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1 Introduction

Recently, the flat band (FB) is attracting much interest after most strong correlation
phenomena were observed in the magic-angle twisted bilayer graphene (MATBG) [1, 2],
the first material realizing the flat band. It forms a huge degeneracy of localized eigenstates
so that even a small interaction or impurities can cause a system instability toward various
strong correlation phenomena including ferromagnetism [3–8], superconductivity [9–11],
Mott insulators [12], and fractional quantum Hall effects (FQHE) [13–19]. In fact, it was
more than 10 years ago when it was predicted that FQHE would be realized in the flat band
without the external magnetic field. Extensive works have been done thereafter, to create
artificial lattices that can generate the flat band by the geometric frustration [20–25]. The
experimental realizations of such lattices were successful only in the optical lattices [26–34]
until the invention of the MATBG. The prediction was finally fulfilled after a decade when
the fractional Chern insulator was observed in the MATBG.

One well-known example of flat-band generating lattices is the Lieb lattice, which has
a band structure with a flat band together with a Dirac cone crossing the FB by its tip.
See figures 1(a) and 1(b). Lieb lattice has been realized in photonic lattices [29–33], on
metal substrates [35, 36], and in organic frameworks [37], while its inorganic realization is
still awaiting.

The flat band has infinitely strong coupling because the effective coupling can be
defined as the ratio of the potential and the kinetic energies and the latter is quenched.
Therefore the holographic description [38–45] of it would be very interesting. There have
been many interesting spectral functions of fermions [46–54] and one particularly interesting
one is the work by Laia and Tong [55] where it was shown that a flat band can be realized
if one chooses a particular boundary action.
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(a) Lieb lattice. (b) Gapless (δ = 0). (c) Gapped (δ = 0.1).

Figure 1. Lieb lattice and its band structure. (a) Lieb lattice. (b) The energy band for δ = 0 has
a Dirac cone and a flat band. (c) δ generates a gap between the upper and lower bands.

The ideal flat band model should have a flat that is band well separated from other
bands. Only in such case, observed phenomena can be safely attributed to the flat band.
The flat-band electrons move much more slowly than those in other bands so that, when
two bands coexist, the effect of the flat band would not be clear. In order to get a well
isolated flat band from the Lieb lattice band, we need to gap out the Dirac band.

In this paper, we first point out that the model of ref. [55] actually describes an analog
of the Lieb lattice which has a flat band crossed by a Dirac band. In this holographic
realization, however, we emphasize that the Dirac band has a branch cut singularity rather
than a pole, unlike weakly interacting systems. It can be interpreted as a consequence of
the spectral transfer from the Dirac band to the flat band. Since such a transfer is one
of the characteristic phenomena of strong correlation, it is interesting by itself. However,
it also means that the flat band in the model does not correspond to a band that is well
separated from other bands.

We will introduce an exactly solvable holographic model where the flat band is well
separated from the other bands by gapping the Dirac band. We identify the gap generating
parameter of the holographic model in terms of the one in the lattice model by comparing
the two models.

We also find a few other ways to quantize the holographic fermions by finding new
boundary actions. We express the Green functions in the new quantizations in terms of
those in the standard quantization.

2 Realizing flat bands in lattice and holographic models

2.1 The tight-binding model of the Lieb lattice

The tight-binding Hamiltonian of the Lieb lattice is given by [11]

H =
∑

~R∈Lattice

[(1 + δ)(c†~R,Bc~R,A + c†~R,C
c~R,B) + (1− δ)(c†~R+x̂,B

c~R,A + c†~R−ŷ,C
c~R,B) + h.c.]

=
∫
BZ

d2~k{[(1 + δ) + (1− δ)eikx ]c†~k,Ac~k,B + [(1 + δ) + (1− δ)e−iky ]c†~k,Bc~k,C + h.c.},

(2.1)
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where the A, B, and C label the atoms in a unit cell enclosed by the cyan dashed line
in figure 1(a). The lattice constant a is set to be 1 and δ is the staggered hopping pa-
rameter. Notice that the second line comes by the Fourier transform c~R,j =

∫
BZ c~k,je

i~k·~R

with j = A,B,C.
Considering the nearest neighbor hoppings only, it is not difficult to show that the

dispersion relation of the above tight-binding model is given by

ε~k = 0,±2
√

(1 + δ2) + (1− δ2)(cos kx + cos ky)/2, (2.2)

and the gap between the upper and lower bands at the kx = ky = π (M -point) is

∆gap/2 = 2
√

2|δ|. (2.3)

The band structures of this model for gapless and gapped cases are plotted in figures 1(b)
and 1(c), respectively.

