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Abstract We advance a holographic construction for the
entanglement negativity of bipartite mixed state configura-
tions of two disjoint intervals in (1 + 1) dimensional con-
formal field theories (CFT1+1) through the AdS3/CFT2

correspondence. Our construction constitutes the large cen-
tral charge analysis of the entanglement negativity for mixed
states under consideration and involves a specific algebraic
sum of bulk space like geodesics anchored on appropriate
intervals in the dual CFT1+1. The construction is utilized to
compute the holographic entanglement negativity for such
mixed states in CFT1+1s dual to bulk pure AdS3 geometries
and BTZ black holes respectively. Our analysis exactly repro-
duces the universal features of corresponding replica tech-
nique results in the large central charge limit which serves as
a consistency check.

1 Introduction

Quantum entanglement has attracted intense focus recently in
diverse disciplines from condensed matter physics to issues
of quantum gravity [1–6]. The entanglement for bipartite
pure states may be characterized by the entanglement entropy
which is defined as the von Neumann entropy of the reduced
density matrix for the subsystem under consideration. How-
ever entanglement entropy fails to be a viable measure for the
characterization of mixed state entanglement as it incorpo-
rates correlations irrelevant to the specific bipartite system
in question. This significant issue in quantum information
theory was addressed by Vidal and Werner in [7], where they
introduced a computable measure termed entanglement neg-
ativity which characterized the upper bound on the distillable

a e-mail: vinaymmp@gmail.com
b e-mail: sayidphy@iitk.ac.in
c e-mail: paul@iitk.ac.in
d e-mail: sengupta@iitk.ac.in

entanglement for the bipartite mixed state.1 The entangle-
ment negativity was defined as the logarithm of the trace
norm of the partially transposed density matrix with respect
to one of the subsystems of a bipartite system. It was shown
by Plenio in [8] that the entanglement negativity was not
convex but was an entanglement monotone under local oper-
ations and classical communication (LOCC).

In [9–12] the authors advanced a comprehensive pro-
cedure to compute the entanglement entropy in (1 + 1)

dimensional conformal field theories (CFT1+1) employ-
ing a replica technique. For configurations involving mul-
tiple disjoint intervals the entanglement entropy computed
through the replica technique receives non universal con-
tributions which depend on the full operator content of the
CFT1+1. It was later shown in [13,14] that these non univer-
sal contributions were sub leading in the large central charge
limit. Subsequently a variant of the above replica technique
could be utilized to compute the entanglement negativity of
various bipartite pure and mixed state configurations in a
CFT1+1 [15–17]. Interestingly the entanglement negativity
for a bipartite pure state was given by the Rényi entropy of
order half in conformity with quantum information theory.
Following this, in [18] the large central charge limit of the
entanglement negativity for a mixed state configuration of
two disjoint intervals was investigated. Interestingly in this
case the entanglement negativity is non universal in gen-
eral except when the two intervals are in proximity where
a universal contribution may be extracted in the large cen-
tral charge limit [18]. Remarkably through a monodromy
analysis it could be numerically demonstrated that the entan-
glement negativity exhibited a phase transition [18,19].

In the context of the AdS/CFT correspondence Ryu and
Takayanagi (RT) [20,21] advanced a holographic conjecture
to describe the universal part of the entanglement entropy

1 Distillable entanglement characterizes the amount of pure entangle-
ment that can be extracted from the state in question using only LOCC.
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of a subsystem in a dual CFTd . This was given by the area
of the co dimension two static minimal surface in the bulk
AdSd+1 geometry, homologous to the subsystem. This devel-
opment attracted intense interest in obtaining the holographic
entanglement entropy of bipartite systems described by dual
CFTds (for a detailed review see [21–24] and references
therein). A covariant generalization of the Ryu–Takayanagi
conjecture was subsequently advanced in [25] by Hubeny,
Rangamani and Takayanagi (HRT). A proof of the RT con-
jecture was established from the bulk perspective initially
in the context of AdS3/CFT2 framework and later gener-
alized to the AdSd+1/CFTd scenario in [26–29]. Subse-
quently the covariant HRT conjecture was proved in [30]. The
developments described above naturally led to the interest-
ing issue of a corresponding holographic characterization for
the universal part of the entanglement negativity of CFTds
in the AdSd+1/CFTd scenario. A holographic computation
of the entanglement negativity for the pure vacuum state of
a CFTd dual to a bulk pure AdSd+1 geometry was given in
[31]. Despite this progress a clear holographic construction
for the entanglement negativity of bipartite states in CFTds
remained an outstanding issue.

