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Abstract I review holographic models for (dense and cold)
nuclear matter, neutron stars, and their mergers. I start by
a brief general discussion on current knowledge of cold
QCD matter and neutron stars, and go on discussing various
approaches to model cold nuclear and quark matter by using
gauge/gravity duality, pointing out their strengths and weak-
nesses. Then I focus on recent results for a complex bottom-
up holographic framework (V-QCD), which also takes input
from lattice QCD results, effective field theory, and pertur-
bative QCD. Dense nuclear matter is modeled in V-QCD
through a homogeneous non-Abelian bulk gauge field. Fea-
sible “hybrid” equations of state for cold nuclear (and quark)
matter can be constructed by using traditional methods (e.g.,
effective field theory) at low densities and the holographic V-
QCD model at higher densities. I discuss the constraints from
this approach to the properties of the nuclear to quark matter
transition as well as to properties of neutron stars. Using such
hybrid equations of state as an input for numerical simula-
tions of neutron star mergers, I also derive predictions for the
spectrum of produced gravitational waves.
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1 Introduction

Recent observations of binary neutron star mergers by the
LIGO and Virgo interferometers have boosted the interest
in QCD at finite density. This activity is complemented by
ongoing and future heavy ion collisions experiments which
will explore quark gluon plasma at higher densities than ear-
lier, and by theoretical advances in the understanding of hot
and dense QCD matter.

However, determining even the phase diagram of QCD is a
challenging task [1]. Producing hot and/or dense QCD matter
in the laboratory is extremely complicated, and employing
theoretical as well as computational methods is challenging
due to the strongly interacting nature of QCD. Analysis of
QCD is particularly hard in the regime of high (but not asymp-
totically high) baryon number density. This is due to vari-
ous reasons: The main computational tool, lattice QCD [2],
only works at low densities due to the well-known sign prob-
lem [3]. Perturbative QCD gives definite predictions only at
extremely high densities [4]. Moreover, effective field the-
ory and other related methods are only reliable at low den-
sities and temperatures. For example, chiral effective theory
expansions for nuclear matter work only up to densities com-
parable to nuclear saturation density [5]. Therefore there is
a gap for cool QCD matter at intermediate densities where
direct reliable theoretical predictions are not available.

In the absence of first principles calculations, the uncer-
tainties of theoretical predictions for QCD matter at inter-
mediate densities and low temperatures are large. This is
true even for basic observables such as the equation of state
(EOS), i.e., the relation between the pressure and energy den-
sity of QCD matter. Definite constraints for the zero temper-
ature EOS can be obtained by interpolating between reliable
results at low and high densities [4,6,7]. Even less is known
about the equation of state at nonzero temperature in the
same density range, and on other observables such as trans-
port coefficients.

The properties of the QCD EOS at intermediate densities
are interesting among other things because it is known that
the densities in neutron star cores lie in this region. Their tem-
peratures are typically small compared to the characteristic
QCD energy scale, so that they can be treated as cold objects
in QCD analyses. This also means that measurements of neu-
tron stars give information of the properties of cold and dense
QCD (see, e.g., [6,8]). There are already plenty of such data
available, with additional and more accurate results expected
in near future. Measurements of neutron star masses and radii
give direct constraints for the QCD EOS [9], and measure-
ments of gravitational waves from neutron star mergers from
LIGO/Virgo give complementary information about the EOS
[10–13]. Additional events and improvements in precision
are likely to lead to severe constraints to the EOS in near
future. It is therefore timely to improve the theoretical status

of the predictions for the EOS and other observables of cold
QCD matter.

The difficulty of theoretically predicting the behavior
of cold QCD matter reflects the fact that the interactions
are strongly coupled. It is therefore natural to ask whether
AdS/CFT, or gauge/gravity duality in more general, can help
to improve the status of theoretical predictions. Namely, gau-
ge/gravity duality (or holography for short) can map strongly
interacting field theory to a higher dimensional classical grav-
ity. It is however not obvious that the duality is applicable to
QCD. The original formulation [14–16] states that theN = 4
super Yang–Mills theory is dual to type IIB string theory in 10
dimensions. This field theory is superconformal and noncon-
fining, that is, significantly different from QCD. Moreover,
the duality in its most useful form requires both taking the
number of colors Nc and the ’t Hooft coupling to infinity,
whereas regular QCD has Nc = 3 and finite coupling.

Despite these potential issues, gauge/gravity duality has
proved out to be a useful tool in studies of various aspects
of QCD. Simple models give surprisingly good description
of the spectrum of QCD: approaches include the simple five
dimensional actions of the hard [17,18] and soft wall [19]
models, the light front holography framework which is moti-
vated both by gauge/gravity duality and the light-front wave
function description of hadrons [20,21], a bit more advanced
dynamic AdS/QCD models [22,23], and more stringy mod-
els such as the Witten–Sakai–Sugimoto model [24,25] and
the holography inspired stringy hadron framework [26,27].
Moreover, gauge/gravity duality has, among other things,
been helpful in the analysis of transport and hydrodynamics
of the quark gluon plasma produced in heavy ion collisions
(see, e.g., [28–30]). Examples of important results are the
predictions for the shear viscosity of the plasma [31,32] and
for the behavior of the plasma in the out-of-equilibrium phase
right after the collision (see, e.g., [33,34]). So given the ear-
lier success, one may expect that gauge/gravity duality works
also in the case of dense QCD matter. And one of the goals
of this review is to demonstrate that this is indeed the case.

The phase diagram of QCD has been studied by using
several holographic “top-down” models, i.e., models directly
based on string theory, as well as “bottom-up” models, i.e.,
models motivated by string theory but adjusted by hand. The
former class includes the D3–D7 models [35–37] as well as
the Witten–Sakai–Sugimoto model [24,25,38,39], and the
latter class includes the hard and soft wall models, and models
based on Einstein-Maxwell actions. In this review I will focus
on the V-QCD bottom-up model [40], which is an extension
of improved holographic QCD [41,42] with dynamical fla-
vors, i.e., a quark sector with full backreaction to the glue.
This class of models is defined through relatively rich five-
dimensional actions, which are inspired by noncritical five
dimensional string theory, but generalized to include a large
number of parameters that need to be determined by compar-
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Fig. 1 A simple sketch of the (possible) QCD phase diagram as a
function of quark chemical potential and temperature. The black curves
are first order phase transitions ending at critical points. The colored
regions show roughly the ranges of applicability of various theoretical
and computational methods. We stress the fact that the existence of the
nuclear to quark matter transition and the transition to “exotic” phases
are still open questions by marking them by dashed curves

ing to QCD data. This is the main strength of the model: it is
rich enough so that it can be matched with QCD data from
various sources and in various phases, and it can then be used
to extrapolate these results to regimes which are challenging
to analyze by other means.

This review is organized as follows. In Sect. 2 I review the
status of the QCD phase diagram, with the stress on the region
of cold and dense matter. In Sect. 3 I continue the review,
discussing various holographic approaches to QCD and its
phase diagram at finite temperature and density. In particular,
I discuss various approaches to baryons and nuclear matter
in Sect. 4. I introduce the V-QCD model in Sect. 5, and dis-
cuss implementing nuclear matter in this model in Sect. 6 by
using a simple, homogeneous approximation scheme. Sect. 7
is devoted to applications to neutron stars. I concentrate on
the results derived by using the V-QCD model. Finally, I
conclude and discuss future directions in Sect. 8.

2 Dense QCD and neutron stars

In this section, I will briefly review the current status of the
QCD phase diagram, various tools to probe it, and the pre-
dictions for the EOS of cold QCD matter. In particular I will
discuss how the current neutron star data constrain the EOS.

2.1 Theoretical methods to study the phase diagram

A sketch of the QCD phase diagram is given in Fig. 1,
where the black curves are first order phase transitions. I
also show the regions where various theoretical and compu-

tational methods for the analysis of the phase diagram work;
these will be discussed in more detail below. Main classes of
“standard” theoretical tools include lattice QCD simulations,
effective field theory, and QCD perturbation theory.

Lattice QCD is the main tool to obtain genuinely non-
perturbative information about the phase structure of QCD.
However, as I pointed out in the introduction, at finite chem-
ical potential lattice QCD analysis suffers from the well
known “sign problem” [3,43]. That is, the Euclidean path
integral becomes complex at finite μ, while it is real at μ = 0.
At large values of μ, the path integral develops a rapidly
oscillating phase, so that the integral involves precise can-
cellations between contributions from nearby regions in field
space, which are extremely difficult to handle numerically.
As the chemical potential grows, the severity of the issue
increases exponentially.

At small values of the chemical potential, however, the
oscillations can be handled by using, e.g., reweighting meth-
ods or Taylor expansion. Consequently, the QCD equation
of state, among other things, can be analyzed in this region.
Near the critical crossover temperature of about 155 MeV,
this means that the simulations are reliable up to μ/T ≈ 1 [3]
(with μ begin the quark chemical potential). The dependence
of the EOS on μ at small μ can be conveniently described in
term of the dimensionless cumulants

χn(T ) = T n−4 ∂n p(T, μ)

∂μn

∣
∣
∣
∣
μ=0

(1)

which have been computed on the lattice up to n = 10 [44–
47] (see also [48]). Notice that the pressure of QCD is even
under the change of sign of μ due to charge conjugation
invariance. Therefore only the cumulants with even n are
nonzero.

By effective field theory I refer to a wide class of meth-
ods in hadron and nuclear theory, which make use of the
description of QCD matter in terms of hadronic degrees of
freedom. These include systematic chiral perturbation the-
ory (typically with neutrons and pions only) [49,50], other
effective Lagrangians with modeled nucleon–nucleon poten-
tials [51,52], statistical methods for light nuclei, baryons, and
mesons [53], Skyrme models for baryons and meson inter-
actions between them [54–56], extended liquid drop models
[57], as well as mean field theory descriptions [58]. I do not
attempt to review all these models here. See [59] for a recent
review on the EOS using this kind of approaches. Quite in
general, these descriptions rely on modeling nuclear mat-
ter through interactions between individual nucleons, which
turns out to be reliable only up to densities around the nuclear
saturation density and below that. Potential models could in
principle be made better if we knew precisely the interactions
for the neutron rich matter appearing in neutron star cores, but
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Fig. 2 Predictions for the QCD EOS from systematic theoretical meth-
ods at low [49,83] and high [62] densities compared to the estimated
range of central densities in neutron stars

scattering experiments can only be made with existing nuclei
for which the neutron to proton ratio is not high enough.

QCD perturbation theory works at asymptotically high
energies where the coupling of QCD becomes small thanks
to asymptotic freedom (see [60] for a review). In the context
of the phase diagram at finite temperature and density, this
means the region of asymptotically high temperatures and
chemical potentials [61–63]. However, for good convergence
of these methods temperatures or (quark) chemical potentials
well above 1 GeV are required. Convergence can be improved
by using resummation (of hard thermal loops), see, e.g., [64–
68], but reliable predictions at low temperatures and neutron
star core densities still cannot be achieved.

In the remaining white region of Fig. 1, none of the meth-
ods described above work reliably, so that no (reliable) first
principle results are available. Our knowledge of the phase
diagram in this region relies on modeling of QCD. There is
a vast literature on such models, including various modifica-
tions of the Nambu–Jona-Lasinio model [69–73], quasiparti-
cle extensions of the (resummed) perturbative QCD [74–76],
and recently the functional renormalization group methods
[77–79] which is expected to capture some nonperturbative
features of QCD. Another possibility is to use gauge/gravity
duality, which I will discuss in this review.

Notice that not even the details of the phase diagram are
known in the white region. In particular, even the existence of
the nuclear to quark matter transition remains a conjecture,
and this is why I marked it as a dashed line in Fig. 1. Moreover,
there is the possibility that various “exotic” phases appear in
the diagram. These include paired phases such as the color-
flavor-locked phase, which is actually expected to extend
up to asymptotically high chemical potentials, different kind
of color superconducting phases with various configurations
[80,81], and quarkyonic phases which share features with
both the nuclear and quark matter phases [82].

Improving the knowledge of QCD in the region of inter-
mediate densities would therefore be essential to pin down
the phase structure and EOS of QCD in this region. And this
region is not only of academic interests but has applications in
real world: Neutron star central densities are known to lie in
this regime of intermediate densities. Such high densities are
also probed in supernova explosions, even in the case where
no neutron star is formed (e.g. due to the core collapsing into
a black hole). See Fig. 2 where I show simple estimate for
the validity of chiral perturbation theory results at low den-
sity [49,83] and the validity of perturbative results at high
density [62], compared to the estimated densities appearing
in the cores of most massive neutron stars.

2.2 Experimental efforts: heavy-ion collisions

Apart from experimental data for the hadron spectrum, decay
widths, and cross sections, which are properties of QCD at
zero temperature, there is plenty of data which directly probe
the high temperature deconfined phase and the crossover
region at low density from heavy-ion collisions carried out
at RHIC and LHC [84]. There are also substantial efforts
to extend the experimentally probed region towards higher
densities. The most important ongoing program is the beam
energy scan at RHIC at Brookhaven which aims at prob-
ing the regime where the QCD critical point is expected to
lie. The basic idea is to vary the collision energy of Au+Au
collisions at around 10 GeV (much lower than the maximum
200 GeV collision energy) and search for evidence of the crit-
ical point: non-monotonicity of moments of the net-baryon
number distribution as a function of the energy. The first
results from the phase II measurements at the STAR detector
already report such non-monotonicity at 3.1σ level [85].

Regions with even higher densities, towards densities
appearing in neutron star cores and in neutron star merg-
ers, will be probed in planned future experiments. They will
be carried out at the FAIR facility at Darmstadt, Germany
(including in particular the CBM experiment), J-PARC at
Tokai, Japan as well as at NICA at JINR, Dubna, Russia.

Apart from heavy-ion collisions, there is also plenty of
experimental information about dense QCD coming from
measurements of neutron stars. But before discussing them,
we should first recall a few basic facts about neutron stars.

2.3 Neutron stars from a QCD viewpoint

From theoretical viewpoint, neutron stars are (in simplest
approximation) large blobs of static cold dense QCD (nuclear
or quark) matter. They are self-gravitating and prevented
from collapse by a combination of Fermi pressure and repul-
sive interactions of the constituents, leading to extremely
dense and compact stars with radii around 10 to 15 km. See
[86] for a recent review.