One should notice that the sum over the discrete lattice is replaced by the integral over
the momentum over the Brillouin zone, which should be replaced by the infinite momentum
space when we take the low energy limit. In this limit, realizing a lattice is reduced to
realizing the band structure near the Γ point. This is the sense of introducing the lattice
structure in holographic theory. After the obvious scale in which lattice constants are taken
to be zero so that the Brillouin zone becomes infinite, the other scales are generated by
the interaction terms. In the previous work of some of the authors, a few interesting band
structures were generated by considering the interaction term of the form ΦAψ̄ΓAψ with
symmetry breaking condensation of ΦA field [50].

2.2 Holographic flat band models

The fermion action is given by the sum of a bulk action and a boundary action Sbulk +Sbdy,
where

Sbulk =
∫

bulk
d4x
√
−giψ̄

[1
2(
−→
/D −
←−
/D)−m− Φ

]
ψ, (2.4)

ds2 = gABdxAdxB = 1
u2 (−fdt2 + dx2 + dy2) + du2

fu2 , (2.5)

ψ̄ = ψ†Γt,
−→
/D = Γae B

a (∂B + 1
4ωBcdΓ

cd − iqAB), (2.6)

f = 1−
(

1 + 1
4u

2
hµ

2
)(

u

uh

)3
+ 1

4u
2
hµ

2
(
u

uh

)4
, (2.7)

At = µ

(
1− u

uh

)
, T = 1

4πuh

(
3− 1

4u
2
hµ

2
)
. (2.8)

The indices A,B, · · · are for the bulk spacetime denoting (t, x, y, u), and a, b, · · · are the
tangent space indices denoting (t, x, y, u). For simplicity, we take the background metric
fixed and we consider the configuration of the scalar field where only the source term is
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present so that an analytic result is allowed. Our gamma matrices are

Γt = σ1 ⊗ iσ2 =
(

0 iσ2

iσ2 0

)
, Γx = σ1 ⊗ σ1 =

(
0 σ1

σ1 0

)
, (2.9)

Γy = σ1 ⊗ σ3 =
(

0 σ3

σ3 0

)
, Γu = σ3 ⊗ σ0 =

(
σ0 0
0 −σ0

)
, (2.10)

Γ5 = iΓtΓxΓyΓu, Γab = 1
2[Γa,Γb] . (2.11)

Taking the derivative of the bulk action, we have

δSbulk = (EOM term) + 1
2

∫
bdy

d3x
√
−h(ψ̄iΓuδψ − δψ̄iΓuψ), (2.12)

where h = gguu and the bulk Dirac equation is given by

(
−→
/D −m− Φ)ψ = 0. (2.13)

To simply deal with the equation of motion, we will take an ansatz that

ψ(t, x, y, u) = (−h)−1/4e−iωt+ikxx+ikyyφ(u). (2.14)

The boundary action should be chosen such that its variation kills the unwanted degrees
of freedom in the second term of eq. (2.12) so that the equation of motion of the wanted
degrees of freedom can be granted, which significantly restricts the possibilities. For detail,
see the appendix. It turns out that to get the flat band, the choice of the boundary action
is the key [55]. When we take a boundary action of the form

Sbdy = 1
2

∫
bdy

d3x
√
−hψ̄Γψ, (2.15)

the spectral function has a flat band for Γ = Γxy [55]. We find that there are two more
possible choices Γ = ±Γ5x so that available quantizations are as follows:

Γ = ±iI4, ±Γxy, ±Γ5x. (2.16)

The role of these boundary actions is to project out half of the degrees of freedom and the
first choices ±iI4 have been called standard (+ sign) and alternative (− sign) quantization
respectively, and the second two choices are called mixed quantization without distinguish-
ing the signs because the sign difference does not make any essential difference for the mixed
quantization. For the third ones, they are new and we call them chiral quantization where
the sign change in the boundary action gives a sign flip of ky in the final Green function.
We will see that flat bands exist only for the mixed quantization with Sbdy ∼ ψ̄Γxyψ.
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2.3 Green functions for various boundary actions

In this subsection, we consider the general problem of possible boundary actions that can
project specific two components which are the boundary degrees of freedom out of four
bulk components. Then the boundary Green functions are calculated accordingly.

