertices will then have the same distribution as |Ψ〉. Note

that the state |Φ〉 in eq. (8.1) is supplemented by new bulk-boundary Bell pairs
⊗

x |x∂x〉
as compared to eq. (2.2). The reason lies in the change of perspective; in section 2 the

random vertex states were being projected to Bell pairs and the bulk state, but here the

Bell pairs and the bulk state are being projected to the random states, and therefore we

need a larger Hilbert space to get a non-empty Hilbert space after projection. See figure 11.

These two perspectives are mathematically equivalent in our examples.

The post-measurement state on the unmeasured boundary vertices will then have the

same distribution as |Ψ〉. From this point of view, boundary entanglement is being induced

by performing a suitable measurement on a joint bulk-boundary state.

12We would like to thank Steven Kivelson for teaching us this result.
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|Ψ〉∂1∂2
=

(

⊗

x

〈Vx|

)



|Φb〉 ⊗
⊗

〈xy〉

|xy〉 ⊗
⊗

x

|x∂x〉





V1 V2

|V1〉 |V2〉

∂1 ∂2

∂1 ∂2

∂1 ∂2

〈V1| 〈V2|

|Ψ〉∂1∂2
=



〈Φb|⊗
⊗

〈xy〉

〈xy|





(

⊗

x

|Vx〉

)

(a)

(b)

(c)

bulk state

|Φb〉

〈Φb|

|Φ〉

|Φ〉

Figure 11. (a) A simple tensor network consisting of two vertices V1 and V2 of degree 3, a pure

bulk state and two boundary dangling legs ∂1 and ∂2. (b) The construction of the section 2. The

state of the random tensors
⊗

x |Vx〉 is contracted with Bell pairs and the bulk state to obtain the

boundary state |Ψ〉∂1∂2
on the Hilbert spaces of ∂1∂2. Bell pairs are shown by thick lines. (c) The

construction of section 8. Here we have a large background state |Φ〉 and contract with random

vertex states to obtain the state |Ψ〉∂1∂2
on the boundary. Note that we need to add extra boundary

Bell pairs
⊗

x |x∂x〉.

One of the basic problems of quantum information theory is how to establish as much

high-quality entanglement as possible between spatially separated parties. One scenario

that had been considered was to start with a pure state |Φ〉ABC of three systems and to ask

how much entanglement could be induced on average between A and B upon measuring

C, optimized over all possible C measurements. Because the party in possession of C

is helping A and B establish entanglement, this quantity is known as the entanglement

of assistance EA(A;B)Φ [45]. Concavity of the entropy implies a trivial upper bound:

EA(A;B)Φ ≤ S(ΦA), and likewise for Y . In a remarkable paper, Smolin et al. showed that

this upper bound was asymptotically achievable [46]:

lim
k→∞

1

k
EA(A

k;Bk)Φ⊗k = min[S(ΦA), S(ΦB)]. (8.2)

Going further, one can imagine partitioning C into subsystems C1, C2, . . . , Cm and

allowing only local measurements of each Cj instead of joint measurements of the entire C

system. From an engineering perspective, such a scenario could arise naturally if A and B

are distant and the Cj represent intermediate “repeater” stations in a network [47]. The

additional locality restrictions will reduce the amount of entanglement that can be induced

between A and B. While the concavity upper bound still applies, it can be applied here

with a bit more finesse. If we choose any subset S ⊆ {C1, . . . , Cm}, then the bound implies

that this multipartite version of the entanglement of assistance, Emulti
A (A;B)Φ, will be

bounded above by S(ΦASc) since the total entanglement generated between A and B will
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be no more than the entanglement between ASc and B after measuring S but prior to

measuring Sc. Likewise, Emulti
A (A;B)Φ ≤ S(ΦBSc). Therefore

Emulti
A (A;B)Φ ≤ min

S⊆{C1,...,Cm}
min[S(ΦAS), S(ΦBS)] = min

S⊆{C1,...,Cm}
S(ΦAS), (8.3)

where the equation follows from the fact that the entropies of two complementary subsys-

tems of a pure state are always the same. The Smolin et al. result applied inductively gives

in turn [46]

lim
k→∞

1

k
Emulti

A (Ak;Bk)Φ⊗k = min
S⊆{C1,...,Cm}

S(ΦAS). (8.4)

Consider now the special case in which |Φ〉 has the form of eq. (8.1) used in this paper.

