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1 Introduction

Even though the AdS/CFT correspondence [1] has been confirmed in and successfully

applied to many examples, our knowledge on the basic mechanism of AdS/CFT is far from

complete. Especially we need to better understand how the metric of the bulk anti de-

Sitter space (AdS space) emerges from the dynamics of conformal field theories (CFTs).
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To expand our understandings on this fundamental question will be useful to approach

a more general principle known as holography [2–4], so that we can deal with quantum

gravity in spacetimes other than AdS spaces.

One interesting possibility in this direction is that the AdS/CFT may be interpreted

as the real space renormalization scheme called MERA (multi-scale entanglement renor-

malization ansatz) [5–7] as conjectured by Swingle [8]. This connection suggests that the

spacetime in gravity can be regarded as collections of bits of quantum entanglement and

explains the holographic entanglement entropy [9–13] in a very beautiful way. A closely

related viewpoint has also been pointed out in [14, 15]. Moreover, in the paper [16], the

expression of holographic metric in the extra direction was proposed purely in terms of

field theoretic data by employing a field theory limit of MERA (called cMERA i.e. contin-

uous MERA [17]). See e.g. [18–26] for other interesting developments in this topic. Refer

also [27] for another interesting connection between the holographic emergent metric and

the renormalization group flow.

The aim of this paper is to better understand this connection between the AdS/CFT

and MERA at finite temperature. The gravity dual in AdS/CFT in this case is well-known

and is described by an AdS black hole. Therefore if we understand this relation in detail,

we can in principle approach still mysterious properties of black holes. MERA at finite

temperature has already been considered in [8, 22, 28] and has argued to be described by

a doubling the standard MERA for a pure state and gluing together at infrared points,

which follows from the thermofield double construction. This structure nicely agrees with

the geometry of external AdS black holes [29]. Even though this description is useful to

speculate the global structure of spacetime, we need to perform considerable numerical

computations in order to calculate physical quantities or entanglement structures in a

specific quantum many-body systems.

Therefore, in this paper we would like to study cMERA at finite temperature. Actually,

this attempt, at least at first sight, immediately faces a problem. The reason is that in

the cMERA for a pure state, we first need to choose the infrared state (IR state), which

has no entanglement at all between any (spatially defined) subsystems. Then we will

add quantum entanglement at each length scale and in the end we will reproduce the

original quantum state (UV state). However, it is not obvious at all what kind of IR pure

state in the doubled Hilbert space we should choose for the cMERA at finite temperature.

Since the renormalization procedure which adds the entanglement is given by a unitary

transformation in cMERA, the total entropy does not change. Thus the IR state should

be an entangled state and this makes its choice very ambiguous.

Nevertheless, thanks to the recent observation by Hartman and Maldacena [28], a close

connection between the gravity dual of quantum quench [30] and that of finite temperature

CFT has been pointed out. The quantum quench is an instantaneously excited state of

a given quantum system for example by suddenly changing a mass parameter [30]. In

cMERA we can construct such a pure state which is produced by a quantum quench in

a straightforward way. The gravity dual suggests that we can construct cMERA at finite

temperature by doubling the cMERA for the quantum quench and we will argue that this

is indeed true by showing several evidences.
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This paper is organized as follows: in section 2, we will give a brief review of (c)MERA

and its holographic interpretation. In section 3, we will study quantum quenches in cMERA

for free scalar field theories. In section 4, we discuss a holographic interpretation of the

cMERA for quantum quenches analyzed in section 3. In section 5, we will construct cMERA

at finite temperature and discuss its properties. In section 6, we will study cMERA for free

Dirac fermions. In section 7, we will compute holographic metrics for finite temperature

CFTs with non-vanishing chemical potentials. In section 8, we summarize our conclusions.

2 Brief review of cMERA

Here we would like to present a brief summary of the idea of MERA (multi-scale entan-

glement renormalization ansatz) [5–7] and its continuous formulation called cMERA [17].

We will also explain its holographic interpretation following [8, 16].

2.1 MERA

The idea of MERA is a scheme of real space renormalization in terms of wave functions.

This is in contrast with the more familiar method of Wilsonian renormalization group,

where we consider the renormalization group flow in momentum space in terms of effec-

tive actions.

Suppose we want to find the ground state of a given quantum spin chain with a

complicated Hamiltonian by employing a variational principle of quantum mechanics. The

real space renormalization means that we coarse-grain the spin chain by combining two

spins into one at each step. Let us define the (non-positive) integer u which counts the

steps of this coarse-graining. We describe the initial spin chain by u = 0 and the first step

of coarse-graining is denoted by u = −1. If we start with a spin chain with N spins, after

n = −u > 0 steps of coarse-graining the number of spins becomes N · 2u. In the end, it is

reduced to a single spin after log2N steps.

We can have parameters for this coarse-graining procedure (mathematically called

isometry transformation). However, even if we optimize them by minimizing the total en-

ergy, following the variational principle, we cannot obtain a good approximation of correct

ground state if the quantum spin chain does not have a mass gap. This is because in

such a wave function (called tree tensor network) has much smaller amount of quantum

entanglement. We can easily confirm that the entanglement entropy SA has a finite upper

bound. On the other hand, we know that SA increases logarithmically with respect to the

size of A.

To circumvent this problem, in MERA, we introduce so called disentanglers which

cut bits of quantum entanglement of the original highly entangled ground state. Refer to

figure 1. A disentangler is a unitary transformation which acts on each of nearest neighbor

spins in each coarse-graining step. If we look this procedure in an opposite way, we can

start from a single spin. Then we double the number of spins and add some quantum

entanglement by the unitary transformation of adjacent spins by the (dis)entanglers at each

step. In the end we reproduce the correct ground state. These are the basic construction
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Figure 1. The schematic structure of MERA.

Figure 2. The schematic structure of MERA at finite temperature.

of MERA. Note also that we can generalize this formulation of 1 + 1 dimensional MERA

to higher dimensions in a straightforward way.

For a MERA description of a finite temperature CFT, we can remember the thermofield

formalism, where the thermal state is described by a pure state in the doubled Hilbert

space of the CFT. This consideration naturally leads to the MERA construction presented

in figure 2 as argued in [22, 28]. The entangling bonds in the middle which separates the

left and right half are responsible for the entanglement between the two CFTs and thus

the number of them is proportional to the thermal entropy.

2.2 cMERA

In order to understand field theories from the viewpoint of MERA, we need to consider a

continuum limit of MERA. This is called the continuous MERA (cMERA), first presented

in [17]. We will follow the convention of cMERA in [16]. In cMERA, we start from the

unentangled state |Ω〉 (IR state) and add the entanglement for each length scale so that

we can reproduce the correct state |Ψ〉 (UV state) which we want as a ground state for

a given Hamiltonian. This construction is naturally understood from a continuous limit

of MERA. Only apparent difference is that in cMERA the dimension of Hilbert space (or

the number of spins) does not change in each coarse-graining step. However, this can be

simply understood as adding dummy states at each coarse-graining step so that the total

number of spins does not change.

– 4 –
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We define a state |Ψ(u)〉 parameterized by the scale u. This state |Ψ(u)〉 is obtained

by adding the entanglement for the momentum scale k ≤ Λeu to the unentangled state

|Ω〉. We choose Λ = 1/ǫ to be the original UV cut off scale. If we take u = 0, then the

state includes all the entanglement and coincides with the UV state (e.g. the ground state)

we are looking for i.e. |Ψ(0)〉 = |Ψ〉. On the other hand, if we set u = −∞, then the state

does not include any entanglement and is given by the IR state |Ψ(−∞)〉 = |Ω〉.
If we write this procedure explicitly, we have

|Ψ(u)〉 = e−iuL · Pe−i
∫ u
−∞ K̂(s)ds|Ω〉, (2.1)

where K̂(s) denotes the process of adding the entanglement at scale s (i.e. k = Λe
s
) [17].