123



Eur. Phys. J. C (2022) 82 :282 Page 5 of 53 282

Fig. 3 An example of a mass-radius curve for neutron stars. The solid
(dashed) black curve is the stable (unstable) branch. I also mark the
maximum mass MTOV of (nonrotating) stars and the radius R1.4 at
M = 1.4M�

A static spherically symmetric body in general relativity
is described in terms of the Tolman–Oppenheimer–Volkoff
(TOV) equations,

p′(r) = − (ε(p(r)) + p(r))(m(r) + 4πr3 p(r))

r2
(

1 − 2m(r)
r

) , (2)

m(r) = 4π

∫ r

0
dr̂ r̂2 ε(p(r̂)). (3)

Here the first equation is the equivalent of hydrostatic equi-
librium in general relativity, and the second equation defines
the total mass within the radius r . In order to properly define
the radial coordinate r , one also needs to specify the metric
of the star, which is

ds2 = eν(r)dt2 −
(

1 − 2m(r)

r

)−1

dr2 − r2dΩ2
2 , (4)

ν′(r) = − 2

ε(p(r)) + p(r)
p′(r) (5)

with the boundary condition that outside the star the
Schwarzschild metric is obtained.

A key observation is that the TOV equations only depend
on the underlying theory of the matter through the equation of
state, i.e., the function ε(p). In practice, the EOS for the bulk
of the star is determined by QCD: electroweak interactions
only provide small corrections (compared to the uncertainty
arising from the uncertainty of the QCD EOS). Solving the
TOV equations gives the mass–radius relation for neutron
stars. One can show that the mapping between the M(R)

curve and the EOS is one-to-one. Therefore measuring the
masses and radii of neutron stars provides definite informa-
tion about the EOS. I show an example of a mass-radius
relation in Fig. 3. The central baryon number density of the
star εc is a monotonic function along the curve, and increases
towards top left on the plot. On the part of the curve where

dM

dεc
< 0, (6)

i.e., on the dashed section of the curve, the stars are unstable
towards a gravitational collapse leading to black hole for-
mation. The maximum mass MTOV is reached at the onset
of the instability. I also mark the radius of the star R1.4 at
M = 1.4M�, which is a typical mass observed in neutron
star binaries. It is also possible that there are two separate
stable branches of the curve at high masses, in this case there
is a range of masses with two stable solutions (“twin stars”)
[87].

Simply solving the TOV equation does not give the com-
plete picture for neutron stars. First, the neutron stars typi-
cally rotate, and the rotation can be extremely fast in the case
of millisecond pulsars. However even for the highest mea-
sured rotation frequencies, the deformation due to rotation is
rather mild, and can be viewed as a relatively small correction
to the above picture. For most of the known pulsars, the rota-
tion is much slower so that the deformation is tiny. Second,
the temperature of neutron stars is not exactly zero. For newly
formed stars the temperature is expected to be relatively high,
i.e., almost comparable to the QCD scale, so that the finite
temperature corrections to the EOS are nonnegligible. How-
ever the star cools down rapidly due to neutrino emission
so that the observed temperatures of old neutron stars are
suppressed with respect to the QCD scale by orders of mag-
nitude and temperature effects can be safely neglected. Third,
neutron stars are known to contain high magnetic fields. For
some stars (magnetars) [88], which have particularly high
magnetic fields, the strength of the field can be from 109 to
1011 T. But even such enormously high magnetic fields are
still way below the QCD scale: the pion mass squared corre-
sponds to over 1013 T. Therefore the effect of the magnetic
fields on the EOS can be safely neglected even for magnetars,
let alone regular neutron stars.

One should also recall (as I already remarked above) that
there are contributions to the EOS from other sectors of the
standard model than QCD. Most importantly, there is the
pressure of electrons (and other leptons): not even the most
massive neutron stars are completely made of neutrons, but
also include a fraction of protons and electrons whose num-
bers must balance for the star to be charge neutral. But these
contributions are both easier to compute than the QCD EOS,
and are small with respect to the QCD contribution.
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Apart from the mass and radius, neutron stars are charac-
terized by a number of other observables. These include the
moment of inertia I , quadrupole moment to quadratic order in
spin Q, and the tidal Love number Λ (see, e.g., [89]). They
can all be computed by considering (slowly rotating) star
solutions in general relativity and the only input from QCD
is still the EOS. Perhaps the most interesting observable for
our purposes is the tidal deformability, which measures how
much the neutron star is deformed by tidal forces. It can be
constrained by measurements of gravitational waves from
neutron star mergers, as I will discuss below.

2.4 Experimental efforts: neutron stars and their mergers

There is already a fair amount of data for neutron star prop-
erties from measurements of isolated pulsars, neutron stars
in binaries, and from neutron star mergers. From the point of
view of constraining the EOS, perhaps the most interesting
are the measurements of neutron star masses and radii (see
the review [9]).

The masses of a few dozens of stars have been measured.
Among these masses, some of the heaviest accurately mea-
sured neutron stars are found in pulsar–white dwarf binaries,
and can be measured through the Shapiro time delay of the
pulses when the pulsar passes behind its companion (see the
review [90]). Such results include (in units of the solar mass
M� and at 1σ confidence level)

– The (millisecond) pulsar J1614-2230with the mass M =
1.908 ± 0.016M� [91,92].

– The pulsar J0348+0432 with the mass M = 2.01 ±
0.04M� [93].

– The pulsar J0740+6620 with the mass M = 2.08 ±
0.07M� [94,95].

These measurements set a stringent lower bound to the max-
imum mass MTOV of neutron stars at around two times the
solar mass. This bound requires the EOS of neutron stars
to be stiff, i.e., to have high speed of sound c2

s = dp/dε,
in particular at around core densities. Otherwise such high
masses cannot be reached. Several soft EOSs proposed in the
literature are already ruled out by these measurements.

The radii of some neutron stars has also been measured
but the radius measurements are more difficult than the mass
measurements and have usually much larger relative uncer-
tainties. Typical results for the neutron star radii lie between
10 and 15 km. The radius measurements can be done by
using different methods, including spectroscopic measure-
ments of accreting neutron stars, studies of thermonuclear
X-ray bursts, and timing observations of signals due to inho-
mogeneities as the star rotates [90]. The ongoing NICER
experiment uses the latter method (pulse profile modeling)
where long term observation of the X-rays emitted by the star

as well as its modulation as the star rotates are used to esti-
mate the mass and the radius of the star. The results from these
measurements have been published in [96–99]. The analysis
is complemented by using data from the XMM-Newton X-
ray telescope. In X-ray bursts, matter falls from a companion
star to the surface of the neutron star causing an explosive
thermonuclear reaction. Some of the X-ray burst measure-
ments, obtained by analyzing the cooling after the bursts,
report relatively accurate results (see, e.g., [100]) but these
results depend on the modeling of the neutron star “atmo-
sphere”, i.e., the thin layer at the surface of the star having
low density, which brings in additional uncertainty [101].

Another way to study neutron stars is the observation of
pulsar “glitches”, i.e., sudden changes in the rotational fre-
quency of the star [102]. The mechanisms causing glitches
are still mostly unknown. They can be analyzed via pre-
cise timing measurements, e.g., the SKA and UTMOST pro-
grammes.

Apart from properties of a single star, recently binary
merger events involving neutron stars have been observed.
The first was GW170817 in 2017, which was observed
both through gravitational waves by advanced LIGO/Virgo
and thereafter by telescopes and observatories ranging basi-
cally over the whole spectrum of electromagnetic waves
[10,11]. Later, another likely merger event (GW190425)
was observed by LIGO/Virgo observatory, but in this case
the observed gravitational wave signal was weaker and the
electromagnetic counterpart could not be detected [103].
LIGO/Virgo has also observed two events that were most
likely mergers of a black hole with a neutron star [104], and
an additional event (GW190814) where a black hole merged
with a 2.6M� object that could be a neutron star or a black
hole [105].

The first and cleanest observation of a neutron star merger,
GW170817, sets also bounds for the EOS. These come from
the measurement of the gravitational wave signal, which
actually only contains the inspiral phase before the merger. It
is likely that gravitational waves were also emitted after the
merger, but their frequency was higher, and the sensitivity of
the detectors decreases with frequency in the relevant range,
so that the after merger signal was not detectable. The inspi-
ral signal carries information about the tidal deformability Λ

of neutron stars. A weak signal of deformation was detected:
the best fit to the data prefers mild deformation. Therefore the
data sets a strong upper bound (and a weak lower bound) to
the tidal deformability. The analysis by LIGO/Virgo collab-
oration, which assumed that both merging neutron stars are
described by the same EOS, concluded that Λ1.4 = 190+390

−120
at 90% confidence level, where the subscript 1.4 refers to
the mass M ≈ 1.4M� of each of the stars [12]. The upper
bound for Λ1.4 is particularly interesting because it is com-
plementary to the constraint from the mass measurements
(i.e., MTOV � 2.0M�): it excludes EOSs which are too stiff.
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That is, for an EOS to meet both bounds, it needs to be stiff
but not too stiff.

The GW170817 may also set a different kind of bound for
the EOS. Namely, the analysis of the electromagnetic signal
from the merger suggests that a supramassive neutron star
was formed in the merger, which later, within one second or
so, collapsed into a black hole (see, e.g., [106]). If this was the
case, the mass of the remnant was above the maximum mass
of stable star. This sets an upper bound for MTOV. Computing
the exact bound is, however, involved because only the total
mass before the merger is known precisely. Consequently the
mass bound depends on the details of the event. Depending
on the assumptions, estimates for the bound vary between
2.15 and 2.3 solar masses [107–109].

Additional and more precise measurement of neutron stars
are expected in near future. The radius measurement are
becoming more precise due to progress with the methods
and new experiments. At the same time, LIGO and Virgo are
continuing observations with improved sensitivity, and will
soon be accompanied by other gravitational wave observato-
ries such as LIGO-India. Eventually, third generation exper-
iments such as the Einstein telescope will provide detailed
information on the gravitational wave signals from neutron
star mergers.

2.5 State-of-the-art for cold QCD EOS

Let me then discuss the state-of-the-art of the EOS of (cold
and) dense QCD matter and in particular the effect of the neu-
tron star measurements on it. A model-independent method
for studying this is to use parameterized families of EOSs
which extrapolate from known results at low and/or high
densities, or interpolate between them.

A popular parametrization is polytropic EOSs where one
joins continuously pieces of EOSs which each have constant
adiabatic index γ = dp/dn, where n is the baryon num-
ber density. The intervals with constant γ can have variable
widths (in n) and they are typically joined such that the joints
are second order transitions, which are artificial in the sense
that there is change in the underlying physics which would
cause these transitions. Interpolations between nuclear and
quark matter were considered using polytropes in [4,6,7],
whereas [83,110,111] use only data for nuclear matter, in
practice assuming that the quark matter EOS can be matched
through a first order phase transition of arbitrary strength.
Also other kinds of interpolations have been considered in the
literature, for example piecewise continuous Ansätze [112]
or other continuous parametrizations [110,111] for the speed
of sound.

In Fig. 4 I show bands spanned by quadrutropic interpola-
tions (four intervals with constant γ ) between effective field
theory results at low density and perturbative QCD results at

Fig. 4 The band spanned by polytropic interpolations of cold QCD
EOS between the low density (EFT) and high density (pQCD) results.
Following [6]

high density, following the approach of [6] (see also [113]).1

The full band (all colors) is spanned by all the EOSs con-
sistent with the low and high limits (and also the causal-
ity constraint c2

s < 1) but without adding constraint from
the measurements of neutron stars. The cyan area is then
excluded by the constraint MTOV > 2M�, and the red area
is excluded by the LIGO/Virgo bound Λ1.4 < 580.2 There-
fore the remaining EOSs consistent with both bounds span
the green band.

Notice that the amount of polytropes used to obtain Fig. 4
was relatively modest so that some corners of the bands may
not be perfectly reproduced. See [113] for fully up-to-date
bands. This reference also studies effects of other data, in
particular the (less constraining) radius measurements and
the possible upper bound of MTOV that I discussed above.

Extending the EOS to finite temperature is less well con-
trolled, but there are several models also for the temperature
dependence. See [114] for a recent overview of the tempera-
ture dependence, and [8] for a generic review of the equations
of state. And apart from temperature, one can also consider
dependence on charge fraction (which is important for neu-
tron star mergers), isospin chemical potential, external mag-
netic field, and so on. I will not discuss such extensions in
this review.

3 Brief review of holographic models for QCD

Apart from dense QCD, the other major topic of this review
is gauge/gravity duality. I start by giving a brief review

1 I thank the authors of [6] for sharing their data which was used to
generate this plot.
2 Notice that there are various values for the bound: the early estimate
of [10] for low-spin priors was Λ1.4 < 800, and the analysis of [13],
which was carried out by using a different method than in [12], obtained
Λ1.4 < 720. All these limits are reported at 90% confidence level.
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for the basic structure of the duality in the conformal case
(AdS/CFT), and go on discussing various approaches for
QCD (which should include non-conformality, confinement,
and chiral symmetry breaking). In this brief review I focus on
topics relevant for QCD, and many results are stated without
derivation or motivation. See [115–117] for more extensive
reviews of gauge/gravity duality.

3.1 Basics of gauge/gravity duality

The gauge/gravity duality is formulated as a duality between
a field theory and a higher dimensional gravitational the-
ory. In its most commonly used form, the field theory is
strongly coupled whereas the gravitational theory is a weakly
coupled classical theory. Therefore the correspondence is a
tool to study strongly coupled gauge theories: relatively sim-
ple computations in classical gravity can provide answers
to questions in strongly coupled field theory vie the duality
which would otherwise be extremely challenging.

The best known example of such a duality is the AdS/CFT
correspondence between the four dimensionalN = 4 Super-
Yang–Mills theory with the gauge group SU(Nc), which
is a superconformal theory, and type IIB string theory on
AdS5×S5 [14–16]. In this review I will not go to the details of
this example, but discuss general features of AdS/CFT. That
is, quite in general one expects that CFTs ind-dimensions can
have gravity duals with the geometry of AdSd+1. This duality
is motivated, among other things by the fact that the isome-
tries of the AdSd+1 space match with the d-dimensional con-
formal group SO(2, d). To be precise, if one considers a CFT
in flat Minkowski space, the bulk geometry is the Poincaré
patch of the AdS space, i.e., a coordinate patch covering a
section of the full geometry.

The metric of the Poincaré patch may be written as

ds2 = �2

r2

(

dr2 + ημνdx
μdxν

)

, (7)

where � is the AdS radius, xμ are the usual space-time coor-
dinates, the Greek indices denote the d-dimensional Lorentz
indices, and the holographic coordinate r runs from r = 0
to r = ∞. I will be using mostly plus conventions for the
Minkowski metric ημν . It is understood that the field theory
lives at the “boundary” of the AdS space, which is identi-
fied as the limit r → 0. The (inverse of the) holographic
coordinate may be interpreted as the energy scale of the field
theory as suggested by the fact that the metric components of
the space-time coordinates scale as ∼ 1/r2. For the confor-
mal, i.e., AdS case, the metric is invariant under the mapping
xμ �→ Λxμ and r �→ Λr as required by scale invariance.

