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Abstract: We examine the fermionic response in a holographic model of a low tempera-

ture striped phase, working for concreteness with the setup we studied in [1, 2], in which

a U(1) symmetry and translational invariance are broken spontaneously at the same time.

We include an ionic lattice that breaks translational symmetry explicitly in the UV of the

theory. Thus, this construction realizes spontaneous crystallization on top of a background

lattice. We solve the Dirac equation for a probe fermion in the associated background

geometry using numerical techniques, and explore the interplay between spontaneous and

explicit breaking of translations. We note that in our model the breaking of the U(1) sym-

metry doesn’t play a role in the analysis of the fermionic spectral function. We investigate

under which conditions a Fermi surface can form and focus in particular on how the ionic

lattice affects its structure. When the ionic lattice becomes sufficiently strong the spec-

tral weight peaks broaden, denoting a gradual disappearance of the Fermi surface along

the symmetry breaking direction. This phenomenon occurs even in the absence of spon-

taneously generated stripes. The resulting Fermi surface appears to consist of detached

segments reminiscent of Fermi arcs.

Keywords: Holography and condensed matter physics (AdS/CMT), Gauge-gravity cor-

respondence, Spontaneous Symmetry Breaking

ArXiv ePrint: 1807.11730

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP12(2018)080

mailto:cremonini@lehigh.edu
mailto:lil416@lehigh.edu
mailto:jie.ren@mail.huji.ac.il
https://arxiv.org/abs/1807.11730
https://doi.org/10.1007/JHEP12(2018)080


J
H
E
P
1
2
(
2
0
1
8
)
0
8
0

Contents

1 Introduction 1

2 Gravity setup 3

3 The striped solutions 4

4 The Dirac equation and spectral function 7

5 Numerical results 11

5.1 Case (i): PDW without ionic lattice 12

5.1.1 Charge dependence of the momentum distribution 12

5.1.2 Fermi surface and band gap 12

5.2 Case (ii): PDW with ionic lattice 15

5.2.1 Charge dependence of the momentum distribution 15

5.2.2 Fermi surface, band gap and gradual disappearance 16

5.3 Case (iii): fermionic spectral function with only an ionic lattice 19

6 Conclusions 22

A Energy distribution of the spectral density 25

A.1 Case (i): PDW without ionic lattice 25

A.2 Case (ii): PDW with ionic lattice 26

B Details of numerical analysis 27

1 Introduction

Holographic methods provide a theoretical laboratory for probing exotic phases of matter

that lie outside the paradigm of Laundau’s Fermi liquid theory. Within this program, in re-

cent years we have seen many studies of fermionic response in strongly interacting systems,

using the techniques of holography (see [3–8] for pioneering works and e.g. [9] for a review).

In particular, holographic spectral functions can be compared with measurements of Angle-

Resolved Photoemission Spectroscopy (ARPES) or Scanning Tunneling Microscopy (STM)

experiments, thus potentially providing a crucial test for the applications of holography to

real materials. The majority of these studies thus far has focused on homogeneous cases

which respect translational invariance — they involve gravitational constructions whose

bulk metrics depend only on the holographic radial direction. However, real materials such

as the copper oxides exhibiting high temperature superconductivity [10] are characterized

by very strong lattice potentials which break translational symmetry.

– 1 –



J
H
E
P
1
2
(
2
0
1
8
)
0
8
0

The scarcity of holographic analyses of fermionic spectral functions in the presence of

lattices can be traced to the difficulties that arise when examining the associated systems

of non-linear partial differential equations. Studies of homogeneous holographic lattices,

which simulate the effects of translational symmetry breaking while retaining the homo-

geneity of the spacetime geometry [11–13], have proven successful at obtaining finite con-

ductivities in holographic models of metallic phases, by reproducing the expected Drude

physics. Nevertheless, as demonstrated by the authors of [14], to describe holographi-

cally lattices relevant for condensed matter applications, one needs to consider periodic

lattices rather than homogeneous ones. The first such study appeared in [15], where a

lattice structure was encoded through a perturbatively small periodic modulation of the

chemical potential, neglecting the backreaction on the metric. This analysis, performed in

a weak potential limit, was then generalized to the fully backreacted case in [16], where

the periodic gravitational backgrounds were constructed numerically. Certain interesting

characteristics were identified, such as an anisotropic Fermi surface and the appearance of

a band gap at the Brillouin zone boundary. However, these analyses only focus on cases in

which the lattice periodicity is put in by hand and is irrelevant in the infrared.

The purpose of this paper is to investigate the fermionic response in a quantum phase

of matter in which a U(1) symmetry and translational invariance are broken spontaneously

and at the same time, resulting in a concrete realization of interwined orders. In particular,

we work within a holographic bottom-up model [1, 2] of a striped superconductor which

realizes certain key features of pair density wave (PDW) order, and more generically of

phases in which charge density wave (CDW) and superconducting (SC) orders co-exist.

Compelling experimental evidence of a PDW has accumulated in cuprate superconduc-

tors [17–19], and there is also computational evidence suggesting that it might be a robust

feature of strongly correlated electron systems [20]. For condensed matter models that have

been proposed to describe the properties of such novel strongly coupled phases we refer

the reader to e.g. [21–24]. With an available holographic model for PDWs, it is valuable

to investigate the structure of the associated fermionic spectral function, and in particular

examine under what conditions a Fermi surface will form, whether it will exhibit a gap

and what controls its properties. However, while we are building on our previous work on

PDW order, we stress that our focus in this paper is on the effects of broken translational

symmetry on the Fermi surface properties, and not on the interaction between the fermion

and the superconducting condensate. We comment on ways to examine such interactions

in the Conclusions, and leave a detailed analysis to future work.

In particular, we will explore the fermionic spectral function by solving numerically

the Dirac equation (4.1) in a low temperature PDW phase, in two different cases. We will

work first in a pure PDW phase in which a U(1) symmetry and translational invariance

are both broken spontaneously by the same underlying mechanism. We will then add an

ionic lattice which breaks translations explicitly in the UV of the theory, so that the final

construction realizes spontaneous crystallization in the presence of a background lattice.

As we will see, the formation of the Fermi surface will require a sufficiently large value

of the fermionic charge, as already known from the literature. A more interesting feature

involves the shape and structure of the Fermi surface (including the presence and size of

– 2 –



J
H
E
P
1
2
(
2
0
1
8
)
0
8
0

a gap1), which will be highly sensitive to the strength of broken translational invariance.

Intriguingly, we will find a gradual disappearance of the Fermi surface as the strength of

the lattice becomes too large, as discussed in detail in section 5. We expect the Fermi

surface features we identify to be widely applicable to striped superconducting phases as

well as other spatially modulated or striped phases, and not just to the physics of a PDW.

We will present further evidence by considering a model with only an ionic lattice.

The structure of the paper is the following. The holographic model we will work with

is introduced in section 2, and its gravitational solutions are included in section 3. The

Dirac equation and spectral function are discussed in section 4, and the numerical analysis

is presented in section 5. We conclude in section 6 with a summary of results and future

directions. The analysis of the energy distribution of the spectral function is relegated to

appendix A and further details of the numerical analysis to appendix B.

2 Gravity setup

The holographic model we work with involves two real scalar fields χ and θ coupled to two

abelian vector fields Aµ and Bµ,

S =
1

2κ2N

∫

d4x
√
−g

[

R+
6

L2
+ Lm

]

,

Lm = −1

2
∂µχ∂

µχ− ZA(χ)

4
FµνF

µν − ZB(χ)

4
F̃µνF̃

µν − ZAB(χ)

2
FµνF̃

µν

−K(χ)(∂µθ − qAAµ − qBBµ)
2 − V (χ) , (2.1)

with Fµν = ∂µAν − ∂νAµ and F̃µν = ∂µBν − ∂νBµ their respective field strengths. This

model was studied first in [1, 2] to realize the idea of intertwined orders in holography,

through the spontaneous breaking of both translational invariance and a U(1) symmetry

at the same time. The scalar χ generically couples to both vectors.2 Depending on the

choice of parameters qA and qB, the bulk theory can describe different striped quantum

phases. As shown in detail in [1, 2], the case with qB = 0 and qA 6= 0 enables us to mimic

certain features of PDW order, while the case with qB 6= 0 and qA 6= 0 corresponds to a

state with coexisting superconducting and CDW orders, in which the scalar condensate

has a uniform component. A pure CDW state without U(1) symmetry breaking can be

obtained by setting qA = qB = 0 and consistently truncating θ [29, 30].