The symbol P means the path-ordering which puts all operators with smaller u to the

right. For later convenience we also define P̃ as the one with the opposite order. The

operator L is defined by the scale transformation and the factor e−iuL means the scale

transformation at scale u so that |Ψ(u)〉 fits nicely with the discrete MERA description.

In the language of AdS/CFT, this factor corresponds to the warp factor of the AdS metric

and it is useful to redefine the state into a “normalized” state |Φ(u)〉 by eliminating this

factor [16] as follows:

|Ψ(u)〉 = e−iuL|Φ(u)〉. (2.2)

In this formulation of cMERA, |Φ(u)〉 is represented as the integral of disentangler action

|Φ(u)〉 = Pe
−i

∫ u
uIR

K̂(s)ds|Ω〉. (2.3)

It is also useful to notice the relation:

|Ψ(u)〉 = e−iuLP̃ e−i
∫ u
0 K̂(s)ds|Ψ(0)〉. (2.4)

2.3 cMERA for free scalar field theory

Consider the free scalar field theory in 1 + 1 dimensions (with mass m). The time and

space coordinates are denoted by t and x. The energy and the momentum in x direction

are written as ǫ and kx, respectively. Though we can generalize most of our arguments in

this paper to higher dimensions, just for simplicity we choose the two dimensional theory.

We write the creation and annihilation operator of the scalar field as a†kx and akx , which

satisfy [akx , a
†
k′x
] = δ(kx − k′x). We define k = |kx| and then the dispersion relation is given

by ǫk =
√
k2 +m2.

In the IR limit, the ground state is described by infinitely many independent copies

ofharmonic oscillators at each lattice point. The unentangled state |Ω〉 is the ground

state for harmonic oscillator Hamiltonian H ∝ ∑x a
†
xax, and is defined by ax|Ω〉 = 0. In

momentum space, this condition is equivalent to

(αkak + βka
†
−k)|Ω〉 = 0, (2.5)

where

αk =
1

2

(

√

M

ǫk
+

√

ǫk
M

)

, βk =
1

2

(

√

M

ǫk
−
√

ǫk
M

)

, M =
√

Λ2 +m2. (2.6)

– 5 –
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To obtain (2.5), we first discretize the Hamiltonian with the lattice constant ǫ = 1/Λ in

the x direction. Then we simply ignore the interactions between difference lattice points

and pick up only the self interactions. The ground state of this unentangled Hamiltonian

is given by (2.5). Note that for the massless theory we have M = Λ.

Since we are considering free filed theory models all along this paper, the state should

be described by the gaussian ansatz for the disentangler K̂ as already shown in [16, 17]:

K̂(u) =
i

2

∫

dkxΓ(ke
−u/Λ)

(

g(u)a†kxa
†
−kx

− g∗(u)akxa−kx

)

, (2.7)

where Γ(x) is the cut off function such that Γ(x) = 1 when x ≤ 1 and Γ(x) = 0 for x > 1.

Indeed, for the ground state defined by

ak|Ψ(0)〉 = 0, (2.8)

the ansatz (2.7) reproduces the exact correct state if we set [17]

g(u) = g∗(u) =
1

2
· e2u

e2u +m2/Λ2
. (2.9)

2.4 Excited states

We focus on a class of excited states defined by

(Akakx +Bka
†
−kx

)|Ψ(0)〉 = 0. (2.10)

At scale u, the state |Ψ(u)〉 satisfies

(Ak(u)akx +Bk(u)a
†
−kx

)|Ψ(u)〉 = 0. (2.11)

Below we assume |Ak(u)|2 − |Bk(u)|2 = 1 by using the fact that the definition in (2.11)

is invariant under the multiplication (Ak(u), Bk(u)) → λ(Ak(u), Bk(u)) for any λ. It is

obvious that we have (Ak(−∞), Bk(−∞)) = (αk, βk) and (Ak(0), Bk(0)) = (Ak, Bk).

The unitary transformation in (2.3) acts on the creation and annihilation operators by

the following linear transformation following form:

Pe
−i

∫ u
uIR

K̂ψ(u)du ·
(

ak
a†−k

)

· P̃ ei
∫ u
uIR

K̂ψ(u)du =Mk(u) ·
(

ak
a†−k

)

, (2.12)

where we can express Mk(u) as

Mk(u) ≡
(

pk(u) qk(u)

q∗k(u) p
∗
k(u)

)

, |pk(u)|2 − |qk(u)|2 = 1. (2.13)

Then we can define 2× 2 matrix G(u) so that

Mk(u) = P̃ · exp
(

−
∫ u

−∞
dsG(s)Γ(ke−s/Λ)

)

. (2.14)

– 6 –



J
H
E
P
0
3
(
2
0
1
4
)
0
9
8

In particular at u = 0 we find

Mk(0) = P̃ · exp
(

−
∫ 0

log k
Λ

duG(u)

)

, (2.15)

and this satisfies the obvious relation:

MΛ(0) = 1. (2.16)

By using (2.12) and (2.7), it is easy to see that G(u) takes the following form

G(u) =

(

0 g(u)

g∗(u) 0

)

. (2.17)

If g(u) is real valued, the calculations become abelian and thus we can neglect the path-

ordering as the group structure is abelian. We can obtain G(u) from Mk(0) as follows:

G(log k/Λ) = k
dMk(0)

dk
·M−1

k (0). (2.18)

For the excited state mentioned above, for generic SU(1, 1) matrix Mk(u) we have

(Ak(u), Bk(u)) = (αk, βk) ·Mk(u), (2.19)

where the components of Mk(u) are given by

pk(u) = αkAk(u)− βkB
∗
k(u), qk(u) = −βkA∗

k(u) + αkBk(u). (2.20)

2.5 Relation to AdS/CFT

An interesting observation is that the structure of MERA (figure 1) looks very similar to

a time slice of AdS space (i.e. hyperbolic space). Indeed, it has been conjectured in [8]

that the mechanism of AdSd+2/CFTd+1 is equivalent to the d+ 1 dimensional MERA. To

be exact, since we need to take the continuum limit to describe the CFT, we can employ

cMERA instead of MERA [16].

We denote the Poincare coordinate of AdSd+2 by

ds2 =
dz2 − dt2 +

∑d
i=1 dx

2
i

z2
. (2.21)

Since it is known that the extra direction z of the AdS space corresponds to the length

scale of renormalization group flow, we can naturally identify

z = ǫe−u, (2.22)

where ǫ = Λ−1 is the UV cut off (or lattice spacing) of the CFT. More generally, a generic

state in cMERA, the metric looks like

ds2 = guudu
2 + Λ2e2udx2 + · · ·, (2.23)

where the omitted terms · · · involve dt and we will not discuss these components below.

– 7 –
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Now, consider the calculation of entanglement entropy SA. As is explained in figure 1,

SA is bounded from above by the number of entangling bonds which intersect with a surface

γA. Here γA is an arbitrary surface which surrounds the region A. To optimize this bound

we need to choose γA which minimizes the number of bonds. This prescription looks very

similar to the holographic entanglement entropy [9–13], which is given by the minimal

area divided by four times the Newton constant GN . This observation is a very important

evidence of this conjecture.

