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Abstract: Using high-precision numerical analysis, we show that 3+1 dimensional gauge
theories holographically dual to 4 + 1 dimensional Einstein-Maxwell-Chern-Simons theory
undergo a quantum phase transition in the presence of a finite charge density and magnetic
field. The quantum critical theory has dynamical scaling exponent z = 3, and is reached by
tuning a relevant operator of scaling dimension 2. For magnetic field B above the critical
value Bc, the system behaves as a Fermi liquid. As the magnetic field approaches Bc from
the high field side, the specific heat coefficient diverges as 1/(B − Bc), and non-Fermi
liquid behavior sets in. For B < Bc the entropy density s becomes non-vanishing at zero
temperature, and scales according to s ∼

√
Bc −B. At B = Bc, and for small non-zero

temperature T , a new scaling law sets in for which s ∼ T 1/3. Throughout a small region
surrounding the quantum critical point, the ratio s/T 1/3 is given by a universal scaling
function which depends only on the ratio (B −Bc)/T 2/3.

The quantum phase transition involves non-analytic behavior of the specific heat and
magnetization but no change of symmetry. Above the critical field, our numerical results are
consistent with those predicted by the Hertz/Millis theory applied to metamagnetic quan-
tum phase transitions, which also describe non-analytic changes in magnetization without
change of symmetry. Such transitions have been the subject of much experimental investi-
gation recently, especially in the compound Sr3Ru2O7, and we comment on the connections.
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1 Introduction and summary of results

The AdS/CFT correspondence provides a precise and powerful tool for the study of ther-
modynamics, statistical mechanics, and transport properties in a variety of 4-dimensional
gauge theories at finite temperature, charge density, and magnetic field. In the large N
and large ‘t Hooft coupling limits these gauge theories are holographically dual to cer-
tain black brane solutions (with both electric and magnetic charges) to 5-dimensional
Einstein-Maxwell theory. This theory includes a Chern-Simons term, whose coupling k

captures the strength of the chiral anomaly in the Maxwell current. For the special value
k = 2/

√
3 (in our conventions) the bulk Einstein-Maxwell theory is a consistent super-

symmetric truncation of Type IIB or M-theory [1–3], while for k not equal to this value,
supersymmetry is lost.

The study of thermodynamics and transport properties in 4-dimensional Yang-Mills
theory is of direct interest to the physics of heavy ion collisions at RHIC (and soon at the
LHC), where quarks and gluons are subject to high temperatures, strong magnetic fields,
and large currents. Of great interest as well is the possibility of studying novel phases of
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finite density matter at low temperatures. By varying the charge density ρ and magnetic
field B one can search for signals of zero temperature quantum phase transitions [4], as
is done experimentally in, for example, the heavy fermion compounds and high tempera-
ture superconductors.

The thermodynamics of the relevant solutions to 5-dimensional Einstein-Maxwell the-
ory can be understood analytically in two limiting cases. In the absence of magnetic fields,
the relevant supergravity solution is the electrically charged (Reissner-Nordstrom) black
brane in AdS5. At high temperature, its entropy density s scales as T 3, as dictated by
scale invariance in the UV, and in accord with weak coupling Yang-Mills theory. As T
tends to 0, the black brane tends to its extremal form with AdS2×R3 near-horizon geom-
etry, and non-vanishing entropy density. On the one hand, this AdS2 factor is needed in
“semi-holographic” models of non-Fermi liquid behavior [5–8] (see also [9]). On the other
hand the ground state entropy density is rather exotic from the Fermi surface perspective.
It is exotic also from the point of view of the CFTs that arise in the AdS/CFT duality,
which typically contain massless charged bosons that would be expected to condense and
lead to a unique ground state.

The other limiting case consists of vanishing electric charge density and finite mag-
netic field B. At high temperature the entropy density s again scales as T 3, but at low
temperature the analysis of [10] showed that s ∼ BT . The overall numerical coefficient in
this linear scaling law was computed analytically by taking advantage of the near horizon
AdS3 × R2 factor that emerges in this regime. On the CFT side, the low temperature
physics was seen to be controlled by a gas of fermions arising from the lowest Landau level
of the 4-dimensional gauge theory in the presence of a magnetic field.

The general case of nonzero B and ρ was studied in [11], and the low temperature
thermodynamics were found to depend crucially on the value of the Chern-Simons cou-
pling k. This was characterized in terms of flows in parameter space as the temperature
was lowered. These flows head towards three distinct fixed points, depending on the value
of k. For k < 1, the geometry near the horizon can be thought of as AdS2 ×R3 deformed
by the presence of the magnetic field. The entropy density was found to be non-vanishing
at T = 0. Precisely at k = 1, the solutions support a near-horizon warped AdS3 × R2

factor (the warped solutions were studied in the context of topologically massive gravity
in [12, 13]), and the entropy density is again non-vanishing at extremality. For k > 1
(which includes the supersymmetric value k = 2/

√
3), the presence of a moderate strength

(or larger) magnetic field was seen to lead to a precipitous drop in the entropy density as
the temperature was lowered. However, our numerics were found to break down in the
combined regions of very low temperatures and small magnetic fields, presumably as a re-
sult of one of our choices of gauge and, as a result, our analysis stopped short of obtaining
reliable data for the entropy density at low T over the full range of magnetic fields.