In [32,33] two of the present authors (VM and GS)
proposed a holographic entanglement negativity conjecture
and its covariant generalization for bipartite states in the
AdS3/CFT2 scenario. This was substantiated by a large cen-
tral charge analysis of the entanglement negativity of the
CFT1+1 utilizing the monodromy technique in [34]. This
proposal was subsequently extended in [35] to higher dimen-
sions in the context of the AdSd+1/CFTd . However a bulk
proof of this conjecture along the lines of [28,29] remains
an outstanding issue. Following [32,33] in [36,37] a holo-
graphic entanglement negativity conjecture and its covariant
extension was proposed for bipartite mixed state configu-
rations of adjacent intervals in dual CFT1+1s. Subsequently
through the AdSd+1/CFTd framework a higher dimensional
generalization of the above construction was proposed in
[38]. This could be applied to investigate such mixed states
in CFTds dual to the bulk pure AdSd+1 geometry, AdSd+1-
Schwarzschild black hole and the AdSd+1-Reissner Nord-
strom black hole in [38,39].

As mentioned earlier the entanglement negativity for the
mixed state of two disjoint intervals which is in general non
universal exhibits an interesting behavior in the large central
charge limit where a universal contribution may be isolated.
A holographic description from a bulk perspective for this
intriguing behavior of the entanglement negativity is a fas-
cinating open issue. In this article we address this interest-
ing issue and propose a holographic entanglement negativity
conjecture for such mixed state configuration of two disjoint
intervals in the AdS3/CFT2 scenario. To this end we utilize
the large central charge analysis presented in [18] to extract
the universal part of the entanglement negativity for the

mixed state in question both at zero and finite temperatures
and also for a finite size system in CFT1+1. Interestingly we
observe that the entanglement negativity for the mixed states
in question are cut off independent. Following this analysis
it is possible to establish a holographic conjecture character-
izing the universal part of the entanglement negativity of the
mixed state in question. Our construction involves a specific
algebraic sum of the lengths of bulk space like geodesics
anchored on intervals appropriate to the configuration of the
mixed state in question and reduces to an algebraic sum of the
holographic mutual informations between particular combi-
nations of the intervals.2 Application of our conjecture to
the examples of such mixed state configurations in CFT1+1

dual to bulk pure AdS3 geometries and the Euclidean BTZ
black hole substantiates our conjecture and constitute sig-
nificant consistency checks. Interestingly in the limit of the
intervals being adjacent we are able to exactly reproduce the
universal features of results described in [16,17,36] from our
holographic construction for the disjoint case.

This article is organized as follows. In Sect. 2 we briefly
review the computation of entanglement negativity for bipar-
tite mixed state configuration of two disjoint intervals in a
CFT1+1. In Sect. 3 we describe the large central charge anal-
ysis for the entanglement negativity utilizing the monodromy
technique. Subsequently in Sect. 4 we advance a holographic
entanglement negativity conjecture for the mixed state of
disjoint intervals using the large central charge results and
describe its application to various scenarios. Finally, we sum-
marize our results in Sect. 5 and present our conclusions.

2 Entanglement negativity

We begin with an outline of the salient features of entan-
glement negativity in quantum information theory [7] (for a
brief review also see [31]). In this context it is necessary to
consider a tripartite system in a pure state constituted by the
subsystems A1, A2 and B. The bipartite system A ≡ A1 ∪A2

in a mixed state, described by the reduced density matrix
ρA = TrB(ρ), may then be obtained by tracing over the
subsystem B ≡ Ac. It is assumed that the Hilbert space for
the bipartite system A may be expressed as a direct product
H = H1 ⊗ H2 where H1 and H2 respectively describe the
Hilbert spaces for the subsystems A1 and A2. The partial
transpose of the reduced density matrix ρA with respect to
A2, is defined as
〈
e(1)
i e(2)

j

∣∣∣ρT2
A

∣∣∣e(1)
k e(2)

l

〉
=

〈
e(1)
i e(2)

l

∣∣∣ρA

∣∣∣e(1)
k e(2)

j

〉
, (1)

where |e(1)
i 〉 and |e(2)

j 〉 represent the bases for H1 and H2

respectively. The entanglement negativity E which charac-

2 Our analysis has been confirmed in recent articles [40,41].
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terizes the entanglement between the subsystems A1 and A2

may then be defined as follows

E = ln
∥∥∥ρ

T2
A

∥∥∥ , (2)

where
∥∥∥ρ

T2
A

∥∥∥ is the trace norm of the matrix ρ
T2
A .