Set A to be any boundary region, B the complement Ac of A in the boundary and identify

the different subsystems Cj with the bulk vertices x. The righthand side of eq. (8.4) is then

nothing other than the Ryu-Takayanagi formula with corrections due to the bulk state |Φb〉,
since minimizing over subsets S amounts to minimizing over cuts in the tensor network:

min
S⊆{C1,...,Cm}

S(ΦAS) = |γA| logD + S(EA; Φb), (8.5)

where EA is the bulk region corresponding to the minimizing set S and |γA| is the size of

the cut separating EA from its complement. This matches eq. (3.3) up to the substitution

of the von Neumann entropy for the second Rényi entropy. (The reason for taking the

k → ∞ limit in (8.4) is essentially to make all Rényi entropies equal after suitable small

perturbations to the state. For reasonable physical choices of |Φb〉 such as quantum field

theory ground states, it should be sufficient to take k = 1 and include a small correction

on the righthand side of (8.4). This has been shown, for example, in the case that A is an

interval in a 1+1 dimensional CFT [48].)

While the original proof of the multipartite entanglement of assistance formula used

classically-inspired random coding information theory techniques, subsequent proofs pro-

ceeded by performing appropriate isotropic measurements of the C subsystems [40, 49].

Because of the equivalence between contracting random tensors and performing random

measurements, the analyses in the quantum information theory literature are mathemat-

ically very similar to the calculations in this article. The analog of the calculations justi-

fying reconstruction of a bulk operator contained in the entanglement wedge of a bound-

ary region A has even appeared, again with a different motivation, as the “split-transfer

protocol” [40, 50].

One could go as far as to rename the one-shot multipartite entanglement of assistance

formula of [50] the “fully-quantum Ryu-Takayanagi” formula, in that it captures the essence

of Ryu-Takayanagi without making any prior assumptions about the geometrical interpre-

tation of the bulk state. Aside from connecting to pre-existing literature, one virtue of this

change of perspective is that it suggests a possible physical justification for the random

tensor networks in our model. One could imagine taking the state in a quantum theory of

gravity and measuring the Planckian degrees of freedom of a large “bulk” subset, leaving

some “boundary” degrees of freedom and bulk fields unmeasured. If the Hilbert spaces are
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large and the measurements generic, then the measurements should reveal almost no infor-

mation about the bulk, inducing a nontrivial mapping between non-Planckian bulk degrees

of freedom and the boundary. In this way, fixing the bulk Planckian degrees of freedom in

the bulk-boundary state through measurement generically produces a holographic corre-

spondence. Expanding around a particular background geometry in this picture amounts

to choosing a bulk-boundary state with the correct area law entropy and randomly fixing

the Planckian degrees of freedom through projection.

9 Random tensor networks from 2-designs

In the construction of our random tensor network state (2.1), the tensors |Vx〉 were chosen

to be Haar-random, i.e., drawn from to the unitarily invariant ensemble of pure states.

However, our calculations for the second Rényi entropy in section 2.2 made use only of

the second moments of the Haar measure. This calculation led to the emergence of a

classical Ising model and thereby to the Ryu-Takayanagi formula. It is therefore natural

to consider other ensembles of pure states whose first two moments agree with those of the

Haar measure, known collectively as complex projective 2-designs [51].

It follows from the discussion in section 7 that for a tensor network state with Haar-

random tensors and bulk direct product state ρb, the Ryu-Takayanagi formula S(A) ≃
logD|γA| will be satisfied with high probability in the limit of large D if the minimal

geodesic is unique. This conclusion was obtained from considering higher moments of the

Haar measure and therefore does not apply for a general 2-design. Another complication

arises from the fact that the tensor network state can be zero (i.e., ρ = 0) with nonzero

probability, in which case its entropies are not well-defined. In appendix F we show that

for any 2-design the boundary state is nonzero with high probability and that, moreover,

SRT(A)− log k − o(1) ≤ S2(A)
6=0 ≤ S(A) ≤ SRT(A), (9.1)

where k denotes the number of minimal geodesics, where SRT(A) = logD|γA| since we

consider the case of a direct product bulk state, and where we write S2(A)
6=0

for the average

second Rényi entropy conditioned on the boundary state being nonzero. We note that, since

the lower bound in (9.1) matches the deterministic upper bound up to a constant, it follows

that S(A) is at most constantly away from SRT(A) with high probability.

One random ensemble of particular interest is given by stabilizer states. Stabilizer

states, defined as common eigenvectors of generalized Pauli operators, are quantum states

that can be highly entangled, but whose particular algebraic structure allows for efficient

simulation and effective reasoning [52]. It has been shown in [53] that pure stabilizer states

in prime power dimension D = pn form a 2-design when drawn uniformly at random.

Thus (9.1) applies to the entropies of the corresponding tensor network state (2.1) con-

structed from random stabilizer states. Such a state is again a stabilizer state, as we argue

in appendix G. The particular algebraic structure of stabilizer states implies that their

reduced density matrices not only have flat spectrum (so that all Rényi entropies agree

with the von Neumann entropy) but in fact that all their entropies are quantized in units
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of log p. It follows that for large p the Ryu-Takayanagi formula

S(A) = SRT(A) = logD|γA| (9.2)

will hold exactly with high probability (even in the presence of multiple minimal geodesics).