The AdS/CFT correspondence is defined, among other
things, by specifying the dictionary: how various bulk fields
φi (r, xμ) correspond to boundary operators Oi (xμ), where i

indexes all the fields/operators. A special case of the dictio-
nary is that the metric itself is dual to the energy momentum
tensor Tμν of the field theory. In order to define the corre-
spondence concretely, one turns on source fields Ji (xμ) for
the operators Oi (xμ). The correspondence is then defined
by equating the generating functional ZCFT[{Ji }] of the field
theory with the classical (on-shell) partition function of the
gravity, with the boundary condition that φi matches with the
source Ji at the boundary [15]:

ZCFT[{Ji }] = Zgrav[{Ji }]. (8)

I will then illustrate the correspondence by considering a
simple explicit example of massive bulk scalar field in AdS.
Notice that the bulk theory is expected to have a dynamical
(Einstein) gravity sector, to which (7) is a solution. However
as the simplest illustrative example of the correspondence,
it is convenient to ignore the gravity sectors and consider
scalars which only probe the AdS geometry on the bulk side.
That is, we may take the (probe) bulk action as

Sd+1 = −N
∫

d4xdr
√− det g (9)

×
∑

i

[
1

2
gMN ∂Mφi∂Nφi + 1

2
m2

i φ
2
i

]

where N is an arbitrary normalization constant, the indices
M , N run through all d + 1 dimensions and gMN is the
AdS metric (7). I only consider homogeneous solutions that
only depend on the holographic bulk coordinate r . If we
parametrize

m2
i = Δi (Δi − d), (10)

the solutions are given by

φi (r) = Jir
d−Δi + σi r

Δi , (11)

where we already identified the coefficient of the dominant
solution at the boundary (taking Δi > d/2) with the source
Ji , which is in this case xμ-independent. The coefficient of
the subdominant solution is then identified by the VEV of
the operator Oi (xμ), and therefore Δi is the dimension of
the operator.

I sketch then how the VEV of the operator arises by using
the dictionary. Inserting the solution (11) in the action we
obtain that (assuming such boundary conditions at r → ∞
that no terms arise from there)

S(o.s.)
d+1 = −1

2
NV4�

dφ(r)r2−dφ′(r)
∣
∣
∣
r=ε

(12)

= −d

2
NV4�

d
∑

i

Jiσi + divergent (13)
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where V4 is the volume of space-time and the divergent piece
as ε → 0 should be removed by holographic renormalization
(see [118] for details). That is, the divergences are canceled
by adding (covariant) boundary terms which do not affect the
dynamics in the bulk. In this case, the necessary counterterm
is

Sct = 1

2
V4�

dε−d
∑

i

φi (ε)
2(d − Δi ) (14)

and the regularized action is defined as S̃(o.s.)
d+1 = S(o.s.)

d+1 +Sct.
This UV divergence reflect a similar divergence on the field
theory side. The correspondence now states that

1

ZCFT

∫

D ei SCFT+i
∑

i Ji
∫

d4xOi (xμ) = eiS̃
(o.s.)
d+1 ({Ji }) (15)

where the left hand side is the generating function of the CFT
and the right hand side is the on-shell bulk (gravity) partition
function, or to be precise, the part of it which depends on the
sources Ji . Moreover, D is the path integral measure of the
CFT, SCFT is the CFT action, and ZCFT = ∫ D exp(i SCFT).
Expanding at leading nontrivial order we finally find the rela-
tion between the VEV and σi :

〈Oi 〉 =
(
d

2
− Δi

)

NV4�
dσi . (16)

Turning on finite temperature will be an important part of
this review, and can be studied due to “planar black holes”
[38]: The geometry (7) is a solution to the d + 1 Einstein
gravity with the cosmological constant Λ = 12/�2, but there
is also a more general “black hole” solution

ds2 = �2

r2

(
dr2

f (r)
− f (r)dt2 + δi j dx

i dx j
)

, (17)

f (r) = 1 −
(
r

rh

)d

, (18)

where the indices i and j , run over the d − 1 spatial coor-
dinates, and r = rh is the location of the horizon. By the
black hole being planar I mean that the horizon extends to
all values of t and xi .

The thermodynamics of the field theory is obtained from
the thermodynamics of the black hole. The temperature is
the Hawking temperature, given by the surface gravity ∼
f ′(rh), and can be derived by requiring the regularity of the
geometry at the horizon as follows. As in field theory, we
first Wick rotate t �→ −iτ to obtain the Euclidean geometry
and compactify on a circle. The temperature in field theory is
given as the inverse of the periodicity of the Euclidean time
coordinate, i.e., β = 1/T . For the projection of the geometry

in the time and holographic direction we then have

ds2
2d = �2

r2

(
dr2

f (r)
− f (r)dt2

)

≈ �2

r2
h

(
dr2

f ′(rh)(r − rh)
+ f ′(rh)(r − rh)dτ 2

)

, (19)

where higher order corrections in rh − r were neglected.
Substituting here ρ = √

rh − r , the metric becomes

ds2
2d ≈ − 4�2

r2
h f ′(rh)

(

dρ2 + ( f ′(rh))2

4
ρ2dτ 2

)

, (20)

which we recognize as the flat space metric in radial coor-
dinates if − f ′(rh)τ/2 is identified as the angular variable.
The absence of a conical singularity therefore requires that
the periodicity of the angle is 2π , which in turn implies that
the periodicity of τ must be −4π/ f ′(rh). Since this is also
the inverse of the temperature, we obtain

T = − 1

4π
f ′(rh) = d

4πrh
, (21)

where we inserted (18) in the last step. The other fundamental
relation of black hole thermodynamics is the Bekenstein–
Hawking formula: the entropy (density) s is given by the
area (element) A of the black hole as

s = 1

4Gd+1
A = 1

4Gd+1

�d−1

rd−1
h

= 1

4Gd+1

(4πT �)d−1

dd−1 . (22)

where Gd+1 is the d + 1 dimensional Newton constant.
Finally let us recall the limitations of gauge/gravity dual-

ity. They are most clear in the original formulation forN = 4
SYM but apply more generally in AdS/CFT setups.

First, the number of colors needs to be large, otherwise
we would need to solve full string theory in the bulk. On the
field theory side taking Nc → ∞ means that we are only
accounting for “planar” diagrams in the double line notation
introduced by ’t Hooft [119]. Notice that even such planar
diagrams will include interactions to all orders in the gauge
coupling. On the gravity or bulk side this means that we are
neglecting string loops. A consequence of working in this
limit is large Nc factorization: all higher point correlators
can be expressed in terms of one-point and two-point func-
tions. This is already visible from the result (15) from which
arbitrary-point functions can be extracted 3. Second, the ’t
Hooft coupling λ′tH = g2Nc, where g is the coupling of the
gauge theory, needs to be large in order to validate the use
of classical gravity in the bulk. This reflects the nature of the
duality: computations in gauge theory are straightforward but

3 Notice that the result of (15) is particularly simple because we did not
include the spatial dependence of the source.
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in gravity difficult at weak coupling, and vice versa at strong
coupling.

In principle one can relax these requirements of large Nc

and strong coupling, but then one needs to go beyond the
planar classical gravity approximation, which is extremely
challenging. I will not attempt to do this in this review, but
only work with classical gravity.

3.2 Gauge/gravity duality for QCD

I then discuss applying gauge/gravity duality to the prime
example of a strongly coupled gauge theory appearing in
nature: QCD. It is however far from obvious that this dual-
ity can lead to useful results for QCD. While the standard
examples with precisely established correspondence involve
superconformal field theories, QCD is not supersymmetric
and not conformal, but instead has discrete spectrum and con-
finement. Moreover regular QCD has Nc = 3 which is not
that large, and the coupling constant flows becoming small at
high energies (asymptotic freedom) so that the applicability
of holography in its standard form, i.e., with classical gravity,
becomes questionable.

However, research in this topic has demonstrated that
despite its shortcomings, holography is extremely useful for
describing the behavior of QCD. This is due to various rea-
sons: First, since QCD is strongly coupled there is only
limited information from first-principles computations, so
that even rough results can be useful. For example real-time
dependence of QCD plasma, which is important for heavy ion
collisions, is challenging to study by using lattice QCD (or
other known methods). Second, many results obtained from
holography turn out to be insensitive to the precise details of
the underlying strong dynamics, and therefore actually apply
to a more general class of theories than just QCD. In partic-
ular, precise universal relations such as the famous result for
the shear viscosity η/s = 1/4π [31,32] have been found.

The approaches for holographic QCD can be roughly
divided into two categories top-down and bottom-up mod-
els. The top-down models are based on concrete (typically
ten dimensional) setups in string theory, i.e., certain well-
chosen supergravity backgrounds, for which also precise
control of the gauge theory is possible. That is, we usually
know what the gauge theory is, and it is not exactly QCD but
may be similar to QCD in some well-defined sense. In some
cases, the predictions of these models agree remarkably well
with expectations from QCD. A well-known example in this
class is the Witten–Sakai–Sugimoto model [24,25,38]. The
bottom-up models are, in contrast, engineered “by hand” with
some inspiration from the top-down models. While quite a bit
of guidance is provided by the (global) symmetry of QCD,
which the holographic dual should respect, a precise con-
trol of the duality is lost: the gravity models are not dual to
any explicitly known field theory, but instead involve parame-

ters, which should be adjusted to obtain agreement with QCD
physics. But this also means that one is free to do modifica-
tions, which may be necessary to model QCD efficiently, but
are difficult to realize in the top-down framework. Moreover,
it turns out that even very simple bottom-up models (such
as the hard-wall model [17]) are able to describe QCD data
surprisingly well. Additional examples of models in both
categories will be discussed below.

3.2.1 Nonconformality and confinement

I then discuss various features that need to be included in
gauge/gravity duality in order to properly describe QCD,
which are absent in the conformal AdS/CFT setting. First,
the model should be non-conformal and confining. That is,
the geometry should be deformed, such that it is no longer
exactly AdS so that the conformal group is broken to the
Lorentz subgroup SO(1, d−1). The spectrum in CFTs is con-
tinuous which arises in the holographic model because fluc-
tuations of the bulk fields are allowed to propagate infinitely
far towards the IR endpoint r = ∞. One needs to introduce
an IR wall which prevents this, giving rise to discrete spec-
trum and confinement. One often keeps the geometry close to
the boundary as either exactly or asymptotically AdS5 since
it is expected that in the UV, the theory runs to the trivial free
theory fixed point and becomes therefore asymptotically con-
formal. As we pointed out above, treating the weakly coupled
region using gauge/gravity duality may be problematic, but
using a geometry that is asymptotically AdS5 is the simplest
option, which also guarantees that the standard rules from
AdS/CFT correspondence can be applied at the boundary.
We will comment more on this below.

Within the top-down framework, a typical method to
achieve confinement is to compactify one of the spatial direc-
tions, which gives rise to an energy scale that will be asso-
ciated with the scale of confinement [38]. The geometry
restricted to the compactified coordinate and the holographic
coordinate takes the form of a cigar (see Fig. 5). The end-
point of the cigar creates the IR wall in this case. One can
start from a 3+1 dimensional theory so that the final theory
has 2+1 (uncompactified) dimensions. In the case of N = 4
SYM this leads to the AdS5 soliton geometry on the bulk side
[120]. Another possibility is to start from a 4+1 dimensional
theory in which case one obtains a theory with 3+1 uncom-
pactified dimensions. A well-known example is a geometry
[121,122], which will be referred to as Witten’s geometry
below:

ds2 =
( u

R

)3/2 (

ημνdx
μdxν + f (u)dθ2

)

(23)

+
( u

R

)−3/2
( f (u)−1du2 + u2dΩ2

4 ),

f (u) = 1 − u3
Λ

u3 , (24)
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Fig. 5 A sketch of the confined geometry and the setup for flavors
branes in the Witten–Sakai–Sugimoto model

where θ is the compactified coordinate and the holographic
coordinate runs from u = uΛ at the tip of the cigar to u = ∞
at the boundary. Combined with supersymmetry breaking
boundary conditions for fermions on the circle, the only light
degrees of freedom are those of pure-glue Yang–Mills theory,
which makes this choice particularly interesting. However at
scales higher than the compactification scale MKK of the
θ coordinate, given by the periodicity θ = θ + 2πM−1

KK ,
additional modes show up. This scale is linked to uΛ: in
analogy to the derivation of the Hawking temperature (21)
above, the requirement of regularity of the geometry at the
tip of the cigar gives

MKK = 3

2

u1/2
Λ

R3/2 (25)

so the additional modes cannot be eliminated simply by send-
ing MKK to infinity without affecting the geometry. Actually
the issue turns out to be a bit more serious: MKK is the only
mass scale in the background so it exactly equals both the
scale of the Kaluza–Klein modes and the scale of the (purely
3+1 dimensional) glueballs, as one can also check explicitly.
So there is no way to separate the Kaluza–Klein modes from
the glueballs. Moreover, the coupling constant does not run
in this background but remains a constant parameter. Never-
theless, the phenomenology from this model has turned out
to be close to that of Yang–Mills.

Apart from the method of compactifying, well studied
confining backgrounds are the Klebanov–Strassler [123] and
related Klebanov–Tseytlin [124] geometries, where noncon-
formality and confinement is obtained by placing fractional
D-branes on a conifold setup.

In bottom-up frameworks, various methods are available
to induce confinement. The simplest is to use AdS5 geometry
but introduce a hard cutoff in the IR. The scale of confinement
is then the inverse of the coordinate value of the cutoff. Such

“hard wall” models already produce (among other things)
a good description of QCD mass spectrum. But to refine
the results, one can introduce “soft wall” models: instead a
hard cutoff one adds a dilaton field with explicit dependence
on the holographic coordinate that breaks conformality and
causes, in effect a softer cutoff leading to a more natural
spectrum. Apart from the original hard and soft wall models,
this kind of approach has been used in light front holography
[20,21], with Einstein-dilaton actions (see, e.g., [125]), and
in dynamic AdS/QCD models which are inspired by the D3–
D7 setup but include bottom-up elements such as IR cutoff
and matching with QCD RG flow [22,23,126]. The spectra
in all these setups agree with QCD data to a good precision.

More complicated bottom-up models include a dynami-
cal dilaton gravity sector with a nontrivial potential for the
dilaton that can be adjusted to generate a nontrivial confining
geometry and a dilaton profile producing effectively a soft IR
wall in good agreement with QCD data. I will discuss below
models in this class in more detail.