By closely studying this argument, we can relate the metric guu in (2.23) to the den-

sity of disentanglers. This idea leads to the following conjectured expression of guu in

cMERA [16]:

guudu
2 ∝ 1− |〈Φ(u)|Φ(u+ du)〉|2. (2.24)

In particular, consider the free scalar field theory and assume the form (2.7). If g(u)

is real, the metric component guu is given by

guu ∝ g(u)2. (2.25)

For example, for the massless theory m = 0 we find from (2.9) that guu is constant and

this is consistent with the expectation that its holographic metric (2.23) coincides with a

pure AdS spacetime.

3 Quantum quenches in cMERA and holography

Now we would like to study quantum quenches in cMERA for free scalar field theories and

discuss a holographic interpretation.

3.1 Quantum quenches and boundary states

We would like to transform the quantum quench calculations considered by [30] into the

framework of cMERA. Quantum quenches are sudden excitations of a quantum system due

to an instantaneous change of a Hamiltonian. For example, it is triggered by a sudden shift

of a mass parameter. Since we are interested in excited states in CFTs motivated by the

AdS/CFT, we consider a process where the mass parameter is changed from a non-zero

value ∆m to zero. The key idea of [30] is that the excited state after such a quantum

quench can be approximated by the boundary state |B〉 for low energy modes. This is

concretely expressed as follows:

|Ψ(0)〉 = e−
β
4
H |B〉. (3.1)

The factor e−βH/4 comes from the fact that for modes with energy larger than ∆m ∼ 1/β

the quantum quench has no effect and the state behaves like a vacuum. The detailed

normalization of β was chosen for a later convenience.

In the free scalar field theory we are focusing on here, it is written explicitly as

|Ψ(0)〉 = N · exp
(

±1

2

∫

dkxe
−βǫk/2a†kxa

†
−kx

)

|0〉. (3.2)

– 8 –
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Note that a†kx is interpreted as the creation operator of the right-moving or left-moving

mode depending on the sign of kx. The signs + and − in front of the integral 1
2

∫

dkx · ··
correspond to the boundary state for the Neumann boundary and the Dirichlet boundary

condition, respectively.

This excited state (3.2) corresponds to the following choice in the class (2.10)

Ak =
1√

1− e−βǫk
, Bk = ∓ e−βǫk/2

√
1− e−βǫk

. (3.3)

From now, we assume the massless case and take the dispersion relation to be ǫk = k.

Then we get the function g(u) in each case

g(u)N =
1

2
+

kβekβ/2

2(ekβ − 1)
,

g(u)D =
1

2
− kβekβ/2

2(ekβ − 1)
, (3.4)

with the identification: k = Λeu. Note that in both cases the function g(u) are real.

As is obvious from (3.4), we obtain the UV behavior g(0) = 1/2 in both cases, which is

the same as that of the ground state. This is simply because the excitation induced by the

quantum quench has finite energy and cannot modify the UV behavior. However they have

different IR behaviors. In the Dirichlet case, we find g(−∞) = 0, while in the Neumann

case, we have g(−∞) = 1. It is natural that in the Dirichlet case g(u) is decreased and

that the IR degrees of freedom is reduced because it is similar to a large mass at t = 0. On

the other hand, our result suggests that the Neumann boundary condition increases the IR

degrees of freedom. This seems to be closely related to the idea of boundary entropy [39]

and the details of this connection will be an interesting future problem.

3.2 Time-dependence in quantum quenches

Since we are interested in the quantum quench triggered by the mass change, we will focus

on the Dirichlet case below. As a next step, we would like to study the time-dependence.

The time evolution of (3.2) for Dirichlet boundary condition is simply given by

|Ψ(0, t)〉 = e−iHte−
β
4
H |B〉

= N · exp
(

−1

2

∫

dkxe
−βǫk/2e−2iǫkta†kxa

†
−kx

)

|0〉. (3.5)

Below we will focus on the massless case and set ǫk = k and M = Λ.

In this case, (Ak, Bk) is given by

Ak =
1√

1− e−βǫk
eiǫkt+iθk(t), Bk =

e−βǫk/2

√
1− e−βǫk

e−iǫkt+iθk(t), (3.6)

where θk(t) represents the ambiguity which does not change the UV state |Ψ(0)〉 defined

by (2.11), though the intermediate states |Ψ(u)〉 depend on θk(t). Note that the iden-

tity (2.16) argues

θΛ(t) = −Λt. (3.7)

– 9 –
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Figure 3. A plot of |g(u)| as a function of z = 1/k for t = 0 (blue), t = 1 (red) and t = 2 (yellow).

We chose β = 2 and θ0 = 0 at k = 100.

Now, we can choose θk(t) so that the diagonal parts of the matrix G(u) vanish as

in (2.17). This choice can be expressed by applying (2.19) and (2.20) into (2.18). From

the diagonal elements one can find the following first order differential equation for θk(t):

∂θk
∂k

= −t coth(kβ/2) + Λ2 − k2

4(k2 + Λ2) sinh(kβ/2)
· (4t cos 2θk + β sin 2θk). (3.8)

We can integrate (3.8) by imposing the initial condition (3.7) and find a unique function

θk(t). In particular at t = 0 we simply find θk(t) = 0. Also the off-diagonal component

of (2.18): G12 = g(u) is computed as

g(u) =
1

2
+

1

sinh(kβ/2)

(

kt sin(2θk)−
kβ

4
cos 2θk

)

+O(Λ−1), (3.9)

where we expanded by assuming k ≪ Λ and kept the finite term. In this limit k ≪ Λ, g(u)

is real and so we can use the formula (2.25).

For a large momentum kβ ≫ 1, we can easily solve (3.8)

θk = −kt+ θ0(t). (3.10)

Moreover, the boundary condition (3.7) at the UV cut off scale tells us that θ0(t) = 0 when

k = Λ. We plotted |g(u)| in figure 3 and figure 4 in certain cases.

On the other hand, if we take the IR limit k → 0, we find the solution at any t

behaves as:

θk = −A(t)k2 +O(k4). (3.11)

The equation (3.8) allows a O(k) term in the k → 0 limit. However, we can numeri-

cally confirm1 that this terms is vanishing under the boundary condition (3.7). This fact,

combined with (3.8), leads to A(t) = βt
4 .

Even though g(u) is oscillating due to the phase factor θk(t), this seems to be a peculiar

property for free field theories. In generic interacting theories, we naturally expect g(u)

1Moreover, we find that θk(t) approaches to a ladder function when k is small and t is large such that

θk(t) ≃ −nπ for (2n−1)π
2t

< k < (2n+1)π
2t

, where n = 0, 1, 2, · · ·.
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will be a smoother function of u (or equally k) because different momentum modes are

mixed due to interactions. Thus we would like to replace g(u)2 with its smoothed version.

This clearly leads to the following behavior in the high energy region kβ > O(1):

guu = g(u)2 ≃ 1

4
+
a1k

2β2 + a2k
2t2

4 sinh2(kβ/2)
, (3.12)

where a1 and a2 are certain numerical order one positive constants.