In the present paper we would like to investigate the fermionic response associated

with these spatially modulated phases, and possibly identify any generic signature they

may possess. To this end we consider the bulk action for a probe Dirac fermion ζ with

charge q and mass m,

SD = i

∫

d4x
√
−g ζ

(

/D −m
)

ζ , (2.2)

1We stress that this is not a superconducting gap, but due to the broken translational invariance and

the periodic modulation of the background.
2This model falls within the generalized class of holographic superconductors via Stükelberg term (known

as “Josephson action” in the condensed matter literature), see e.g. [25–28].
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with /D = Γaeµa (∂µ + 1
4(ωab)µΓ

ab − iqAµ) and ζ̄ = ζ†Γt. Here (a, b) denote the tangent

indices, Γa are gamma matrices with Γbc = 1
2 [Γ

b,Γc], and eµa is the vielbein with (ωab)µ =

eaν∇µe
ν
b the associated spin connection. The correlation function for the fermionic operator

of the strongly coupled dual field theory is then obtained by solving the bulk Dirac equation.

3 The striped solutions

In this section we construct the non-linear solutions corresponding to the spatially modu-

lated black branes. We take the couplings in (2.1) to be given by

ZA(χ) = 1 + 2χ2, ZB(χ) = 1, ZAB(χ) = −2.34χ , (3.1)

V (χ) = − 1

L2
χ2, K(χ) =

1

2
χ2 ,

so that the scalar operator dual to χ has dimension ∆ = 2. As shown in our previous

work [1, 2], striped order will develop spontaneously below a certain critical temperature,

with an intrinsic wavelength k which depends on the details of the theory. As a typical

example, throughout we are going to focus on the k/µ = 1 branch, with the corresponding

critical temperature being Tc/µ = 0.016.3 We will work in the grand canonical ensemble

by fixing the chemical potential and typically setting it to µ = 1.

We focus on the uni-directional striped solutions and employ the DeTurck trick [31]

to solve the resulting system. To implement the DeTurck method, one needs to choose a

reference metric, for which we use the AdS Reissner-Nordström (AdS-RN) black brane

ds2 =
r2h

L2(1− z2)2

[

−F (z)dt2 +
4z2L4

r2hF (z)
dz2 + (dx2 + dy2)

]

,

F (z) = z2
[

2− z2 + (1− z2)2 − L2µ2

4r2h
(1− z2)3

]

, At = µ z2 .

(3.2)

Note that we are working in the coordinate system4 in which the horizon is located at

z = 0 and the AdS boundary at z = 1. Here rh is a free parameter that determines the

black hole temperature

T =
rh
4π

[

3

L2
− µ2

4r2h

]

. (3.3)

We adopt the following ansatz for the striped black brane,

ds2 =
r2h

L2(1− z2)2

[

− F (z)Qtt dt
2 +

4z2L4Qzz

r2hF (z)
dz2

+Qxx(dx− 2z(1− z2)2Qxzdz)
2 +Qyy dy

2

]

,

χ = (1− z2)φ , At = µ z2α, Bt = z2β , (3.4)

3We point out that this branch may not be thermodynamically preferred, but this does not affect our

discussion on the fermionic spectral function.
4One can switch to the standard holographic coordinate used in the literature via z2 = 1 − rh/r (see,

for example, the AdS-RN metric in eq. (2.9) of our previous paper [2]). In the more standard coordinate r,

the IR regularity condition requires all functions to have an analytic expansion in powers of (r− rh), which

corresponds to the z2 expansion in our present coordinate. As we will see, the z coordinate is convenient

for solving the striped geometry numerically.
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where the eight functions (φ, α, β,Qtt, Qzz, Qxx, Qyy, Qxz) depend on z and the spatial

coordinate x along which translational symmetry will be broken. One recovers the AdS-

RN solution (3.2) by choosing their background values to be φ = β = Qxz = 0, α = Qtt =

Qzz = Qxx = Qyy = 1.

This ansatz results in a system of equations of motion involving eight PDEs in the

variables z and x. Here we discuss only briefly the numerical procedure we used, but we

refer the reader to [2] for further details. We adopt the pseudo-spectral collocation ap-

proximation to convert the PDEs into non-linear algebraic equations, by adopting Fourier

discretization in the x direction and Chebyshev polynomials in the z direction. The re-

sulting system is then solved using a Newton-Raphson method with appropriate boundary

conditions.

Since we seek solutions with a regular horizon at z = 0, we require all functions to

depend on z2 smoothly. Therefore, one can impose Neumann boundary conditions of the

type ∂zφ(0, x) = 0, and similarly for the remaining components at the horizon. There is

an additional Dirichlet boundary condition Qtt(0, x) = Qzz(0, x), which ensures that the

temperature of the black brane (3.4) is the same as (3.3).

On the other hand, the UV boundary conditions are slightly more involved. For the

pure PDW phase in the absence of a background lattice, both the U(1) symmetry and

the spatially translational invariance are broken spontaneously. To ensure spontaneous

symmetry breaking we take all sources to vanish, and in addition fix the metric to be

asymptotically AdS at the UV boundary z = 1,

φ(1, x) = β(1, x) = Qxz(1, x) = 0 ,

Qtt(1, x) = Qzz(1, x) = Qxx(1, x) = Qyy(1, x) = α(1, x) = 1 .
(3.5)

Clearly, it is also of interest to study spontaneous holographic crystallization in the

presence of a background lattice. A simple way to do so is to introduce an ionic lattice which

breaks the translational symmetry explicitly. In this case we expect the Goldstone mode

due to the spontaneously broken translational invariance to acquire a mass and become

pinned. The ionic potential can be introduced by imposing a spatially varying boundary

condition for the chemical potential,

µ(x) = At(1, x) = µ[1 + a0 cos(p x)] , (3.6)

i.e. a uni-directional single harmonic potential with wavevector p and relative amplitude

a0. We emphasize that we are working with a system that has two wavevectors — the

intrinsic scale k (associated with the spontaneous breaking of translations) and the lattice

scale p put in by hand (associated with explicit symmetry breaking). One anticipates that

when these two scales are sufficiently close together there will be a “commensurate lock-in”

of the spontaneous crystal, resulting in additional stability [32, 33]. In the present study

we focus on the case with p = 2k. Here k is the intrinsic wavelength associated with

the spontaneous modulations in the absence of a lattice, and the factor of 2 is introduced

to match the period of the charge density oscillations.5 The fact that the two periods

5Note that, as shown in our previous work [1, 2], the condensate of the scalar in the PDW phase induces

a sub-leading modulation of the charge density with a frequency 2k.

– 5 –
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Figure 1. Background configurations for the gauge field α and metric fields Qtt, Qzz, Qxx at

T = 0.01426 and k = 1, for the PDW phase without ionic lattice. The horizon is located at z = 0

and the AdS boundary at z = 1. We have set L = 1/2.

coincide means that the ionic lattice is commensurate with the charge density wave in the

PDW phase.

Profiles for the bulk fields corresponding to the pure PDW phase are shown in figure 1.

Notice that since we have not turned on any source, all bulk configurations are homogeneous

at the UV boundary z = 1. It is clear that the spatial modulations are imprinted near the

horizon at z = 0, and decrease in overall magnitude as the AdS boundary is approached.

This is due to the fact that in our theory the striped feature is a relevant deformation of

the UV field theory and is strongest in the IR.