2.1 Entanglement negativity in a CFT1+1

A systematic procedure to compute the entanglement neg-
ativity for bipartite states in a CFT1+1, utilizing a replica
technique, was described in [15–17]. The entanglement neg-

ativity in this case involves the quantity Tr
(
ρ
T2
A

)ne
for even

ne and the analytic continuation of even sequences of ne to
ne → 1 leads to the following expression

E = lim
ne→1

ln Tr
(
ρ
T2
A

)ne
. (3)

The specific mixed state configuration under consideration is
described by the disjoint intervals A1 ≡ [u1, v1] (of length
l1) and A2 ≡ [u2, v2] (of length l2) with A ≡ A1 ∪ A2 while
B ≡ Ac denotes the rest of the system as shown in Fig. 1.
The interval [v1, u2] (of length ls) separating A1 and A2 in
this case is described by As ⊂ B.

For this configuration, the quantity Tr
(
ρ
T2
A

)ne
may be

expressed in terms of a four point twist correlator on the
complex plane C as

Tr
(
ρ
T2
A

)ne = 〈
Tne (u1)T ne(v1)T ne (u2)Tne(v2)

〉
C

. (4)

As described in [16] the above four point twist correlator may
be expressed in the replica limit ne → 1 as follows

lim
ne→1

〈
Tne(u1)T ne(v1)T ne(u2)Tne(v2)

〉
C

= G(x), (5)

where G(x) is a non universal function of the cross ratio x =
[(v1 − u1) (v2 − u2)]/[(u2 − u1) (v2 − v1)] and depends on
the full operator content of the correspondingCFT1+1. In the
next section, we will review the computation of an explicit
universal form of this function in the large central charge
limit.

Fig. 1 Tripartite system of two disjoint intervals A1 and A2, and the
remainder of the system B in aCFT1+1. The two intervals are separated
by As

3 Entanglement negativity at large c

In this section we briefly review the large central charge anal-
ysis for the four point twist correlator in Eq. (4) above through
the monodromy technique [13,18,42–50]. Our discussion
will be focused on the explicit form of the four point twist
correlator when the disjoint intervals depicted in Fig. 1 are in
proximity as described in [18]. In this instance the entangle-
ment negativity for the bipartite zero temperature mixed state
configuration of disjoint intervals may be obtained explicitly
in the large central charge limit.

For this purpose it is required to analyze a four point cor-
relation function of primary fields in a CFT1+1 which is
given as 〈O1(z1)O2(z2)O3(z3)O4(z4)〉C. It is possible to set
z1 = 0, z2 = x, z3 = 1, z4 = ∞ through the conformal
transformation z → [(z1 − z)(z3 − z4)]/ [(z1 − z3)(z− z4)],
where x ≡ (z12z34)/(z13z24) is the relevant cross ratio with
zi j ≡ zi − z j . The resulting four point correlator may then
be expanded in terms of the conformal blocks as follows

〈O1(0)O2(x)O3(1)O4(∞)〉C
=

∑
p

apF
(
c, h p, hi , x

)
F

(
c, h̄ p, h̄i , x̄

)
, (6)

where we sum over all the primary operators Op with con-
formal dimensions

(
h p, h̄ p

)
, and

(
hi , h̄i

)
are the conformal

dimensions of the operators Oi . An analytic expression for
F

(
c, h p, hi , x

)
is not known except for some specific values

of the parameters. However, in the semi classical approxima-
tion given by the large central charge limit c → ∞ with h p/c
and hi/c fixed, the conformal block exponentiates [42,43] as
follows

F
(
c, h p, hi , x

) 
 exp
[
− c

6
f
(
h p/c, hi/c, x

)]
. (7)

The function f in the above expression may then be deter-
mined through the monodromy properties of the solutions to
the second order differential equation given as

ψ ′′(z) + T (z)ψ(z) = 0, (8)

around the above specified points (0, x, 1,∞). In the above
equation

T (z) =
4∑

i=1

[
6hi

c (z − zi )2 − ci
z − zi

]
, (9)

where ci ≡ ∂ f/∂zi are known as the accessory parameters.
Three of these parameters, c1, c3 and c4, may be fixed by the
asymptotic form of T (z) ∼ z−4 as z → ∞, as follows