Taking the derivative of the bulk action, we have

δSbulk = (EOM term) + 1
2

∫
bdy

d3x
√
−h(ψ̄iΓuδψ − δψ̄iΓuψ), (2.17)

h = gguu, (
−→
/D −m− Φ)ψ = 0. (2.18)

The near-boundary solution of the equation of motion is given by [56]

ψ = (−h)−1/4e−iωt+i
~k·~xφ, φ '


a1u
−m + b1u

m+1

a2u
−m + b2u

m+1

c1u
−m+1 + d1u

m

c2u
−m+1 + d2u

m

. (2.19)

When we take a boundary action of the form

Sbdy = 1
2

∫
bdy

d3x
√
−hψ̄Γψ = 1

2

∫
bdy

d3xφ̄Γφ, (2.20)

then we have

δStot = 1
2

∫
bdy

d3x[φ̄(Γ + iΓu)(δφ) + (δφ̄)(Γ− iΓu)φ]

:=
∫

bdy
d3x[φ̄Γ+(δφ) + (δφ̄)Γ−φ],

(2.21)

where φ̄ := φ†Γt and Γ± := 1
2(Γ± iΓu). For the number of δψi’s to be reduced from 4 to

2, we need the following conditions for the boundary actions:

rank Γ± = 2 ⇒ rank(Γ± iΓu) = 2, (2.22)

[φ̄Γ+(δφ)]† = (δφ̄)Γ−φ ⇒ (ΓtΓ+)† = ΓtΓ− ⇒ Γ = ΓtΓ†Γt ⇒ Γ† = ΓtΓΓt. (2.23)

Substituting the near-boundary solution to the total action, for 0 < |m| < 1
2 ,

Stot = Sbdy = 1
2

∫
bdy

d3xφ̄Γφ

:= 1
2

∫
bdy

d3x

(
Au−m +Bum+1

Cu−m+1 +Dum

)(
γ11 γ12

γ21 γ22

)(
Au−m +Bum+1

Cu−m+1 +Dum

)

= 1
2

∫
bdy: u→ 0

d3x(Āγ21Au
−2m + Āγ22D+ D̄γ11A+ D̄γ12Du

2m) + (vanishing terms),

(2.24)
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where Ā := A†iσ2 and D̄ := D†iσ2. For the total action to converge, γ12 = 0 if−1
2 < m < 0,

while γ21 = 0 if 0 < m < 1
2 . In any case, if we define a 4-component spinor by φ0 :=

(
A
D

)
and φ̄0 := φ†0Γt, then finite part of the total action can be written as

Stot, on-shell = 1
2

∫
bdy

d3x(Āγ22D + D̄γ11A) = 1
2

∫
bdy

d3xφ̄0

(
γ11 0
0 γ22

)
φ0. (2.25)

Similarly, the finite part of δStot in eq. (2.21) can be written as

δStot =
∫

bdy
d3x

{
φ̄0

[
1
2

((
γ11 0
0 γ22

)
+ iΓu

)]
(δφ0)

+(δφ̄0)
[

1
2

((
γ11 0
0 γ22

)
− iΓu

)]
φ0

}
.

(2.26)

Therefore, without loss of generality, we can assume that Γ has to be in the diagonal form:

Γ =
(
γ11 0
0 γ22

)
. (2.27)

For such Γ’s, the total action converges for all −1
2 < m < 1

2 , and we have

Stot = 1
2

∫
bdy

d3xφ̄0Γφ0 =
∫

bdy
d3x(φ̄0Γ+φ0 + φ̄0ΓtΓ†+Γtφ0), (2.28)

δStot =
∫

bdy
d3x

{
φ̄0

[1
2(Γ + iΓu)

]
(δφ0) + (δφ̄0)

[1
2(Γ− iΓu)

]
φ0

}
=
∫

bdy
d3x[φ̄0Γ+(δφ0) + (δφ̄0)ΓtΓ†+Γtφ0].

(2.29)

Here, we assumed that ΓtΓ is Hermitian so that δStot is real. This is the reason for eq. (2.23).
If we restrict ourselves to simple boundary actions with Γ ∝ I4,Γ5,Γa,Γ5a,Γab, then

there are eight choices
Γ = ±iI4,±Γ5x,±Γ5y,±Γxy (2.30)

that satisfies the conditions mentioned above. For each of above Γ’s, we have 4×4 projection
operator P:

P := −iΓuΓ+ ⇒ P2 = P, P† = P. (2.31)

Defining J := Pφ0 and C := iPΓuΓtφ0, we obtain

δStot =
∫

bdy
d3x[φ̄0(iΓuP)P(δφ0) + (δφ̄0)ΓtP(iΓuP)†Γtφ0]

=
∫

bdy
d3x[(iPΓuΓtφ0)†(Pδφ0) + (Pδφ0)†(iPΓuΓtφ0)]

=
∫

bdy
d3x[C†(δJ) + (δJ†)C],

(2.32)

Stot =
∫

bdy
d3x(C†J + J†C). (2.33)
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Γ P P Q

iI4
(

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

) (
−i 0 0 0
0 i 0 0

) (
0 0 0 1
0 0 1 0

)

−iI4
(

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

) (
0 0 i 0
0 0 0 −i

) (
0 1 0 0
1 0 0 0

)