In particular, we may use this construction to obtain random holographic codes and

evaluate their error correcting properties by using (4.7) and the exact Ryu-Takayanagi

formula (9.2) purely from the structure of the tensor network. In [6], holographic codes

were constructed from perfect tensors, i.e., states that are maximally entangled across

any bipartition, and it was shown that under certain circumstances this already implies

the Ryu-Takayanagi formula (such as for single intervals in nonpositively curved space).

Random stabilizer states are perfect tensors with high probability,13 and so the analysis

and results of [6] can likewise be applied to our random tensor networks constructed from

stabilizer states with high bond dimension. However, our tensors are not only perfect or

pluperfect [8] but also generically so and therefore can achieve the Ryu-Takayanagi formula

for arbitrary subsystems.

Another consequence of (9.2) is that any entropy inequality that is valid for arbi-

trary quantum states, or even just for stabilizer states [54, 55], is also valid for the Ryu-

Takayanagi entropy formula, thereby establishing a conjecture from [22]. This can be

understood as consistency check of the Ryu-Takayanagi formula, generalizing [56], where

the validity of strong subadditivity was verified for the Ryu-Takayanagi formula. We refer

to [57] for a detailed analysis of the entanglement properties of tensor networks built from

random stabilizer states.

10 Conclusion and discussion

In this work we have studied the quantum information theoretic properties of random

tensor networks with large bond dimension. In the following we will revisit our method

from a more general perspective and summarize our findings. Viewing each tensor as a

quantum state |Vx〉, the tensor network state ρ = ρ (|Vx〉〈Vx|) obtained by contracting these

tensors is a linear function of each tensor. Denote by fn(ρ) an arbitrary function that is

a monomial function of the state ρ with degree n. Then the state average of fn over all

possible choices of |Vx〉 is exactly mapped to the partition function of an classical spin

model, with degrees of freedom in the permutation group Symn, with the spins defined

on the vertices of the same graph that underlies the tensor network. Different physical

quantities can be translated to different functions fn(ρ). When the tensor network is used

as a quantum state of the boundary, one can consider tr
([

trA ρ
]n)

for an arbitrary region

A, which corresponds to the n-th Renyi entropy of A. When the tensor network is used

as a linear map, it can be viewed as a “holographic mapping” between two parts of the

degrees of freedom (boundary and bulk, respectively). In this case, in addition to the Renyi

entropies one can study the entanglement entropy of a given region while another region is

13This follows as a special case of our result for a tensor network with a single vertex. We thank Fernando

Pastawski for explaining an alternative proof of this fact to us.
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projected to a certain quantum state. For example, one can project the bulk into a given

quantum state and study the entanglement properties of the resulting boundary state.

We can also define basis-independent measures of correlation functions and relate that to

a calculation of monomial functions, which allows us to study the behavior of two-point

functions in the boundary state.

The mapping between the random state average and the spin-model partition func-

tion has rich consequences. For a random tensor network state, in the large D limit the

Ryu-Takayanagi formula can be proven for all Renyi entropies, where the minimal surface

area condition comes naturally from minimizing the energy of the spin model with given

boundary conditions. The Ryu-Takayanagi formula also generalizes naturally to include

bulk state corrections when there is nontrivial quantum entanglement in the bulk. As a

particular example, we study the behavior of minimal surfaces in the presence of a bulk

random state, and show how the minimal surface behavior can change topologically upon

increase of the bulk entanglement entropy, in a way that is qualitatively consistent with

black hole formation. In addition to entanglement entropy, we also studied the behavior of

two-point correlation functions. The boundary correlation functions between two regions

are directly determined by bulk correlation functions between two corresponding regions

known as the entanglement wedges of the boundary regions. In the special case of hyper-

bolic space, our results on correlation functions imply that the boundary theory has power

law correlations with a large scaling dimension gap. In the large D limit there are two types

of scaling dimensions, those which does not scale with D coming from the bulk quantum

state, and those which scale with D coming from the tensor network contribution. Such

behavior of the scaling dimension gap is consistent with those of CFT ground states with

a gravity dual, although the condition is necessary but not sufficient.

Random tensor networks provide a new framework for understanding holographic du-

ality. Besides the properties studied in this paper, many other physical properties can

be evaluated by the mapping to classical spin models. Compared to other tensor network

models, properties of the random tensor networks can be studied much more systematically.

The large dimension D limit is an analog of the large N limit in gauge theories. The fact

that a random tensor network with large dimension automatically satisfies many desired

properties for holographic duality further supports the point of view that semi-classical

gravity is deeply related to scrambling and chaos.