Representative profiles for the bulk fields in the presence of the ionic lattice are shown

in figure 2. This case corresponds to the holographic crystallization in the presence of an

external periodic potential, as clearly visible from the profile of the gauge field α at the

UV boundary z = 1. The bulk modulations are due to the following two mechanisms. One

is the spontaneous translational symmetry breaking which is a relevant deformation of the

UV field theory, and the other is the explicit UV lattice which is instead an irrelevant

deformation. As a consequence, the strength of the striped oscillations, clearly visible from

the metric fields of figure 2, shows a non-monotonic behavior along the radial direction,

encoding a more complicated RG flow from the UV to the IR.

– 6 –
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Figure 2. Background configurations for the gauge field α and metric fields Qtt, Qzz, Qxx at

T = 0.01426 and k = 1, for the PDW phase with the ionic lattice µ(x) = 1 + 0.5 cos(2x). The

horizon is located at z = 0 while the AdS boundary at z = 1. We have set L = 1/2.

4 The Dirac equation and spectral function

We are now ready to discuss the Dirac equation that is used to compute the retarded

Green’s function for the fermionic operator of the strongly coupled field theory. The bulk

Dirac equation obtained from (2.2) reads

[

Γa eµa (∂µ +
1

4
(ωab)µΓ

ab − iqAµ)−m

]

ζ = 0 . (4.1)

The vielbein and gamma matrices can be chosen in many different ways. Note that for

the background geometry (3.4) the horizon is located at z = 0, while the AdS boundary at

z = 1. We use the following vielbein,

et =
L

rh

(1− z2)
√

F (z)Qtt(z, x)

∂

∂t
,

ex =
L

rh

(1− z2)
√

Qxx(z, x)

∂

∂x
, ey =

L

rh

(1− z2)
√

Qyy(z, x)

∂

∂y
,

ez =
(1− z2)3Qxz(x, z)

L

√

F (z)

Qzz(z, x)

∂

∂x
+

(1− z2)

2Lz

√

F (z)

Qzz(z, x)

∂

∂z
,

(4.2)
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and consider a basis of gamma matrixes given by

Γt =

[

iσ1 0

0 iσ1

]

, Γx =

[

−σ2 0

0 σ2

]

,

Γy =

[

0 σ2

σ2 0

]

, Γz =

[

−σ3 0

0 −σ3

]

,

(4.3)

where (σ1, σ2, σ3) are Pauli matrixes. We proceed by a redefinition of ζ via

ζ =

(

L(1− z2)

rh

)3/2

(FQttQxxQyy)
−1/4

[

Ψ1

Ψ2

]

, (4.4)

with each Ψα, α = 1, 2 a two-component spinor. In our striped phase (3.4) all background

configurations are spatially modulated in the x direction, with the periodicity fixed by the

Umklapp wavevector K. In contrast to the homogeneous case, the different momentum

modes are no longer independent, and the Green’s function will therefore have non-zero

value for operators with momenta that differ by a lattice vector. According to the Bloch

theorem, we then adopt the following expansion [15],

Ψα =

∫

dωdkxdky
2π

∑

n=0,±1,±2,···

F (n)
α (z, ω, kx, ky)e

−iωt+i(kx+nK)x+ikyy . (4.5)

Here kx ∈ [−K
2 ,

K
2 ] and n characterizes the momentum level or Brillouin zone. The Bloch

expansion (4.5) can also be written as

Ψα =

∫

dωdkxdky
2π

Fα(z, x, ω, ky)e
−iωt+ikxx+ikyy , (4.6)

where

Fα(z, x, ω, ky) =
∑

n=0,±1,±2,···

F (n)
α (z, ω, kx, ky)e

inKx , (4.7)

is a periodic function of x with periodicity 2π/K, i.e., Fα(z, x, ω, ky) = Fα(z, x+
2π
K , ω, ky).

For further convenience, we decompose Fα in the following way6

Fα(z, x) =

[

Aα(z, x)

Bα(z, x)

]

, α = 1, 2 . (4.8)

The Dirac equation (4.1) can then be expressed as

(

∂z + 2z(1− z2)2Qxz∂x +Π1 ±
2mLz

1− z2

√

Qzz

F

)[

A1

B1

]

∓ Π2

[

B1

A1

]

(4.9)

−i
2L2z

rh

√

Qzz

FQxx
(∂x +Π3)

[

B1

A1

]

−2L2z

rh

√

Qzz

FQyy
ky

[

B2

A2

]

= 0,

6For the sake of brevity, we will drop the parameters (ω, kx, ky) in most expressions from now on.
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(

∂z + 2z(1− z2)2Qxz∂x +Π1 ±
2mLz

1− z2

√

Qzz

F

)[

A2

B2

]

∓ Π2

[

B2

A2

]

(4.10)

+i
2L2z

rh

√

Qzz

FQxx
(∂x +Π3)

[

B2

A2

]

−2L2z

rh

√

Qzz

FQyy
ky

[

B1

A1

]

= 0,

where

Π1 = z(1− z2)2[2i kxQxz(z, x) + ∂xQxz(z, x)] ,

Π2 =
2L2z

rhF (z)

√

Qzz(z, x)

Qtt(z, x)
[ω + qµz2 α(z, x)] ,

Π3 = i kx −
∂xQxx(z, x)

4Qxx(z, x)
+

∂xQzz(z, x)

4Qzz(z, x)
.

(4.11)

The equations of motion for the momentum modes

F (n)
α (z, ω, kx, ky) =

[

A(n)
α (z, ω, kx, ky)

B(n)
α (z, ω, kx, ky)

]

, α = 1, 2 ,

Aα =
∑

n=0,±1,±2

A(n)
α einKx, Bα =

∑

n=0,±1,±2

B(n)
α einKx,

(4.12)

can be easily obtained after substituting (4.12) into (4.9) and (4.10).

With the background geometry (3.4), we find that the IR expansion near z = 0 is of

the form
[

Aα(z, x)

Bα(z, x)

]

= z±
iω

2πT

([

a0α(x)

b0
α(x)

]

+

[

a1α(x)

b1
α(x)

]

z +

[

a2α(x)

b2
α(x)

]

z2 + · · ·
)

, (4.13)

with the minus sign choice corresponding to in-falling boundary conditions as required

for the holographic computation of the retarded Green’s function of the boundary theory.

Note that the second term in parentheses is required by the nature of the singular points

of the Dirac equations (4.9) and (4.10). This is quite different from the IR expansion

used to solve for the background functions (3.4), where only even powers are needed in

order to have a smooth horizon. Indeed, an expansion containing only even powers in

the spinor functions (Aα,Bα) would result in an inconsistency, and thus has no solution.

Two important relations for the expansion coefficients are obtained by substituting (4.13)

into (4.9) and (4.10),

b0
α(x) = −ia0α(x), b1

α(x) = ia1α(x) , (4.14)

which are used as the IR boundary condition when solving the Dirac equations numerically.

In practice, we find that the second relation is important to avoid a badly conditioned

matrix which could result in significant numerical errors.

On the other hand, near the AdS boundary z = 1 the two Dirac equations (4.9)

and (4.10) reduce to

∂z

[

Aα(z, x)

Bα(z, x)

]

± mL

1− z

[

Aα(z, x)

Bα(z, x)

]

= 0 , (4.15)

– 9 –



J
H
E
P
1
2
(
2
0
1
8
)
0
8
0

and equivalently

∂z

[

A(n)
α (z)

B(n)
α (z)

]

± mL

1− z

[

A(n)
α (z)

B(n)
α (z)

]

= 0 . (4.16)

We then obtain the following asymptotic expansion near the AdS boundary,

Fα =

[

Aα(z, x)

Bα(z, x)

]

= aα(x)(1− z)+mL

[

1

0

]

+ bα(x)(1− z)−mL

[

0

1

]

+ · · · , (4.17)

and in terms of the momentum level

F (n)
α =

[

A(n)
α

B(n)
α

]

= a(n)α (1− z)+mL

[

1

0

]

+ b(n)α (1− z)−mL

[

0

1

]

+ · · · . (4.18)

with (a
(n)
α , b

(n)
α ) constants for a given (ω, kx, ky). Finally, the retarded Green’s function can

be extracted by the following relation [15, 16]7

a(n)α (ω, kx, ky) =
∑

α′,n′

GR
α,n;α′,n′(ω, kx, ky) b

(n′)
α′ (ω, kx, ky) . (4.19)