We would like to estimate the entanglement entropy SA when the subsystem A is the

half space. As we mentioned we chose a particular θk(t) by requiring that the diagonal

elements of the matrix G(u) are vanishing and this corresponds to a particular time slice

in the gravity dual geometry [16]. Therefore in general if we want to calculate SA using

the holographic entanglement entropy [9–13], we need to know the correct extremal sur-

face, which deviates from the time slice corresponding to a choice of θk(t). Thus, strictly

speaking, we need the time-like component gtt to find SA. However, currently we do not

know how to reasonably calculate gtt in cMERA, though we can find this in principle by

Lorentz boosting our subsystem A. Therefore, let us first calculate the entanglement en-

tropy associated with our time slice defined by our choice of θk(t) by pretending that it is

approximately an exteremal surface. Later we will check the validity of this assumption

by thinking of its consistency with the known gravity dual. Note also that the fact that

guu non-trivially depends on the time t already shows that it is not on the standard static

time slice in the Schwarzchild coordinate, where guu is time-independent.

By using the metric guu and subtracting the entanglement entropy before the quench

t < 0, we can estimate the increased amount ∆SA at late time t≫ β as follows:

∆SA ∼
∫ 0

− log(β/ǫ)
du

(√
guu − 1

2

)

+

∫ − log(β/ǫ)

−∞
du

√
guu ∼ t

β
. (3.13)

The metric guu behaves like
√
guu ∼ kt

sinh(kβ/2) in the higher energy region kβ > O(1). The

integration over the deep IR region i.e. kt≪ 1 does not contribute because we can confirm

by using (3.11)
√
guu ≃ k2t2 in this region. Moreover, we can show that the integral (3.13)

for the middle energy range O(1/t) < k < O(1/β) can be estimated again to be O(t/β).

This can be seen as follows. In the footnote 1, we mentioned the ladder functional profile

of θk for k ≪ O(1/β). Using (3.8), we can estimate the gradient ∂kθk to be of order O(β)

and O(t2/β), for the horizontal part and vertical part of the ladder, respectively. The

function g(u) ∝ sin 2θk has Np = t/β peaks in the region O(1/t) < k < O(1/β). We can

see from the mentioned ladder structure of θk that we have the large value g(u) ∼ O(t/β)

only for the range ∆u = O(β/t) for each peak. Thus we can estimate the integral (3.13)

for O(1/t) < k < O(1/β) as Np · |g(u)| · (∆u) ∼ (t/β)(t/β)(β/t) = t/β.

In this way we obtain the estimation (3.13). This result (3.13) reproduces the results

in 2d CFT that SA is increasing linearly w.r.t. t, as computed in [30]. This gives one

evidence of our assumption on the choice of time slice.

Our analysis here can be generalized to higher dimensions in a straightforward way.

We find SA is again a linear function of t and this is consistent with the holographic result

in [28, 31]. Refer also to e.g. [32–38] for numerical calculations of holographic entanglement

entropy under quantum quenches.
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Figure 4. A plot of |g(u)| as a function of z = 1/k (horizontal coordinate) and t (depth coordinate).

We chose β = 1 and θ0 = 0 at k = 100. We plotted the region specified by 0 < z < 3 and 0 < t < 3.

4 Holographic interpretation

Now we would like to discuss a holographic interpretation. We would like to compare our

cMERA construction for the quantum quench with the recent argument of the gravity

dual of quantum quench [28]. Since we analyze the cMERA by using free field theories,

our comparison will be only at qualitative level.

Let us remember that the AdS Schwarzschild black hole, which is described by the

following metric in the three dimensional case

ds2 = −1− z2/z2H
z2

dτ2 +
dz2

z2(1− z2/z2H)
+
dx2

z2
,

(

zH =
β

2π

)

(4.1)

can be extended into a spacetime (we call this MBH) with two boundaries. The presence

of horizons separates the extended spacetime of AdS Schwarzschild black hole into four

regions I, II, III and IV. The asymptotic AdS boundaries are included in the region I and

III. These two asymptotic boundaries correspond to the two CFTs: CFT1 and CFT2 in the

thermofield description of finite temperature CFT. The regions II (future) and IV (past)

are situated inside horizons. The Hartle-Hawking state of this eternal AdS black hole at

time t is dual to the CFT state [29]

|Ψ(t)〉th ∝
∑

n

e−2itEne−βEn/2|n〉1|n〉2, (4.2)

where En and |n〉1,2 are the eigenvalue and eigenstate of the Hamiltonian H1 and H2 of

the two CFTs. The dependence on the time t is generated by the Hamiltonian H1 +H2.

Indeed, if we choose the subsystem A to be an union of a half space of CFT1 and a half

space of CFT2, then the entanglement entropy SA is linearly growing with time as shown

in [28] from both the thermofield CFT analysis and holographic calculation, which are

explained by the non-trivial time evolution by H1 +H2.

This gravity dual of this state is depicted in the left picture of figure 5, where the time

slice is schematically written as the red curve. Notice that the time evolution with respect

to τ in (4.1) corresponds to the Hamiltonian H1 −H2, which does not change |Ψ(0)〉th.
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Figure 5. Global Structures of AdS Schwarzschild black hole MBH (left) and the gravity dual of

quantum quench MQ (right) argued in [28]. The red horizontal curve denotes time slices we are

interested in. Following the Hartle-Hawking prescription, we treat the t > 0 and t < 0 region in

the Lorentz and Euclidean signature, respectively. The diagonal lines describe the horizons of the

black hole. The wavy lines in the top part represents the black hole singularities.

It was argued in [28] that the holographic dual of the quantum quench state (3.1) is

dual to a half of extended spacetime of the AdS Schwarzschild black hole (we call thisMQ)

as depicted in the right picture of figure 5. This is realized by introducing a real time-like

boundary in the region II and IV. This identification can be thought of as one example of

the AdS/BCFT correspondence [40, 41]. The time evolution of this quantum quench state

is well described by using the time t instead of τ and is dual to the black hole creation

at t = 0. At late time, the region inside the horizon at time t expands so that its size is

proportional to t.

Let us turn to the spacetime obtained in cMERA. First remember that we made the

particular choice of θk (3.8) by requiring the diagonal parts of the matrixG(u) are vanishing.

This is originally due to a technical reason that we want to calculate the holographic metric

by using the simple formula (2.25). As proposed in [16], the choice of θk corresponds to that

of the time slice on which we define |Ψ(u)〉. In previous section, we argued that our choice

of θk (3.8) corresponds to an extremal surface to justify the calculation (3.13). Indeed, our

estimation (3.13) agrees with that of the area of the extremal surface depicted in the red

curve of the left picture of figure 5, which was computed in [28]. This gives another strong

support for our assumption of the time slice.

In summary, our time coordinate t is chosen so that the constant time slice is almost

horizontal in the Penrose diagram (the red curve in figure 5) and is given by an extremal

surface (i.e. geodesic in this case). Therefore it can cross the horizon with guu kept finite

and positive.2 Since the metric guu is defined by counting number of disentanglers in

cMERA on the time slice which is argued to be a geodesic, guu is interpreted as the uu

component of the induced metric on this time slice, which justifies the calculation in (3.13).

2It might be useful to explain an example in BTZ black hole ds2 = − sinh2 ρdt2 + cosh2 ρdx2 + dρ2.

We can show that the geodesic which penetrates the horizon is described by [28]: t(ρ) = −πi
2

−
∫ ρ

iη0

ds

sinh s
√

1+sinh2 s/ sin2 η0
. At the AdS boundary ρ → ∞ we find t(∞) = arctanh(sin η0). By defining

cosh ρ = 1/z we find the metric

ds2 =
1

z2

(

dz2

1− z2 cos2 η0
+ dx2

)

, (4.3)

which is smooth at the horizon z = 1. We are taking such a time slice.
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By using the coordinate z = ǫeu, we find from our previous analysis that at t = 0 (just

after the quench), the metric given by (2.25) behaves like

guu(= z2gzz) ≃ a positive const. (0 < z ≪ β),

≃ 0 (z ≫ β). (4.4)

The reason why we find guu vanishes for large z is because we started with a mass gapped

theory for t < 0. In the dual gravity geometry MQ, this corresponds to the fact that the

spacetime ends at z = β.