1.1 Summary of results

In the present paper, we shall apply a simple remedy to the gauge choice problem which
plagued the low temperature numerical work of [11], and carry out high-precision numerical
analyses down to ultra-low temperatures, for a wide range of values of B3/ρ2.
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Figure 1. Schematic phase diagram illustrating the various behaviors of the entropy density versus
temperature and magnetic field. The region inside the dotted line is controlled by the quantum
critical point at (T̂ = 0, B̂ = B̂c), and the entropy density can be expressed in terms of a single
scaling function f of (B̂−B̂c)/T 2/3. We move around inside this region by changing the temperature
T̂ and the relevant coupling B̂ − B̂c. The boundary of the region is defined to be where irrelevant
operators become important. The yellow region denotes a regime where temperature is the largest
energy scale, corresponding to the argument of the scaling function f being small. Outside the
yellow region the low temperature behavior of the entropy density, for fixed B̂, is either constant
or linear in T̂ , depending on whether the quantum critical point is approached from below or from
above B̂c as T̂ → 0.

By virtue of scale invariance, only dimensionless combinations of quantities, such as
B3/ρ2, afford any intrinsic physical meaning. Thus, we shall introduce normalized, di-
mensionless, magnetic field B̂, temperature T̂ , and entropy density ŝ via the following
relations,

B̂ ≡ B

ρ2/3
T̂ ≡ T

(B3 + ρ2)1/6
ŝ ≡ s

(B3 + ρ2)1/2
(1.1)

The results are displayed schematically in figure 1 and summarized below.

1. Our main result is that a continuous quantum phase transition occurs at

B̂c = 0.4994240 ± 0.0000007 (1.2)

2. For B̂ > B̂c, the entropy density goes to zero linearly with temperature, ŝ ∼ T̂ ,
reflecting the same Fermi liquid physics that was seen in the large B̂ limit. Here,
however, the linear behavior is occurring at finite charge density where the result
does not follow from conformal invariance. Note that the specific heat C, at constant
B̂, has the same behavior as the entropy density, since C = T̂ ∂ŝ/∂T̂ ∼ T̂ .
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3. On approaching B̂c from the large B̂ side, the coefficient of the linear term in the ŝ
versus T̂ relation is found to diverge according to,

ŝ

T̂
∼ 1

(B̂ − B̂c)σ
σ = 1.003 ± 0.005 (1.3)

This signals a breakdown of Fermi liquid behavior.

4. Approaching the quantum critical point along the temperature axis at fixed B̂ = B̂c,
the entropy density exhibits a new power law scaling,

ŝ ∼ T̂α α = 0.335 ± 0.005 (1.4)

5. For B̂ < B̂c the zero temperature entropy density is found to be nonzero. Near B̂c it
obeys the scaling,

ŝ ∼ (B̂c − B̂c)τ τ = 0.500 ± 0.001 (1.5)

6. The entropy density in the vicinity of the fixed point can be expressed in terms of a
scaling function f as,

ŝ = T̂ 1/3f

(
B̂ − B̂c
T̂ 2/3

)
(1.6)

This is to be contrasted with regions far from the critical point, where the entropy
density is a nontrivial function of two dimensionless combinations of ρ̂, B̂ and T̂ .

From our results, we can infer that the quantum critical theory lives in 1+1 spacetime
dimensions (that is, there are no long range correlations in the remaining 2 spatial direc-
tions along the boundary), has dynamical critical exponent z = 3 (since the value found
numerically for α is consistent with α = 1/3), and has a relevant operator with scaling
dimension 2. The relevant operator corresponds to a change of B̂ away from B̂c.

1.2 Comparison with known quantum critical systems

It is illuminating to place these results within the context of known quantum critical
systems. Although thermodynamic quantities such as the specific heat and magnetization
behave in a non-analytic fashion across the phase transition, we note that there is no change
of symmetry associated with the transition. A finite temperature example of such behavior
is the liquid-gas transition in water. A zero temperature version is a metamagnetic quantum
critical point [14, 15], whose behavior closely parallels our system (a finite temperature
version of a holographic metamagnetic phase transition in the D4-D8 system was studied
in [16]). Metamagnetism refers to a sharp change in the magnetization of a material as
an external magnetic field is tuned through some nonzero value. At finite temperature,
metamagnetic transitions typically consist of first order lines terminating at a second order
critical point, as in the liquid-vapor case. If the critical point can be brought to zero
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temperature by adjusting some control parameter, one obtains a metamagnetic quantum
critical point.

The standard approach to such a quantum critical point is based on the Hertz/Millis
theory [17–19], for which the effective action in momentum space is,

S =
∫
dωddk

(
|ω|
|k|

+ k2 + (B̂ − B̂c)
)
|φ(ω, k)|2 + · · · (1.7)

The real bosonic field φ represents the local magnetization, and the above action can be
obtained by integrating out fermions at 1-loop. Under scale transformations acting as
k → λk, we see that ω should be assigned scale dimension 3, and hence z = 3. Similarly,
B̂ − B̂c has scale dimension 2. These assignments match what we found for our system,
which furthermore corresponds to d = 1, since the Landau level quantization only allows
low energy modes to propagate parallel to B.