Γ5x 1
2

( 1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

)
1√
2

(
−i i 0 0
0 0 i −i

)
1√
2

(
0 0 1 1
1 1 0 0

)

−Γ5x 1
2

(
1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

)
1√
2

(
−i −i 0 0
0 0 i i

)
1√
2

(
0 0 −1 1
−1 1 0 0

)

Γ5y
(

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

) (
0 i 0 0
0 0 0 −i

) (
0 0 1 0
1 0 0 0

)

−Γ5y
(

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

) (
−i 0 0 0
0 0 i 0

) (
0 0 0 1
0 1 0 0

)

Γxy 1
2

(
1 i 0 0
−i 1 0 0
0 0 1 −i
0 0 i 1

)
1√
2

(
−i 1 0 0
0 0 i 1

)
1√
2

(
0 0 −i 1
i 1 0 0

)

−Γxy 1
2

(
1 −i 0 0
i 1 0 0
0 0 1 i
0 0 −i 1

)
1√
2

(
−i −1 0 0
0 0 i −1

)
1√
2

(
0 0 i 1
−i 1 0 0

)

Table 1. P, P , and Q matrices table.

As one can see from the table 1, J has only two independent components. Therefore we
want to write J and C as 2-component spinors, which we call J and C respectively. We try
to write

ΓtΓ+ = iΓtΓuP = Q†P, (2.34)

where Q and P are 2×4 matrices. Such choice for each Γ is given in table 1. Then, we have

δStot =
∫

bdy
d3x[(Pδφ0)†(Qφ0) + h.c.] =

∫
bdy

d3x[(δJ†)C + h.c.], (2.35)

Stot = 1
2

∫
bdy

d3x(J†C + h.c.) = 1
2

∫
bdy

d3x(J†GJ + h.c.), (2.36)

where C = Qφ0, J = Pφ0, and C = GJ so that

Qφ0 = GPφ0. (2.37)

Now, J should be free to choose at the boundary so that we can take the derivative with
respect to it. Taking the second derivative of the total on-shell action with respect to J ,
we see that G is the Green function.

Notice that the decomposition of iΓtΓuP into P and Q is not unique by a 2×2 unitary
matrix U : P → UP, Q→ UQ. However, from eq. (2.35), it is obvious that G does not
depend on such a choice of U . For the eight choices listed in eq. (2.30), we tabulate the
solutions for P and Q in table 1. For the standard quantization Γ = iI4, eq. (2.37) together
with Q = ( 0 σ1 ) and P = (−iσ3 0 ) gives

D = −iσ1G
Sσ3A, (2.38)
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(a) Standard (Γ = iI4). (b) Γ = Γxy. (c) Γ = Γ5x.

Figure 2. Holographic spectral functions for different boundary actions Sbdy =
∫

bdy ψ̄Γψ/2 where
Γ = iI4,Γxy,Γ5j with j = x, y. ±Sbdy give essentially the same results with ky ↔ −ky.

where the superscript S represents the standard quantization. Therefore, when we know
GS , we can directly find G’s for other quantizations by using eqs. (2.37) and (2.38). That
is, Q

(
σ0

−iσ1GSσ3

)
A = GP

(
σ0

−iσ1GSσ3

)
A gives

G =
[
Q

(
σ0

−iσ1G
Sσ3

)][
P

(
σ0

−iσ1G
Sσ3

)]−1

. (2.39)

The necessary P and Q data are given in table 1. For example, the Green functions GΓ

for Γ = Γ5x,Γxy and GA (where A for the alternative quantization) can be calculated by
the following:

GA = −1
detGS

(
GS11 GS21

GS12G
S
22

)
= − (GS)T

detGS , (2.40)

trGxy = 2 detGS − 2
trGS − trσ2GS

, trG5x = 2 detGS − 2
trGS − trσ1GS

, (2.41)

Gxy = 1
trGS − trσ2GS

(
2 detGS −i trσ1G

S + trσ3G
S

i trσ1G
S + trσ3G

S −2

)
, (2.42)

G5x = 1
trGS − trσ1GS

(
2 detGS − trσ2G

S + i trσ3G
S

− trσ2G
S − i trσ3G

S −2

)
. (2.43)

If we set with ky = 0 in Gxy, the result is consistently reduced to that of [57]. To study the
shape of the Fermi sea or contour plot of the spectral function at the fixed ω, we need the
spectral function as a function of both kx and ky, because there is no rotational symmetry.