One may think this a little strange because the black hole usually leads to a large exten-

sive contribution to the holographic entanglement entropy, while the cMERA result (4.4)

shows that the entanglement entropy will be reduced compared with the CFT ground state.

However, this is not any contradiction since the holographic entanglement entropy SA for

a large enough interval A (width≫ β) is given by the area of disconnected planes which

simply extend from the AdS boundary to the black hole horizon:

SA ∝
∫ β

ǫ

dz

z
√

1− z2/β2
= log

β

ǫ
. (4.5)

Thus this is smaller than that for the CFT (corresponding to the limit β → ∞) and thus

the result looks like a confining geometry, suggesting the mass gap, though we actually

consider the AdS BH solution. This is possible because the geometry MQ is defined with

the new boundary where γA can simply end on [40, 41]. In this way, this holographic

behavior agrees with our g(u) for the quantum quench.

Next, let us consider the time evolution. At late time t≫ β the geometry in cMERA

is divided into three regions:

(i) 0 < z ≪ β : guu ≃ a positive const.,

(ii) O(β) < z < O(t) : guu ∝ t,

(iii) z ≫ t : guu ≃ 0. (4.6)

The region (i) obviously corresponds to the asymptotically AdS region. The region (ii),

which is responsible to the entanglement entropy (3.13), nicely corresponds to the inside

horizon region in the gravity dual MQ. Both grows linearly under time evolution. The

region (iii) can be negligible because the metric is very small.

We can see from figure 4 that the excitations are approximately included in the light

cone z < t. This suggests that these propagations can be related to the gravitational waves

as they should be if we assume the equivalence between cMERA and AdS/CFT. Let us

study this behavior more closely. The centers of peaks z = zc(t) of g(u) grow linearly

under time-evolution zc ≃ vt with some velocity v. This can be easily seen from figure 4

and can also be explained from the behavior g(u) ∝ sin θk ∼ sin(2kt) derived from (3.9)

and (3.10) in the large t limit. If we regard each of peaks as massive objects (strings), then

this time evolution is interpreted that they are falling toward the IR region z → ∞. This

is consistent with the AdS space, where a massive object falls into the horizon due to the
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gravitational force. In this way, at a qualitative level, the time evolution of excited states

in cMERA can be understood from the Newton force in the gravity dual. However, note

that the velocity v of this falling is not always one in our cMERA, though it is easy to see3

that v is bounded from the above as v < 4
π , which might be analogous to the light cone in

our free field analysis. We expect the correct light cone v < 1 will be reproduced if we can

do the similar analyze in strongly coupled large N CFTs.

5 Finite temperature cMERA

Now we would like to move on to the construction of cMERA at finite temperature. As

we already explained, there is an interesting connection to the quantum quench suggested

by the gravity dual as sketched in figure 5. Even though the construction of the IR state

is not obvious from the beginning for a finite temperature cMERA, we will employ this

useful fact to find the correct IR state as we will show below.

5.1 cMERA for free scalars at finite temperature

For the free scalar at finite temperature T = β−1, the pure state (4.2) in the thermofield

description (i.e. in the doubled Hilbert space) at time t is written as

|Ψ(0, t)〉th = N · e−it(H1+H2) ·
∏

k

∞
∑

nk=0

e−βǫknk/2|nk〉1|nk〉2

= N · exp
(
∫

dke−
βǫk
2 e−2iǫkta†kã

†
k

)

|0〉|0̃〉. (5.1)

Here ãk is the creation operator of scalar field in the thermofield double.

An important observation is that (5.1) is reduced to (3.2) for the Dirichlet boundary

condition by the projection

ãk → a−k, |0〉|0̃〉 → |0〉. (5.2)

This relation between the quantum quench and the finite temperature CFT is precisely

matches with that in their gravity duals. In this way, we find that we can choose the

disentangler K̂(u) for the UV state (5.1) precisely in the same way as that in the quantum

quench case (3.5):

|Ψ(0, t = 0)〉th = Pe
−i

∫ 0
uIR

K̂(s)ds ⊗ Pe
−i

∫ 0
uIR

ˆ̃K(s̃)ds̃|Ω(β)〉. (5.3)

Here |Ω(β)〉 is a state in CFT1⊗CFT2 and is highly entangled between these two CFTs.

The entanglement entropy between these two CFTs for the pure state |Ω(β)〉 in the doubled

Hilbert space is obviously equal to the thermal entropy of the free scalar in the single Hilbert

space because the disentangler action is a unitary transformation in each of the two CFTs.

3This can be shown from (3.8). If we take the average of θk (denoted by θ̄k with respect to the time

t, we find at late time ∂θ̄k/∂k ≃ −t coth(kβ/2). This can be solved with the boundary condition (3.7) as

θ̄k = − 2t
β
log[2 sinh(kβ/2)]. From this we find the peak points θ̄k = π/2, 3π/2, · · · satisfies zc ≃ vt with

v < 4
π
.
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Note that g(u) in K̂(u) is exactly the same as that for the quantum quench i.e. the equations

like (3.8) and (3.9) remain the same. Since we know the UV state |Ψ(0, t = 0)〉, which is

given by (5.1), the above relation uniquely determines the IR state |Ω(β)〉.

5.2 Metric at finite temperature

Now we would like to analyze the metric guu. In order to be consistent with the gravity

dual result, this metric for the finite temperature CFT should be equal to that of the

quantum quench. To see this, we first need to find a relation between guu and g(u) in our

finite temperature case.

First we use the description in terms of a single Hilbert space by tracing out the other

one and consider its (mixed state) density matrix. We denote the density matrix at scale

u by ρu. We can define ρ̃u in a similar way as (2.4):

ρ̃u = eiuLρue
−iuL = P̃ e−i

∫ u
0 K̂(s)dsρ0Pe

i
∫ u
0 K̂(s)ds. (5.4)

In our current setup, the UV density matrix reads

ρ0 = TrCFT2 |Ψ(0, t)〉th〈Ψ(0, t)| = 1

Z(β)
e−β

∫
dkxǫka

†
kx

akx , (5.5)

where Z(β) =
∏

kx
(1 − e−βǫk)−1 is the standard partition function of the scalar field at

finite temperature.

In this density matrix formalism, a natural definition of the metric guu is as follows

(see [16])

guudu
2 =

1

2Nm
Tr(ρu+du − ρu)

2, (5.6)

where Nm is the normalization factor. For pure states in d+1 dimensional free scalar field

theories, this is given by

Nm = cm ·
∫

k<Λeu
ddk, (5.7)

as found in [16]. Note thatNm is proportional to the effective phase volume. The coefficient

cm is independent from u. We find

Tr(ρu+du − ρu)
2 = −Tr

(

[K̂(u), ρu][K̂(u), ρu]
)

du2. (5.8)

Now we consider the disentangler given by the form (2.7) and assume that g(u) is real.