The main motivation for adding the soft IR wall is to obtain
“Regge-like” particle spectra where squared masses are lin-
ear in excitation number and angular momentum, as observed
in QCD. This behavior is reminiscent of spectrum of strings,
which originally lead to the discovery of string theory as a
model of QCD at low energies (see, e.g., [127]). In bottom-
up models, however, the connection to string theory has been
lost and linear confinement is input by adjusting the models
by hand.

3.2.2 Introducing flavors

Let me then discuss the matter sector in QCD, i.e., quarks in
the fundamental representation of the gauge group, and how
chiral symmetry is broken. Quarks are not present in SYM
(which has fermions in the adjoint representation) but can be
added by considering (flavor) D-branes [24,35,128]. There-
fore it makes sense to review the brane configurations under-
lying the holographic models and geometries. The AdS5×S5

geometry arises as the near horizon limit for the (type IIB)
supergravity solution of Nc D3 (gauge) branes, and the geom-
etry of (23) arises from a setup of Nc D4 gauge branes in type
IIA supergravity.

Quarks in the fundamental representation of the gauge
group are identified with strings stretching between the gauge
and flavor branes. In order to introduce N f flavors of light
fundamental quarks (with lightness obtained when the strings
are short), one therefore adds N f flavor branes that intersect
with the gauge branes in the 3+1 dimensions of the field
theory. Usually one assumes the probe limit Nc � N f , in
which the backreaction of the flavor branes to the geometry
determined by the gauge branes can be neglected. Taking
into account the backreaction is challenging, but has been
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considered in the literature (often resorting to approximations
or special setups such as smeared flavor branes [129,130]).

Typical brane configurations are the D3–D7 models,
where one adds N f D7 flavor branes in the AdS5×S5 [35], or
the Witten–Sakai–Sugimoto model based on the D4–D8–D8
configuration [24], i.e., D8 flavor branes in the gravity back-
ground of (23). I show this latter configuration schematically
in Fig. 5. A stack of N f overlapping flavor branes implements
a U(N f ) flavor symmetry. One can identify the left-handed
and right-handed chiral symmetries U(N f )L/R in QCD with
the flavor symmetries of the D8 and D8 branes, respectively.
In the confined cigar geometry the D8 and D8 join at the tip
of the cigar, which breaks the chiral symmetry down to the
vectorial subgroup U(N f )V . Therefore confinement triggers
chiral symmetry breaking in the model.

In the probe limit N f Nc, the flavor branes are described
through Dirac–Born–Infeld (DBI) actions, and the flavor
dependent operators are dual to the gauge fields on the branes
and the fluctuations of the embeddings of the branes. Apart
from the D3–D7 and WSS setups, flavors have been con-
sidered in the confining Klebanov–Strassler backgrounds
[128,131] by adding D7 branes.

In simpler models (such as the hard and soft wall models
[17,19]) one writes down actions for the matter sector that are
polynomial in the fields, roughly corresponding to expansion
of the DBI action to first nontrivial order. The typical fields
then include left and right handed gauge fields, which are
dual to the left and right handed currents ψ̄(1 ± γ5)γμψ

in QCD. One also typically considers a scalar field X dual
to the ψ̄ψ operator. Condensation of X in the bulk implies
chiral symmetry breaking in the bulk, and for this to happen
spontaneously at zero quark mass, a nontrivial potential for X
should be added. Perhaps the simplest model which achieves
this is the dynamical AdS/QCD model [22,126] based on the
D3–D7 setup, which was already mentioned above.

3.2.3 Asymptotic freedom

As I pointed out above, the geometries in holographic models
for QCD are usually asymptotically AdS5 near the boundary,
because QCD becomes (free and) conformal at high energies.
This is however a potential issue because simple formulations
of AdS/CFT only work at strong coupling. So when the cou-
pling becomes weak at high energies, applying gauge/gra-
vity duality (in the classical gravity approximation) becomes
questionable. Usually this is not considered as a major prob-
lem because basic observables such as decay constants and
spectrum in confining backgrounds are mostly determined
by the IR part of the geometry, and the results in many of
the models agree well with QCD. Moreover in many top-
down models such as the WSS models the coupling does not
run so that this issue does not really arise. There is however
also an attempt (based on semi-holography [132]) to com-

bine a perturbative framework of UV physics to holographic
models in the IR which has been discussed in the context
of quark gluon plasma [133–136]. In this review I will use
a less ambitious approach (IHQCD and V-QCD) where the
near-boundary behavior of the geometry of the holographic
model is tailored to agree with basic results on perturbative
QCD. A somewhat similar approach is taken in the dynamic
AdS/QCD model where one inputs the perturbative running
of the quark mass.

3.3 Phases of holographic QCD

I then discuss the holographic realization of the phases of
QCD at finite temperature and density. Starting from the
structure at zero density, the basic idea is (as already pointed
out above) that for nontrivial finite temperature configura-
tions, one needs to consider (planar) black hole configu-
rations. For confining backgrounds one typically obtains a
Hawking-Page transition [137], where at low temperature
one has a geometry similar to that of the zero temperature
vacuum, and at high temperatures in the quark-gluon plasma
phase, the geometry is the black hole geometry. The criti-
cal temperature of the deconfinement transition is set by the
confinement scale.

A nice geometric picture arises in the WSS model, where
at low temperatures the geometry is that of (23), but at high
temperature the roles of the compactified coordinate and time
have been changed [39]:

ds2 =
( u

R

)3/2 (

− f (u)dt2 + δi j dx
i dx j + dθ2

)

(26)

+
( u

R

)−3/2
( f (u)−1du2 + u2dΩ2

4 ),

f (u) = 1 − u3
T

u3 , (27)

with the Hawking temperature T = 3
4π

u1/2
T

R3/2 . The phase tran-
sition is found when uT = uΛ, so Tc = MKK /2π . In the
high temperature phase, the geometry for the compactified θ

and holographic u coordinates takes the form of a cylinder,
so that the D8 and D8 branes are no longer connected and
chiral symmetry is restored at the transition.4

Going to finite baryon number chemical potential is in
principle straightforward following the dictionary. That is,
the temporal component of the (vectorial) gauge field is
dual to ψ̄γ0ψ = ψ†ψ (summed over flavors), to which the
baryon number chemical potential couples in field theory, so
it is enough to turn on a boundary value for the temporal
component on the holographic side. At high densities one
finds charged black hole solutions: the baryon number den-
sity arises from behind the horizon of the black hole. The

4 Notice however that the work of [138] suggests that the phase transi-
tion should proceed through the Gregory–Laflamme instability [139].
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field theory interpretation of such configurations is that the
nonzero baryon number emerges from free quarks, i.e., these
solutions are dual to the quark gluon plasma (or quark mat-
ter) phase. Baryon number can also arise from baryons, which
are the only possible source in the confined phases, but their
realization in holography is more involved. I will discuss it in
Sect. 4. Notice however that in probe brane setups there is no
backreaction of the baryon number to the geometry so that
the charged geometry actually does not differ from the neu-
tral geometry. For nontrivial charged black hole solutions,
backreaction is required.

A simple explicit example of a (backreacted, deconfined)
charged solution is obtained by coupling Einstein gravity to
a quadratic action for the gauge field, i.e., Einstein-Maxwell
gravity

SEM = 1

16πG5

∫

d5x
√− det g (28)

×
[

R + 12

�2 − 1

4
FMN F

MN
]

.

The charged (Reissner–Nordström) solution is of the form (17)
but with the blackening factor modified to

f (r) = 1 − r4

r4
h

− 2Q̂2

(

r6

r6
h

− r4

r4
h

)

(29)

where we set d = 4 and the charge was normalized such
that f ′(rh) → 0 as Q̂ → 1 so that the blackening function
exhibits a double root and the black hole becomes extremal.
Therefore we should take 0 ≤ Q̂ ≤ 1. The geometry is
supported by the gauge field

At (r) = μ

(

1 − r2

r2
h

)

, μ =
√

6�

rh
Q̂. (30)

The rest of the thermodynamics is determined by the relations

T = 1 − Q̂2

πrh
, s = 1

4G5

�3

r3
h

. (31)

Notice that all positive values of T and μ are covered for pos-
itive rh and 0 < Q̂ < 1. Recall however that the Reissner–
Nordström black hole is unlikely to be a realistic model for
QCD as it corresponds to adding an ad-hoc five dimensional
gauge field term to the background for an exactly conformal
(N = 4 SYM) theory. Nevertheless, it illustrates the general
properties of charged solutions.

Finite density phase diagrams have been studied in the lit-
erature in D3–D7 setups, both in the probe limit [140–143],
and taking into account the backreaction [144,145] by using
a method where flavor branes are smeared [129]. The probe

analysis shows a second order phase transition at zero tem-
perature when the chemical potential equals the quark mass
(given by the UV separation of the D3 and D7 branes) which
may be used as a rough model for the deconfinement transi-
tion in QCD. Moreover, turning on background fields leads to
interesting effects (see, e.g., [146–148] and the review [149]).
Another interesting possibility is the spontaneous creation of
inhomogeneous phases in the region of low temperatures and
high densities, in the D3–D7 setup with backreacted smeared
branes [150].

Also the WSS model at finite density has been studied
extensively. For WSS the backreaction is even more tricky
[151–153] because the background breaks all supersymme-
tries. However interesting phenomenology arises by consid-
ering probe brane setups where the D8 branes of Fig. 5 are
not antipodal on the compactified circle but separated by a
distance L at the boundary which is taken as a free parame-
ter [39]. In this generalization the chiral and deconfinement
transition need not take place at the same value, but a more
complicated phase diagram arises. In the limit of small L
[154,155] chirally broken phase is found only in the region
where both T and μ are small even at zero quark mass. Effects
of finite quark mass can be analyzed [156] by considering
effects from the strings between the D8 and D8 branes, either
through a “tachyonic” bifundamental scalar field [157–160]
or through an open Wilson line between the branes [161,162].
The model is also known to contain instabilities towards
inhomogeneous phases which have been studied in the WSS
model [163] (see also [164]).

Another interesting direction is turning on nonzero isospin
chemical. This is relevant for neutron star applications as the
matter inside neutron stars is isospin asymmetric. Isospin
chemical potential, and consequent condensation of charged
pions and ρ mesons, has been considered both in the WSS
model [165–167], in the D3–D7 model [168,169], as well as
in bottom-up models [170–173].

At low temperatures and high densities one expects quark
pairing to take place in quark matter. Model computations
suggest that the phase diagram in this regime contains var-
ious different paired phases, including color superconduct-
ing and/or color-flavor locked phases [81]. Such “exotic”
phases are challenging to describe with gauge/gravity dual-
ity, because they involve spontaneous breaking of the gauge
group SU(Nc). For standard holographic geometries, con-
servation of SU(Nc) is manifest and the dictionary only con-
tains operators that are singlets under the gauge group. In the
language of the brane setups, breaking the gauge symmetry
would mean pulling a significant fraction of the Nc gauge
branes apart from the overlapping stack of branes, which
understandably leads to a complex geometry. Despite this
fact there is a wide literature working toward the holographic
realization of these phases. Color superconductors have been
analyzed in the probe D3–D7 model at finite baryon [174]
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and isospin densities [175,176]. Higgsing of the SU(Nc) in
both pure gauge (probe) top-down and bottom-up setups was
studied in [177]. The recent work [178] found color supercon-
ducting solutions with probe color D3 branes in AdS5 × S5

that rotate in the internal directions (see also [179]).
Another approach is to use the holographic superconduc-

tor model of [180] where the breaking of the gauge group
is modeled through breaking of a global symmetry. This has
been studied both in the D3–D7 motivated setup [181], and
by backreacting the condensing scalar field action of [180] in
five dimensional Einstein gravity [182], in six dimensional
gravity with the AdS soliton background [183], as well as in
Gauss-Bonnet gravity [184,185].

There is a priori no reason why the chiral and decon-
finement transitions should take place simultaneously, and
it is known that in many strongly interacting theories they
are separate (see, e.g., [186]). A possible scenario in QCD
is that the deconfinement and chiral transitions are sepa-
rate in the regime of high density. Such a behavior may
be related to the quarkyonic phase, which is confined but
chirally symmetric and shares features of both nuclear and
quark matter [82]. It is expected to be present at least in
the limit of large Nc in QCD. Separate chiral and decon-
finement transitions are also found in NJL models (see
[187]). It is also possible to generate a phase which is chi-
rally symmetric and confined by using holography: this has
been demonstrated by carefully chosen bottom-up model
in [188]. But in holographic models it is actually easier
to generate deconfined chirally broken phases. An exam-
ple is the non-antipodal WSS model mentioned above. In a
class of phenomenologically adjusted D3–D7 models there
is a chirally broken finite density phase which appears at
intermediate chemical potentials [189,190]. The V-QCD
models, which will be discussed below, can also support
a chirally broken deconfined phase, but this phase will be
absent for the potentials we will be using in this review
[191].

4 Nuclear matter in gauge/gravity duality

Understanding the description of nuclear matter in gau-
ge/gravity duality requires first understanding the descrip-
tion of its constituents, baryons. They are special in particu-
lar because their mass grows linearly with Nc and becomes
infinite in the limit of large Nc, where gauge/gravity duality
works. Therefore the behavior of baryons and nuclear matter
depends more strongly on Nc, which leads to complications
when applying the holographic results to real-world matter,
as I shall discuss below. But in order to motivate the holo-
graphic baryons, I will start by discussing the descriptions of
baryons in large Nc QCD by using effective field theory.

4.1 QCD and baryons at large Nc

As is well known, the low energy physics of QCD is well
described by the effective theory of the states having the
lowest masses, i.e., chiral perturbation theory of pions. Pions
are the Goldstone bosons of the spontaneously broken chi-
ral symmetry so they map to the generators of the (broken)
axial SU(N f ) symmetry. That is, they are in the adjoint of
SU(N f ). If one turns on light quark masses which break the
axial SU(N f ) explicitly, the pions become “pseudo” Gold-
stone bosons, i.e., their masses are nonzero but they are still
anomalously light compared to the other mesons. The axial
U(1) symmetry is broken by the axial “triangle” anomaly and
the state η′ mapping to its generator is in general not a Gold-
stone boson. In the large Nc limit however the axial anomaly
is suppressed, the flavor symmetry is enhanced from SU to
U, and there is an additional Goldstone boson [192].

The leading order chiral action can be written as (assuming
flavor independent quark masses)

Lπ = f 2
π

4
tr

(

LμL
μ
) + f 2

πm
2
π

2
tr

(

U +U †
)

, (32)

U = eiπaτa/ fπ , Lμ = U †∂μU,

where mπ is the pion mass, fπ is the pion decay constant,
and τa are the generators of U(N f ) so that the η′ is included
in the pions. The Lagrangian can be systematically extended
to include higher order terms in momenta and pion masses.