4∑
i=1

ci = 0,

4∑
i=1

(
ci zi − 6hi

c

)
= 0,

4∑
i=1

(
ci z

2
i − 12hi

c
zi

)
= 0. (10)
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The remaining parameter c2 is then determined by the mon-
odromy condition which requires the trace of the monodromy
matrix around a closed path enclosing the singularities of
T (z), to satisfy

Tr(M) = −2 cos
(
π�p

)
,�p =

√
1 − 24h p

c
, (11)

where h p describes the lowest conformal dimension for the
intermediate operator in the channel under consideration. The
function f in Eq. (7) may then be determined through the
integration of the expression ∂ f/∂x = c2.

3.1 Entanglement negativity of disjoint intervals in the
x → 1 channel

We now describe the application of the monodromy tech-
nique to the four point twist correlator characterizing the
entanglement negativity for the x → 1 channel in which
the intervals are in close proximity to each other [18]. To go
to the complex plane, we make the following identification:
(u1, v1, u2, v2) ≡ (z1, z2, z3, z4). As mentioned earlier the
four point twist correlator in Eq. (4) admits the following
conformal block expansion given as
〈
Tne (z1)T ne (z2)T ne(z3)Tne(z4)

〉
C

=
∑
p

apF
(
c, h p, hi , x

)
F

(
c, h̄ p, h̄i , x̄

)
. (12)

In the limit x → 1 where the disjoint intervals are in close
proximity, the relevant intermediate operator has been shown

to be T 2
ne [18]. Hence the dominant contribution to the four

point twist correlator in Eq. (12) arises from the conformal
block with the conformal dimension h p = hT 2

ne
≡ ĥ. In the

large c limit, using Eq. (7) we then arrive at the following
〈
Tne (z1)T ne (z2)T ne(z3)Tne(z4)

〉
C


 F(c, h p = ĥ, hi , x)F(c, h̄ p = ĥ, h̄i , x̄)


 exp
[
− c

3
f (ĥ/c, hi/c, x)

]
.

(13)

In the replica limit ne → 1 we have hi = 0 and ĥ = −c/8.3

In this case T (z) in Eq. (9) is given by

T (z) 
 c2(1 − x)

(z − 1)2 , (14)

hence the differential equation in Eq. (8) reduces to

ψ ′′(z) + c2(1 − x)

(z − 1)2 ψ(z) = 0. (15)

Requiring the solutions of the above differential equation in
Eq. (15) to satisfy the monodromy condition mentioned in

3 Note that the negative value of scaling dimension of the twist field in
the replica limit has to be understood as an analytic continuation.

Eq. (11), the accessory parameter c2 may be determined as

c2 = −3

4

(
1

1 − x

)
. (16)

Using the above expression for the accessory parameter c2

we may now obtain the function f in Eq. (13) as follows4

f = 3

4
ln (1 − x) . (17)

The four point twist correlator in Eq. (13) may now be given
in the large c limit as

lim
ne→1

〈
Tne(z1)T ne(z2)T ne(z3)Tne(z4)

〉
C

=(1−x)2ĥ . (18)

Utilizing Eqs. (3) and (4), the entanglement negativity for
the bipartite mixed state configuration of disjoint intervals in
proximity may now be obtained from Eq. (18) upon substi-
tution of the cross ratio x ≡ (z12z34)/(z13z24) as follows

E = c

4
ln

( |z13||z24|
|z14||z23|

)
. (19)

The above equation provides a general expression for the
entanglement negativity of the bipartite mixed state configu-
ration of disjoint intervals when they are in proximity to each
other in the large central charge limit. We will now proceed to
utilize the above expression to obtain the entanglement neg-
ativity of the mixed state in question for different scenarios
and demonstrate that they match with the established results
in the adjacent limit [16] at large central charge.