There are a several open questions that shall be studied in future works. One question

is whether it is possible to use a random tensor network to describe the ground state of

a conformal field theory. The underlying graph of random tensor networks on hyperbolic

space is invariant under a subgroup of discrete isometries of the bulk which do not involve

transformation in time. Therefore we expect the distribution of tensor network states on the

boundary to remain invariant under the subgroup of boundary conformal transformations

that correspond to the bulk discrete isometries, modulo complications arising from the cut-

off. It is an open question whether we can modify the tensor network state to preserve the

whole conformal symmetry. Related to the discussion of Rényi entropies, this may require

modification of the state on links between vertices. It would also be interesting to consider
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random tensor network models where the same tensor is placed at each vertex.14 Another

question is how to generalize this formalism to include dynamics. What Hamiltonians

of the boundary theory can be mapped to local Hamiltonians in the bulk “low energy”

subspace? How to see that conserved currents on the boundary correspond to massless

fields in the bulk? The answers to these questions will also be essential for understanding

how the bulk gravity equation emerges.
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A Analytic study of the three phases for a random bulk state

In this appendix, we will provide an analytical explanation of when the transition hap-

pens between the perturbed AdS phase and the small black hole phase, and between the

small black hole phase and the maximal black hole phase. In particular, we will show a)

why at the transition between the perturbed AdS phase and the small black hole phase,

l−2
g logDb scales as the square root of l−1

g logD, b) why in the large D limit, the tran-

sition between the small black hole phase to the maximal black hole phase happens at

l−2
g logDb = l−1

g logD(1 + b2)/(2b).

In fact, the problem we are going to solve has already been set up in eq. (3.4). The

transition between the perturbed AdS phase to the small black hole phase is decided by the

stability of the solution that covers half of the boundary system and goes through the center

of the Poincaré disk. Such a solution is the extremal solution of eq. (3.4), since it minimizes

the area contribution from the domain wall and maximizes the volume contribution from

the bulk random state. However, when this solution becomes a local maximum instead of a

minimum, it means that the minimal surfaces of all the boundary regions would avoid the

center of the Poincaré disk. In other words, there exists a region in the bulk inaccessible

to any measurements from the boundary smaller than half system size.

For convenience, we use (x, y) coordinates instead of (r, θ) in this problem. Thus what

we care about is

δ2S2(π/2)

δy(x1)δy(x2)

∣

∣

∣

∣

y=0

= l−1
g logD

[

4

(1− x21)(1− x22)
− d

dx

(

2

1− x2
δ′(x− u)

)∣

∣

∣

∣

x=v

]

−
(

l−2
g logDb

)2 2
(

1− x21
)2

2
(

1− x22
)2Θ(b− |x1|)Θ(b− |x2|)

14After the first version of this manuscript had appeared, Matthew Hastings showed that for large D

the entanglement spectra of reduced density matrices have the same limiting behavior in both models [58].

Therefore typical Rényi entropies in the model with identical tensors are also given by the Ryu-Takayanagi

formula if D is sufficiently large.
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where Θ(x) = 1 when x > 0 and 0 otherwise. It is obvious that, if we treat the above

expression as a matrix, the first term is always a positive definite matrix after integrating

by parts of the derivative term, and the second term is a negative definite matrix, which

corresponds to the fact that y = 0 minimizes the area contribution from the domain wall

and maximizes the volume contribution from the bulk random pure state. Although it is

hard to analytically diagonalize δ2S2(π/2)
δy(x1)δy(x2)

∣

∣

∣

y=0
, it is straightforward to observe that the

instability happens at l−1
g logD ∼

(

l−2
g logDb

)2
.

Now we turn to the second question, the transition between the small black hole phase

and the maximal black hole phase. In order to understand the formation of the maximal

black hole, we need a more detailed investigation of eq. (3.4). We first focus on the random

pure state region r ≤ b, and assume the minimal surface enters this region at angle ϕ and

−ϕ. The minimization problem in eq. (3.4) can be solved by asking

0 = l−1
g logD

∫ ϕ

−ϕ
dθ δ

(

2

1− r2(θ)

√

(r′(θ))2 + r2(θ)

)

+ l−2
g logDb

D
VT /l2g
b −D

2Vr(θ)/l
2
g

b

D
VT /l2g
b +D

2Vr(θ)/l
2
g

b

∫ ϕ

−ϕ
dθ

4r(θ)δr(θ)

(1− r2(θ))2
.

The above variational equation contains both the derivative and the integration (contained

in Vr(θ)) of r(θ). But in the large D limit, which indicates that the transition happens

when Db is also big, as long as 2Vr(θ) < VT , D
2Vr(θ)

b ≪ DVT

b near transition point. Thus in

this limit, the above equation can be simplified with only r(θ) and its derivatives left.

l−1
g logD

∫ ϕ

−ϕ
dθ δ

(

2

1− r2(θ)

√

(r′(θ))2 + r2(θ)

)

+ l−2
g logDb

∫ ϕ

−ϕ
dθ

4r(θ)δr(θ)

(1− r2(θ))2
= 0.

The trick we use to solve this equation is to transform it back to a minimization problem,

I[r(θ)] is the objective function to be minimized with respect to r(θ).