The spectral function is defined as the imaginary part of the retarded Green function:

ρA = 2 Im trGA. (2.44)

In figure 2, the spectral functions without scalar coupling are plotted for the zero bulk mass
case. Notice that as we mentioned in the introduction, the spectrum in the Dirac band is
a branch cut that is not a particle spectrum, which is a manifestation of strongly-coupled
nature. The spectrum for the Γxy is very similar to the band structure of the Lieb lattice.
In the section 5, we describe the underlying mechanism for it.
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3 Gapping the Dirac band in the Laia-Tong model

The model for gapping the Dirac band is simply given as the one with scalar coupling Φ 6= 0.
The analytic result for the Green function in the standard quantization with general bulk
fermion mass and non-vanishing scalar configurations was given in our previous work [54]:
for Φ = Φ0u with positive Φ0,

GS = (4µ)
1
2 +mΓ(−2m)Γ (1 +m+ ν)

(k2 − w2) Γ(−m+ ν)Γ(1 + 2m)γ
µkµγ

t, (3.1)

where parameters µ and ν are given by

µ = k2 − w2 + Φ2
0, ν = mΦ0√

µ
. (3.2)

The poles of the Green function are given by those of the gamma function at the non-
positive integers so that the massive spectrum can be read off as

ω2 − k2 = Φ2
0

(
1−m2/(n+m+ 1)2

)
, n = 0, 1, 2 · · · . (3.3)

For m = 0, the tower of the discrete spectrum reduces to a single particle spectrum
ω2 − k2 = Φ2

0, the Green function simplifies to

GS = 1
Φ0 +

√
−ω2 + k2

x + k2
y + Φ2

0

(
ω − kx ky

ky ω + kx

)
, (3.4)

and we have

trGS = 2ω
Φ0 +

√
−ω2 + k2

x + k2
y + Φ2

0

, (3.5)

trGxy =
−2
√
−ω2 + k2

x + k2
y + Φ2

0

ω + iε
, (3.6)

trG5x =
−2
√
−ω2 + k2

x + k2
y + Φ2

0

ω − ky
. (3.7)

The result for the case Γ = Γxy with Φ0 = 0 is consistently reduced to that of [55], checking
the consistency of our calculation. Now notice that trGS ∝ ω, i.e., the k-dependence is
cancelled between GS11 and GS22 as we promised above.

On the other hand, if we include the scalar field coupling, as we can see in figure 3, a
gap is generated between the upper and the lower bands just like the case of the presence
of staggered hopping parameter δ in the tight-binding model shown in figure 1(c). By
matching the gap size of the two models, we can identify

∆gap
2 = 2

√
2 δ︸ ︷︷ ︸

Tight-Binding Model

= Φ0︸︷︷︸
Holographic Model

. (3.8)

So that the turning on the scalar source Φ0 is equivalent to introducing alternation in the
lattice hoping, parametrized by δ. We remark that at the finite temperature, the spectral
weight is not delta function localized at the flat band, unlike the tight-binding model.
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(a) Gapless (Φ0 = 0). (b) Gapped (Φ0 = 2.5).

Figure 3. Holographic realization of Lieb lattice and its gapping. (a) The boundary action
1
2
∫

bdy ψ̄Γxyψ without scalar coupling gives a flat band crossed by a Dirac band. (b) The Φ0
generates a gap between the upper and lower Dirac bands.

4 Laia-Tong model as the holographic Lieb lattice

In non-interacting or weakly interacting systems, it is easy to agree that two models with
the same band structure can be identified. This is because the Green function does not
have features other than the locus of the poles, which is described by the delta function
along the band dispersion. In strongly interacting systems, the Green functions can have
structures other than the locus of the singularity. So we look for further reasoning other
than the spectral shape.

The appearance of the Dirac band both holography as well as in the lattice is by
now well known after the graphene. Perhaps the most serious mystery in the Laia-Tong
model is the reason for the flat band’s appearance since the only feature of the model is the
“boundary condition”. To see what is going on, we should understand the appearance of the
flat band in lattice models. A flat band means the electron moves or should be localized in
a restricted region. It turns out that it can be understood as the cancellation of amplitudes
coming from the neighboring sites so that electrons are confined in a small closed orbit in
a lattice. Such closed orbit is dubbed as the compact localized state (CLS) [59], which are
generators of the flat band. In figure 4, we illustrate such CLS for the Lieb and Kagome
lattices.

What about the Laia-Tong model? How can a “boundary condition” give the flat
band? For this, we should remind ourselves that the role of the boundary condition is to
select two degrees of freedom out of four spinor components in AdS4 or AdS5. The standard
quantization chooses the upper two components, while the alternative quantization select
the lower two. In the Laia-Tong model, so called mixed quantization chooses one from the
upper two and one from the lower two such that their k-dependent contribution cancel pre-
cisely. Such cancellation structure is not so obvious, but the expression of Green functions
in mixed quantization given in (2.42) copied below shows such structure explicitly:

Gxy = 1
trGS − trσ2GS

(
2 detGS −i trσ1G

S + trσ3G
S

i trσ1G
S + trσ3G

S −2

)
.