The action (1.7) is only meant to be applied for B̂ > B̂c. Indeed, the behavior of our
system in the region B̂ < B̂c, with its nonzero ground state entropy density, cannot be
described by this action alone.

Metamagnetic quantum criticality in the compound Sr3Ru2O7 has been the subject of
extensive experimental investigation in the past few years (see [15] and references therein),
and we will comment on this connection in section 3.8.

A large number of other AdS/CFT examples undergoing phase transitions have been
studied in the literature, both continuous and discontinuous, and at finite and zero temper-
ature; for example [20–28]. However, our setup seems particularly attractive and is nicely
related to real experimental systems. In particular, unlike other examples of quantum
phase transitions we do not have to add any extra ingredients in the way of scalar fields
or probe branes. We employ only a metric and an Abelian gauge field, with an Einstein-
Maxwell-Chern-Simons action that is known to describe all supersymmetric AdS5 theories
related by compactification of Type IIB or M-theory [1–3]. Thus our framework is both
simple and universal.

The remainder of this paper is organized as follows. In section 2, we spell out the
set-up of the holographic calculations, including the specification of initial data at the
horizon, asymptotic data at the AdS5 boundary, and the construction of regular gauge
choices. In section 3, we present the results of high-precision numerical solutions to the
reduced Einstein-Maxwell-Chern-Simons equations, identify the quantum critical point,
and critical behavior in its vicinity. We also compare our results with those from the
effective Hertz/Millis theory, and comment on the connection with metamagnetic quantum
criticality observed in real materials like Sr3Ru2O7. A discussion of the results and open
avenues for future research is given in section 4.

2 Holographic calculations

In this section we spell out some of the technical details of our computations. Results of
the numerical calculations will be presented in section 3, and the impatient reader may
wish to jump there.
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The starting point for our holographic calculations is 5-dimensional Einstein-Maxwell
theory with a Chern-Simons term. Throughout this paper, the Chern-Simons coefficient
k will be considered fixed at its supersymmetric value k = 2/

√
3. A detailed discussion

of the action, including boundary terms needed for holographic renormalization, and the
construction of the boundary current and stress tensor may be found in [11]. Here, we shall
limit our discussion to the field equations and the asymptotic behavior of the fields near
the horizon, and at the asymptotic AdS5 boundary. The Einstein-Maxwell field equations
are given by dF = 0 and,

0 = d ∗ F + kF ∧ F

RMN = 4gMN +
1
3
FPQFPQ gMN − 2FMPFN

P (2.1)

Uniformity and constancy in time of the magnetic field B and the charge density ρ allow
us to restrict to a space-time translation invariant Ansatz, given by,

F = Edr ∧ dt+Bdx1 ∧ dx2 + Pdx3 ∧ dr
ds2 = U−1dr2 − Udt2 + e2V

(
dx2

1 + dx2
2

)
+ e2W (dx3 + Cdt)2 (2.2)

The functions E,P, U, V,W,C depend only on the radial coordinate r, while the magnetic
field B is constant by the Bianchi identity. A gauge choice has been made here for the
coordinate r in order to put the Ansatz in canonical form with matching coefficients of its
first two terms in ds2. The reduced field equations were given in [11].

2.1 Data at the horizon

The reduced field equations are to be solved subject to regularity conditions at the horizon
and at the asymptotic AdS5 boundary r = ∞. For the purpose of numerical analysis, it
will be convenient to parametrize solutions in terms of data at the horizon which satisfy
the regularity conditions at the horizon. Regularity of the full solution, including at the
asymptotic AdS5 boundary, must then be verified numerically for each set of data.

We begin by spelling out the data at the horizon. (This discussion will parallel the one
presented in [11], but there will be important differences motivated by the need to remedy
the gauge choice problems alluded to in the Introduction.) The (outer) horizon at r = r+,
and the Hawking temperature T are defined by,

U(r+) = 0 4πT = U ′(r+) (2.3)

Our numerical analysis will always be carried out at T 6= 0, even though T may become
very small; thus, we are free to rescale t, and set U ′(r+) = 1. By rescaling also x1, x2, x3,
we may set V (r+) = W (r+) = 0. Invariance of the Ansatz under α-symmetry, (under
which x3 → x3 − αt, C → C + α, and E → E − αP ), allows us to set C(r+) = 0. With
these choices, the fields at the horizon take the form,

FH = q dr ∧ dt+ b dx1 ∧ dx2 + p dx3 ∧ dr
ds2
H = dx2

1 + dx2
2 + dx2

3 (2.4)
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The reduced field equations of [11] for E,P, U, V,W,C, combined with the requirement
of regularity at the horizon, dictate certain relations amongst the remaining data at the
horizon, namely q, b, p, V ′(r+), W ′(r+), and C ′(r+). They are given by (for U ′(r+) = 1),

0 = p− q
(
C ′(r+)− 2kb

)
3V ′(r+) = 12− 2q2 − 4b2

6W ′(r+) = 24− 4(q2 − b2)− 3C ′(r+)2 (2.5)

Given (b, q), the data p and C ′(r+) are related to one another by the first equation of (2.5).
Keeping either p or C ′(r+) as an independent free parameter, the remaining initial data
V ′(r+) and W ′(r+) are uniquely determined by the last two equations of (2.5).