Note that in the spatially modulated case with periodic structure, the Green’s func-

tion is characterized by two Bloch indices (n, n′), indicating contributions from different

momentum levels or Brillouin zones. Recall that in ARPES experiments the photoelectron

propagates in the Galilean continuum and has a definite momentum. Thus, we consider

the Green’s function in the momentum-basis. In the previous holographic studies [15, 16]

it was assumed that the main features of the spectral function are captured by the diagonal

components of the retarded Green’s function (although this now contains a mixing with

other momentum modes). We have checked explicitly that the non-diagonal components

are indeed quite small when the spatial modulation is weak. However, as the strength of

the spatial modulation is increased, the non-diagonal components also increase.8 This is

reasonable since the non-diagonal components capture the interband interaction which is

expected to be strong with a large spatially modulated potential. Thus, there is a valid

concern that by working only with the diagonal components of the Green’s function one is

neglecting the interaction between different Brillouin zones. Formally, we could diagonalize

the system into a new basis of modes. To do so explicitly is quite non-trivial because the

system contains the full range of Bloch indices n = 0,±1,±2, . . .. However, we note that the

trace (the sum of the diagonal components) remains invariant under unitary transforma-

tions (in particular diagonalization) and implicitly contains the effects associated with the

non-diagonal components in the original basis. Therefore, in the present paper we consider

7Notice that as we take m → −m, we simply exchange the role of (a
(n)
α , b

(n)
α ). We can thus restrict

our attention to m > 0, for which b
(n)
α is identified as the source, while a

(n)
α as the response. The fermion

operator in the dual field theory has scaling dimension ∆ = 3
2
+mL.

8We find that at particular values of the momentum some of the off-diagonal components become com-

parable to the diagonal ones.
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the diagonal momentum spectral weight defined in terms of the trace and given by9

A(ω, kx, ky) =
∑

n=0,±1,±2,···

Tr Im[GR
α,n;α′,n(ω, kx, ky)] . (4.20)

Here kx ∈
[

− K
2 ,

K
2

]

and n denotes once again the momentum level or Brillouin zone. Note

that the spectral density (also known as spectral function) A(ω, kx, ky) should be positive

as required by unitarity.

Ideally, we would like to study fermions associated with consistent truncations of UV-

complete theories. However, for lack of a better construction we will content ourselves with

a bottom-up approach in which there is no particularly good reason to choose specific values

of the charge and mass of the bulk fermion. We will take m = 0 and consider different

values of the charge, which corresponds to scanning through different dual boundary field

theories. As we will see in the next section, the behavior of the femionic spectral density

depends significantly on some of the theory parameters. Nevertheless, it is still possible to

identify interesting properties that appear to be generic.

5 Numerical results

The location of the Fermi surface is typically identified as a pole in the spectral density at

zero temperature as ω → 0. Accessing numerically the ground state T = 0 geometry in

our setup is unfortunately very challenging. Thus, we will work instead at finite but low

temperature. Although in this case one can not expect a true Fermi surface singularity

in the spectral density, the presence of the Fermi surface should still be indicated by

a (sufficiently strong) peak in the spectral density. In particular, to judge whether a

holographic Fermi surface exists or not at finite temperature, we will apply the width,

frequency and magnitude criteria introduced in [34].

The width criterion demands that the width of the peak in the spectral density at

ω → 0 should be no greater than an O(1) factor times the temperature. As a consequence,

a peak that is very broad compared to T will not be regarded as evidence of a Fermi surface.

The frequency criterion states instead that if a maximum at ~k = ~k∗ is to be regarded as

a Fermi surface, then the spectral density as a function of ω should show a peak with a

maximum near ω = 0. This is consistent with the presence of a quasi-particle near the

Fermi surface. The last one is a more heuristic criterion: the magnitude of the spectral

density should be “large” at ~k = ~k∗ as ω → 0.

In this section we will study the behavior of the spectral density and identify the

presence of a Fermi surface by applying the criteria stated above. We will examine three

different cases:

• Case (i): the spatial modulations that break translational invariance are generated

spontaneously without any source;

9For fixed n, n′, GR
α,n;α′,n′ is a 2×2 matrix in spin space, and each component of the matrix depends on

the choice of representation (or gamma matrices). Since different representations are related by a unitary

transformation, we consider the trace of the Green’s function, which is invariant under the latter.

– 11 –



J
H
E
P
1
2
(
2
0
1
8
)
0
8
0

• Case (ii): an ionic lattice is introduced explicitly via (3.6) on top of the spontaneously

generated striped background.

• Case (iii): an ionic lattice is added explicitly in the standard Einstein-Maxwell theory

without spontaneously generated stripes.

We shall fix m = 0 for numerical convenience. As can be seen from figures 1 and 2, the

corresponding configurations of the metric components and gauge field α have a period

of π/k along the symmetry broken direction. Since these are background functions that

enter into the bulk Dirac equations (4.9) and (4.10), the Umklapp wavevector K felt by the

probe fermion is K = 2k. We will identify the location of the Fermi surface by searching

for the peaks of A(ω, kx, ky) satisfying the width, frequency and the magnitude criteria and

working at frequencies ω that are very close to zero.

5.1 Case (i): PDW without ionic lattice

We start by discussing properties of the spectral density for the pure PDW phase without

an ionic lattice. In this case the spatial modulations are generated spontaneously and the

geometry is shown in figure 1.

5.1.1 Charge dependence of the momentum distribution

The momentum distribution function (MDF), i.e., the spectral density as a function of

momentum, is plotted in figures 3 and 4 for different values of the charge q of the bulk

fermion. We see that the spectral density develops a peak whose amplitude increases as q is

increased. When q is small, the peaks are very broad compared to T and therefore should

not be regarded as evidence for a Fermi surface, according to the criteria we discussed at

the beginning of this section. On the other hand, when q is sufficiently large the peaks are

very sharp and satisfy all criteria, as can be seen from figure 4 — we conclude that there

is a Fermi surface. In figure 4 we also see that for large q the spectral density tends to

develop a more complicated structure, with the appearance of additional small peaks —

an indication that additional Fermi surfaces will likely form for sufficiently large charge.10

5.1.2 Fermi surface and band gap

Our main interest in this paper is in the formation and structure of the Fermi surface,

including the presence of a possible band gap, in striped superconducting phases. For

concreteness in the rest of the discussion we will focus on q = 2.0, a value for the charge

large enough to support a Fermi surface. The density plot of the corresponding MDF is

shown in figure 5. We emphasize that we compute the spectral density A(ω, kx, ky) in the

first Brillouin zone kx ∈
[

− K
2 ,

K
2

]

, and simply periodically extend the result to the other

Brillouin zones in figure 5. Note that as the strength of the PDW modulation increases,

the shape of the Fermi surface will become more anisotropic.

10An analytic formula for Fermi momenta was found for a specific system [35] as k
(n)
F = q−n−1/2, where

n is a nonnegative integer. It clearly shows the absence of Fermi surface for small q and the appearance of

multiple Fermi surfaces for large q. This is qualitatively in agreement with the AdS-RN black hole [36].
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Figure 3. Top: momentum distribution of the spectral density (MDF) as a function of ky for fixed

kx = 0 and varying values of q. Bottom: the 3D plots of the spectral density in momentum space

(kx, ky) for q = 0.8 and q = 1. We choose ω = 10−6 and work with the background geometry shown

in figure 1.
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Figure 4. MDF spectral density as a function of ky for q = 2.0 (left) and q = 2.5 (right). We

have fixed kx = 0 and ω = 10−6. In each plot there is a very sharp spectral weight indicative of

a Fermi surface. Note that the vertical axis is logarithmic, causing the peak to have a spike-like

appearance.