Since trσ2G
S = 0, the poles of the Green function come from the zeroes of the trGS which
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different positions [81]. Although the compact localized state looks similar 
to the Wannier function, they are quite different in the sense that (i) 
compact localized states usually do not form an orthonormal set while 
Wannier functions do, (ii) a compact localized state is an eigenmode 
while Wannier function is not usually.

A compact localized state is guaranteed to exist when the system has a flat 
band and the corresponding Hamiltonian is described by a tight-binding 
model with a finite hopping range [81]. If the hopping processes are allowed 
within a finite range, each matrix element of the Bloch Hamiltonian HÖkÜ of 
the tight-binding model of such system is in the form of the finite sum of 
Bloch phases. That is, the lmth component of HÖkÜ is given by 

HÖkÜjlm à
Xqlm;1

n1àplm;1

� � �
Xqlm;d

ndàplm;d

hlmÖn1; � � � ; ndÜein1k1 � � � eindkd ; (4) 

where d is the dimension of the system described by d primitive vectors ai, 
ki à k � ai, ni is an integer ranging from an integer plm;i to another integer 
qlm;i, and hlmÖn1; � � � ; ndÜ is a complex coefficient of the Bloch phase 

CLS

1 -1
-1 1

1 -1

site-1 site-2 site-3

NLS

NLS

(a)

1

-1

1

-1

1

-1
1-11-11

Γ

Μ

K

Γ ΜK Γ

(d)

A site B site

(b)

(e)

Unit cell

(c)

2

0

-2

(f)

CLS

NLS

-1
1

-1
1

1 -1 1
1

-1

1

NLS

Unit cell at (0,0)

Figure 1. (a) A compact localized state (CLS) and two non-contractible loop states (NLSs) of the 
nearest neighbor tight-binding model on the kagome lattice. The red dashed box represents the 
unit cell located at R à Ö0; 0Ü. (b) The bilayer square lattice. Hopping parameters corresponding to 
the black and green dashed arrows are 1=2, and those for the red arrows are � 2. (c) A compact 
localized state and two non-contractible loop states of the Lieb lattice model with only the nearest 
neighbor hopping processes. Band structures for the models in (a), (b), and (c) are represented in 
the lower panels (d), (e), and (f), respectively. All the figures are adapted from [81].
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(a) CLS in Kagome lattice.
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(b) CLS in Lieb Lattice.

Figure 4. Compact localized states (CLS) are formed if two neighboring sites in the orbit contribute
hopping amplitudes such that they cancel each other so that an electron can not escape the orbital.
This figures are from ref. [58].

is proportional to ω. That is, the flat band appears if

tr
{
iσ2G

S
}

= 0, and tr
{
GS
}

= ω · (∗). (4.1)

The last identity can be explicitly demonstrated by the analytical form of the Green func-
tion given in eq. (3.4) by (ω+k) + (ω−k) = 2ω. Therefore, in both lattice and holography
models, the flat band comes from the cancellation between the amplitudes contributed
from neighboring degrees of freedom.

Of course, just as in the non-interacting cases, the flat band alone does not characterize
the given lattice. The system is characterized only by the help of the accompanying non-flat
band. Therefore, different lattice models with flat band should be holographically realized
by a particular interaction terms which correctly produces the accompanying non-flat band.

5 Counting degree of freedom in holography

Before we conclude, we want to draw some attention to the counting degrees of freedom
(DOF) in holography which is a bit subtle but important. The subtlety is that, while
each band in the tight-binding theory contributes one DOF, the number of the bands is
not necessarily the same as the DOF in holographic theory. For example, in figure 5, one
can see that there are infinitely many bands, and we can show that, for zero temperature,
they correspond to the simple poles of the gamma functions with non-integer residues.
This is clear from our eq. (3.1) for the source and its sister expression in ref. [54] for the
condensation. Such an infinite tower of bands has been known in the early literature.
See [60, 61] for example. It certainly reveals the presence of a new type of DOF. So the
problem exists not only in this “holographic Lieb lattice model” but also in wide classes of
holographic theories. The Dirac band in holography with a scalar field is also the sum of
the infinite tower at T = 0. At finite temperature/density, however, these poles easily melt
into a fuzzy single band. See figure 5(c). Such melting happen for vanishing bulk fermion
mass even near zero temperature, as shown in figures 6 and 7. Our fuzzy Dirac band is
precisely such a case.
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(a) With source. (b) With condensation. (c) High T with condensation.

Figure 5. Tower of poles. The spectral density function in the mixed quantization near k = 0,
ω = 0.7 in the case of m = − 1

4 , Φ2
0 = 1

2 shows a “tower of poles”.