Note that in [13], it was demonstrated that in the large
central charge limit, the entanglement entropy of the config-
uration described by two disjoint intervals exhibits a phase
transition from its value in the s-channel (x → 0) to its
value in the t-channel (x → 1) at x = 1

2 . These correspond
to different geodesic combinations in the dual bulk AdS3

geometry as predicted by the holographic proposal of Ryu
and Takayanagi. Interestingly, in [18], the authors showed
that a similar phase transition occurs for the entanglement
negativity of the mixed state of two disjoint intervals as well.
It was numerically demonstrated that this phase transition
occurs for the negativity in the large c limit from its value
in the s-channel (x → 0) where it vanishes, to its value in
the t-channel which is given by Eq. (19). However, it was
not possible to determine the exact value of the cross ratio
x at which the phase transition occurs. Recently, in [19] it
was shown that there exists a correspondence between the
classical geometries dual to the Rényi entanglement entropy
and the Rényi entanglement negativity which suggests that
the phase transition once again occurs at x = 1

2 .

4 Note that in computing f from Eq. (16), the integration constant has
been set to zero in accordance with the result obtained in [16] in the
limit x → 1.
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3.2 Entanglement negativity for disjoint intervals in
vacuum at large c

The general expression described above in Eq. (19) may now
be employed to obtain the entanglement negativity for the
zero temperature mixed state of two disjoint intervals in prox-
imity through the substitution of the lengths of the respective
intervals, leading to the following expression

E = c

4
ln

[
(l1 + ls) (l2 + ls)

ls (l1 + l2 + ls)

]
. (20)

Note that the above expression describes the universal part of
the entanglement negativity for the zero temperature mixed
state under consideration in the large central charge limit.

Interestingly the above result is cut off independent unlike
the case for the mixed state of adjacent intervals as described
in [16]. Furthermore it is to be noted that the above expres-
sion in Eq. (20) exactly reproduces the universal part of the
entanglement negativity in the adjacent interval limit pro-
vided the separation length ls is identified with the cut off as
ls → a [16].

3.3 Entanglement negativity for disjoint intervals in
vacuum for a finite size system at large c

For a finite size system of length L with a periodic boundary
condition, the entanglement negativity for the mixed state in
question, may be obtained from Eq. (19) through the confor-
mal transformation z → w = (i L/2π) ln z, from the com-
plex plane to the cylinder of circumference L [16]. Under
this conformal map the four point twist correlator in Eq. (4)
transforms as
〈
Tne (w1)T ne (w2)T ne (w3)Tne (w4)

〉
cyl

=
4∏

i=1

[(
dw(z)

dz

)−Δi
]

z=zi

× 〈
Tne(z1)T ne (z2)T ne(z3)Tne(z4)

〉
C

,

(21)

where Δi are the scaling dimensions of the twist fields at the
locations w = wi .

Utilizing Eqs. (3), (4) and (21), the entanglement negativ-
ity at large c for the zero temperature mixed state configu-
ration of disjoint intervals in proximity for this case is then
obtained from Eq. (18) as follows

E = c

4
ln

[
sin π(l1+ls )

L sin π(l2+ls )
L

sin πls
L sin π(l1+l2+ls )

L

]
. (22)

Note that this result is also cut off independent, in contrast
to the case of adjacent intervals [16]. Once more the above
expression exactly reproduces the corresponding entangle-
ment negativity at large central charge for adjacent intervals
in the limit ls → a.

3.4 Entanglement negativity for disjoint intervals at a finite
temperature at large c

For the mixed state in question at a finite temperature T , the
entanglement negativity at large c may be obtained as above
through the conformal map z → w = (β/2π) ln z from
the complex plane to the cylinder where the Euclidean time
direction has now been compactified to a circle with circum-
ference β ≡ 1/T [17]. As before, employing Eqs. (3), (4) and
(21), with the transformation described above, the entangle-
ment negativity at large c, for the mixed state configuration
of disjoint intervals in proximity at a finite temperature may
be computed from Eq. (18) as follows

E = c

4
ln

[
sinh π(l1+ls )

β
sinh π(l2+ls )

β

sinh πls
β

sinh π(l1+l2+ls )
β

]
. (23)

As earlier this result is also cut off independent and repro-
duces the corresponding large central charge result for adja-
cent intervals [17,36] in the limit ls → a.

In Fig. 2a we graphically describe the behavior of the
entanglement negativity as a function of the separation
ls between the disjoint intervals for the three scenarios
described above. It is observed in all the cases that the entan-
glement negativity decreases as we increase separation length
ls between the intervals, which is in conformity with quan-
tum information results. In Fig. 2b the entanglement nega-
tivity has been plotted against the length of the first interval
l1. In this plot we observe that the entanglement negativity
increases with the interval size and eventually saturates for
large l1 in all the cases.