2.2 Gauge fixing and regularity

The parametrization of the horizon data presented above is more general than the one
given in [11], since here the parameter p is kept unspecified, while p was set to 0 in [11].
The argument invoked to set p = 0 was the covariance of the Ansatz of (2.2) under boosts
in the x3-direction. Under a boost by velocity β, the space-time coordinates transform
as usual, t → t̃ = γ(t − βx3) and x3 → x̃3 = γ(x3 − βt) with γ2(1 − β2) = 1, and
where β cannot exceed the speed of light, |β| < 1. The transformation under boosts
of the functions (E,P, U, V,W,C) → (Ẽ, P̃ , Ũ , Ṽ , W̃ , C̃), however, must be accompanied
by a transformation of the holographic coordinate r → r̃, which is required to restore
the boosted Ansatz back to the canonical form of (2.2). As a result, the Maxwell fields
transform as follows,

Ẽ(r̃)dr̃ = γ
(
E(r)− βP (r)

)
dr

P̃ (r̃)dr̃ = γ
(
P (r)− βE(r)

)
dr (2.6)

where Ũ(r̃)−1dr̃ = U(r)−1dr. The ratio p/q transforms as p̃/q̃ = (p/q − β)/(1 − βp/q).
Clearly, provided q2 > p2, a boost by β = p/q may be used to set p̃ to zero. The problem,
however, is that the coordinate transformation r → r̃ required to accompany this boost
may be singular on some of the functions E,P, U, V,W,C. For example, the transformation
law under a boost by velocity β of the function C is given by,

C(r)→ C̃(r̃) =
(C(r) + β)(1 + βC(r))e2W (r) − βU(r)

(1 + βC(r))2e2W (r) − β2U(r)
(2.7)

We have verified numerically that, in the region of low T where our numerics were found
to break down in [11], the denominator in (2.7) indeed crosses zero as r is increased away
from the horizon at r+, thereby rendering this boost transformation singular.

The remedy to this problem is simple: the parameter p should be left unspecified,
thereby eliminating the need to perform boost transformations on the fields. It will be
convenient to parametrize solutions by the values b, q, C ′(r+), so that the remaining initial
data at the horizon, p, V ′(r+), and W ′(r+) are uniquely determined by (2.5). Not every
assignment of b, q, C ′(r+) will produce a regular solution. Also, two regular solutions may be
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related to one another by a regular boost, and thus be physically equivalent. The parameter
space of all regular solutions may be described as follows. To every pair (b, q) we assign the
maximal interval Γ(b, q) on the real line such that for every value of C ′(r+) ∈ Γ(b, q), the
solution specified by the parameters b, q, C ′(r+) is regular. The end points of the interval
Γ(b, q) correspond to the limits where the velocity of the solution tends to the speed of
light. When computing boost invariant physical quantities, such as the magnetic field B,
and the rest frame temperature T , charge density ρ, and entropy density s, the datum
C ′(r+) may be chosen to be any value in the interval Γ(b, q).

2.3 Data at the asymptotic AdS5 boundary r →∞

For regular solutions the functions U, V,W,E, P,C have the following asymptotic behavior
as r →∞, (keeping only leading contributions),

U ∼ r2 e2V ∼ vr2 e2W ∼ wr2

E ∼ (e3 − c0p3)r−3 P ∼ p3r
−3 C ∼ c0 (2.8)

In these coordinates, the conformal boundary metric is −dt2+v(dx2
1+dx2

2)+w(dx3+c0dt)2,
and the solution’s velocity is

√
w c0. Rescaling x1, x2 by

√
v, and x3 by

√
w, while combining

an α-transformation with a boost by a velocity β = −
√
wc0, restores the coordinates to the

standard Minkowski metric, and yields the following expressions for the physical magnetic
field B, temperature T , charge density ρ, and entropy density s in the rest frame of the
solution,1 (see [11] for derivations),

B =
b

v
T =

γc
4π

ρ = γc(e3 − c0p3) s =
1

4vγc
√
w

(2.9)

Here, γ2
c = (1 − wc2

0)−1, and the normalized entropy density s is defined as s = G5S/Vol,
where S is the total entropy in volume Vol, and G5 is the 5-dimensional Newton constant.

By virtue of scale invariance, only dimensionless combinations of quantities, such as
B3/ρ2, afford any intrinsic physical meaning. Thus, the results on phase transitions and
associated critical exponents at critical points, aimed for in this paper, will all be derived
by evaluating the dependence between the dimensionless physical quantities ŝ and T̂ , for
various (fixed) values of B̂, which were all defined in (1.1).

2.4 Numerical fine points

The initial data for any regular solution is a pair (b, q) and a value C ′(r+) ∈ Γ(b, q), where
the interval Γ(b, q) was defined so that the data b, q, C ′(r+) produce a regular solution.
For certain values of (b, q), the interval Γ(b, q) may be empty. For k = 2/

√
3, numerical

analysis yields the following bound,

Γ(b, q) = ∅ when q2 + 2b2 > 6 (2.10)

1In the CFT, the rest frame corresponds to a statistical ensemble weighted by the Boltzmann factor

e−(H−µQ)/T . Boosting produces additional chemical potentials multiplying momenta and currents.
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The precise form of the critical curve C in the (b, q)-plane inside of which Γ(b, q) 6= ∅ is not
known analytically, but may be obtained numerically, as was done in [11].