I[r(θ)] =

∫ ϕ

−ϕ
dθ

2l−1
g logD

1− r2(θ)

√

(r′(θ))2 + r2(θ) + l−2
g logDb

∫ ϕ

−ϕ
dθ

(

2

1− b2
− 2

1− r2(θ)

)

.

Because I[r(θ)] does not explicitly contain θ, thus using a Legendre transformation, we

only need to solve a first order differential equation.

r′(θ)
∂I[r(θ)]

∂r′(θ)
− I[r(θ)] =

l−2
g logDb

1− r2(θ)
−

r2(θ)l−1
g logD

(1− r2(θ))
√

(r′(θ))2 + r2(θ)
= C,
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whose analytic solution is

r2(θ) =
1

2C2

[

2C
(

C − l−2
g logDb

)

cos(2θ) +
(

l−1
g logD

)2
cos2 θ

− cos θ

√

4C
(

C − l−2
g logDb

)

+
(

l−1
g logD

)2

×
√

4C
(

l−2
g logDb − C

)

sin2 θ +
(

l−1
g logD

)2
cos2 θ

]

C =
l−2
g logDb

(b2 − 1)2 + 4b2 sin2 ϕ

(

1− b2 cos(2ϕ)

− b cosϕ

l−2
g logDb

√

(b2 − 1)2
(

l−1
g logD

)2
+ 4b2 sin2 ϕ

(

(

l−1
g logD

)2 −
(

l−2
g logDb

)2
)

)

where C is fixed by asking r(±ϕ) = b. In order for r2(θ) not to be an extraneous root,

we ask

b2 = r2(ϕ) ≤ 1

2C2

[

2C
(

C − l−2
g logDb

)

cos(2ϕ) +
(

l−1
g logD

)2
cos2 ϕ

]

which can be satisfied if

l−2
g logDb ≤

1 + b2

2b
l−1
g logD.

What is interesting is that this condition is independent of ϕ, the angle at which

the minimal surfaces enters the random pure state region. In other words, when

l−2
g logDb ≤ l−1

g logD(1 + b2)/2b, the above solution r(θ) always exists for all angle ϕ,

which means the minimal surfaces will enter the random pure state region. However,

when l−2
g logDb = l−1

g logD(1 + b2)/2b then for all ϕ the minimal surfaces are repelled

to the boundary of the random pure region, indicating that the formation of the single

sided black hole is complete. Thus we have proved in the large D limit, the transi-

tion between the small black hole phase and the maximal black hole phase happens at

l−2
g logDb = l−1

g logD(1 + b2)/2b.

B Derivation of the error correction condition

In this appendix we give a short proof that the vanishing of the mutual information I(C :

BC), eq. (4.7), implies that any operator OC in bulk region C can be recovered from the

boundary region A. We do so for the reader’s convenience as the proof will describe the

construction of the boundary operator rather explicitly, but note that the result can be

readily extracted from the literature [34, 59, 60].

In the following it will be crucial to distinguish the input systems C and C of the

bulk-to-boundary isometry M from the corresponding subsystems of the pure state |ΨM 〉
defined in (4.1). We will thus denote the latter by C ′ and C

′
, so that

|ΨM 〉 =M
(

|φ+CC′〉 ⊗ |φ+
C C

′〉
)

,
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C
′

C 



A

B

C

E
C

OA











C ′

C
A

B

|ΨM 〉
∣

∣φ+

CC′

〉

⊗

∣

∣γ
BC

′

E

〉

C

C
′

C

C
′

Figure 12. Construction of the boundary operator OA corresponding to a bulk operator φC and

illustration of the recovery equation (4.6).

where |φ+CC′〉 and |φ+
C C

′〉 denote maximally entangled states between C and C ′ and between

C and C
′
, respectively. Eq. (4.7), which becomes I(C ′ : BC

′
) = 0, implies at once that

trA(ΨM ) = τC′ ⊗ trAC′(ΨM ), (B.1)

where τC′ = tr
ABC

′(ΨM ) is a maximally mixed state (since M is an isometry). By def-

inition, |ΨM 〉 is a purification of (B.1), but we can also find a purification that respects

the product structure |φ+CC′〉 ⊗ |γ
BC

′
E
〉, obtained by purifying τC′ to a maximally entan-

gled state and trAC′(ΨM ) to an arbitrary pure state |γ
BC

′
E
〉. If we choose the dimension

of E to be sufficiently large then the two purifications can be related by an isometry V

from A to CE:

V |ΨM 〉 = |φ+CC′〉 ⊗ |γ
BC

′
E
〉 . (B.2)

It can now be readily verified that any bulk operator φC can be recovered from A by using

the boundary operator OA = V †φCV . Indeed, eq. (4.6), which states that OAM = MφC ,

is a direct consequence of the following calculation:

OA |ΨM 〉 = V †φCV |ΨM 〉 = V †φC
(

|φ+CC′〉 ⊗ |γ
BC

′
E
〉
)

=
(

φTC′ ⊗ V †
)(

|φ+CC′〉 ⊗ |γ
BC

′
E
〉
)

= φTC′ |ΨM 〉 =
(

φTC′ ⊗M
)(

|φ+CC′〉 ⊗ |φ+
C C

′〉
)

=MφC
(

|φ+CC′〉 ⊗ |φ+
C C

′〉
)

,

where we have used (B.2) and that φC |φ+CC′〉 = φTC′ |φ+CC′〉 (twice). We refer to figure 12

for an illustration.