Although this looks surprising from the tight-binding point of view, it is not really a
mystery. Even in weakly interacting theory, if we include inter-band transition, the spectral
weights can transfer from one band to the other. Then each band’s contribution to the
degree of freedom is not necessarily fixed to be one, although their sum is fixed. Now,
for strongly interacting theory, a macroscopic number of particles can be entangled, and
counting the degrees of freedom based on particle number in a unit cell loses its ground
because entanglement and correlation can reach far beyond one cell. From this point of
view, the appearance of infinitely many bands is not surprising.

6 The effects of charge density and temperature

In this section, we study the effect of finite density and temperature numerically. We use
RN AdS black hole metric and gauge potential and probe scalar field as the background
of the bulk fermion. The charge density ρ always comes with the chemical potential. In
the probe limit where we neglect the effect of the scalar on the background gravity and
gauge fields, ρ and µ are related by the regularity condition at the horizon Auh

= 0 where
At = µ − ρu = µ(1 − u/uh), so that ρ = µ/uh. The fermion couplings to the metric and
the gauge potential are still given by the previous setup. One only needs to care eq. (2.6).
The results are summarized in figure 6.

The effects of the chemical potential and the temperature can be summarized as follows.
Chemical potential itself just shifts the origin of the energy but it is followed by the density
which makes the phenomena complicated. The flat band is bent when it is touched by the
Dirac bands. For positive µ, the flat band is bent as if it wants to avoid the Dirac spectra,
and the spectral weight of the upper Dirac band is moved to the lower Dirac band as
well as to the flat band. See also figures 6(b), 6(e), 6(h). As a consequence, the lower
Dirac band is strengthened at the price of the weakened lower one. Such bending and the
spectral weight transfer are the two most important strong correlation effects appearing in
our investigation.
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(a) Φ = 0, µ = 0, T = 0.01. (b) Φ = 0, µ = −2, T = 0.01. (c) Φ = 0, µ = 0, T = 0.2.

(d) Φ = u, µ = 0, T = 0.01. (e) Φ = u, µ = −2, T = 0.01. (f) Φ = u, µ = 0, T = 0.2.

(g) Φ = u2, µ = 0, T = 0.01. (h) Φ=u2, µ=−2, T =0.01. (i) Φ = u2, µ = 0, T = 0.2.

Figure 6. The effects of chemical potential ((b), (e), (h): the 2nd column) and temperature ((c),
(f), (i): the 3rd column). The first row figures ((a), (b), (c)) are for Φ = 0. The second row ((d),
(e), (f)) is for the scalar source, the third row ((g), (h), (i)) are for the scalar condensation.

In the presence of the gap, the bending effect is very similar to the hybridization of
the local f-band and parabolic band in the Kondo lattice system. Indeed, what we see in
figures 6(b), 6(e), 6(h) is the holographic version of the hybridization effect, since it is due
to the presence of the off-diagonal terms.

The effect of the temperature is to make the spectrum fuzzy 6(c), 6(f), 6(i), which can
be understood since the degrees of freedom will be spread due to the thermal excitations.
Therefore when the temperature T is high enough, all the gaps will be closed by the
population of fuzzy spectral weights. It is truly interesting to see that the holographic
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µ −2 −1 0 1 2T

0.01

0.1

0.2

0.3

0.4

(a) Non-Interacting (Φ = 0).

µ −2 −1 0 1 2T

0.01

0.1

0.2

0.3

0.4

(b) Source (Φ = Φ0u with Φ0 = 1).

µ −2 −1 0 1 2T

0.01

0.1

0.2

0.3

0.4

(c) Condensation (Φ = Φ0u
2 with Φ0 = 1).

Figure 7. Evolution of the effects of charge density and temperature in the mixed quantization.
The tables show the spectral density functions for various density and temperature T in kx–ω plane
(a) without Yukawa interaction, (b) with interaction of fermion with scalar source, and (c) with
interaction of fermion with scalar condensation.

calculation can reveal such effects at ease. More evolutions of the spectral data as µ and
T vary are given in figure 7.

7 Taking care of the gravity back reaction

So far, all the calculations were first done in the probe limit. Here we take care of the
gravity back reaction to show that the result does not change the qualitative features of
the probe limit calculations. It turns out that the calculation time for a one process takes
more than 20 times of CPU time. Therefore, the probe limit calculation has certainly a
merit at the discovery stage.
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Our action is given by

Sbackground =
∫

d4x
√
−g

[
R+ 6

L2 −
1
4FµνF

µν + (∂µΦ)2 + 2Φ2
]
, (7.1)

where L = 1. When we take ansatz

ds2 = 1
u2 (−fχdt2 + dx2 + dy2) + du2

fu2 , (7.2)

f = f(u), χ = χ(u), A = At(u)dt, Φ = Φ(u), (7.3)

the equations of motion are as follows [62]:

f ′ − 3f
u

+ 3
u

+ fχ′

2χ −
A′2t u

3

4χ + Φ2

u
= 0, (7.4)