Then we obtain

guu =− 1

2Nm
Tr
(

[K̂(u), ρ0][K̂(u), ρ0]
)

=
g(u)2

8NmZ(β)2

∫

k,p≤Λeu
ddkddp (e2β(ǫp−ǫk)+1)(1−e−2βǫp)(1−e−2βǫk)Tr[apa−pa

†
ka

†
−k(ρ0)

2]

= cm
Z(2β)

Z(β)2
· g(u)2, (5.9)

where we employed

Tr[apa−pa
†
ka

†
−k(ρ0)

2] =
(

δd(k − p) + δd(k + p)
)

· 2

(1− e−2βǫk)3
. (5.10)
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In this way we find guu ∝ g(u)2 even for the finite temperature CFT.4 Even though

the (UV) density matrix is time-independent like (5.5), the structure of disentangler is

time-dependent precisely as that for the quantum quench. Therefore we can calculate the

corresponding time-dependent metric guu(u, t) as g(u, t)2 and the result is just the same

as that for the quantum quench, which was computed in (3.12). This is consistent with

the gravity dual [28] where the metric for the quantum quench and the finite temperature

CFT are the same.

6 cMERA for free fermions under quantum quenches

In this section we will consider the quantum quench for a free fermion field theory. As

we have explained in previous section that we can double the Hilbert space of cMERA to

construct the finite temperature cMERA. Since this trick can be equally applied to the

free fermion discussed here, we will not mention the details of finite temperature cMERA

in this section. For free fermions, cMERA has been worked out for the zero temperature

ground state in version 1 of [17] and [16]. For simplicity we will consider a Dirac fermion

in a 1+1 dimensional space as

SF =

∫

dtdx
[

iψ̄
(

γt∂t + γx∂x
)

ψ −mψ̄ψ
]

, (6.1)

where the γ matrices are chosen to be γt = σ3 and γx = iσ2 in terms of Pauli matrices.

Also we use the standard definition for ψ̄ = ψ†γt. The Hamiltonian of this theory after

performing the Fourier transformation is given by

H =

∫

dk
[

ψ†
1(k) ψ

†
2(k)

]

[

m k

k −m

][

ψ1(k)

ψ2(k)

]

. (6.2)

Canonical quantization leads to the following anti-commutation relations

{ψ1(k), ψ
†
1(p)} = {ψ2(k), ψ

†
2(p)} = δ(k − p). (6.3)

In the following we will first define cMERA for free fermions and continue with applying

it to a quantum quench between the zero and finite temperature cases.

6.1 cMERA for free fermion

We will simply follow the definition of IR state |Ω〉 in [17]:

ψ1(k) |Ω〉 = ψ†
2(k) |Ω〉 = 0. (6.4)

As we will come back later, we need some modification of |Ω〉 for the UV region to get

sensible results and thus we will focus only on the IR physics which can be studied from

|Ω〉 defined in the above.

4In the appendix A, we will present another definition of metric, which also leads to the result guu =

g(u)2.
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The true physical ground state of the Hamiltonian (6.2) is

χ1(k) |0〉 = χ†
2(k) |0〉 = 0. (6.5)

The χ1(k) and χ2(k) fields are the eigenvectors of (6.2)

χ1(k) = αkψ1(k)− βkψ2(k), χ2(k) = βkψ1(k) + αkψ2(k), (6.6)

where

αk =
−k

√

k2 + (ǫk −m)2
, βk =

ǫk −m
√

k2 + (ǫk −m)2
, (6.7)

and ǫk =
√
k2 +m2 with the following normalization

|αk|2 + |βk|2 = 1.

It is also useful to determine the unentangled IR state in terms of eigenvectors of (6.2)

[αk χ1(k) + βk χ2(k)] |Ω〉 =
[

−βk χ†
1(k) + αk χ

†
2(k)

]

|Ω〉 = 0. (6.8)

We want to relate the unentangled IR state to the UV state via the unitary transforma-

tion (2.1). We will do so by assuming the following disentanglers

K̂(u) = i

∫

dk
[

gk(u)χ
†
1(k)χ2(k) + g∗k(u)χ1(k)χ

†
2(k)

]

(6.9)

where we choose gk(u), which is generally a complex-value function, to be of the follow-

ing form

gk(u) = g(u)Γ
(

ke−u/Λ
) ke−u

Λ
.

Note that this choice of gk(u), which is different from the scalar case, is necessary to get

the ground state (6.5) in an approximation justified in the IR region k ≪ Λ. We can now

define the creation and annihilation operators at arbitrary energy scale u by the following

Pe
−i

∫ u
uIR

K̂(s)ds

(

χ1(k)

χ2(k)

)

P̃ e
i
∫ u
uIR

K̂(s)ds
= Mk(u)

(

χ1(k)

χ2(k)

)

, (6.10)

Pe
−i

∫ u
uIR

K̂(s)ds

(

χ†
1(k)

χ†
2(k)

)

P̃ e
i
∫ u
uIR

K̂(s)ds
= Nk(u)

(

χ†
1(k)

χ†
2(k)

)

. (6.11)

The matrices Mk(u) and Nk(u) have the following form

Mk(u) ≡ P̃ exp

∫ u

uIR

Gk(s)ds =

(

Pk(u) Qk(u)

−Q∗
k(u) P

∗
k (u)

)

, (6.12)

Nk(u) ≡ P̃ exp

∫ u

uIR

Hk(s)ds =

(

P ∗
k (u) Q∗

k(u)

−Qk(u) Pk(u)

)

, (6.13)
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where we are interested in a gauge that Gk(u) and Hk(u) are defined by

Gk(u) =

(

0 −gk(u)
g∗k(u) 0

)

, Hk(u) =

(

0 −g∗k(u)
gk(u) 0

)

. (6.14)

Note that Mk(u) and Nk(u) both preserve the anti-commutation relations of χ fields. Also

note that we have |Pk(u)|2 + |Qk(u)|2 = 1 which together with

Mk(u)M
†
k(u) = 1, Nk(u)N

†
k(u) = 1,

is showing that these unitary transformations belong to SU(2) and we absorb the effect of

the third generator in the phase ambiguity between Ak and Bk.

6.2 Quantum quench

In a very similar way of what we did for the free scalar field, an excited state due to

quantum quench can be approximated by the following boundary state |B〉

|Ψ(0)〉 = e−
β
4
H |B〉

= N · exp
[

±
∫

dkx e
−βǫk/2 χ†

1(k)χ2(k)

]

|0〉 (6.15)

where + and − signs correspond to Neumann and Dirichlet boundary conditions. Note

that we could have defined the boundary state with ψ fields, instead of χ fields, where

in that case the vacuum state |0〉 should be replaced by the IR state |Ω〉 defined above.

Using (6.3) and (6.6) the above UV mixed state can be determined as

[Akχ1(k) +Bkχ2(k)] |Ψ(0)〉 = 0,
[

−Bkχ
†
1(k) +Akχ

†
2(k)

]

|Ψ(0)〉 = 0 (6.16)

where

Ak =
1√

1 + e−βǫk
, Bk = ∓ e−βǫk/2

√
1 + e−βǫk

, (6.17)

and we have normalized by |Ak|2 + |Bk|2 = 1. In the following we will discuss about the

g(u) function after considering the more general case of time dependent quantum quenches.

6.3 Time dependent excited state

The time evolution for the free fermion is simply defined similar to the case of free scalar by

|Ψ(0, t)〉 = e−
β
4
H |B〉

= N · exp
[

±
∫

dkx e
−βǫk/2e−2iǫkt χ†

1(k)χ2(k)

]

|0〉. (6.18)

In this case Ak and Bk take the following form

Ak =
1√

1 + e−βǫk
eiǫkt+iθk(t), Bk = ∓ e−βǫk/2

√
1 + e−βǫk

e−iǫkt+iθk(t), (6.19)
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where θk(t) is again the ambiguity between Ak and Bk which does not change the UV

state, but as in the scalar case the intermediate states depend on it.