Having presented the entanglement negativity of the
mixed state under consideration in a CFT1+1 for the three
different scenarios we now proceed to establish a holographic
conjecture involving the dual bulk AdS3 geometry which cor-
rectly reproduces the above large central charge results.

4 Holographic entanglement negativity for disjoint
intervals

In this section we establish a holographic entanglement nega-
tivity conjecture in the AdS3/CFT2 framework for the mixed
states of disjoint intervals in proximity from the large central
charge results obtained in the previous section. As earlier
we consider the disjoint intervals A1 and A2 of lengths l1
and l2 respectively depicted in Fig. 1, where the subsystem
A ≡ A1 ∪ A2 is in a mixed state. The separation between the
intervals corresponds to the subsystem As ⊂ B of length ls
where B = Ac denotes the rest of the system. We now con-
sider the two point twist correlator in a holographic CFT1+1

which is given as
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(a) (b)

Fig. 2 Negativity plots for two disjoint intervals in a CFT1+1 in
different cases. In both the figures, the blue, black and red curves
represent the vacuum scenario, finite size system and finite temper-
ature system, respectively. a shows plots of negativity vs. separation

between the intervals. Here, c = 100, l1 = l2 = 1, L = β = 4. b
presents plots of negativity vs. length of the first interval. In this case,
c = 100, l2 = 1, ls = 0.2, L = β = 20

〈
Tne(zi )T ne(z j )

〉
C

∼ ∣∣zi j
∣∣−2ΔTne . (24)

According to the AdS3/CFT2 dictionary, the above two
point twist correlator may be expressed in terms of the length
Li j of the bulk space like geodesic anchored on the corre-
sponding interval (in the geodesic approximation) [21] as
follows

〈
Tne(zi )T ne(z j )

〉
C

∼ exp

(
−ΔTneLi j

R

)
, (25)

where R is the AdS3 length scale.
Utilizing Eqs. (24) and (25), the four point twist corre-

lator in the holographic CFT1+1 as given in Eq. (18) may
be expressed in terms of the lengths of the bulk space like
geodesics as follows

lim
ne→1

〈
Tne(z1)T ne (z2)T ne(z3)Tne(z4)

〉
C

= exp
[ c

8R
(L13 + L24 − L14 − L23)

]
.

(26)

Using Eqs. (3), (4) and (26) we arrive at the following
holographic description for the entanglement negativity of
the mixed state in terms of the lengths of the bulk space like
geodesics

E = 3

16G(3)
N

(L13 + L24 − L14 − L23) , (27)

where we have used the Brown–Henneaux formula c = 3R
2G(3)

N
[51].

It is observed from the above expression given by Eq. (27),
that the holographic entanglement negativity for the mixed
state of disjoint intervals in proximity involves a specific
algebraic sum of the lengths of the bulk space like geodesics

Fig. 3 Geodesics in a bulk AdS3 anchored on different subsystems in
the dual boundary CFT1+1

anchored on the corresponding intervals as depicted in Fig.
3. Interestingly, in the limit of adjacent intervals ls → a
(L23 → 0 in the bulk ), the above expression exactly reduces
to the holographic entanglement negativity for the corre-
sponding mixed state configuration described in [36].

Note that as explained in Sect. 3.1, the result given in Eq.
(19) is valid for the values of the cross ratio 1

2 < x < 1
which implies that the geodesic combination given above is
also valid only in this regime. On the other hand in the regime
described by 0 < x < 1

2 , the entanglement negativity is zero
characterizing the phase transition at x = 1

2 .
Utilizing the Ryu–Takayanagi conjecture [20] for the

holographic entanglement entropy of a subsystem γ , given

as Sγ = Lγ

4G(3)
N

, where Lγ is the length of the space like

geodesic anchored on the subsystem, we may express Eq.
(27) as follows

E = 3

4
(SA1∪As + SAs∪A2 − SA1∪A2∪As − SAs ). (28)
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Interestingly the above expression in Eq. (28) for the entan-
glement negativity may be expressed in terms of the holo-
graphic mutual informations between appropriate subsys-
tems as5

E = 3

4
[I (A1 ∪ As, A2) − I (As, A2)] . (29)

Note that here the holographic mutual information between
subsystems Ai and A j is denoted by I(Ai , A j ) ≡ SAi +
SA j − SAi∪A j . In the limit As → ∅ we recover the holo-
graphic entanglement negativity for the mixed state of adja-
cent intervals in terms of the holographic mutual information
between the subsystems A1 and A2 as described in [36]. This
serves as a strong consistency check for our conjecture.