χ′ + Φ′2χu = 0, (7.5)

A′′t −
χ′A′t
2χ = 0, (7.6)

Φ′′ +
(
f ′

f
− 2
u

+ χ′

2χ

)
Φ′ + 2

fu2 Φ = 0. (7.7)

The asymptotic behavior of the background fields near the boundary is given by

At ≈ µ− ρu+ · · · , (7.8)
Φ ≈ Φ−u+ Φ+u

2 + · · · . (7.9)

In principle, we should impose boundary condition at u = 0 and u = uh as follows:

f(uh) = 0, χ(0) = 1, (7.10)
µ = control parameter, A(uh) = 0, (7.11)

Φ− = control parameter, Φ(uh) = finite. (7.12)

However, to avoid infinity in numerical calculation, we cut off domain as u ∈ [ε, uh − ε]
with some small value ε, and then set boundary condition as follows:

f(uh − ε) + εf ′(uh − ε) = 0, χ(ε)− εχ′(ε)− 1 = 0, (7.13)

At(ε)− εA′t(ε)− µ = 0, At(uh − ε) + εA′t(uh − ε) = 0, (7.14)

Φ(ε)− 1
2εΦ

′(ε)− 1
2Φ−ε = 0, ε2Φ′′(uh − ε) = 0. (7.15)

We use the mono-implicit Runge-Kutta (MIRK) method with initial guess

f (i) = 1−
(
u

uh

)3
, χ(i) = 1, A

(i)
t = µ

(
1− u

uh

)
, Φ(i) = 0. (7.16)

The action of fermion perturbation ψ is given by

Sψ =
∫

d4x
√
−giψ̄

[1
2

(−→
/D −
←−
/D

)
−m− iλ(iI4Φ)

]
ψ + 1

2

∫
d3x
√
−hψ̄Γxyψ. (7.17)

Figure 8 shows calculation with back reaction (Φ− = 1), and approximated calculation
without back reation [f = 1 − (1 + u2

hµ
2/4)(u/uh)3 + (u2

hµ
2/4)(u/uh)4, χ = 1, At =

µ(1− u/uh), and Φ = u].
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8. Comparison of calculations with and without back reaction. (a), (e), (i) Background
fields with (solid line) and without (dashed line) back reaction. (b), (f), (j) Fermion spectra with
back reaction. (c), (g), (k) Fermion spectra without back reaction. (d), (h), (l) Spectral function ρ
on kx = ky = 0 with (black line) and without (blue line) back reaction, and position of undeformed
flat band (red dashed line). We set parameters as m = 0, q = 1, λ = 2 (all); µ = 0, uh = 5 ((a),
(b), (c), (d)); µ = −2, uh = 1.5 (e, f, g, h); µ = 0, uh = 1 ((i), (j), (k), (l)).

8 Discussion

In this paper, we realized the flat band separated from the other band by gapping the
Dirac band from the band in the band structure of the Lieb lattice. Such an isolated flat
band will be able to play the role of the hydrogen atom of strongly correlated systems, the
simplest system where various interesting phenomena caused by the strong correlation can
be observed.

We identify the role of the boundary condition used in Laia-Tong model. It play the
role of creating a compact closed state by taking the projection to two degrees of freedom
whose contribution to kinetic energy are cancelled by each other. That is, the mixed BC
corresponds to creating a compact localized state [59] in the lattice that creates the flat
band. So our interpretation is that, before we impose the BC, only the Dirac band exists.
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With the BC, a flat band is created, and the interaction causes the spectral transfer so
that most of the spectral weight of the Dirac band is transferred to the flat band, which is
represented by the holographic spectral function in the mixed quantization.

We also explained the appearance of many bands in the holographic theories and
studied the density effect. All the calculations were first done in the probe limit and later
justify that the gravity back reaction does not change the qualitative features.

Another point to make here is that the tight-binding model of the Lieb lattice is
known to be unstable in any generic perturbation so that there is no stand-alone Lieb
lattice realized in real materials, while the holographic system is a stable system. So we
should identify the Laia-Tong model as a stabilized and realizable model rather than the
unstable tight-binding model. It would be interesting to realize other lattice models in
holographic setups. However, more interesting problems will be to calculate the physical
observables other than the band structure itself, like the conductivity and quantum metric
in the presence of the flat band. It is also interesting to consider the parabolically touching
band with the flat band and its holographic realization. It would also be interesting to
study the holographic system where both the Dirac band and the flat bands are of particle
spectrum since, here, the Dirac band is an unparticle spectrum. We will return to these
problems in future works.
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