From now on we will focus on the case of u = 0 that one can easily find the following

from (6.12)

G

(

log
k

Λ

)

=

∫ 0

log k
Λ

Gk(u)du− k
dMk(0)

dk
·M−1

k (0) (6.20)

where Gk(u) = Mk(u)Gk(u)M
−1
k (u). Note that the non-Abilean structure makes this

equation complicated comparing it to its counterpart in the scalar case.

Since the UV and IR states are related by

(Ak, Bk) = (αk, βk) ·Mk(0), (6.21)

Mk(0) could be found as

Pk(0) = αkAk + βB∗
k, Qk(0) = αkBk − βkA

∗
k. (6.22)

Note that our choice (6.7) does not satisfy the relation MΛ(0) = 1, which immediately

comes from the definition of Mk(u). However, this is not an important problem as long as

we focus on the IR region k ≪ Λ. This claim was also confirmed in [17] from a different

argument. Thus we will focus on this IR region below, assuming that there is a modification

of |Ω〉 in the UV region so that MΛ(0) = 1 is satisfied.5

We will choose θk(t) such that the form of (6.14) is preserved. The diagonal and

off-diagonal components of integral equation (6.20) correspondingly leads to

−∂θk
∂k

=
kt

ǫk
tanh (βǫk/2) + i

ǫk
mk

∫ 0

log
|k|
Λ

[Gk(u)]11 du±H1(k, t), (6.23)

g

(

log
k

Λ

)

=
1

2

mk

ǫ2k
−
∫ 0

log
|k|
Λ

{

[Gk(u)]12 +
k

m
[Gk(u)]11

}

du±H2 (k, t) , (6.24)

where

H1(k, t) =
k2

4mǫk cosh (βǫk/2)
[4t cos 2θk + β sin 2θk] , (6.25)

H2(k, t) =
k2

4ǫk cosh (βǫk/2)
(β cos 2θk − 4t sin 2θk) + iǫkH1(k, t). (6.26)

This complicated equations arise because of the non-abelian group structure which is man-

ifest in (6.14). To study the time dependence of g(u), one has to solve these integral

equations (6.23) and (6.24) at least numerically. In what follows we will just focus on a

simple case of t = 0, which corresponds to just after the quantum quench. In this case g(u)

is a real valued function and we can forget about the non-abelian structure. However, in

the massless theory, it is clear from the above expressions that g(u) scales like t/β at late

time for kβ ≪ 1. Thus the behavior of entanglement entropy and the holographic metric

are qualitatively similar to those for the free scalar theories discussed previously.

5This is related to the observation that (6.7) does not include the UV divergences Λ, while analogous

expressions in free scalar field theories do include Λ as in (2.5).
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Figure 6. The plot of |g(u)| of massless free fermions (m = 0) just after the quench for Neumann

(blue curve) and Dirichlet (red curve) boundary conditions. We have chosen β = 2.

6.4 Metric just after quantum quench

As mentioned above, in this case g(u) is a real function, thus we can replace Gk(u) by

Gk(u) in (6.23) and (6.24) and we can easily find

Mk(u) =

(

cosφk(u) − sinφk(u)

sinφk(u) cosφk(u)

)

(6.27)

where

φk(u) =

∫ u

uIR

gk(s)ds. (6.28)

Thus in the case of u = 0 one can find

sin 2φk = −k tanh (βǫk/2)∓m sech (βǫk/2)

ǫk
(6.29)

which leads to

g (u) =
1

2

mΛeu

ǫ2u
− 1

2
arcsin

[

Λeu tanh (βǫu/2)±m sech (βǫu/2)

ǫu

]

± Λ2e2uβ

4ǫu cosh (βǫu/2)
, (6.30)

with the identification k = Λeu. Note that the above g(u) in the β → ∞ limit reduces to

the known result previously discussed in [16]. This function is plotted for both boundary

conditions in figure 6. Following the arguments in [16], again we find the holographic metric

as guu(u) ∝ g(u)2.

7 Finite chemical potential

Finally we would like to discuss a generalization of our finite temperature cMERA by

including a chemical potential µ. We will study both free scalar and fermion theory.

Especially, in the latter theory, we will find a sharp peak of g(u) at the fermi level.
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Figure 7. The plot of g(u) (red curve) for the massive scalar field as a function of k = Λeu. We

chose m = β = 1 and µ = 0.999. We also inserted the plot of g(u) (blue curve) for the massless

scalar field for β = 1 as a reference.

7.1 Free scalar field theory with chemical potential

For this purpose, in the free scalar field example, we need to replace (5.1) with6

|Ψ(0, t)〉th = N · e−it(H1+H2) ·
∏

k

∞
∑

nk=0

e−β(ǫk−µ)nk/2|nk〉1|nk〉2

= N · exp
(
∫

dke−
β(ǫk−µ)

2 e−2iǫkta†kã
†
k

)

|0〉|0̃〉. (7.1)

We can introduce the parameter µ for quantum quench in the same way.

Since we encounter the divergence when ǫk < µ, we need to assume a non-vanishing

scalar field mass m and restrict the values of chemical potential in the range |µ| < m. Let

us focus on the t = 0 state. The function g(u) is determined as follows

g(u) =
k2

2(k2 +m2)
− βk2

4
√
k2 +m2 sinh β(

√
k2+m2−µ)

2

. (7.2)

It is interesting to note that the absolute value of this function approaches |g(u)| = 1 when

k is very small if µ gets very close to m as we showed in figure 7. Remembering that the

metric guu is proportional to g(u)2, this suggests that in the charged thermal system, guu
gets larger in the IR region.

7.2 Free fermion theory with chemical potential

Now we turn to the free Dirac fermion theory with the chemical potential µ. In this case,

there is no constraint for the values of µ. For simplicity we assume the massless limit

m = 0 and then the function g(u), which is proportional to
√
guu, is evaluated by slightly

modifying (6.30) as follows:

g (u) = −1

2
arcsin [tanh (β(Λeu − µ)/2)]± Λeuβ

4 cosh (β(Λeu − µ)/2)
. (7.3)

6One may think that we should consider a complex scalar field in order to have a charged field. However,

this is equivalent to a real scalar with the chemical potential µ and that with −µ. In this sense we can

directly apply our argument below to this complex scalar field theory.
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Figure 8. The plots of |g(u)| for the massless fermion field as a function of k = Λeu, for the two

boundary conditions. We chose β = 2 and µ = 5.

In the UV limit u → 0, we get the same result g(0) = −π
4 as that for µ = 0. On the

other hand, in the IR region we find a non-trivial effect of finite µ. In general we find that

|g(u)| enhances in the IR (see figure 8). Especially there is a peak at Λeu(= k) = µ i.e.

at the fermi level and there g(u) is estimated as |g(u)| ≃ βµ
4 , which can be taken to be

arbitrary large by choosing a large value of µ. This seems to be analogous to a changed

extremal black hole in AdS spaces, where the fermi surface scale z = 1/µ can be related to

the black hole horizon as expected from the AdS/CFT.