Away from the low temperature regime the interval Γ(b, q) is sufficiently large that
it is possible, at least for k = 2/

√
3, to make a single uniform choice for C ′(r+) and still

cover most of the parameter space. A convenient choice is C ′(r+) = 2b. However, as
the temperature is lowered Γ(b, q) shrinks, and one is forced to tune C ′(r+) to greater
precision. This effect becomes especially pronounced in the region of low magnetic field
where a ground state entropy develops. However, by specifying more general tunings for
C ′(r+) as we vary (b, q) we are able to fully cover the low temperature region.

The approach to ultra-low temperatures, which is needed in various parts of our nu-
merical work, requires a high degree of fine-tuning of the horizon initial data (b, q) and the
gauge choice C ′(r+). It also requires evaluating the asymptotic data, such as v, w, c0, e3

and p3 at large values of r, which we typically have taken to range from 1015 to 1020. With
such high degrees of fine-tuning, and extended ranges of integration, the issue of numerical
accuracy and numerical stability of the calculations becomes of utmost importance. Our
calculations were performed with 15 to 20 digits accuracy, and the ODEs were solved with
absolute and relative error tolerances ranging from 10−10 to 10−13 for the lowest tempera-
tures. Stability of the results was checked versus changing the asymptotic value of r, the
absolute and relative error tolerances, and the number of digits.

3 Numerical results

In this section, we present our numerical results, organized as a function of the magnitude
of the magnetic field B̂, starting at large B̂.

3.1 Large B̂ regime

In [11] the case B̂ ≈ .53 (quoted there as B̂3 ≈ .15) was studied at the supersymmetric
value k = 2/

√
3. As displayed in figure 3 of [11] the low temperature entropy density

was seen to drop well below its B̂ = 0 value, and appeared to be heading towards zero.
However, the numerics broke down at temperature T̂ ≈ .02, and so did not allow for an
exploration of ultra-low temperatures. By adjusting C ′(r+) as we lower the temperature,
we can do much better, as shown in figure 2 below. The entropy density clearly vanishes at
zero temperature. A linear behavior, ŝ ∼ T̂ is evident in the approach to zero temperature,
as shown in the right panel of figure 2. By repeating this analysis for other sufficiently large
values of B̂, we find similar behavior: the entropy density vanishes at zero temperature,
and does so linearly at very low temperatures. This linear behavior is characteristic of
Fermi liquids. The textbook intuitive explanation for the linear dependence is that at low
temperature the smoothed out step function form of the Fermi-Dirac distribution implies
that only electrons within energy kBT of the Fermi energy contribute. We indeed expect
our system to be described by a theory of light fermions in this large B̂, low T̂ regime,
since the magnetic field raises up all energies except for the lowest fermion Landau level.
Our numerical results are a pleasing confirmation of this intuition.
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Figure 2. Plot of entropy versus temperature. On the left we compare B̂ = .53 to B̂ = 0; this plot
is an improved version of figure 3 in [11]. On the right we exhibit the linear ŝ ∼ T̂ low temperature
behavior.

In the B̂ →∞ limit it was found in [10] that a near horizon AdS 3×R2 factor emerged
at low energies, and the resulting 1 + 1 dimensional conformal invariance could be used
to explain the ŝ ∼ T̂ behavior. This is no longer true away from this limit, as the charge
density ρ introduces an additional scale into the problem, and from the numerics we can
see that the near horizon geometry becomes deformed away from AdS 3 ×R2.

Charged black hole solutions involving scalar fields whose entropy densities similarly
go to zero at extremality have been studied in [29–32].

3.2 Approaching B̂c

Experimentally, a breakdown of Fermi liquid behavior upon tuning an external magnetic
field can often be seen in a divergence of the specific heat coefficient, defined as,

γ =
C

T̂
(3.1)

Since C = T̂ ∂ŝ/∂T̂ , we can equivalently write γ = ŝ/T̂ at low temperatures. In our system,
γ stabilizes at a constant value for large B̂, but is seen to diverge at a critical value B̂ = B̂c.
Numerically, the critical value B̂c is found to be bounded as follows,

0.124568 < B̂3
c < 0.124569 (3.2)

which results in the the value quoted already in (1.2), namely B̂c = 0.4994240 ± 0.0000007.
To characterize the divergence we display a plot of ŝ/T̂ versus 1/(B̂ − B̂c), as T̂ → 0 in
figure 3. The straight line shows that the low temperature entropy behaves as

ŝ

T̂
∼ 1
B̂ − B̂c

(3.3)
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Figure 3. Plot showing the divergence of ŝ/T̂ near B̂c at low temperatures. The straight line
through the data points is included to guide the eye.

as T̂ → 0 for fixed B̂ near (but larger than) B̂c. Upon approaching B̂c we find that the
linear regime with ŝ ∼ T̂ is confined to an ever smaller low temperature window.