C Uniqueness of minimal energy configuration for higher Rényi models

In this appendix we give a formal proof of the assertion made in section 5 that the spin

model with action (5.6) has a unique minimal energy configuration, given by setting the

entanglement wedge EA to the cyclic permutation C(n) and its complement to the iden-

tity, provided the entanglement wedge EA is unique. For simplicity, we assume that

Dxy = Dx∂ = D (but it is easy to see that the same conclusions hold true if all bond dimen-

sions are powers of a fixed integer), and we consider the equivalent spin model with energy

E[{gx}] =
∑

x,y

(

n− χ(g−1
x gy)

)

,
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where the gx are variables in Symn, with x and y ranging over both bulk and boundary

vertices, subject to the boundary conditions gx = C(n) in A and gx = 1 in Ā (cf. section 8).

The first observation is that n−χ(g) is equal to the minimal number of transpositions

(i.e., permutations that exchange only two indices) required to write a permutation g. This

implies that

d(gx, gy) := n− χ(g−1
x gy)

defines a metric. In particular, it satisfies the triangle inequality. The second ingredient

is that, by the integral flow theorem, we can decompose a maximal flow between A and Ā

into edge-disjoint paths. Each path starts in A, ends in Ā, and by the max-flow/min-cut

theorem there are |γA| many such paths P1, . . . , P|γA|.

Now consider an arbitrary configuration {gx} that satisfies the boundary conditions.

We can bound its energy by looking only at those edges that occur in one of the paths,

resulting in the lower bound

E[{gx}] ≥
|γA|
∑

k=1

∑

〈xy〉∈Pk

d(gx, gy). (C.1)

Along each path Pk, the first spin is assigned the cyclic permutation C(n) and the last spin

the identity permutation 1. Therefore, the triangle inequality (invoked once for each path)

implies that
|γA|
∑

k=1

∑

〈xy〉∈Pk

d(gx, gy) ≥
|γA|
∑

k=1

d(C(n), 1) = (n− 1)|γA|. (C.2)

Note that the right-hand side is just the energy cost of the configuration where we assign

C(n) to the spins in EA and 1 to all other spins. We claim that this is the unique minimal

energy configuration. To see this, suppose that {gx} is an arbitrary configuration that

achieves this energy cost.

Case 1. The only permutations that appear in {gx} are C(n) and 1. Then the domain

where gx = C(n) is a minimal cut between A and Ā, i.e., an entanglement wedge for A.

Since we have assumed that the entanglement wedge is unique, it must be equal to EA.

Thus {gx} is the configuration described above.

Case 2. The configuration {gx} contains some other permutations. Since it is a minimal

energy configuration, both inequalities (C.1) and (C.2) above must be tight. The fact that

the first inequality is tight means that if an edge is not contained in any of the paths Pk then

the configuration {gx} necessarily assigns the same permutation in Symn to its endpoints.

It follows that the first inequality remains tight if we modify the configuration {gx} by

changing an entire domain from one permutation to another. For the second inequality,

we can use the triangle inequality to see that the sequence of permutations in any path Pk

must always be of the form C(n), . . . , C(n), ∗ ∗ ∗, 1, . . . , 1, where ∗ ∗ ∗ denotes a sequence of

permutations that are neither C(n) nor 1. Indeed, if this were not the case then the energy

cost of the corresponding path would be higher than (n − 1). But this implies that by

either changing all other permutations to C(n), or by changing all of them to 1, we obtain

two distinct minimal energy configurations that only contain C(n) and 1. By case 1, this is

a contradiction.
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Figure 13. (a) The graph representation of the orthonormality condition (6.1) of Oα
A. A similar

condition holds for Oα
B . (b) The graph representing the matrix Mαβ = tr

[

Oα
AO

β
Bρ
]

. We use red

and blue dots to represent the basis operators Oα
A and Oβ

B , respectively. We have drawn ρ in a

slightly assymetric shape to keep track of the difference between A and B regions. (c) Using the

orthonormality condition in subfigure (a), the quantity (M†M)n is tranformed to a contraction of

2n copies of ρ. (d) A compact way of drawing tr
[

(M†M)n
]

, which corresponds to eq. (6.6).

D Calculation of C2n in section 6

In this appendix, we will present the derivation from eq. (6.5) to eq. (6.6) in section 6. We

first calculate M †M using the orthonormality condition (6.1).