8 Conclusions

In this paper, we studied constructions and properties of cMERA beyond ground states

by focusing on the free field theories. We analyzed cMERA for excited states defined by

quantum quenches and computed its holographic metric guu in the extra dimension. From

the view point of cMERA, this metric measures how much quantum entanglement exists

at a given length scale. The time evolution of this metric looks like gravitational wave

propagations inside an analogue of light cone. We found that there is a non-trivial region

where the metric gets very large and we identified it as the region inside the horizon.

Indeed, the cMERA result shows that this region grows linearly with the time evolution,

which is consistent with the proposed gravity dual of quantum quenches.

Moreover, motivated by the relation between (both holographic and field theoretic)

descriptions of quantum quenches and finite temperature CFTs, we proposed a cMERA

construction at finite temperature. The holographic metric calculated in this cMERA

construction agrees with the gravity dual prediction.

Finally we analyzed the cMERA in the presence of chemical potential. We found a

new behavior that the metric gets large in the IR region. Especially in fermion theories,

we find that the metric can have a large peak at the fermi surface, which might be related

to the extremal black hole horizon.

There are many future problems. Since we have considered free field theories, we

encountered the oscillations of metric function guu. We believe this is an artifact of free

field theory because in interacting theories, the sectors with different momentum are mixed
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by the interactions and the oscillations with a fixed value of momentum will be washed out.

It will be an important future problem to confirm this explicitly. It will also be interesting to

find a cMERA description of localized excitations instead of the translationally invariant

ones discussed in this paper. This will be related to the local quenches [42] and there

have been examples of their gravity duals [43–46]. One more intriguing future problem is

to explore universal properties of excited states from the viewpoint of cMERA (refer to

recent results from holography and CFT calculations [47–54]).
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A Another definition of metric for finite temperature cMERA

The UV density matrix for the finite temperature free scalar field theory in d+1 dimension

is given by

|ΨUV〉 =
1

Z(β)
1
2

exp

(
∫

ddke−
ǫkβ

2 a†kã
†
k

)

∣

∣0, 0̃
〉

,

Z(β) = Tre−βH.

(A.1)

The state at energy scale u (Used math mode for u) is given by

|Ψ(u)〉 = e−iuLP̃e(i
∫ 0
u K̂1(s)ds) · P̃e(i

∫ 0
u K̂1(s)ds) |ΨUV〉 ,

K1(s) =
i

2

∫

ddk

∫

|k|≤Λes
g(s)

(

a†ka
†
−k − aka−k

)

,

K2(s) =
i

2

∫

ddk

∫

|k|≤Λes
g(s)

(

ã†kã
†
−k − ãkã−k

)

.

(A.2)
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|Φ(u)〉 is given by

|Φ(u)〉 = eiuL |Ψ(u)〉 . (A.3)

The metric along the extra holographic direction is given by

guu(u) = N−1

(

1−
∣

∣

∣
〈Ψ(u)| eidu·L |Ψ(u+ du)〉

∣

∣

∣

2
)

= N−1
(

1−
∣

∣

〈

Φ(u)
∣

∣Φ(u+ du)
〉
∣

∣

2
)

∼
[

2 〈Φ(u)|K1(u)K2(u) |Φ(u)〉+ 〈Φ(u)|
(

K2
1 (u) +K2

2 (u)
)

|Φ(u)〉
− |〈Φ(u)| (K1(u) +K2(u)) |Φ(u)〉|2

]

du2

=
[

2 〈ΨUV|K1(u)K2(u) |ΨUV〉+ 〈ΨUV|K2
1 (u) +K2

2 (u) |ΨUV〉
]

du2

(A.4)

where

〈Φ(u)| (K1(u) +K2(u)) |Φ(u)〉 = 〈ΨUV| (K1(u) +K2(u)) |ΨUV〉 = 0. (A.5)

K2
1 (u) is given by

K2
1 (u) =

−1

4

∫

|k|≤Λ·eu
ddk

∫

|p|≤Λ·eu
ddp g2(u) (A.6)

×
(

a†ka
†
−ka

†
pa

†
−p − a†ka

†
−kapa−p − aka−ka

†
pa

†
−p + aka−kapa−p

)

.

〈ΨUV|K2
1 (u) |ΨUV〉 =

1

4

∫

|k|≤Λ·eu
ddk

∫

|p|≤Λ·eu
ddp g2(u)

× 〈ΨUV|
(

a†ka
†
−kapa−p + aka−ka

†
pa

†
−p

)

|ΨUV〉 (A.7)

=
g2(u)

4Z(β)

∫

|k|≤Λ·eu
ddk

∫

|p|≤Λ·eu
ddptr

(

ρ a†ka
†
−kapa−p + ρ aka−ka

†
pa

†
−p

)

,

where

tr
(

ρ a†ka
†
−kapa−p

)

= tr
(

apa−p ρ a
†
ka

†
−k

)

= tr
(

ρapa−pa
†
ka

†
−k

)

e−βǫp . (A.8)

Then,

〈ΨUV|K2
1 (u) |ΨUV〉 =

g2(u)

4Z(β)

∫

|k|≤Λ·eu
ddk

∫

|p|≤Λ·eu
ddp

(

1 + e−2βǫk
)

tr
(

e−βHaka−ka
†
pa

†
−p

)

=
g2(u)

4

∫

|k|≤Λ·eu
ddk

∫

|p|≤Λ·eu
ddp

(

1 + e−2βǫk
)

×

(

[

a−k, a
†
p

]

·
[

ak, a
†
−p

]

+
[

ak, a
†
p

]

·
[

a−k, a
†
−p

])

(1− e−βǫk)
2

=
g2(u)

4

∫

|k|≤Λ·eu
ddk

2
(

1 + e−2β
)

(1− e−βǫk)
2 . (A.9)
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Then,

〈ΨUV|
(

K2
1 (u)+K

2
2 (u)

)

|ΨUV〉 = g2(u)

∫

|k|≤Λ·eu
ddk

δ(0)
(

1 + e−2β
)

(1− e−βǫk)
2 . (A.10)

K1(u) ·K2(u) =
−g2(u)

4

∫

|p|≤Λ·eu
ddp

∫

|k|≤Λ·eu
ddk (A.11)

×
{

a†pa
†
−pã

†
kã

†
−k − a†pa

†
−pãkã−k − apa−pã

†
kã

†
−k + apa−pãkã−k

}

.

The second term and third term disappear.

〈ΨUV|
(

a†pa
†
−pã

†
kã

†
−k + apa−pãkã−k

)

|ΨUV〉 =
tr
{

e−βH
(

a†pa
†
−pã

†
kã

†
−k + apa−pãkã−k

)}

Z(β)

=
tr
(

e−βHaka−ka
†
pa

†
−p

)

e−βǫk + tr
(

e−βHapa−pa
†
ka

†
−k

)

e−βǫk

Z(β)
(A.12)

= 2







(

[

a−k, a
†
p

]

·
[

ak, a
†
−p

]

+
[

ak, a
†
p

]

·
[

a−k, a
†
−p

])

(1− e−βǫk)
2







e−βǫk .

Then, we find

〈ΨUV|K1(u)K2(u) |ΨUV〉 = −g2(u)
∫

|p|≤Λ·eu
ddp

δ(0)e−βǫk

(1− e−βǫk)2
(A.13)

2 〈ΨUV|K1(u)K2(u) |ΨUV〉+ 〈ΨUV|K2
1 (u) +K2

2 (u) |ΨUV〉 = g2(u) · N ,

N =

∫

|p|≤Λ·eu
ddp (A.14)

Finally we obtain

guu(u) = χ2(u) (A.15)
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