It is well known that, for degenerate eigenvalues at the Brillouin boundary, a band

gap opens up due to eigenvalue repulsion. Therefore, when the Fermi surface intersects

the first Brillouin zone at kx = ±1, one anticipates to see a similar gap structure in

– 13 –



J
H
E
P
1
2
(
2
0
1
8
)
0
8
0

Figure 5. The density plot of the MDF in the (kx, ky) plane for q = 2 and ω = 10−6. The

brightest points correspond to the location of the Fermi surface. We have used a logarithmic scale

and periodically extended the data from the first Brillouin zone to the other ones. The first Brillouin

zone boundary is denoted by the vertical dashed lines at kx = ±1, and the background geometry

has T = 0.01426 and k = 1.

0 .7 6 0 .7 7 0 .7 8 0 .7 9 0 .8 0 0 .8 1 0 .8 2 0 .8 3

0

5 0 0

1 0 0 0

1 5 0 0

ky

A

Figure 6. The spectral density A as a function of ky at the first Brillouin zone boundary kx = 1

for q = 2, ω = 10−6. There are two pronounced peaks near ky = 0.79 indicative of two separate

Fermi surface branches. The background geometry is that of figure 1 with T = 0.01426 and k = 1.

the behavior of the spectral density, due to the broken translational invariance and the

periodic modulation of the background. Indeed, once we zoom in near the Fermi surface

at the Brillouin boundary and inspect the spectral density, shown in figure 6, we find

two sharp peaks. These indicate two Fermi surface branches in figure 5, an inner and an

outer one, with a gap between them which is minimal at the Brillouin zone boundary. In

addition to the sharp peaks, in figure 5 we also see a small circle of broad peaks, which

however fail to satisfy the criteria we discussed above and thus should not be identified

with Fermi surfaces. We anticipate from the behavior seen in figure 4 that such bumps

will become sharp as q is increased, and develop into additional Fermi surfaces when q is

sufficiently large.
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Figure 7. Evolution of the band gap with temperature for the pure PDW case. We show the

spectral density as a function of ky at the Brillouin boundary for fixed ω = 10−6. From left to

right, the four curves correspond to temperatures T/Tc = 1, 0.94, 0.86, and 0.72.

Recall that in our construction the spatially modulated background is generated spon-

taneously below the critical temperature Tc = 0.016. A natural question to ask, then, is

what happens to the gap as the temperature decreases. In particular, since the ampli-

tude of the modulation increases as the temperature is lowered, we expect that the gap

should develop at Tc and become large at low temperatures. To verify this, we examine the

temperature dependence of the band gap in figure 7. Just as expected, at Tc the spectral

density has only one peak. Below Tc the peak begins to split into two and the separation

between them grows up as T is decreased, confirming our intuition.

For a discussion of the energy distribution of the spectral density we refer the reader

to appendix A.

5.2 Case (ii): PDW with ionic lattice

Next, we consider the case in which a periodic background potential breaks translational

invariance explicitly. To do so, we introduce an ionic lattice through a spatially modulated

chemical potential (3.6) in the field theory (see figure 2 for representative bulk profiles).

We are particularly interested in highlighting the features that differ from those of the pure

PDW case. The issue of how strong lattice potentials influence the fermion spectral func-

tions within the framework of holography is still an open question. Moreover, it provides

a crucial test of the applications of holographic techniques to condensed matter materials.

Below we will show the behavior of the spectral function as the strength of the translational

symmetry breaking potential is increased, and identify interesting features.

5.2.1 Charge dependence of the momentum distribution

The spectral density A as a function of ky is presented in figure 8 for different values of the

charge q of the bulk fermion. The behavior is similar to that of the pure PDW phase. For

each charge, the spectral density develops a peak at a certain value of ky, whose amplitude

increases as q is increased. Once again, there are Fermi surfaces when q is sufficiently large.

Note that compared to the pure PDW case, the amplitude of the spectral density along the

– 15 –



J
H
E
P
1
2
(
2
0
1
8
)
0
8
0

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0

0

5 0

1 0 0

1 5 0

ky

A

q=0 .8

q=1 .0

q=1 .2

q=1 .4

q=1 .5

0 .0 0 .5 1 .0 1 .5 2 .0 2 .5

1 0-5

0 .0 0 1

0 .1

1 0

1 0 0 0

ky

A

q=2 .0

0 .0 0 .5 1 .0 1 .5 2 .0 2 .5

1 0-4

0 .0 1

1

1 0 0

1 0 4

ky

A

q=2 .5

Figure 8. The MDF as a function of ky at (kx = 0, ω = 10−6) for different values of the charge q

of the fermion. Note that in the last two plots the vertical axis is logarithmic, and there is a very

sharp peak indicative of a Fermi surface. The background geometry is the same as in figure 2 with

the ionic lattice amplitude a0 = 0.5 and the wavenumber p = 2.

ky axis is enhanced after turning on the ionic lattice. Thus, the explicit breaking seems to

slightly facilitate the formation of a Fermi surface.

5.2.2 Fermi surface, band gap and gradual disappearance

The sharpest difference between the pure PDW phase and the case with an explicit lattice

comes into play when we examine the behavior of the Fermi surface as the strength of the

ionic lattice is varied. As we will see below, the band gap grows with the amplitude of the

lattice. Moreover, increasing the strength of the latter also causes a gradual disappearance

of the Fermi surface along the symmetry breaking direction, eventually leading to the

formation of small disconnected Fermi surface segments. These features are quite distinct

from the pure PDW case without explicit sources of symmetry breaking. However, this

difference may simply be due to the fact that the magnitude of the PDW modulations

is significantly smaller than that of the UV lattice, at the temperatures we work with.

Repeating the analysis at much lower temperatures would clarify the origin of this effect,

and in particular whether it is generically associated with broken translational invariance,

independently of whether it is spontaneous or explicit.

The density plot of the MDF is shown in figure 9 for the PDW phase in the presence

of an ionic lattice. We see that once again the Fermi surface consists of two branches, as in
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Figure 9. The density plot of A in the (kx, ky) plane after turning on the ionic lattice for fixed

ω = 10−6, q = 2. The brightest points correspond to the location of the Fermi surface. We have

adopted a logarithmic scale and periodically extended the data from the first Brillouin zone to the

other zones. This case corresponds to the PDW phase shown in figure 2 with T = 0.01426, a0 = 0.5,

p = 2. Note that the vertical axis is logarithmic. The first Brillouin zone boundary is indicated by

two vertical dashed lines located at kx = ±1.
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Figure 10. The band gap with respect to the amplitude of the ionic lattice. The larger the lattice

potential, the larger the gap that is observed. We choose ω = 10−6, q = 2 as well as the background

geometry with T = 0.01426, p = 2. Note that the spike-like appearance of the peaks is due to the

logarithmic scale.

the case without explicit symmetry breaking. Compared to figure 5, we find a much more

pronounced band gap at the Brillouin zone boundary.

In particular, the size of the band gap as a function of the amplitude of the ionic lattice

is shown in figure 10. Another feature one can see in figure 10 is that the peak associated

with the outer Fermi surface is enhanced, while the inner one is slightly reduced — we

don’t know whether this is a generic effect or if it is model dependent.

Moreover, as we examine carefully the density plot in figure 9 along the horizontal

axis, we find that the inner Fermi surface seems to be partially dissolved, i.e. the peak of

the MDF becomes smooth and broad. To make this effect more visible, in figure 11 we
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Figure 11. The MDF along the kx-axis (when ky = 0) for different values of the amplitude of the

ionic lattice for fixed ω = 10−6, q = 2 and T = 0.01426. The case with a0 = 0.5 is denoted by a

thick blue curve. The first Brillouin zone boundary is at kx = 1. This shows that the inner Fermi

surface dissolves as the strength of the ionic lattice increases.

show the behavior of the MDF along the symmetry breaking direction (i.e. as a function of

kx) as the amplitude of the ionic lattice becomes larger (we set ky = 0). It is clear that the

peak of the spectral weight becomes weaker and broader as the strength of the lattice is

increased. Therefore, for sufficiently large lattice amplitude we find that the inner Fermi

surface is no longer closed, but rather appears to consist of detached segments, a behavior

which is reminiscent of Fermi arcs [37–39].