[

M †M
]αβ

=Mγα∗Mγβ =
tr
[

Oα
BO

γ
Aρ
]

tr
[

Oγ
AO

β
Bρ
]

(trρ)2

=
1

(trρ)2
trB [ρOα

B]ab trB

[

Oβ
Bρ
]

ba
. (D.1)

Similarly we can apply the orthonormality condition in the B region when we multiply

M †M . For example,

tr

[

(

M †M
)2
]

=
1

(trρ)4
ρam,bnρbk,alρcl,dkρdn,cm (D.2)

in which a, b, c, d are indices in the Hilbert space of A, andm,n, k, l are those in B. The best

way of visualizing this calculation is by introducing a diagrammatic representation, as is

shown in figure 13. In the trace of (M †M)n, there are 2n copies of the density matrix ρ. The

n contractions of A indices lead to pairwise permutations between pairs of density matrices

1 ↔ 2, 3 ↔ 4,. . . ,2n − 1 ↔ 2n. Similarly, the contractions of B indices lead to pairwise

permutations between 2 ↔ 3, 4 ↔ 5, . . . , 2n↔ 1. This concludes the proof of eq. (6.6).
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E Partition function of Ising model on the square lattice

In this appendix, we calculate the partition function of the Ising model in the large D

(low temperature) limit on a 2D rectangular lattice of size M × N , with periodic bound-

ary conditions along the first direction and open boundary conditions along the second

one. We will use several results that can be found in [42]. As in the main text, we let

2β = logD. We denote the partition function of the Ising model at temperature 1/β, with

boundary pinning field pointing down everywhere, by Z0(β), and its zero-temperature limit

by Z∞
0 = Z0(β → ∞). When system size is large, M,N ≫ 1,

Z0

Z∞
0

=

(

2

e2β
exp

[

1

2(2π)2

∫ 2π

0
dθ1dθ2 log

[

(cosh 2β)2 − sinh 2β(cos θ1 + cos θ2)
]

])MN

·
(

eβ

coshβ
exp

[

1

2π

∫ π

−π
dθ log

(

1+φ̄(θ)

2

)])N(
coshβ

eβ
exp

[

1

4π

∫ π

−π
dθ log (1−W (θ))

])2N

=
(

1 +D−4 +O(D−6)
)MN

(

1 +
1

5
D−5 +O(D−4)

)N

,

where

φ̄(θ) = −
√

(1− α1(β)eiθ)(α2(β)− e−iθ)

(1− α1(β)e−iθ)(α2(β)− eiθ)
,

W (θ) =
tanh(β)2

∣

∣1 + eiθ
∣

∣

2

tanh(β) |1 + tanh(β)eiθ|2 − (1− tanh(β)2α(θ)))
,

α1(β) = tanh(β)
1− tanh(β)

1 + tanh(β)
, α2(β) =

1

tanh(β)

1− tanh(β)

1 + tanh(β)
,

α(θ) =
(1 + tanh(β)2)2

2 tanh(β)(1− tanh(β)2)
− cos(θ) +

∣

∣

(

1− α1(β)e
iθ
) (

1− α−1
2 (β)eiθ

)∣

∣

2 tanh(β)
.

Thus the leading order correction in the large D limit is MND−4.

Now we turn to Z1(β), the partition function of the Ising model at temperature 1/β,

with boundary pinning field down everywhere except for in a single interval of length L.

Similarly as above, we denote the corresponding zero-temperature limit by Z∞
1 = Z1(β →

∞). Using the duality of Ising model, we know that Z1(β)/Z0(β) = 〈S0,0S0,L〉(β′), where
e−2β′

= tanh β. Here, 〈S0,0S0,L〉(β′) denotes the two-point correlation function on the

boundary of the dual lattice at temperature 1/β′, whose analytical form is also provided

in [42]. When L≫ 1, we can expand Z1(β)/Z
∞
1 to leading order in D and L,

Z1(β)

Z∞
1

=
〈S0,0S0,L〉(β′)

〈S0,0S0,L〉(β′ → 0)

Z0(β)

Z∞
0

=
(

1 +D−4 +O(D−6)
)MN

(

1 +
1

5
D−5 +O(D−4)

)N
(

1 + 2D−1 +O(D−2)
)L
.

Thus the leading order correction is 2LD−1.
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F Average second Rényi entropy for 2-designs

In the following, we will show that (9.1) holds for an arbitrary 2-design in the limit of large

bond dimension. We recall from section 7 that the inequality S2(A) ≤ S(A) holds for ar-

bitrary quantum states, while S(A) ≤ log rank ρA ≤ logD|γA| in any tensor network state.

Therefore it remains to prove the lower bound on the average of the second Rényi entropy.