The fact that the baryon becomes infinitely massive in the
large Nc limit suggests that it can be described as a soliton of
the pion fields. I will here discuss the standard picture which
requires N f > 1. See [193] for the realization at N f = 1.
The baryon number should be conserved, and indeed one can
find a conserved current

J B
μ = 1

24π2 εμνρσ tr
(

LνLρLσ
)

. (33)

The solitons are topologically protected: they carry a non-
trivial winding number under the third homotopy group
π3(SU(N f )) = Z, which is identified with the baryon num-
ber defined through the temporal component of the cur-
rent (33).

However it is immediate that (32) does not have such soli-
tonic solutions. Applying a simple scaling argument shows
that the energy is minimized when the size of the soliton
goes to zero. The situation is however changed if one adds
derivative corrections to the Lagrangian including the last
term in

LSkyrme = f 2
π

4
tr

(

LμL
μ
) + f 2

πm
2
π

2
tr

(

U +U †
)

(34)

+ 1

32e2 tr[Lμ, Lν][Lμ, Lν].
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Now the action has a nontrivial (charge one) solution, the
skyrmion [194], which is identified with the baryons. At large
Nc, we have f 2

π ∼ e−2 ∼ Nc, and consequently the size of
the skyrmion is independent of Nc and determined by the
QCD scale as 1/ΛQCD, and the energy is ∼ Nc, matching
with the expected behavior for baryons. Notice that because
the size is Nc independent, one should in principle consider
derivative corrections to all orders. However, including only
the leading nontrivial correction gives a phenomenologically
successful description [195,196].

4.2 Holographic description of a single baryon

It was understood early on how baryons can be included
in gauge/gravity duality, and the description turns out to be
closely related to the Skyrmion picture. First recall that a
baryon in QCD with the SU(Nc) gauge group is a color sin-
glet state composed of Nc quarks, and that quarks (in the fun-
damental representation) are obtained from strings stretching
between the flavor and gauge branes. The holographic dual
to a single baryon is then obtained through a baryon vertex
in the bulk, which is an object where Nc fundamental strings
can end. In the dual geometry AdS5 ×S5 ofN = 4 SYM, the
baryon vertex can be identified with a D5 brane wrapping the
S5 part of the geometry [197,198]. It is therefore localized in
the spatial and holographic directions (for a baryon at rest),
and extended along the time direction as well as along the
angular coordinates of the S5. Notice that inclusion of flavors
is necessary in order to have physical dynamical baryons:
without flavors branes the strings emerging from the baryon
vertex can only end at the boundary, and are long, so this con-
figuration is dual to a baryon made of external heavy quarks.
When flavor branes are added, it is possible to create dynam-
ical baryon configurations with short strings ending on the
brane.

The realization of baryons has been studied extensively in
the WSS model, in which case the baryon vertex is obtained
by wrapping a D4 brane over the S4 of the geometry [24,199–
201]. The configuration for a single baryon then consist of the
vertex and Nc strings starting from the vertex and ending on
the flavor branes. The tension of the strings pulls the vertex on
the flavor branes so that the D4 brane is dissolved in the flavor
branes. Such dissolved branes are, in this case, described
through solitonic configurations of the non-Abelian gauge-
fields living on the D8 branes. The energy of the soliton is
minimized when the baryon vertex lies at the tip of the cigar,
as sketched in Fig. 5.

As it turns out, in the limit of large ’t Hooft coupling λ the
WSS solitonic baryons are small. Assuming that the soliton
is located exactly at the tip, it is then simply described in
terms of a five dimensional Yang–Mills action in flat space
plus a Chern–Simons action

S = −λMKK Nc

432π3

∫

d5x tr
(

FMN F
MN

)

(35)

+ i Nc

24π2

∫

tr

(

AF2 − i

2
A3F − 1

10
A5

)

.

To arrive at this five dimensional action we chose a holo-
graphic coordinate for the D8 embeddings which is smooth
at the tip and rescaled so that the metric at the tip is flat. The
field strengths FMN are small for the soliton which allowed
as to replace the DBI action by the first nontrivial term in the
expansion, i.e., F2, giving the first term in (35).

It is the Chern–Simons action which prevents the soli-
tons from collapsing in this case, in analogy to the Skyrme
term in (34), and balance between the terms sets the size to
be ∼ 1/

√
λ. More precisely, the contribution from the non-

Abelian Maxwell term balances with the “Coulomb inter-
action” contribution arising from the Chern–Simons term5

∫

Ât dt ∧ tr (F ∧ F) , (36)

where Â is the Abelian part of the gauge field. Notice that the
baryons therefore become point-like in the strong coupling
limit. The soliton configurations are again topologically pro-
tected and carry the same winding number of π3(SU(N f ))

as the Skyrmions. The baryon number is

NB = 1

32π2

∫

d3xdz εmnpq tr
(

FmnF pq) , (37)

where the integration is over the spatial coordinates and the
holographic coordinate z which is smooth over the tip, and
the indices are summed over the same four directions, i.e.,
excluding the time direction. One can indeed show that this
is the same winding number as the baryon number arising
from (33) in the Skyrme picture [202]. Moreover, the pion
effective Lagrangian derived from the WSS model matches
with the Skyrme Lagrangian (34) and gives a prediction for
the value of the coupling e.

In the special case of N f = 2 the classical soliton solu-
tion can be found explicitly. It matches exactly with the
Belavin–Polyakov–Schwartz–Tyupkin (BPST) instanton of
four dimensional Yang Mills theory [203] except that the
time coordinate is replaced by z so that the solution is a soli-
ton (localized in the holographic coordinate) rather than an
instanton (localized in time). The solution can be written as

5 Actually it is the curvature corrections to the DBI term, which we have
omitted in (35), that balance against the Coulomb contribution. These
corrections are irrelevant for functional form of the leading order soliton
solution and only affect its size. The size is determined by contributions
suppressed by 1/λ to the energy arising both from the CS term and from
the curvature corrections to the DBI term. See [200] for details.

123



282 Page 16 of 53 Eur. Phys. J. C (2022) 82 :282

Am(x) = −i
ξ(x)2

ξ(x)2 + ρ2 g(x)∂mg(x)
−1, (38)

g(x) = (z − Z) − i(x − X) · σ

ξ(x)
, (39)

ξ(x) =
√

(x − X)2 + (z − Z)2 (40)

where σ denotes the Pauli matrices, the constant ρ ∝ 1/
√

λ

gives the size of the soliton, small coordinates give the coor-
dinate dependence of the soliton, and the capital coordinates
denote the location of the center of the soliton.

Quantization of the soliton can be carried out using the
moduli space approximation method (see [200]), where one
considers slow variation of time of the parameters of the
moduli space and obtains the Hamiltonian from the varia-
tion of the soliton energy. The moduli space is a product of
the Minkowski space, parameterized by the location of the
soliton, and the orientation space which corresponds to the
spin and isospin degrees of freedom as well as the size of
the soliton. For N f = 2, these latter degrees of freedom,
i.e., the variation of ρ and the SU(2) gauge transformations
of the soliton, form the space R

4/Z2. The rotations in the
four dimensional space include the spin and isospin rotations:
SO(4) � (SU(2)I × SU(2)J )/Z2. The Hamiltonian is then
quantized by using standard rules of quantum mechanics.
In the case of the BPST soliton, the Schrödinger equation
for the wave function may be solved analytically by using
separation of variables.

The properties of the Sakai–Sugimoto soliton have been
studied extensively in the literature. An effective 5D theory
for the solitons was derived in [204], shown to lead to vector
meson dominance [205], and used to analyze form factors
[206]. Form factors, among other things, were also analyzed
directly by using the soliton solution [207,208]. The long-
distance properties were analyzed in [209,210] and the solu-
tion in all regimes, including the complete numerical solu-
tion, was analyzed in [211]. Deformed generalizations were
studied in [212].

While the above discussion was specific to the WSS
model, the construction works in a similar way in other
models. In particular, baryonic solitons have been studied
in bottom-up models, where one introduces explicitly five
dimensional Maxwell actions separately for left and right
handed gauge fields, corresponding roughly to the gauge
fields on the D8 and D8 branes of the WSS model, respec-
tively. In a hard wall setup [213,214], the action is

Shw = −M

2

∫

d5x
√− det g (41)

×tr
[

FL MN F
MN
L + FR MN F

MN
R

]

+ i Nc

24π2

∫

tr

[ (

AL F
2
L − i

2
A3
L FL − 1

10
A5
L

)

(42)

−(L ↔ R)

]

,

where the metric is AdS5 and one also introduces UV and
IR cutoffs for the holographic coordinate which we have not
included explicitly. The soliton is found through an Ansatz
which respects parity, so that the left and right handed gauge
fields are simply related. In bottom-up frameworks the size
of the soliton is not parametrically small. Consequently one
needs to take into account the variation of the metric over
the soliton, and the solution can only be found numerically.
The properties of the soliton, such as the electric and mag-
netic radii (defined through the coupling of electric and mag-
netic currents to the nucleon, respectively), agree well with
experimental data [214,215]. Properties of the soliton at long
distance were analyzed in [209] and compared to other solu-
tions. Notice that the action of (41) and (42) does not contain
a scalar degree of freedom (dual to ψ̄ψ) even though chi-
ral symmetry is broken in the nuclear matter phase (at least
at not too high densities). Coupling of the soliton to such a
scalar field was studied in [216–219].

Apart from soliton solutions, fermionic fluctuations at
brane intersections [220] may effectively show some proper-
ties of baryons. A class of fermionic meson states was iden-
tified in [221] that composed of three elementary fermionic
fields, and it was shown in [222] that the masses of these
state have the same scaling with number of colors, M ∼ Nc,
as baryons in QCD. Another approach describes baryons as
light objects in an alternative large Nc limit, so that baryons
and mesons are treated in the same footing, which is made
possible in the bulk by considering orientifolds in addition
to brane intersections [223,224].

4.3 Nuclear matter from holographic baryons

Constructing holographic nuclear matter properly requires
considering configurations of several solitons, including
all their interactions. Rather obviously, this is technically
extremely challenging. Much of the physical picture can
however be figured out without solving the configurations
explicitly.

Holographic baryons are heavy with their masses being
O(Nc), so they behave non-relativistically. Their average
momentum can be estimated from the (inverse of the) diam-
eter of the potential well where the baryon lies in a dense
configuration, and it is independent of Nc which is also plau-
sible as the size of the baryons is independent of Nc. There-
fore their kinetic energy is ∼ 1/Nc while the potential energy
(e.g. from meson exchange) is known to be O(Nc). The sup-
pression of the kinetic energy means, together with the fact
that the interactions between the solitons are repulsive, that
nuclear matter at large Nc is a crystal, i.e., different from the
Nc = 3 phase which is a liquid. The location of the liquid
to solid phase transition can be estimated to lie at around
Nc = 8 by using analogue to condensed matter [225].
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At low densities the crystal consist of a layer of instan-
tons in the holographic direction: the location of each soli-
ton is minimized independently so for the (antipodal) WSS
model, for example, they are found at the tip of the cigar as
shown in Fig. 5. However, when the density becomes larger,
the solitons are expected start to populate the holographic
direction. Details are model dependent, but estimates suggest
that there are “popcorn” transitions with increasing density
where the configuration changes from a single layer to a multi
layer crystal or more complicated four dimensional crystal
[226,227]. Crystals in a setup motivated by the single layer
configuration in the WSS model were constructed recently in
[228]. It is possible that the solitons break into dyonic half-
solitons (or half-instantons) as the density increases [229].

A basic property characterizing the system is the two-
body potential between the solitons, i.e., the holographic
nuclear force. In the WSS model, the behavior of the poten-
tial reflects the presence of two scales, the confinement scale
MKK and the size of the soliton 1/(

√
λMKK ). For short dis-

tances, x  1/(
√

λMKK ) the two solitons overlap which
creates a repulsive interaction. For intermediate distances,
1/(

√
λMKK )  x  1/MKK , the solitons can be treated

as pointlike but curvature effects of the geometry can still
be neglected so that the solitons are effectively in flat space.
In this range the interaction potential can be solved analyti-
cally by analyzing the asymptotics of the Atiyah–Drinfeld–
Hitchin–Manin (ADHM) construction [230] for two soli-
tons [227,231]. The solution is a repulsive 1/r2 potential,
with the strength depending on the relative orientation dif-
ference between the solitons. For long range interactions,
x � 1/MKK , curvature effects are important. In this range
the potential is obtained as a sum of Yukawa potentials from
the exchange of mesons and is found to be repulsive [225].

The analysis of the potential therefore gives rise to another
difficulty in view of applications to real nuclear matter: the
WSS nucleon–nucleon potential is always repulsive, unlike
the nucleon nucleon potential of regular Nc = 3 QCD. This
is perhaps unsurprising because the nuclear binding energy
is much smaller than the nucleon masses, which suggests that
the potential involves a delicate cancellation between attrac-
tive and repulsive forces that is easily disturbed by approxi-
mations. Consequently, the transition from vacuum to nuclear
matter in the WSS model is apparently of second order which
means that there is no nuclear saturation density (or it is zero)
and no nuclei. An attractive component of the potential can
be obtained by allowing for non-antipodal embeddings of the
D8 branes [225]. For long range interactions, such an attrac-
tive component is due to isoscalar scalar exchange while the
repulsive force arises from isoscalar vector exchange. How-
ever, the vector always dominates even in the non-antipodal
WSS case, and the total force is repulsive. But we learn that a
possible key to attractive forces are light scalars, which could
help the scalar exchange to become the dominant channel.

And indeed attractive potential was found by considering a
probe D7 brane setup in the Klebanov–Strassler geometry
which contains a parametrically light scalar meson [232].
The masses of the mesons can be tuned such that an almost
cancellation between the attractive and repulsive forces takes
place, leading to small nuclear binding energy, similarly to
regular QCD. However, while the light scalar of this setup
therefore works as a model for the light σ meson of QCD,
other properties are perhaps not as close to QCD as in WSS.

The difficulties described above indicate that it is chal-
lenging to learn much from real world nuclear matter at low
densities by using holography. But this is not really an issue
since, as I pointed out in the introduction, the region with den-
sities up to around the nuclear saturation density can be ana-
lyzed by using traditional methods such as effective theory,
which are also supported by experimental data from heavy
elements and scattering of nuclei. The situation is different
for densities well above the saturation density, where reliable
predictions cannot be obtained by using such methods. This
motivates us to consider the phase diagram and basic observ-
ables such as the EOS by using different approximations in
the WSS model. And actually, as we shall discuss below,
quite a bit of progress has been made in the WSS model even
at low densities.