4.1 Holographic entanglement negativity for two disjoint
intervals in vacuum

Having established our holographic entanglement negativ-
ity conjecture for the mixed state configuration of disjoint
intervals we now proceed to apply our conjecture to various
scenarios described in the context of the CFT1+1 in Sect. 3
as consistency checks. To this end we begin by computing
the holographic entanglement negativity for the zero tem-
perature mixed state configuration of disjoint intervals in the
CFT1+1 vacuum which is dual to a bulk pure AdS3 space
time. This bulk geometry may be described in the Poincaré
coordinates as follows

ds2 =
(
r2

R2

)
(−dt2 + dx2) +

(
r2

R2

)−1

dr2, (30)

where R is the AdS3 radius. The length of the bulk space
like geodesic anchored on an interval γ ( of length lγ ), in
this geometry described by Eq. (30), may then be expressed
as [20,21,54,55]

Lγ = 2R ln

(
lγ
a

)
, (31)

with a being the UV cut off. Using the expression in Eq. (31),
the holographic entanglement negativity for the mixed state
under consideration may now be obtained from Eq. (27) as
follows

E = 3R

8G(3)
N

ln

[
(l1 + ls) (l2 + ls)

ls (l1 + l2 + ls)

]
. (32)

Interestingly upon utilizing the Brown–Henneaux formula
[51] our conjecture exactly reproduces the corresponding
entanglement negativity for the disjoint intervals obtained

5 There seems to be an intriguing connection between the holo-
graphic entanglement negativity and the holographic mutual informa-
tion although they are distinct quantities in quantum information theory.
For the adjacent intervals they are identical and this is also reported in
the literature in [52,53].

through the replica technique in the large central charge limit
given in Eq. (20). This serves as a consistency check for our
conjecture. Furthermore in the adjacent limit ls → a where
the separation between the intervals vanish, we recover the
holographic entanglement negativity for the zero tempera-
ture mixed state of adjacent intervals described in [36]. This
also constitutes a validation of our construction.

4.2 Holographic entanglement negativity of disjoint
intervals in vacuum for a finite size system

Having computed the vacuum entanglement negativity for
the mixed state configuration of disjoint intervals, we now
obtain the holographic entanglement negativity of the mixed
state in question for a finite size system of length L with a
periodic boundary condition. For this purpose it is required to
consider the CFT1+1 on an infinite cylinder with the spatial
direction compactified on a circle of circumference L , as dis-
cussed earlier in Sect. 3.3. The corresponding dual bulk con-
figuration in this case is the pure AdS3 space time expressed
in global coordinates as follows [20,21,54,55]

ds2 = R2(− cosh2 ρdt2 + dρ2 + sinh2 ρdφ2), (33)

where the spatial coordinate φ has a period of 2π . In these
coordinates the length Lγ of the bulk space like geodesic
anchored on an interval γ (of length lγ ) may be given as
[20,21,54,55]

Lγ = 2R ln

[
L

πa
sin

(
πlγ
L

)]
, (34)

where a is once again the UV cut off. Utilizing the above
expression given in Eq. (34) it is now possible to obtain the
holographic entanglement negativity for the mixed state in
question from Eq. (27) as follows

E = 3R

8G(3)
N

ln

[
sin π(l1+ls )

L sin π(l2+ls )
L

sin πls
L sin π(l1+l2+ls )

L

]
. (35)

Note that once again using the Brown–Henneaux formula
[51] we exactly reproduce the CFT1+1 replica technique
results for the large central charge limit as given in Eq. (22).
Interestingly in the adjacent limit we again reproduce the
corresponding holographic entanglement negativity for the
zero temperature mixed state of adjacent intervals in a finite
size system as described in [36].