The first moments of the Haar measure are given by |Vx〉〈Vx| = I/Dx, and so

T = 1/
∏

xDx. Together with our calculation in sections 2 and 3 it follows that

− log
Z1

T
2 → SRT(A)− log k (F.1)

in the large D limit, where have introduced T = tr ρ and recall that Z1 = tr ρ2A. We now

bound the fluctuations in the trace T . Noting that T 2 = Z0, we can bound the variance of

T/T as follows:
(

T

T
− 1

)2

=
Z0

T
2 − 1 =

∑

{sx}

e−A0[{sx}]+
∑

x logD2
x − 1 ≤

∑

{sx}

e−A[{sx}] − 1 =
∑

{sx}6≡+1

e−A[{sx}]

where A0 refers to the Ising action in its original form (2.13) and A to the simplified

form (3.1) with constants removed. But any nontrivial spin configuration incurs an energy

cost of at least logD, so that we obtain the upper bound
(

T

T
− 1

)2

≤ 2V /D.

By Chebyshev’s inequality, it follows that, for any ε > 0,

pgood ≡ Prob

(

T

T
≥ 1− ε

)

≥ 1−O

(

1

Dε2

)

. (F.2)

We now condition on the event that T/T ≥ 1−ε. WritingX
good

for corresponding averages,

we obtain the following bound using concavity of the logarithm,

S2(A)
good

= − log
Z1

T 2

good

= − log
Z1

good

T
2 + 2 log

T

T

good

− log
Z1

Z1
good

good

≥ − log
Z1

good

T
2 + 2 log

T

T

good

≥ − log
Z1

T
2 + log pgood + 2 log

T

T

good

≥ − log
Z1

T
2 + log pgood + 2 log(1− ε), (F.3)

since Z1
good ≤ Z1/pgood. On the other hand, T/T ≥ 1− ε implies that ρ 6= 0. Thus,

S2(A)
6=0 ≥ pgood

p 6=0
S2(A)

good ≥ pgood S2(A)
good ≥ S2(A)

good −O

(

logD

Dε2

)

, (F.4)

where we have used (F.2) and S2(A) ≤ |γA| logD = O(logD), as follows from the deter-

ministic upper bound in (9.1), which holds for an arbitrary tensor network state. The

desired lower bound,

S2(A)
6=0 ≥ SRT(A)− log k − o(1),

now follows by combining (F.4), (F.3) and (F.1) and choosing, e.g., ε = D−1/4.
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G Contractions of stabilizer states

In this appendix we will show that a tensor network state built by contracting stabilizer

states is again a stabilizer state. More generally, let |φ〉A and |ψ〉AB denote two stabilizer

states, where A = (Cp)⊗a and B = (Cp)⊗b, with stabilizer groups G and H, respectively,

such that |ψ′
B〉 ≡ 〈φA|ψAB〉 6= 0. We will show that in this case |ψ′

B〉 is a stabilizer state,

a fact that is certainly well-known to experts.

To see this, we start by writing the contracted state as

|ψ′
B〉〈ψ′

B| = 〈φA|ψAB〉〈ψAB|φA〉 = trA
[

|ψAB〉〈ψAB| |φA〉〈φA|
]

=
1

|G|
1

|H|
∑

gA∈G

∑

hAB∈H

trA(gAhAB)

=
1

|H|
∑

gA∈G

∑

hAB∈H

ϕ(gA, hAB),

where we have introduced the function ϕ(gA, hAB) ≡ 1
|G| trA(gAhAB). We claim that

K = {(gA, hAB) ∈ G×H : ϕ(gA, hAB) 6= 0}

is a subgroup of G × H and that the restriction of ϕ to K is a group homomor-

phism. To see this, note that any hAB ∈ H can be written as hAB = hAhB, where

hA and hB are elements of the generalized Pauli groups of A and B, respectively. Thus

ϕ(gA, hAB) = (tr gAhA)hB/|G|, which is either zero or equal to some Pauli operator. In

the latter case, hA = λg−1
A for some overall phase λ; in particular, hA commutes with G.

If also ϕ(g′A, h
′
AB) 6= 0 then likewise h′A = λ′(g′A)

−1 for some phase λ′, and it is now easy

to verify that

ϕ(gAg
′
A, hABh

′
AB) = λλ′hBh

′
B = ϕ(gA, hAB)ϕ(g

′
A, h

′
AB).

This implies both that K is a subgroup of G×H and that ϕ
∣

∣

K
is a group homomorphism.

Thus L ≡ ϕ(K) is a (commutative) subgroup of the Pauli group; it follows that

|ψ′
B〉〈ψ′

B| =
1

|H|
∑

gA∈G

∑

hAB∈H

ϕ(gA, hAB) =
|kerϕ|
|H|

∑

gB∈L

gB =
|K|
|H|

1

|L|
∑

gB∈L

gB.

Thus |ψ′
B〉 is indeed a subnormalized stabilizer state, as we set out to show.

Since maximally entangled states are stabilizer states, it follows at once that a

tensor network state (2.1) constructed by contracting stabilizer states |Vx〉 is again a

stabilizer state.
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