3.3 Scaling at the critical magnetic field B̂ = B̂c

Next we set B̂ = B̂c and again study the low temperature behavior of the entropy density.
We find a new scaling law, ŝ ∼ T̂ 1/3, which numerically extends over at least four orders
of magnitude in temperature, 10−8 < T < 6× 10−3, as shown in figure 4. This nontrivial
power law manifestly represents non-Fermi liquid behavior, analogous to what is seen in
real materials at a quantum critical point.

Towards ultra-low temperatures, the numerical behavior of ŝ will ultimately turn over
to be linear in T̂ (for B̂ > B̂c) or to be a non-zero constant for B̂ < B̂c (see the next sub-
section). This deviation from ŝ ∼ T̂ 1/3 scaling is caused by the fact that the value of B̂c is
known only numerically from (1.2), and we are never able to sit at precisely the value of B̂.

3.4 The quantum critical region and crossover

The ŝ ∼ T̂ 1/3 scaling law extends to the vicinity of the critical magnetic field B̂c, but the
range over which this scaling law holds shrinks as |B̂− B̂c| is increased. The corresponding
behavior of ŝ is illustrated in figure 5.

First, on the right panel of figure 5, − ln(ŝ) is plotted versus − ln(T̂ ) for B̂3 = 0.124569.
The T̂ 1/3 scaling law exhibited in the preceding subsection, is clearly recovered here. At suf-
ficiently high temperature, the T̂ 1/3 behavior eventually crosses over to the T̂ 3 dependence
controlled by the UV theory. This is clearly shown on the right panel of figure 5, where the
cross-over region may be identified with the temperature interval 0.02 < Tcross−over < 0.5.

Second, on the left panel of figure 5, the flows of − ln(ŝ) as a function of − ln(T̂ ) at
various fixed values of B̂ are shown. Curves a, b, c, d, e, and f clearly exhibit the turnover
from ŝ ∼ T̂ 1/3 scaling behavior to linear ŝ ∼ T̂ behavior at ultra-low temperatures. Given
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Figure 4. Plot showing ŝ ∼ T̂ 1/3 scaling behavior at B̂ = B̂c. The straight line through the data
points is included to guide the eye, and has slope 1/3, consistent with (1.4).

Figure 5. The left plot shows the crossover of ŝ for low T̂ . At moderately low temperatures ŝ scales
as T̂ 1/3 (lower left corner of the plot), while at ultra-low temperatures ŝ scales as T̂ for B̂ > B̂c

(curves a, b, c, d, e, f), and tends to a non-zero constant for B̂ < B̂c (curve g). The right plot shows
the crossover for ŝ from the moderately low temperature T̂ 1/3 scaling to the high temperature T̂ 3

behavior. The dots represent numerical data points, while the solid interpolating lines are included
to guide the eye.

this cross-over behavior, we know that the corresponding values of B̂ must all be above the
critical magnetic field B̂c, with value closest to critical corresponding to curve f with B̂3 =
0.124569. Curve g behaves completely differently at ultra-low temperatures, and ŝ is seen
to tend towards a non-zero constant. Given this behavior, we know that the corresponding
value of B̂ must be below critical. Combining both results gives 0.124568 < B̂3

c < 0.124569,
as announced in (3.2), and (1.2).

Finally, as B̂ − B̂c is increased, the region over which the ŝ ∼ T̂ 1/3 scaling law holds
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Figure 6. Extremal entropy density: blue points represent results for the entropy density at very

low temperatures in the region B̂ < B̂c. The red curve is a plot of the function 1
4
√

6

√
1−

(
B̂
B̂c

)2

.

becomes smaller and smaller, being overtaken by the ŝ ∼ T̂ 3 law at high T̂ joining the
ŝ ∼ T̂ law at low T̂ , and ultimately will have disappeared altogether by the time B̂3 = 0.2
is reached (this result is not shown in the figures).

3.5 Low B̂ region

Decreasing the magnetic field further, namely B̂ < B̂c, we find a completely different low
temperature behavior: the entropy now stabilizes to a nonzero value at T̂ = 0. We plot
this limiting value in figure 6. In [11] we speculated that an infinitesimally small magnetic
field might be sufficient to remove the ground state entropy of the B̂ = 0 solution. We
now see that this speculation is incorrect — only magnetic fields B̂ ≥ B̂c accomplish this.
The extremal entropy turns on continuously below the critical magnetic field. A curve that
passes through all the points to better than .5% accuracy is given by

ŝ =
1

4
√

6

√
1−

(
B̂
B̂c

)2

(1 + B̂2)7/4
(3.4)

The prefactor of 1/(4
√

6) is fixed by the value for the purely electrically charged black
brane, which is of course known analytically. It is remarkable that this function fits the
data so well, but we are unable to say whether it represents an exact analytical result.