Intriguingly, figure 11 clearly shows that the peak of the “inner Fermi surface” gets

broad at the same time as it merges with the broad feature due to the secondary Fermi

surface.11 Thus, this raises the question of whether the broadening effect that leads to

the gradual disappearance of the Fermi surface is tied generically to the existence of a

secondary surface and the merging of the two peaks. To examine this point further and

check the relevance of the secondary Fermi surface on the “Fermi arc” effect, we push the

leading and the secondary Fermi surfaces apart by choosing a smaller value of q. The case

with q = 1.9 is presented in figure 12, where it is clear that the two peaks are separated

by a larger distance. Once again we find that the Fermi surface gradually disappears as

the strength of the ionic lattice is increased. Meanwhile, the two peaks associated with the

Fermi surface and the secondary surface move towards each other. However, compared to

the case with q = 2.0 a much stronger lattice is needed to merge them. Moreover, we note

that in the example studied in subsection 5.3 the disappearance of the Fermi surface does

not appear to be tied to the merging of the peaks (see figure 14). Thus, from the charge

dependence seen in figures 11 and 12 and more importantly from the behavior in figure 14

we are led to conclude that this merging phenomenon is not generically responsible for the

Fermi arc effect. Further work is needed to fully clarify the relevance of this phenomenon

and to reach a more detailed understanding of the role of the secondary peak.

In contrast to what happens to the MDF along the symmetry breaking direction kx,

the behavior along ky is not affected by the explicit lattice, and the outer Fermi surface is

11The broader central peak would eventually develop into a Fermi surface if the charge of the fermion

was increased sufficiently. However, at this particular fixed charge it is not a Fermi surface.
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Figure 12. The MDF along the kx-axis for different values of the amplitude of the ionic lattice for

q = 1.9. The first Brillouin zone boundary is at kx = 1. The inner Fermi surface dissolves as the

strength of the ionic lattice increases.
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Figure 13. The MDF along the ky-axis for varying values of the amplitude of the ionic lattice for

fixed ω = 10−6, q = 2 and T = 0.01426. The case with a0 = 0.5 is denoted by a thick blue curve.

The first Brillouin zone boundary is at kx = 1.

still present as the amplitude of the ionic lattice is increased. As shown in figure 13, the

spectral weight along ky (the direction which respects translational invariance) is enhanced

for large lattice amplitudes.

One might wonder whether it is the interplay between the PDW and the ionic lat-

tice that gives rise to the “Fermi arcs.” To check whether this is true, we turn next to a

special case of our theory which describes an explicit ionic lattice but without any sponta-

neous symmetry breaking (no PDW). As we will see, even in that case we find a gradual

disappearance of the Fermi surface as the strength of the lattice increases.

5.3 Case (iii): fermionic spectral function with only an ionic lattice

As we have shown above, when only spontaneous order is considered (the pure PDW case)

at the temperatures we have studied the resulting Fermi surface does not display any

“Fermi arcs”. On the other hand, when one includes the ionic lattice in the UV and takes

its amplitude to be large enough, the spectral function along the symmetry broken direction

is suppressed, leading to the appearance of “Fermi arcs” (see figure 9). We can draw three

possible conclusions from these two examples. The first one is that the spontaneous PDW
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order plays no role in this process, and that the ionic lattice is entirely responsible for the

destruction of the Fermi surface. The second explanation is that the “Fermi arcs” are in

fact strictly due to the interplay between both PDW and ionic lattices, and would not occur

if we only had an explicit source of symmetry breaking. Finally, it is also possible that

both spontaneous and explicit breaking of translations play a role, but at the temperatures

we have studied the role of the spontaneously generated modulation is simply not visible.

In this subsection we rule out the second possibility and show that the Fermi arc

phenomenon seems to be a generic signature of strong (explicit) translational symmetry

breaking. In particular, we consider an example with an ionic lattice without any PDW,

and show that the segmentation of the Fermi surface is already visible there. However, it is

important to emphasize that in order to distinguish between the first and third scenarios we

would need to construct the background geometry at much lower temperatures, to ensure

that the spontaneously generated modulation in the IR is strong enough to compete with

the explicit UV modulation. Indeed, it is still possible that a sufficiently strong spontaneous

modulation would lead to the suppression of the spectral weight.

By setting ZA = 1 and ZB = ZAB = K = V = 0 in (2.1) and turning off the scalar χ

we arrive at the standard Einstein-Maxwell theory,

S =
1

2κ2N

∫

d4x
√
−g

[

R+
6

L2
− 1

4
FµνF

µν

]

. (5.1)

Since this is just a special case of the model we have considered in this paper, we can

still use our setup in section 3 and section 4 to construct the background geometry and to

compute the spectral function. In the present case, however, there is no spontaneous order

and the spatial modulation is introduced explicitly by adding the UV ionic lattice (3.6).

As a typical example, we consider the ionic lattice

µ(x) = At(1, x) = 2.35[1 + a0 cos(4x)] , (5.2)

which means that µ = 2.35 and the Umklapp wavevector K felt by the probe fermion is

K = 4 with the first Brillouin zone boundary at kx = ±2.

In figure 14 we present the behavior of the spectral function along the symmetry

breaking direction (i.e. as a function of kx) as the amplitude of the ionic lattice becomes

large. For small ionic amplitude (left plot) there is a very sharp peak indicating the

appearance of a Fermi surface. However, as the strength of the lattice is increased the

peak of the spectral weight becomes weaker and broader (right plot). In contrast to the

suppression of the spectral weight along the symmetry breaking direction kx, the behavior

along ky is not affected by the explicit lattice and the Fermi surface is still present as the

amplitude of the ionic lattice is increased, see figure 15. Therefore, for sufficiently large

lattice amplitude we find that the Fermi surface is no longer closed, but rather appears to

consist of detached segments, which is reminiscent of Fermi arcs [37–39]. We emphasize

that this behavior in this particular model is due entirely to the strength of the explicit

UV lattice.

We can draw several lessons from this section. For the cases we have considered thus

far the spontaneous PDW order does not play a key role in the destruction of the Fermi

– 20 –



J
H
E
P
1
2
(
2
0
1
8
)
0
8
0

0.0 0.5 1.0 1.5 2.0

1

10

100

1000

kx

A

0.0 0.5 1.0 1.5 2.0

0.5

1

5

10

50

100

kx

A

Figure 14. The MDF along the kx-axis for the amplitude of the ionic lattice a0 = 0.1(left plot) and

a0 = 0.8 (right plot) for fixed ω = 10−6, q = 2 and T = 0.019. The first Brillouin zone boundary

is at kx = 2. This shows that the inner Fermi surface dissolves as the strength of the ionic lattice

increases. Note that the vertical axis is logarithmic, and that there is a very sharp peak indicative

of a Fermi surface. We have chosen L = 1 and µ = 2.35.
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Figure 15. The MDF along the ky-axis for the amplitude of the ionic lattice a0 = 0.1(left plot)

and a0 = 0.8 (right plot) for fixed ω = 10−6, q = 2 and T = 0.019. Note that the vertical axis

is logarithmic, and that there is a very sharp peak indicative of a Fermi surface. We have chosen

L = 1 and µ = 2.35.

surface. Nevertheless, it is still possible that a sufficiently strong spontaneous modulation

at low temperature would lead to the suppression of the spectral weight. We anticipate that

in the fully 2D crystallized phase, in which translational invariance is broken along both

spatial directions (see [40–42] for a full construction), we would obtain detached segments

of the Fermi surface analogous to the Fermi arcs seen in PDW phases. We stress that

the appearance of these disconnected arcs seems to be tied to the translational symmetry

breaking mechanism. Indeed, our numerical results suggest that in strongly correlated sys-

tems Fermi surfaces can be suppressed when the inhomogeneity effect is strong enough. To

confirm this intuition in other settings it would be necessary to construct additional types

of low temperature background geometries and study the associated fermionic response.