Early attempts to study the phase diagram with nuclear
matter ignored interactions and used simply pointlike soli-
tons, obtained by taking the strict λ → ∞ limit, in the antipo-
dal and non-antipodal versions of the WSS model [233,234].
The crystal of nuclear matter was considered in the Wigner–
Seitz approximation in [235]. Effects of finite widths for the
antipodal embeddings were considered in [236].

As I pointed out above, the non-antipodal embedding at
small separation L leads to a phase diagram where chiral
symmetry is restored at high densities (and low temperatures)
[154,155]. This configuration is interpreted as adding a four-
fermion operator in the field theory, similarly to the NJL
model [237]. Finite width effects in this limit were consid-
ered in [155,238]. Point-like solitons lead to a phase diagram
where nuclear matter is present up to arbitrary high densities,
but after including finite width effects, the nuclear to quark
matter transition takes place at finite density. Two-body inter-
actions from exact instanton solution were considered in this
setup in [239]. Desired low-density features, such as correct
nuclear saturation density, could be obtained, and the con-
struction was seen to be suggestive of quark-hadron continu-
ity, i.e., absence of (first order) phase transition between the
nuclear and quark matter phases [240]. The effect of turning
on a quark mass was analyzed in [156].

Another direction is the analysis of the quarkyonic phase
[82] in holography, which has been studied in the WSS model
in [241,242].

Apart from the WSS model, nuclear matter in terms of
noninteracting soliton liquid has been considered in the D3–
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D7 model [243,244], with somewhat similar results as in the
WSS model.

4.4 Nuclear matter from homogeneous bulk fields

Another approach to dense nuclear matter would be to aban-
don the picture of individual solitons, and try to model the
phase as a homogeneous configuration.

Restricting to N f = 2, and to the WSS model, we can
consider the Ansatz [234]

Ai (z) = h(z)σi (43)

where i is the (spatial) Lorentz index, z is the holographic
coordinate, and the Pauli matrices σi give rise to nontrivial
flavor structure. The non-Abelian terms (i.e., terms spanned
by the Pauli matrices) of the temporal components as well
as Az are set to zero. It is clear that (43) is the only simple
consistent non-Abelian Ansatz: for a homogeneous config-
uration, there is no other vector that σi could be contracted
with. Notice that also that the behavior under rotations is
trivial, as the rotations of the σi can be removed by SU(2)

transformations of the gauge field. These considerations sug-
gest that (43) is the correct expression for nuclear matter in
the limit of infinite density (if such a limit exists) [234].

Another motivation for the Ansatz can be obtained by
smearing the BPST soliton, given in (38). That is, we want to
integrate the solution over all X, and study the resulting con-
figuration. However it is immediate that the integral does not
converge, because the soliton decays quite slowly at large |X|.
The tail of the soliton is however pure gauge. The expression
of (38) is given in regular Landau gauge, where the solu-
tion is free of singularities, but the slowly decaying tail is
present. The tail is actually important since it carries infor-
mation on the nontrivial winding number of the solution. It
can be gauged away only with the cost of creating a singu-
larity somewhere in the solution. Another commonly used
expression for the soliton is that in singular Landau gauge:

Asing
m (x) = −i

ρ2

ξ(x)2 + ρ2 g(x)−1∂mg(x). (44)

Notice that here the numerator of the first fraction we now
have ρ2 instead of ξ2 so that the singularity at ξ → 0, arising
form the derivative, is no longer canceled. The long distance
tail is gone, but at the price of generating this singularity. In
this form of the solution, the winding number arises from it.

For the singular gauge expression, it is straightforward to
compute the smeared soliton:
∫

d3X Asing
i = − 2π2ρ2(z − Z)

|z − Z | + √

(z − Z)2 + ρ2
σi , (45)

∫

d3X Asing
z = 0, (46)

which is, as expected, of the form (43). This is of course
a hand-waving argument, since the soliton is a solution to
nonlinear equations, so smearing it, which amounts to adding
(linearly) a large amount of solitons, does not strictly make
sense.

The Ansatz (43) leads to an issue when we try to compute
the baryon number density. Namely, using (37) we find that

NB ∝
∫

dz ∂z

[

h(z)3
]

. (47)

The path of integration goes along the D8 brane embedding
in Fig. 5, and only gives terms at the UV boundary. But
h(z) must vanish at the boundaries, otherwise the dictionary
tells us that we are turning on a peculiar source for the non-
Abelian currents ψ̄σi (1±γ5)γiψ , where σi acts on the SU(2)

flavor indices. Therefore it seems that the baryon number
must vanish.

There is however a way to include a nonzero winding
number: h(z) may have a discontinuity in the bulk, which
gives rise to the winding number. This may sound like a
completely ad-hoc approach, but it is actually well motivated.
The Ansatz should arise as a high density limit of the nuclear
matter configuration, where the density of the solitons is so
high that they largely overlap. The winding number of these
solitons could arise from the asymptotic pure gauge behavior
of the field but such pure gauge asymptotics is not allowed
by the Ansatz (43), so it might be better to consider the dense
configuration in a gauge (analogous to the singular gauge of a
single instanton) where each soliton center has a singularity
giving rise to the winding number. Indeed, I demonstrated
above explicitly that the homogeneous Ansatz is similar to
the smeared BPST instanton in the singular gauge. The idea
is then that the discontinuity of h(z) effectively arises from
smearing the singularities of the dense soliton configuration.
We also note that the expression in (45) behaves at small ρ

as
∫

d3X Asing
i ∼ −π2ρ2sgn(z − Z) (48)

so there is indeed a discontinuity, even though it is suppressed
by ρ2. These motivations also tell us where we should place
the discontinuity: at the tip of the cigar, where the solitons are
expected to lie (at least at smaller densities). This is natural
also because due to parity the value of h(z) should be opposite
on the two “branches” of the D8 brane.

The homogeneous approach has been studied in the WSS
model, originally for the antipodal case [234] and later for the
non-antipodal configuration [155] as well as in the presence
of an isospin chemical potential [167]. The non-antipodal
case shows an interesting phase diagram, where baryonic
matter is created through a first order phase transition with
increasing chemical potential, for large enough values of the
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’t Hooft coupling. For small values of the coupling, baryons
do not appear but the phase at high chemical potentials is
the quark matter phase. Notice also that the Wigner–Seitz
approximation for the instanton crystal considered in [235]
can be used to analyze nuclear matter at high density. This
approximation captures a nontrivial interplay between the
chiral condensate and the crystal. Interestingly, it produces
the nonrelativistic scaling for the energy density as a function
of the baryon number density, ε ∼ n5/3

B , at large densities.
Homogeneous nuclear matter has also been considered

by using a different approach where one first allows a spa-
tial dependence in the Ansatz, so that the solution has a pure
gauge tail at the boundary, and later (after imposing the zero
curvature condition) averaging the action over the spatial
directions [245]. This way one avoids the need for the dis-
continuity, but there is no clear action principle for the final
solution.

I will discuss the homogeneous approach for the V-QCD
model in Sect. 6.

5 Holographic models for QCD in the Veneziano limit

In this section, I will review the V-QCD model [40]. It is a
relatively complex bottom-up holographic model for QCD
which contains both gluon and flavor sectors, with full back-
reaction between the two sectors. The backreaction arises
naturally in the Veneziano limit [192,246]:

Nc → ∞, N f → ∞, with x f ≡ N f

Nc
fixed. (49)

Here Nc is the number of colors and N f is the number of
flavors. Notice that the “V” in the name of the model refers
to the use of this limit.

The approach follows that of improved holographic QCD
(IHQCD) [41,42,247], but extends it to full flavored QCD
by including backreacted branes. The action of the model
is inspired by string theory, but perhaps more importantly it
contains various potentials which are determined by compar-
ing to QCD data, in rough analogy to effective field theory.
Indeed, the aim of the V-QCD model is to provide a general
framework which allows modeling the physics of QCD as
closely as possible with holography. Apart from qualitative
features such as confinement and chiral symmetry breaking,
the current version of the model already describes to a good
precision, among other things, vacuum properties of QCD
such as hadron spectra, as well as physics at finite tempera-
ture and density, in particular the equation of state at finite
T and μ. Good description of the thermodynamics means a
major improvement over simpler bottom-up models [248]. I
will focus on results at finite density in this review.

I start analyzing the holographic V-QCD model by dis-
cussing separately the different sectors of the model. The
main building blocks of the V-QCD model are

1. The model for the glue sector: Improved holographic
QCD [41,42].

2. The model for the flavor sector: tachyonic Dirac–Born–
Infeld (DBI) action [129,249].

Let me then go through the structure of both these building
blocks in detail. I present all terms relevant for the computa-
tions in the rest of the review for completeness. A reader not
interested in the details may wish to jump to Sect. 6.

5.1 Improved holographic QCD

Improved holographic QCD (IHQCD) is a model for pure
Yang–Mills theory inspired by five-dimensional noncritical
string theory [41,42] (see also [250]). The action is given in
term of dilaton-axion gravity in the Einstein frame:

SIHCQD = Sg + SGH + Sa (50)

where

Sg = M3
p N

2
c

∫

d5x
√−det g

[

R − 4

3

(

∂μφ
)2 + Vg(φ)

]

(51)

is the piece governing the physics of the gluon sector,

SGH = 2M3
p N

2
c

∫

d4x
√− det h K (52)

is the corresponding Gibbons–Hawking term defined on the
four dimensional UV boundary, and

Sa = −M3
p

2

∫

d5x
√− det g Z(φ) (∂μa)2 (53)

is the CP-odd piece governing the physics of the θ -angle.
Here Mp is the five-dimensional Planck mass, Nc is the num-
ber of colors, R is the scalar curvature, and K is the extrinsic
curvature. The (five-dimensional) Lorentz indices are con-
tracted with the full metric for which we use the Ansatz

ds2 = e2A(r)
(

dr2

f (r)
− f (r)dt2 + dx2

)

. (54)

The five dimensional metric is denoted by g and its reduc-
tion on the boundary is denoted by h. Here the factor A(r)
is understood as the dual of the logarithm of energy in field
theory, A ∼ log μ, which defines the mapping between the
holographic RG flow and the RG flow in field theory. For
this Ansatz, the boundary is at a finite minimum value of
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Table 1 The dictionary of V-QCD. Here ημν is the metric of field
theory, θ is the Yang–Mills θ-angle, Mq is the (possible complex) quark
mass matrix, and the external gauge fields contain chemical potentials
and generalizations of electric and magnetic fields. See Appendix A for
the precise coupling between QCD and V-QCD

Field Operator Source

λ = eφ
Tr G2 λ′tH = g2Nc

gMN Tμν ημν

a Tr G ∧ G θ

T i j ψ̄ iψ j Mi j
q

Ai j
L ψ̄ i (1 + γ5)γμψ j A(ext)i j

L μ

Ai j
R ψ̄ i (1 − γ5)γμψ j A(ext)i j

R μ

the holographic coordinate r which I choose to be at r = 0.
Near the boundary, where the geometry will be asymptot-
ically AdS5, the coordinate is therefore the inverse of the
energy scale. The blackening factor f (r) is equal to one for
simplest (zero temperature vacuum) backgrounds. For finite
temperature backgrounds one finds quite in general a zero
of f (r) in the bulk, which is interpreted as the horizon of
a planar bulk hole. The thermodynamics of field theory are
then obtained from the thermodynamics of the black hole
[251,252]. I will elaborate on these points below.

The dilaton field φ is dual to the TrG2 operator in Yang–
Mills theory. Here the trace is over the color degrees of
freedom. By using the holographic dictionary, homogeneous
solutions φ(r) contain information on the corresponding
VEV and the source, which in this case are 〈TrG2〉 and the
’t Hooft coupling λ′tH = g2Nc, with g being the Yang–
Mills coupling constant. One can show that it is actually the
exponential of the dilaton λ = eφ which equals the ’t Hooft
coupling near the UV boundary (where the ’t Hooft cou-
pling is well defined by Yang–Mills perturbation theory). The
field-operator correspondence is also summarized in Table 1.
Notice that it includes all (relevant and) marginal operators
of the field theory, which are expected to capture the most
important features.

As usual in gauge/gravity duality, the metric gμν is dual
to the energy-momentum tensor Tμν of Yang–Mills theory.
The source is the metric of the field theory. The holographic
axion field a is dual to the CP-odd operator Tr G ∧G. In this
case therefore the source is the θ -angle of Yang–Mills theory.
Our normalization is such that for homogeneous solutions,
a(r) ≈ θ near the boundary.

Finally, the functions Vg(φ) and Z(φ) need to be deter-
mined to pin down the model. They can be in principle
derived from five dimensional string theory which gives
Vg(φ) ∝ exp(4φ/3)+· · · where the neglected terms are sup-
pressed at small λ = eφ , and Z(φ) = const. However, this
choice for Vg does not agree nicely with known phenomenol-
ogy of Yang–Mills: it would not lead to asymptotically AdS5

geometries at the boundary. Therefore we will at this point
switch to bottom-up approach and treat the potentials as free
functions, which need to be determined through comparison
with data. This can be done such that the model agrees well
with known weak and strong coupling properties of QCD
such asymptotic freedom and confinement [251,252]. More-
over, the potentials can be tuned so that both the zero tem-
perature vacuum properties (glueball spectra) and finite tem-
perature thermodynamics both agree remarkably well with
results from lattice simulations [253] (see also [254,255]). I
will discuss this in more detail in connection to the determi-
nation of the full V-QCD model below. For a more detailed
account on the IHQCD part, see the reviews [247,256]. But
before determining the model through comparison to data I
review the general structure of the flavor sector.

5.2 Flavor sector: tachyonic brane action

The flavor sector of V-QCD is based on a setup a pair of space
filling D4−D4 branes [129,249]. The brane action includes
two terms,

S f = STDBI + SCS. (55)

The former term is the tachyon DBI action [249,257],

STDBI = −1

2
M3Nc tr

∫

d5x
(

V f (λ, T †T )
√− det AL

+V f (λ, T T †)
√− det AR

)

, (56)

where

AL μν = gμν + w(λ, T †T )F(L)
μν

+κ(λ, T †T )

2

[

(DμT )†(DνT )+(DνT )†(DμT )
]

, (57)

AR μν = gμν + w(λ, T T †)F(R)
μν (58)

+κ(λ, T T †)

2

[

(DμT )(DνT )† + (DνT )(DμT )†
]

,

the determinants are taken over the five dimensional Lorentz
indices, and the covariant derivative is

DμT = ∂μT + iT AL
μ − i AR

μT . (59)

The fields AL , AR and T are N f × N f matrices in the flavor
space and tr denotes trace over flavors. The structure of the
action is therefore largely dictated by theU (N f )L×U (N f )R
flavor symmetry, but a precise definition (in the generic case
where the fields are nontrivial matrices) requires a prescrip-
tion for the trace in particular due to the presence of the
square root factors. That is, we need to decide how the var-
ious matrices are order when taking the trace in (56). The
standard is to use the symmetrized trace prescription [258].
However, as it turns out, the prescription does not play a role
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for the results discussed in this review: the matrices in all
calculations will be so simple that the trace unambiguously
reduces to the standard trace.