To excellent accuracy, and as exhibited by (3.4), we find

ŝ ∼
√
B̂c − B̂ (3.5)

near the critical point. If we increase the temperature at fixed magnetic field in this regime,
we again find a region obeying the same ŝ ∼ T̂ 1/3 scaling as described in section 3.3.
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3.6 Scaling region near the critical point

The fact that the entropy density at the critical magnetic field has a simple power law de-
pendence on temperature is indicative of a quantum critical point. Recall that since we are
working in terms of dimensionless quantities as defined by the scalings in the asymptoti-
cally AdS5 region, a priori the dimensionless entropy density ŝ is allowed to be an arbitrary
function of the dimensionless temperature T̂ . This interpretation can be sharpened further
by writing down a scaling form for the entropy in the vicinity of the critical point

ŝ = T̂
1
3 f

(
B̂ − B̂c
T̂ 2/3

)
(3.6)

where, according to our results, the scaling function f(x) has asymptotic behavior

f(x) ∼


c1
√
−x x→ −∞

c2 x→ 0
c3/x x→∞

(3.7)

for some constants c1,2,3. In general, the entropy is a function of two dimensionless combi-
nations of B, ρ, and T , whereas near the critical point the claim is that it can be written
as a function of only one variable. All of this is of course standard from the general theory
of classical and quantum critical phenomena.

It is further useful to recall that for a quantum critical theory in d spatial dimensions,
with dynamical critical exponent z, and with a relevant coupling m of scale dimension ∆,
the entropy density will take the scaling form

s = T d/zf

(
m2/∆

T 2/z

)
(3.8)

Comparing to (3.7) we read off d = 1, z = 3, and ∆ = 2.
We have verified that the scaling form (3.7) conforms to our numerical results near the

critical point at B̂ = B̂c and T̂ = 0. From the numerics we can reconstruct the form of the
scaling function, which is shown in figure 7. We can use this to determine the constants
appearing in (3.7) to be,

c1 ≈ 0.172 c2 ≈ 0.110 c3 ≈ 0.045 (3.9)

As noted in the Introduction, the standard approach to modelling a magnetically tuned
quantum critical point of the type that we are seeing is based on the Hertz/Millis theory.
We consider the action in (1.7) with d = 1. To the extent that this action captures the
low energy degrees of freedom of our theory, it is natural to compute its finite temperature
entropy density and compare to our results. This cannot be entirely correct for a number
of reasons, not least that there is no way of explaining the ground state entropy density
in this framework, but the comparison is instructive nonetheless. In the free field limit we
just need the dispersion relation implied by (1.7), which is

ω = |k|(k2 +m2) m2 = B̂ − B̂c (3.10)
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Figure 7. Plots of the scaling function f(x) controlling the thermodynamics within the scaling
region. On the right plot we restrict to x > 0, corresponding to B̂ > B̂c, and compare the scaling
function from gravity with a free field computation based on the Hertz/Millis theory; the latter is
displayed as a red line. The factors of 1/10 and 2.2 in the latter are chosen to give a good match,
and are expected since the the gravitational result contains a factor of Newton’s constant and the
normalizations of the magnetic fields need not agree.

The partition function is

lnZ = − L

2π

∫ ∞
−∞

dk ln(1− e−β|k|(k2+m2)) (3.11)

from which we can extract the entropy density as

s =
1
L

(
1− β ∂

∂β

)
lnZ (3.12)

We can write the result in a scaling form as

s = T 1/3fHM

(
B̂ − B̂c
T 2/3

)
(3.13)

and then compare with the scaling function coming from gravity. The comparison is shown
in the right panel of figure 7. We only compare in the region B̂ > B̂c, since it is only in
this region that the Hertz/Millis action applies. Nothing fixes the normalization of the
magnetic field appearing in (1.7) compared to that in gravity, and so we have allowed
ourselves to adjust this relationship to achieve a good fit. Similarly, we have introduced
a parameter to adjust the overall normalizations. The functions match surprisingly well,
although it is unclear how much significance to attach to this.
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Figure 8. Plots of the metric functions for a solution very near the quantum critical point.
Multiplicative factors have been included to allow the functions to appear on the same plot. The
form of the functions near the horizon show that the metric is behaving as AdS3 ×R2 plus small
corrections. These small corrections are amplified in passing to the asymptotic AdS5 regime.

3.7 The quantum critical point

Initial data yielding our closest approach to the quantum critical point is given by

b = 1.7320507

q = 5.08× 10−4 (3.14)

This choice of (b, q) along with the gauge choice C ′(r+) = 3.464063 leads to the following
values for the asymptotic parameters of (2.8),

v = 5.23811× 10−14, w = 1.60044× 10−9 c0 = 859.258

e3 = 5.20520× 1020 p3 = −2.08236× 1016 (3.15)

from which we can compute the temperature and entropy density as

T̂ = 9.59602× 10−9

ŝ = 2.08699× 10−4 (3.16)

From (3.14) we see that there is a large hierarchy between the size of the electric and
magnetic charges at the horizon in our chosen coordinates. Nevertheless, measured at
infinity in the rest frame the ratio of these quantities is of order unity, B̂3

c ≈ 0.124569. This
happens because there are large rescalings that occur in the process of integrating out from
the horizon to the asymptotic regions, as illustrated by the magnitude of the parameters
in (3.15). Using (2.9) these can convert a large hierarchy into one of order unity.