In the concluding section we will comment on the possible physical interpretation for the

gradual disappearance of the Fermi surface along the symmetry breaking direction, at large

lattice, and outline directions for examining this feature in further detail in future work.
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6 Conclusions

This analysis is a preliminary step towards probing the Fermi response of a strongly cou-

pled quantum system in which translational invariance is broken spontaneously (with and

without an underlying ionic lattice). We have worked with a holographic model of a striped

superconducting phase which shares certain key features of PDW order. In addition, we

have added to the model a UV source which breaks translational invariance explicitly and

describes an ionic lattice. The final construction describes spontaneous crystallization in

the presence of a background lattice, thus providing a concrete framework to examine the

interplay of spontaneous and explicit breaking of translations on the fermionic response in

the system.

We have identified several main features, some of which confirm previous results in

the literature and therefore provide good checks on our analysis. The most physically

interesting result we find, which is novel, is the disappearance of the Fermi surface with

increasing lattice strength. We summarize our results here, in the order in which they are

discussed in the article (for an analysis of the energy distribution of the spectral density

see appendix A):

(i) Charge dependence and Fermi surface formation: the existence and size of the Fermi

surface are both sensitive to the charge of the bulk fermion, as already seen in other

contexts in the literature (the appearance of new Fermi surface branches as the charge

is varied was already noticed in the early works on holographic non-Fermi liquids,

starting with [6]). For the cases we have studied, the Fermi surface can form and

grow in size only once the charge q is sufficiently large. This is true independently

of whether the system is in a pure PDW phase, or whether it contains an additional

ionic lattice. However, in the latter case the amplitude of the spectral density is

enhanced, compared to the pure PDW. Thus, the explicit breaking seems to slightly

facilitate the formation of a Fermi surface. The charge dependence of the Fermi

surface confirms our expectations from prior results in the literature.

(ii) Fermi Surface shape and band gap: when the Fermi surface is large enough to cross

the Brillouin zone boundary, its shape is modified — a gap develops at the zone

boundary due to the periodic modulation of the background geometry (see figure 5

and figure 9). Note that this feature is not visible in the homogeneous case or in

homogeneous lattices, as neither one can capture the physics of Umklapp. This is a

basic feature characterizing the behavior of fermions in periodic potentials and was

previously seen in [16]. The fact that our results reproduce the expected Umklapp

gap is therefore a good check on our analysis. In the pure PDW case without the

explicit UV lattice, the gap increases as the temperature is lowered (and the amplitude

of the spontaneous modulation increases). The size of the gap also grows with the

strength of the UV lattice. These behaviors are anticipated since either decreasing the

temperature or increasing the amplitude of the ionic lattice results in a much larger

periodic deformation of the background geometry the fermion lives in. However, we

should mention that in our analysis the increase in the gap is more apparent as the
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explicit symmetry breaking parameter grows. We expect that this is simply due to

the fact that we haven’t reached temperatures low enough for the magnitude of the

spontaneously generated background oscillations to compete with those of the UV

lattice. This should change as lower temperatures are reached, and the IR and UV

effects start being of comparable size.

(iii) Gradual disappearance of the Fermi surface: a more intriguing feature emerging from

our analysis is the suppression of the fermionic spectral function with strong spatial

modulation. In particular, when the amplitude of the ionic lattice becomes suffi-

ciently large, the Fermi surface along the direction of broken translational symmetry

gradually disappears, leaving behind disconnected segments, as visible from figure 9

(in contrast, the spectral function along the direction that respects translational in-

variance seems to be enhanced). The behavior of the Fermi surface is reminiscent of

the spectral signatures observed in modulated superconducting phases and the dis-

cussion of open Fermi surface segments and Fermi arcs appearing in PDW phases, see

e.g. [21–24]. In particular, we anticipate that in the fully crystallized case (in which

translational invariance is broken along all boundary directions) the Fermi surface

will consist of detached pieces similar to Fermi arcs (see also the discussion of Fermi

surface reconstruction in e.g. [43]). We suspect that the feature we have identified —

the gradual disappearance of the Fermi surface with increasing lattice strength — is

a general property in holography and may not be very sensitive to the specific type of

spatial modulation in the system. We have seen preliminary evidence of this general

behavior in [44] and plan to report on it in follow-up work.12

To confirm our intuition and determine whether this phenomenon is a generic signature

of strong translational symmetry breaking, we need to examine the fermionic response in

additional classes of models,13 with and without spontaneously generated stripe order. For

example, in subsection 5.3 we have examined a simpler model which includes an explicit

ionic lattice but no spontaneously generated stripes. In this setup we also observe the

segmentation of the Fermi surface with a strong enough ionic lattice. It is natural to

ask if the same effect would happen by solely increasing the spontaneous modulation (an

IR effect), or whether it is only due to the UV lattice. While we naively expect that a

sufficiently strong PDW would also lead to the suppression of the spectral weight, in order

to show it the background geometry needs to be constructed at a much lower temperature.

Moreover, recall that in this analysis we have considered the simple case in which the

period of the spontaneously generated stripes is commensurate with the lattice spacing —

corresponding to a single length scale in the system. Thus, in our construction the ionic

lattice potential acts to amplify the effects of the PDW, making it difficult to disentangle

the specific role played by the different symmetry breaking mechanisms (spontaneous and

explicit). To clarify this point it would be interesting to generalize the present study to

12Notice that disorder can also lead to the gradual disappearance of Fermi arcs (see e.g. the effects

described in [45]). Indeed, disorder can also pin density wave order, but such pinning is random in nature.

Thus, the role of disorder and lattice potentials on density-wave order is different.
13The PDW model of [42], which involves parity breaking terms, is similar in spirit to ours.
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the incommensurate case, in which the two periods describe independent physical scales.

We expect the incommensurability to lead to novel effects.

While our analysis clearly shows that the Fermi surface dissolves at large lattice

strength, we are still lacking a deeper understanding of the origin of this phenomenon,

and of its role in the context of high temperature superconductors. In particular, it would

be valuable to use holographic studies such as ours to distinguish between the possible

scenarios put forth to explain the appearance of Fermi surface segments — for instance,

real Fermi arcs, point nodes and a small gap at the nodal point would all appear as arcs

due to thermal broadening (see e.g. [46]). We note that in our analysis thus far we don’t

see evidence for the suggestion that these arcs could be segments of Fermi pockets. It

would be interesting to be able to rule out this possibility, and more importantly to isolate

specific predictions of our model which could potentially be reproduced by experiment.

Another relevant question is that of the behavior of the low energy excitations near

the Fermi surface. In our holographic construction of PDW phases, spatial translations are

broken spontaneously, resulting in a strongly relevant spatially modulated deformation in

the IR. It is well known that the radial direction in the bulk plays the role of the energy

scale in the dual system, and that excitations with different wavelengths are mapped to

different regions of the bulk. Thus, the low energy behavior around the Fermi surface could

be traced back to the near horizon geometry of the bulk configuration. We stress that

the low energy physics in the spatially modulated phase due to spontaneous translational

symmetry breaking will be starkly different from that in an homogeneous background or

in the case with an irrelevant lattice, for which the low temperature IR geometry reduces

to the homogeneous one.

While in this paper we have restricted our attention to a free bulk fermion, one can

couple it to various intertwined orders, considering e.g. a Majorana coupling [47] and dipole

interaction [48, 49]. By coupling the fermion to the scalar in our model it may be possible to

reproduce some of the spectral weight features seen in the mean-field theory analysis of [21],

in which arcs in momentum space shrunk with increasing superconducting order. Finally,

in the present analysis we have limited ourselves to the low (but finite) temperature case,

partially due to the limitations of our computing resources. Although the computation

becomes more challenging, it would be interesting to construct the background geometry

as T → 0 and study the associated fermionic response in the extremal case, thus providing

a window into the structure of the ground state. We leave these questions to future work.
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A Energy distribution of the spectral density

We examine the behavior of the energy distribution function (EDF), i.e. the spectral density

as a function of ω, for different choices of momentum. We are specifically interested in how

the spectral density evolves as the momentum is varied, in order to probe the formation

and evolution of the Fermi surface itself. These results provide an additional check of the

analysis presented in the main text and highlight some interesting features.