The gauge fields Aμ
L , Aμ

R are dual to the left and right
handed flavor currents ψ̄(1±γ5)γ

μψ of the theory while T is
dual to the quark mass operator ψ̄ψ . Therefore the source for
T is the (possibly complex) quark mass matrix (see Table 1).

The remaining task is to determine the potentials V f

(λ, T T †), w(λ, T T †) and κ(λ, T T †). As for the dependence
for the tachyon, the idea is to use a Sen-like exponential
potential in the squared tachyon, i.e., V f ∝ exp(−T T †),
while the tachyon dependence of the other functions will be
dropped [259,260]. I will comment on this choice below.
The dilaton dependence is known for probe branes, but we
follow the philosophy of bottom-up holography and leave
the dependence free for the moment. It will be determined
by comparing to known features of QCD and to QCD data,
as will be discussed below. We will mostly be considering
the simple configuration where the tachyon is real, homo-
geneous, and proportional to the unit matrix: T = τ(r)I.
Because the source corresponding to the tachyon field is the
quark mass, this means that the quark mass matrix is likewise
real and proportional to the unit matrix, i.e., the quark mass
is independent of the flavors. Actually, we will be setting the
mass mostly to zero. Using this Ansatz, we denote

V f (λ, T T †) = V f (λ, τ ) = V f 0(λ)e−τ 2
(60)

and assume that κ = κ(λ) and w = w(λ). I will discuss how
these functions are determined in Sect. 5.4.

The latter term in (55) is the Chern–Simons action which
has been constructed explicitly (assuming that the tachyon is
proportional to a unitary matrix, T T † = T †T ∝ I) starting
from a general expression derived in boundary string field
theory [249]. It can be divided into separate contributions,
SCS = SCS 1 + SCS 3 + SCS 5 which are responsible, among
other things, for the implementation of the axial anomaly and
the flavor anomalies of QCD in the model. Also the chiral
magnetic effect and the baryon (instanton) number, which
will be analyzed below, arise from these terms. I do not show
all the lengthy expressions here (see [249]), but the terms
relevant at finite density will be discussed below. The first
term transforms nontrivially under the axial U (1)A. It can be
written as

SCS 1 = T4

∫

C3 ∧ dΩ1, (61)

Ω1 = tr
[

Va(T T
†)i(AL − AR) (62)

−1

2
(log T − log T †) dVa(T T

†)
]

where T4 is the four brane tension, Va is a tachyon potential,
and the Ramond–Ramond three form C3 can be related to

the axion field through

dC3

Z(λ)
= ∗ (da + iΩ1) (63)

where ∗ denotes Hodge dual. If we assume that the tachyon is
proportional to the unit matrix, T = τeiξ I, one can combine
this term with the glue term (53) as [257]

Sa + SCS 1 = −M3
p

2

∫

d5x
√− det g Z(λ) (64)

× [

∂μa − Va(τ ) tr(ALμ − ARμ) + N f ξ∂μVa(τ )
]2

.

This term implements the axial U (1)A anomaly and its rela-
tion to the QCD θ -angle and the phase of the quark mass
matrix. In the rest of the review I will not discuss CP-odd
physics and the θ -angle is set to zero. That is, one can choose
a gauge such thata and ξ vanish, and the CP-odd terms of (64)
do not play any role.

Finally, let me comment on the term SCS 5, which has the
form

SCS 5 = i Nc

4π2

∫

Ω5, (65)

where the five-form Ω5 is single trace in flavor space, and can
be expressed (see [249]) in terms of T , DT , AL/R , and FL/R ,
but the expression is lengthy. Actually, following the spirit of
bottom-up holography, one might consider even more general
choices than the form derived in this reference, but for the
purposes of this review the explicit choice of [249] will be
enough.

5.3 Definition of V-QCD

V-QCD is obtained by putting together the two building
blocks (IHQCD and tachyon brane actions) discussed in
detail above. That is, the full model action is [40]

SV-QCD = SIHQCD + S f (66)

where the two terms describe the two sectors (gluon and
flavor) of the model. The sectors are fully backreacted in the
Veneziano limit:

Nc → ∞, N f → ∞, with x f ≡ N f

Nc
fixed (67)

and also keeping the ’t Hooft coupling g2Nc fixed. Notice
that the presence of backreaction is clear as the number of
gluonic degrees of freedom is O(N 2

c ) whereas the number of
quark degrees of freedom isO(N f Nc). For the full dictionary
of the model, see Appendix A.
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But why do I consider Veneziano limit? Reliable use of
gauge/gravity duality requires that Nc is large, but I could
also consider the standard ’t Hooft limit, i.e.,

Nc → ∞, with N f and g2Nc fixed (68)

so that N f /Nc → 0. This limit can also be called to probe
limit because the leading order physics is dominated by glu-
ons, and it is enough to treat the quarks in the probe approx-
imation in this limit. However, in regular QCD we have
Nc = 3 with N f = 2 or 3 light quark depending on whether
the strange quark is taken into account or not, so N f /Nc is not
small and backreaction is expected to be significant. More-
over (even though it is not the topic of this review), QCD has
an interesting phase diagram in the Veneziano limit, which
is in part determined by strongly coupled physics and can be
studied using gauge/gravity duality. In particular, the phase
diagram as a function of x f has a quantum phase transition
(or potentially several transitions) from the phase similar to
regular QCD to the “conformal window”, where the theory
flows to a conformal fixed point in the IR [40,257,261,262].
As for this review, however, the motivation of backreacting
the quarks is simply to mimic real QCD as closely as pos-
sible. See [42] for a brief analysis of the flavor setup in the
probe limit in IHQCD, and [263,264] for a more extensive
analysis of the flavor setup using the background geometry
of [265].

Considering the standard variation of V-QCD already
introduced above we can write down the full action for the
typical homogeneous backgrounds that we need. That is, we
assume a flavor independent tachyon T = τ(r)I, only turn
on vectorial Abelian gauge fields, and set the axion field to
zero. The action is then

Sbg
V-QCD = M3

p N
2
c

∫

d5x
√− det g (69)

×
[

R − 4 (∂λ)2

3λ2 + Vg(λ)

]

−x f M
3
p N

2
c

∫

d5x V f 0(λ)e−τ 2
(70)

×
√

− det(gμν + κ(λ)∂μτ∂ντ + w(λ)F̂μν)

where F̂ denotes the Abelian component of the field strength
tensor and the trace over flavors has already been taken.
Notice that the gluon (69) and flavor (70) terms are indeed
of the same order in the Veneziano limit.

The main features of V-QCD, which are required when
it is used to describe real QCD, are confinement and chiral
symmetry breaking. Before going to the details, I will sketch
how this works in the model. With a natural choice of Vg ,
which has large λ asymptotics similar to what is found from
noncritical string theory, the glue sector, IHQCD, confines

and produces a mass gap for glueballs. The resulting geome-
try caps off at a singularity in the bulk. This singularity is of
the “good” kind in the classification of Gubser, i.e., it can be
cloaked by horizons to construct regular black hole solutions
[266]. The geometry provides, in effect, a soft wall for the
fluctuations of the action in the IR.

With the confining geometry, and for a large class of
the functions V f 0, κ , and w, the solution for the tachyon
field in the flavor sector (with smallest action) diverges in
the IR. That is, the tachyon condenses in the bulk, and this
actually happens for any value of the quark mass, includ-
ing zero. The nonzero value of the tachyon implies that the
chiral symmetry is broken down to the vectorial subgroup,
U (N f )L × U (N f )R → U (N f )V , and (via the dictionary)
that the chiral condensate 〈ψ̄ψ〉 is nonzero. Since this hap-
pens even at zero quark mass, chiral symmetry is sponta-
neously broken. That is, confinement triggers chiral symme-
try breaking via tachyon condensation in the model.

In the Sen-like picture, the growth of the tachyon in the
bulk corresponds to the annihilation of the D4 − D4 brane
pair in the IR. Indeed, when the tachyon becomes large, the
flavor action in (70) is driven to zero due to the exponen-
tial dependence on the squared tachyon. The behavior of
the model is somewhat similar to, for example, the Witten–
Sakai–Sugimoto model [24,25] where for a confining “cigar”
geometry the D8−D8 flavor branes join at the tip of the cigar,
which produces chiral symmetry breaking as I explained in
Sect. 3, see Fig. 5. In V-QCD this joining of the branes in
the bulk is replaced by the brane “annihilation” driven by the
tachyon.

5.4 Comparing IHQCD and V-QCD with data

Let me then review in more detail how the parameters of
the model are chosen to ensure that it agrees with QCD data.
Recall that V-QCD is an effective framework, and depending
on the choice of potentials, it should be able to describe also
other behavior of the field theory than what is found in regu-
lar QCD (in particular different IR flows, for example flows
ending on fixed points). Therefore, to pin down the model
that is actually close to QCD, it is essential to compare all
free parameters of the model carefully to QCD data, in rough
analogy to effective field theory approaches for QCD.

First, we will set Nc = 3 (effectively neglecting 1/Nc

corrections) and x f = 1, roughly corresponding to N f = 3
light flavors in QCD. Notice that we might want to work in
the Veneziano limit with large Nc, but most available data has
Nc = 3 and small N f , so we will need to do some compro-
mises. The free parameters of the action are Mp and the four
functions Vg , V f 0, κ , and w. In addition, there are the usual
“knobs” given by the sources of the various fields as well
as the temperature which is parametrized by the size of the
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bulk black hole. Their values need to be chosen appropriately
when comparing to the data.

Among these parameters, there is one special parameter,
namely the overall energy scale. Notice that the action is
invariant under

gμν → Λ2gμν, xμ → Λ−1xμ,

∂μ → Λ∂μ, Âμ → Λ Âμ (71)

where Â is the Abelian vectorial gauge field. We can actually
identify the overall energy scale with this invariance. To make
this more concrete, consider backgrounds depending only on
the holographic coordinate r , and assume the Ansatz (54).
Then the following transformations

A → A + log Λ, r → r

Λ
, Â → Λ Â (72)

leave the action invariant. The consequences of this are most
obvious when considering the case where no scale is intro-
duced through the sources, i.e., setting Â and the quark mass
to zero, or simply by considering the IHQCD sector only.
In this case any nontrivial background solution A(r), λ(r) is
automatically extended to a family of solutions by the trans-
formations (72), which only differ by the value of the overall
energy scale. This is similar to the dimensional transmutation
in QCD: The action of QCD (at zero quark mass) does not fix
any energy scale, but the scale of the RG flow (ΛQCD) arises
from quantum corrections. Different RG flows form a family
of solutions, which are naturally indexed by the values of
ΛQCD.

I will make the analogy even more explicit below by
demonstrating that the RG flow of the coupling in QCD is
mapped to the flow of the dilaton field near the boundary,
therefore implementing asymptotic freedom. After this, the
source parameter of the dilaton field can be identified as an
energy scale ΛUV (rather than the value of the coupling) in
direct analogy to ΛQCD in field theory side.

5.4.1 Weak coupling behavior

Let me start the detailed comparison to QCD by studying the
weak coupling behavior. Considering this in detail may be
surprising given that gauge/gravity duality is expected not to
work at weak coupling. It is, however, important that the weak
coupling behavior of the various fields agrees with QCD in
order to have the best possible “boundary conditions” for
the potentially more interesting strong coupling behavior of
the model. Indeed usually in holographic bottom-up models
of QCD one makes sure that the leading behavior of the
bulk fields near the boundary agrees with the leading (free
field) UV dimensions of the dual operators. Here I will go
one step further by requiring that also the first few quantum

corrections, and the RG flow imposed by them, agrees with
the near-boundary holographic RG flow of the bulk fields.

The boundary conditions for the tachyon are such that it
vanishes near the boundary (see (87) below). It also turns out
that the gauge field is irrelevant for the boundary behavior of
the metric. Setting τ = 0 in the action (55) we see that the
geometry is determined by the effective potential

Veff(λ) = Vg(λ) − x f V f 0(λ). (73)

For the geometry to be asymptotically AdS5 at the boundary,
Veff needs to go to a constant at small coupling:

Veff(λ) → 12

�2 as λ → 0, (74)

where � is the AdS5 radius for the UV geometry. It is natural
to assume a Taylor series around λ = 0, i.e.,

Veff(λ) = 12

�2

[

1 + v1
λ

λ0
+ v2

(
λ

λ0

)2

+ O
(

λ3
)
]

, (75)

where the constant λ0 = 8π2 was introduced for later conve-
nience. Then the near boundary asymptotics of the geometry
is AdS5 with logarithmic corrections [41]:

A(r) = − log
r

�0
+ 4

9 log(rΛ)
(76)

+

(

95
162 − 32v2

81v2
1

)

+
(

− 23
81 + 64v2

81v2
1

)

log(− log(rΛ))

(log(rΛ))2

+O
(

1

(log(rΛ))3

)

v1λ(r)

λ0
= − 8

9 log(rΛ)
(77)

+

(

46
81 − 128v2

81v2
1

)

log(− log(rΛ))

(log(rΛ))2 + O
(

1

(log(rΛ))3

)

.

Notice that the blackening function of (54) is set to one in
the vacuum, f (r) = 1. The flow behaves as expected: the
source term of the dilaton has become logarithmically flow-
ing instead of a constant, and the value of the source is now
identified with the scale Λ = ΛUV. This scale defines the
units for all dimensionful quantities in our analysis. There are
also O(r4) VEV terms that we did not write down because
they involve mixing of the geometry with the asymptotic
tachyon solution.

We then require [40,41] that the holographic RG flow
agrees with the perturbative QCD flow, i.e., that the holo-
graphic β-function

dλ

d A
= λ′(r)

A′(r)
(78)
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matches when evaluated on the solution with the two-loop
perturbative β function of QCD in the Veneziano limit:

β(λ′tH) ≡ dλ′tH
d log μ

= −b0λ′tH + b1λ
2′tH + O(λ3′tH) (79)

where

b0 = 88 − 16x f

192π2 , b1 = 34 − 13x f

384π4 . (80)

Agreement is found for

v1 = 88 − 16x f

27
, v2 = 4619 − 1714x f + 92x2

f

729
. (81)

Since Vg must be independent of x f , setting x f = 0 implies
that

Vg(λ) = 12

�2
0

[

1 + 11λ

27π2 + 4619

729

(
λ

8π2

)2

+ O (λ)3

]

(82)

where �0 = �(x f = 0). Finally solving for V f 0 gives

V f 0(λ) = 1

�2
0

[

W0 + ((11 − 2x f )W0 + 24)λ

27π2 (83)

+
W0

(

4619 − 1714x f + 92x2
f

)

+ 24(857 − 46x f )

729

×
(

λ

8π2

)2

+ O (λ)3
]

,

and the AdS radius is given by

�2 = �2
0

1 − x f W0/12
. (84)

Notice that the constant W0 remains a free parameter. It
should satisfy 0 < W0 < 12/x f for the geometry to be
asymptotically AdS.