4.3 Holographic entanglement negativity for two disjoint
intervals at a finite temperature

Finally we utilize our conjecture to compute the holographic
entanglement negativity for the finite temperature mixed
state configuration of disjoint intervals in a CFT1+1. In this
case the CFT1+1 is defined on an infinite cylinder with the
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Euclidean time direction compactified in a circle of circum-
ference β ≡ 1/T where T is the temperature. The corre-
sponding dual bulk AdS3 configuration is now the Euclidean
BTZ black hole (black string) at a Hawking temperature T
[20,21,54,55]. The metric for the Euclidean BTZ black hole
is given as

ds2 =
(
r2 − r2

h

)

R2 dτ 2 + R2
(
r2 − r2

h

)dr2 + r2

R2 dφ2, (36)

where τ denotes the Euclidean time with the φ direction
uncompactified and the event horizon is located at r = rh .
For the above bulk AdS3 geometry the corresponding length
Lγ of the bulk space like geodesic anchored on an interval
γ (of length lγ ) is given as follows [20,21,54,55]

Lγ = 2R ln

[
β

πa
sinh

(
πlγ
β

)]
, (37)

where a is the UV cut off. As earlier we now utilize the above
expression in Eq. (37) to obtain the holographic entangle-
ment negativity for the finite temperature mixed state under
consideration from Eq. (27) as

E = 3R

8G(3)
N

ln

[
sinh π(l1+ls )

β
sinh π(l2+ls )

β

sinh πls
β

sinh π(l1+l2+ls )
β

]
. (38)

Similar to the previous two cases upon using the Brown–
Henneaux formula [51], the above expression in Eq. (38)
exactly reproduces the correspondingCFT1+1 replica results
in the large central charge limit given in Eq. (23). In the adja-
cent limit our result once again reduces to the corresponding
holographic entanglement negativity for the finite tempera-
ture mixed state of adjacent intervals described in [36]. Natu-
rally the results of the above subsections serve as strong con-
sistency checks for our conjecture which has been obtained
through a large central charge analysis for the entanglement
negativity of the CFT1+1.

5 Summary and conclusions

To summarize we have established a holographic entangle-
ment negativity conjecture involving the bulk geometry for
bipartite mixed states of disjoint intervals in a dual CFT1+1

through the AdS3/CFT2 correspondence. In this context
we have utilized the large central charge analysis involving
the monodromy technique for the entanglement negativity of
such mixed states in a holographic CFT1+1. Using the large
central charge result we have established a holographic con-
struction for the entanglement negativity of the above mixed
state configurations, which involves a specific algebraic sum
of the lengths of bulk space like geodesics anchored on appro-
priate intervals. Interestingly the holographic entanglement
negativity reduces to an algebraic sum of the holographic

mutual informations relevant to a certain combination of the
intervals confirming other similar results in the literature.

Application of our conjecture exactly reproduces the
entanglement negativity for bipartite mixed states of disjoint
intervals in proximity for a holographic CFT1+1 obtained
through the replica technique, in the large central charge limit
and serves as a strong consistency check. In this context we
have computed the holographic entanglement negativity for
such bipartite mixed states in a CFT1+1 for various scenar-
ios. These involve the zero temperature mixed state of disjoint
intervals in proximity for both infinite and finite size systems
described by a holographicCFT1+1. The corresponding bulk
dual configurations are described by the pure AdS3 geometry
in the Poincaré and global coordinates respectively. Further-
more we have extended our analysis to obtain the holographic
entanglement negativity for the corresponding finite temper-
ature mixed state of such disjoint intervals in a CFT1+1 dual
to a bulk Euclidean BTZ black hole (black string). Interest-
ingly in each of the scenarios described above we have been
able to exactly reproduce the corresponding results for adja-
cent intervals in a CFT1+1 through the adjacent limit which
provides further consistency check for our construction.

We would like to mention here that although our holo-
graphic entanglement negativity conjecture has been sub-
stantiated through applications to specific examples of zero
and finite temperature mixed states under consideration, a
bulk proof for our conjecture along the lines of [28] is
a non trivial open issue that needs attention. Furthermore
our analysis suggests a higher dimensional generalization
of the holographic entanglement negativity conjecture for
such mixed states of disjoint intervals in proximity through
the AdSd+1/CFTd framework. Such an extension would
involve a similar algebraic sum of bulk codimension two
static minimal surfaces anchored on appropriate subsystems
to describe the holographic entanglement negativity for such
mixed states under consideration. Naturally such a higher
dimensional generalization needs to be substantiated through
consistency checks involving applications to specific exam-
ples and also a bulk proof along the lines of [29]. Our holo-
graphic entanglement negativity conjecture is expected to
provide interesting insights into diverse physical phenom-
ena such as topological phases, quantum phase transitions,
strongly coupled theories in condensed matter physics and
critical issues in quantum gravity, which involve such mixed
state entanglement. These constitute fascinating open issues
for future investigations.
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