A.1 Case (i): PDW without ionic lattice

We focus on the features of the Fermi surface we noted in figure 5 and consider two

interesting cases:

• (1) we fix kx = 0.8 (which places us near the boundary of the Brillouin zone) and

increase ky so that it crosses the inner and outer Fermi surfaces;

• (2) we fix kx = 0 (which places us at the center of the Brillouin zone) and vary ky so

that it crosses the bump and the outer Fermi surface.

Typical behaviors of the EDF for the first case (near the edge of the Brillouin zone

at kx = 0.8) are presented in figure 16. When ky = 0 we see a small broad peak and

a large sharp peak, both on the left side of the vertical axis ω = 0. We stress that the

location of the sharp peak is away from ω = 0, and thus it should not be regarded as

evidence for a Fermi surface. As we increase ky, the sharp peak moves to the right with

its amplitude also increasing, getting closer to the ω-axis. We find a very sharp peak at

ω = 0 when ky ≈ 0.432 (third panel in figure 16), at which point the inner Fermi surface

develops. As we continue increasing the value of ky, the sharp peak moves to the positive

ω axis and becomes smooth and small. In contrast, as ky is increased the broad peak

moves closer to the ω-axis and becomes sharper and larger. It moves to the ω = 0 axis

when ky ≈ 0.993 (fifth panel in figure 16), which identifies the location of the outer Fermi

surface. If we increase ky further, this peak moves to the right of the ω-axis and becomes

smooth. This confirms what we see in figure 5. We do not see any evidence of Fermi surface

for ky > 0.993. Instead, we find that the values of the spectral density A near ω = 0 for

large ky are quite small.

We now turn to the second case for which kx = 0, i.e. in the middle of the Brillouin

zone. Representative plots are shown in figure 17. The behavior at ky = 0 is quite simple

— there is only one smooth peak at ω ≈ 0.58 (see the first panel in the figure). As the

value of ky increases, two more small peaks appear near the ω-axis, with their amplitudes

growing. A peak develops at ω = 0 when ky ≈ 0.4625, with a small amplitude and a broad

width, such that it should not be regarded as a Fermi surface. It corresponds instead to

one of the points on the small circle of broad peaks in figure 5. As we continue increasing

ky, the successive peak shifts toward the ω-axis and becomes sharper and sharper. The

Fermi surface finally forms at ky ≈ 1.2755 (fifth panel in the figure). For larger values of

ky there are no additional sharp peaks developing at ω = 0.

Another feature we observe which appears to be in agreement with ARPES experi-

ments on the cuprates is the “peak-dip-hump” structure in the EDF at fixed momentum
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Figure 16. Behavior of the EDF at different points in the momentum plane. We fix kx = 0.8 and

increase ky from points inside the inner Fermi surface to points outside the outer Fermi surface.

The two plots in red denote cases in which a Fermi surface is present. Note that the vertical axis

is logarithmic. We have used the same setup as in figure 5.

(see e.g. [50–54]). Indeed, in the first two panels of figure 16 one sees a sharp low en-

ergy peak accompanied by a broad maximum at larger values of ω, reminiscent of what

is observed in the spectrum of several high-Tc superconductors. For previous holographic

models discussing this feature see [47, 55]. We would like to examine this structure in fur-

ther detail, in part because of its potential relation to laboratory systems, and understand

its origin and whether it is generic.

A.2 Case (ii): PDW with ionic lattice

The behavior of the spectral density as a function of ω in the presence of an explicit lattice

is quite similar to that of the pure PDW case. As a comparison, in figure 18 we show our

results with kx = 0.8 as well as a similar choice of ky as that of figure 16. The presence

of a Fermi surface is now visible in the third and fifth panels of figure 18. The first two

panels reveal the same kind of peak-dip-hump structure we noticed in the pure PDW case.
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Figure 17. Spectral density A as a function of ω at different points in the momentum plane. We

fix kx = 0.0 and increase ky from 0.0 to 1.85. The plot marked in red corresponds to the presence

of a Fermi surface, and the one marked in purple shows the development of a small peak at ω = 0.

Note that the vertical axis is logarithmic. We choose the same parameters as in figure 5.

B Details of numerical analysis

Due to the absence of analytic solutions for holographic striped superconductors, we have

employed numerical techniques to solve the PDEs and calculate the fermionic spectral

density. The solution for the background geometries is described in section 3 and in our

earlier work [2]. As shown in appendix D of [2], the accuracy of our numerical calculations

was checked in two ways. The first one is the convergence of ξ2 as the grid size is increased,

and the second one is the first law of thermodynamics.

The Green’s function Gα,n;α′,n′(ω, kx, ky) is obtained after solving the Dirac equation.

To solve the latter we have used the pseudo-spectral collocation approximation to convert

the PDEs (4.9) and (4.10) into linear algebraic equations, by adopting Fourier discretization

in the x direction and Chebyshev polynomials in the z direction. Note that the introduction
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Figure 18. The behavior of the EDF at different momenta for the PDW phase with the ionic

lattice. The two plots exhibiting Fermi surfaces are marked in red. We fix kx = 0.8 and increase

ky from points inside the inner Fermi surface to points outside the outer Fermi surface. Note that

the vertical axis is logarithmic. We have used the same setup as in figure 9.

of the coordinate systems (3.4) ensures that the solutions are smooth near the horizon.

Thus, we can use a relatively smaller number of grid points to solve the system, thanks

to the pseudo-spectral method. When solving the equations, we can either use the same

grid size as the background solution, or interpolate from the background solution. Both

the background geometry and the Dirac equation were independently solved by two of the

authors and compared for agreement.

Note that we have defined the spectral function A in (4.20) by summing the imaginary

part of the diagonal components of the retarded Green’s function. Since we have explicitly

checked that the contribution from higher modes with large n is very small, we can neglect

them when we compute A. A typical result of our analysis is presented in figure 19, where

we show the contribution from different diagonal components. First of all, note that the

behavior of each diagonal component is quite different, indicating that it is crucial to
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Figure 19. The contribution to the spectral function for each diagonal component of retarded

Green’s functions. The first three plots correspond to n = 0, n = 1 and n = −1, espectively. They

all have a smooth peak near kx = 0.65. In the fourth plot the purple curve is the sum of these

three modes, while the dotted curve corresponds to the sum of the four higher modes with n = ±2

and n = ±3. We choose ω = 10−6, ky = 0 and q = 2. The background geometry is the same as in

figure 2 with the ionic lattice amplitude a0 = 0.5 and the wavenumber p = 2.

identify the dominant contributions and sum over all of them. In our case the dominant

contribution comes from the first three modes with (n = 0, n = ±1). The contribution

from higher modes is too small to change the behavior, as shown by the dotted line in

the fourth plot of figure 19. We also checked that the contribution from higher modes

becomes smaller and smaller as the amplitude of the ionic lattice is decreased. Thus, from

our analysis we see that it is a good approximation to consider the lowest three modes with

(n = 0, n = ±1) when computing the spectral function A. For the cases we considered in

the main text, this is sufficient to see the suppression of the spectral weight as one increases

the amplitude of the ionic lattice.

For the PDW without ionic lattice, we used the same grid size for both the background

solution and the Dirac equation. The grid size is Nz = Nx = 31 when we plot the

temperature dependence as in figure 7, and is Nz = Nx = 21 when we plot the 3D spectral

density as in figure 3 (as well as the density plot in figure 5). For the PDW with ionic

lattice, we have to increase the grid size as we increase the amplitude a0. We have used

Nz = Nx = 51 to obtain the background geometries. We interpolate to a relatively smaller

size Nz = Nx = 21 to obtain figure 9. For the other figures we have used a slightly larger

size of grid points, (Nz, Nx) ∼ 35. We have checked that our choice of grid size does not

change the spectral density in a visible way, as shown in figure 20.
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Figure 20. The MDF along the kx-axis for a0 = 0.5, ω = 10−6, q = 2 and T = 0.01426. The curve

is computed by choosing Nz = Nx = 21, and the dots are obtained by Nz = Nx = 51 (the grid size

for the background geometry).
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