It is instructive to examine the metric functions for this near critical solution. In
figure 8 we provide plots of these functions in the near (and not so near) horizon region.
Near the horizon, one can think of these metric functions as representing a deformation of
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the configuration

U(r) = 12(r − 1)2 B =
√

3

C(r) = 2
√

3(r − 1) V = W = E = P = 0 (3.17)

This represents AdS3 ×R2 in “boosted coordinates” with magnetic flux. We expect that,
as we get nearer and nearer to the critical point, the metric functions will approach (3.17)
to greater and greater accuracy. On the other hand, it is crucial that there always be some
deviation away from (3.17), as this solution is purely magnetic with vanishing electric
charge density. Presumably what happens is that there is a fine-tuned limit in which all of
the charge is carried by the bulk supergravity fields outside the near horizon region; this
is possible by virtue of the Chern-Simons term. It would of course be extremely useful if
this limiting solution could be found analytically.

We close this subsection with an issue which has not yet been conclusively resolved by
our numerical studies. For large B̂, all flows towards lower T̂ end in the purely magnetic
fixed point solution of [10], whose near-horizon geometry is AdS3 ×R2. More precisely, it
can be shown numerically that all flows for B̂ > B̂c end up at the purely magnetic fixed
point. Where do the flows for B̂ < B̂c end? Numerically, we have established that flows for
B̂ less than but close to B̂c come near the purely magnetic fixed point, but at temperatures
so low (on the order of T̂ ∼ 10−15) that further numerical analysis can be pursued only
at the cost of calculation times and memory which exceed those of our computers. Thus,
the logical possibility that the flows with B̂ < B̂c end up on the critical curve, before the
purely magnetic fixed point has been attained, cannot be excluded at this time. If this
situation is in fact the one that occurs, then it would have a surprising similarity to the
dynamics of the k = 1 theory, derived in [11].

3.8 Metamagnetic quantum criticality in Sr3Ru2O7

We close this section with a few words about a real system that parallels ours in a number
of ways. Quantum criticality and novel phases in Sr3Ru2O7 have been the subject of much
experimental and theoretical interest in the past few years; e.g. [15, 34]. Sr3Ru2O7 is a
layered structure, which for a large magnetic field perpendicular to the layers exhibits a
line of first order metamagnetic phase transitions at finite temperature, ending at a finite
temperature critical point. By including a component of magnetic field in the plane of the
layers, the critical point can be brought to zero temperature. As in our case, the transition
occurs at finite magnetic field, and involves no change of symmetry. Away from the critical
point the system behaves as a Fermi liquid, with entropy density linear in temperature.
As the critical point is approached, the linear term diverges as s/T ∼ 1/(B − Bc), just
as we found (in this case Bc is approximately 8 Tesla.) In recent work, the complete
“entropy landscape” of Sr3Ru2O7 at finite temperature and magnetic field has been mapped
out [15]. In very pure samples, as one tries to sit right on top of the critical point one finds
instead that a new phase emerges, which is believed to be a spatially anisotropic nematic
phase [33, 34]. This has been described as nature’s solution to the problem of avoiding
a finite entropy density at zero temperature. The parallels with our system are evident
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(though an obvious difference is that our critical theory effectively sees only a single spatial
direction, compared to the two in-plane directions in Sr3Ru2O7), and lead us to speculate
whether in our case the extremal black hole phase is unstable and gives way to a new phase
with reduced symmetry, as in [35].

4 Discussion

We have found a holographic description of a quantum critical point, reached by tuning a
magnetic field at finite density, that nicely resembles examples seen in the real world. In
particular, approached from the high B-field side, we have Fermi liquid behavior; as the
magnetic field is lowered the specific heat coefficient diverges, and we enter a regime of
non-Fermi liquid behavior with nontrivial scaling properties.

The most exotic property as compared to known physical examples is the existence
of a ground state entropy on the low field side of the transition. The presence of a non-
vanishing entropy at T = 0 for B̂ < B̂c would again seem to contradict the third “law”
of thermodynamics [11], as it did in the absence of magnetic fields. Actually, our results
show that the lifting of the ground state entropy as a function of an external magnetic
field is a subtle and dynamical issue. Also, we expect the ground state entropy to be lifted
by instabilities driving the system towards inhomogeneity, or by turning on further fields
besides an external magnetic field.

It is worth emphasizing again the universality of our results: they apply to all super-
symmetric AdS5 examples arising from IIB or M-theory, since all such theories admit a
consistent truncation to the Einstein-Maxwell-Chern-Simons theory used here [1–3]. We did
not have to introduce any model building devices in the way of probe branes or scalar fields.

There are many open questions and avenues for further investigation. Many of our
numerical results cry out for an analytical derivation. In particular, one would expect to
be able to derive the value z = 3 of the dynamical exponent, and the dimension ∆ = 2 of the
relevant operator governing the critical theory. It may similarly be possible to understand
these results microscopically on the gauge theory side.

All of our results were presented for the supersymmetric value of the Chern-Simons
coupling, k = 2/

√
3, but it would be useful to consider other values as well. Our expectation

is that as k is increased the critical point will retain its character but with B̂c moving to
a smaller value. An interesting question would then be whether we reach B̂c = 0 at finite
k, for if so there would no longer be an extremal black hole phase.

In this work we have only considered the thermodynamics, but the existence of the crit-
ical theory implies scaling behavior of correlation functions with respect to frequency and
momentum. Computing these would be valuable in pinning down the precise connection
to the Hertz/Millis theory.

Finally, to more closely model real systems it would be very interesting to construct a
version of our system giving rise to critical behavior in two or three spatial dimensions.
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