Holographic Duals of Kaluza-Klein Black Holes

Noriaki Ogawa

Yukawa Institute for Theoretical Physics, Kyoto University

December 20, 2008 RIKEN Symposium "Towerds New Developments in Field and String Theories"

Based on arXiv:0811.4177 [hep-th]

(collaboration with Tatsuo Azeyanagi [Kyoto U.] and Seiji Terashima [YITP])

Brown-Henneaux [Comm.Math.Phys. 104 (1986)]

Brown-Henneaux's holography

- near-horizon asymptotic symmetry \leftrightarrow Virasoro sym (\Rightarrow CFT₂ ?)
- ${\scriptstyle \bullet}$ we know little about the ${\sf CFT}_2$ and correspondence principles
- apparently no relation to string or SUSY

(cf.)

- AdS/CFT correspondence
 - near-horizon AdS isometry ↔ conformal symmetry
 - well-analized in many cases
 - correspondence principle is (partly) understood (GKP-Witten, etc)
 - based on string theory (and SUSY)

Guica-Hartman-Song-Strominger [arXiv:0809.4266]

Recently, on the direction of Brown-Henneaux's holography, Kerr/CFT correspondence was proposed:

For extremal 4D Kerr BH,

- We look near to the evant horizon
- Under some boundary condition, $U(1)_{\phi}$ symmetry enhances to Virasoro \Rightarrow dual chiral CFT ! (?)
- We can determin c and T for the CFT

$$\Rightarrow S_{micro} = S_{BH}$$
 !

Correct S_{micro} derivation without string method...

However, there are too many mysteries about this methods.

We want to know...

- What is the dual chiral CFT ? What does it stand for ?
- What class of BH can it be applicable ? What happens for non-extremal case ?
- What is the relation to string theory or string duality ?

etc...

We then consider the rotating Kaluza-Klein black holes:

- black hole on 4D imes S^1 (pure grav.)
- in 4D view, rotating BH with electric/magnetic charges. (include 4D dyonic RN, etc)
- two $\mathrm{U}(1)$ fibers $\mathrm{U}(1)_{\phi}$, $\mathrm{U}(1)_{y}$
- D0-D6 system in string theory (extremal, but non-BPS)

Kaluza-Klein/CFT Correspondences

Although c and T are completely different in each case, S_{micro} agrees exactly in either case!

What does it tells us, especially in string point of view ??

Please also listen to tomorrow's long-time talk by Mr. Nishioka...

(our great competitor !)