Apart from W0, also the AdS radius �0 appears in the
expressions but we can set it to one without loss of gen-
erality. This point may need a careful explanation because
the AdS radius is often used to set the scale of dimension-
ful quantities in gauge/gravity duality which we have chosen
not to do here. This is already visible from (71) where we
rescaled the metric by a dimensionful quantity even though
the metric is dimensionless. This works because there are
other dimensionful quantities that we chose not to rescale,
i.e., the potentials. In fact, there is another transformation

Vg → Λ2Vg, V f 0 → Λ2V f 0, gμν → Λ−2gμν, (85)

κ → Λ−2κ, w → Λ−2w, Mp → ΛMp,

which also leaves the action invariant. This latter transfor-
mation can be used to absorb changes of � in to the poten-
tials, so we are free to set its value to any number. Alterna-
tively we could combine the transformations (71) and (85) so
that dimensionful quantities would be measured in units of
� rather than ΛUV. We however choose to use ΛUV because
we find it simpler: unlike (71), the transformation (85) affects
the potentials and therefore modifies the action rather than
just the fields.

Apart from the metric, the tachyon field also has nontrivial
asymptotics near the boundary, which depends on the func-
tion κ in addition to the potentials Vg and V f 0. Remarkably,
the choice for κ which gives the desired boundary behavior
is also simply a Taylor series:

κ(λ) = 2�2

3

[

1 + κ1λ

λ0
+ O(λ2)

]

, (86)

where the leading term was already chosen such that the
leading dimension of the quark mass and the ψ̄ψ operator
is reproduced. This leads to the following asymptotics of the
tachyon [40]:

τ(r)

�
= mqr(− log(rΛ))γτ

[

1 + O
(

1

log(rΛ)

)]

(87)

+σr3(− log(rΛ))−γτ

[

1 + O
(

1

log(rΛ)

)]

,

where

γτ = 4

3

(

1 + κ1

v1

)

. (88)

Near the boundary we therefore find that the solution satisfies

d log τ

d A
= τ ′(r)

τ (r)A′(r)
= −1 + 9v1γτλ(r)

8λ0
+ O(λ2) (89)

= −1 + 3

2
(v1 + κ1)

λ(r)

λ0
+ O(λ2)

where the first term is the leading dimension of the quark
mass and the second term is interpreted as the anomalous
dimension [40]. Comparing to the expression for the per-
turbative one-loop anomalous dimension for QCD in the
Veneziano limit

γ (λ) = γ0λ + O(λ2) = 3λ

16π2 + O(λ2), (90)

one finds agreement if v1 + κ1 = −1. Therefore we choose

κ1 = −115 − 16x f

27
. (91)

Notice also that the anomalous dimension for ψ̄ψ has the
opposite sign, as it should, which can be seen by comparing
the logarithmic flows of the source and VEV terms in (87).
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Finally, the boundary values of the potentials and the
value of Mp can also be estimated by comparing two-
point functions (at high momentum) [257,267] and the ther-
modynamics of the model (at high temperature and den-
sity) to predictions of perturbative QCD [191,251,252,268].
For example, analysis of the thermodynamics and its x f -
dependence suggests that W0 ≈ 6 for x f ≈ 1. Agree-
ment also requires that the function w(λ) must go to a
constant as λ → 0. Some of the results obtained by
comparison to perturbation theory are in mutual agree-
ment while others are not: For example, the values of Mp

obtained from correlators of the energy momentum tensor
and from high temperature thermodynamics differ by a con-
stant factor. However, the result for w0 from the vector-
vector correlator at high momentum agrees with the results
obtained from thermodynamics at high temperature and den-
sity.

So far we did not consider the function Z(λ) and Va(τ )

appearing in the CP-odd terms (53) and (64). As it runs out,
Z(λ) should approach a constant fixed by the Yang–Mills
topological susceptibility [42] as λ → 0, and we must have
Va(τ = 0) = 1 for consistency with the axial anomaly in
QCD [257,269].

The general conclusion from the analysis is therefore that
the UV behavior works nicely if the potential functions go to
(well chosen) constants as λ → 0, and have regular Taylor
series around λ = 0. The functions can be analytic at λ = 0
but this is not required: there can be nonanalyticity if it van-
ishes fast enough as λ → 0 so that the above analysis is not
affected.

One should however recall that all results obtained by
comparing the model to QCD perturbation theory should be
taken with a grain of salt due to the fact that gauge/gravity
duality is not expected to work at weak coupling. There-
fore we will only use the results for the asymptotics of
the potentials at small λ which were obtained by compar-
ing to the RG flow of the coupling and the quark mass as
detailed above. The other parameters (including those that
could in principle be obtained by studying the results at weak
coupling) will be determined by comparing the model to
QCD data at strong coupling, in particular to lattice QCD
data.

5.4.2 Strong coupling behavior

Let me then discuss the more interesting region from the
viewpoint of holography, i.e., the region of strong coupling.
The various potentials at large λ can be determined quite pre-
cisely by requiring agreement with known features of QCD.
In most cases the asymptotics of the form ∼ λc1(log λ)c2 is
required to meet all constraints. I will only give an overview
of the results without explicit derivation.

I will start with the constraints in the gluon sector, i.e.,
IHQCD, assuming the asymptotics

Vg(λ) ∼ λgp (log λ)g� , (λ → ∞). (92)

The main constraints affecting the potential are the following
[42]:

– Confinement. The quark–antiquark potential for a pair
of probe quarks in the pure Yang–Mills background can
be found by the Wilson loop test, i.e., by computing the
action of a fundamental string embedded in the string
frame background (see [270] for details). Confinement is
found for gp > 4/3 or when gp = 4/3 and g� ≥ 0. All
confining geometries end in a “good” kind of IR singu-
larity according to the classification by Gubser [266].

– Mass gap. The glueball spectrum is found to be gapped,
remarkably, for the same values of parameter as imposed
by confinement, i.e., when gp > 4/3 or when gp = 4/3
and g� ≥ 0.

– Magnetic screening. Magnetic screening between a pair
of point sources can be probed by considering the embed-
ding a D-string instead of a fundamental string. Screen-
ing is the expected behavior in QCD, and it is found for
gp < 8/3.

– Linear glueball trajectories. For the confining geome-
tries (which all have gapped glueball spectrum) one can
further study the asymptotic spectrum for radial excita-
tions. One finds that when gp = 4/3 and 0 ≤ g� < 1, the
masses behave as m2

n ∼ n2g� as the excitation number
n → ∞. For other confining cases, one finds the “hard
wall” or harmonic oscillator spectrum, m2

n ∼ n2.

For QCD, we want to have confinement, mass gap, magnetic
screening, and linear “Regge-like” asymptotic radial trajec-
tories. The choice which produces all of these is [42]

gp = 4

3
, g� = 1

2
. (93)

In this case the IR geometry at the good kind of IR singularity
obeys

A(r) = −(rΛIR)2 + 1

2
log(rΛIR) + Ac + O

(

r−2
)

(94)

log λ(r) = 3

2
(rΛIR)2 + λc + O

(

r−2
)

(95)

as r → ∞, where Ac and λc are calculable constants that
depend on the higher order terms in the asymptotic expansion
for Vg(λ), and ΛIR is a constant of integration.

One might be worried that the curvature singularity at
r → ∞, or the divergence of the dilaton in the IR, leads to
the model not being self-consistent and to the breakdown of
the classical analysis in the IR. However, a detailed analysis
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of the IR asymptotics, which we do not attempt to cover here,
suggests that there are no major issues with the IR behavior
(see [42,271]). A key observation is that, while the curvature
invariants diverge for the Einstein frame metric considered
above, in the string frame, which is obtained by multiplying
the metric by a factor of λ4/3, they vanish asymptotically.
For example, the string frame scalar curvature goes to zero
as Rs ∼ 1/r3 [42]. This leads to the suppression of higher
derivative terms of the gravity action in the IR.

The choice of the function Z(λ) affects (apart from the
spectrum of pseudoscalar glueball states) the topological sus-
ceptibility and the Chern–Simons diffusion rate [272]. In
order to obtain correct behavior at finite θ -angle and uni-
versal glueball trajectories also in the pseudoscalar sector,
we need that Z(λ) ∼ λ4 in the IR, λ → ∞. Notice that the
choice of Z(λ) will not play a major role in the analysis of
this review, because we keep the θ -angle at zero.

Let me then go on discussing the flavor sector. I parametrize
the asymptotics as

V f 0(λ) ∼ λvp (log λ)v�, κ(λ) ∼ λ−κp (log λ)−κ� , (96)

w(λ) ∼ λ−wp (log λ)−w�.

I will first discuss the constraints from the analysis of the chi-
rally broken phase with bulk tachyon condensate. This will
constrain the flavor potential V f 0 and the coupling function
of the tachyon κ (but not the coupling of the gauge field w

as the gauge fields vanish for the background). We need the
following basic properties [40,257]:

– “Good” kind of IR behavior. The choice of Vg follow-
ing (93) guarantees that the geometry ends in a good kind
of singularity, so long as the tachyon diverges fast enough
near it, which causes the flavor sector to decouple from
the flow of the metric. However the tachyon behavior
itself should also be “regular”: requiring the flavor action
to remain finite in the IR should remove a nonnormaliz-
able mode, leaving a one-parameter family of solutions.
Then this single parameter is understood as the quark
mass, and the chiral condensate is fixed in term of the
quark mass for regular solutions. This kind of behavior
is not guaranteed for all actions, but we require it: finite-
ness of the action should set the boundary condition of
the tachyon uniquely without the need of imposing extra
conditions by hand.

– Annihilation of the brane action in the IR. As I discussed
above, following the Sen-like picture requires that the
D4 − D4 brane pair annihilates in the IR, and the brane
action vanishes. This also makes it sure that the holo-
graphic dictionary works and there are no undesired sur-
face term contributions to correlators arising from the IR
endpoint.

– Discrete meson spectrum. The growing tachyon in the IR
should reduce the IR fluctuations of the flavor fields such
that the spectrum is discrete.

As it turns out, the second of these conditions is the most
restrictive one so that the other conditions usually follow
from it. We find that all these conditions hold for the follow-
ing parameter values:

vp ≤ 10

3
, κp > 4/3 or (97)

vp <
10

3
, κp = 4/3, κ� ≥ −1

2
or (98)

vp = 10

3
, κp = 4/3, κ� ≥ −3

2
, (99)

(when vp = 10/3 there is also an additional constraint for
v�, see [269]).

Having identified the range of potentially reasonable
asymptotics, we have a look at more detailed features of the
model. These include the following:

– Linear meson trajectories. The masses of the mesons are
regulated by a soft IR wall created by the solution for the
tachyon field. Interestingly, all of the choices listed above
give roughly linear radial trajectories but typically with
logarithmic corrections (most usually m2

n ∼ n log n).
The logarithmic corrections are absent only for specific
choices: vp < 10/3, κp = 4/3, and κ� = −1/2, or alter-
natively for vp = 10/3, κp = 4/3, and κ� = −3/2
[257,273]. The latter choice has however an issue: it
is challenging to construct complete backgrounds with
vp = 10/3 as I shall discuss below.

– Universal slopes of asymptotic trajectories.All the slopes
of the (linear) meson trajectories are the same, if a single
additional constraint is satisfied, namely that

κ(λ)

w(λ)
→ 0, (λ → ∞). (100)

Otherwise the slopes of the axial vector and pseudoscalar
mesons will be larger than those of the vector and scalar
mesons. If we require this and choose exactly linear tra-
jectories, so that κp = 4/3, This means that wp ≤ 4/3
(with the understanding that for wp = 4/3 we choose
w� < κ�) [257].

– Phase diagram at finite chemical potential. It turns out
that for some choices of w(λ) the phase diagram at low
temperatures has undesired features as any small chemi-
cal potential is turned on. The background changes from
a horizonless geometry to a black hole geometry imply-
ing an immediate transition to a quark matter phase at
unphysically low values of the chemical potential. In
order to avoid this, w(λ) should vanish fast enough as
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λ → ∞. If we choose κp = 4/3 following the con-
straints discussed above, we need wp ≥ 4/3 [274].

Apart from these precisely defined constraints, there are
other constraints that are somewhat less precise. First, the
phase diagram of QCD in the Veneziano limit as a function
of x f (at zero quark mass and temperature) includes the so
called “conformal window” for 3 � x f < 11/2 where the
theory flows to a fixed point in the IR. In order to describe
this, the effective potential of (73) should have a maximum
at some λ = λ∗, implementing the fixed point. The fixed
point is perturbative near x f = 11/2, and it is “automat-
ically” implemented in the model if we choose the poten-
tials which agree with the RG flow of QCD as discussed in
Sect. 5.4.1. As x f decreases, the fixed point should move
to higher values of the coupling which eventually triggers a
“conformal transition” to a theory with IR physics similar to
regular QCD. It turns out that it is difficult to make this pic-
ture to work unless V f 0 grows faster than Vg with increasing
λ, i.e., we need that vp > gp = 4/3 [40]. This is however
not a strict requirement because the fixed point only flows
to values λ∗ = O(1) before the transition, so the asymptotic
region of V f 0 is never probed. However working potentials
with vp < 4/3 may need to have a rather peculiar structure at
intermediate coupling, which may lead to other issues with
the spectrum or with the phase diagram. Second, it is difficult
to find complete solutions that interpolate between the IR sin-
gularity and AdS5 in the UV if vp is close to the upper bound
10/3. This is particularly challenging at finite θ -angle [269].
Therefore in practice the upper bound for vp is lower than
what is suggested by the analytic IR analysis in (97)–(99).
We have found numerically that regular, complete solutions
can be constructed when vp ≈ 2.

Notice that the Ansatz for the flavor action (70) involved
several assumptions, for example the factorized λ and τ

dependence of the tachyon potential, and the independence
of κ and w on τ . One might wonder if such assumptions
constrain the action too much. This is an important question
and it is difficult to answer it decisively, but we have carried
out quite extensive tests. First, we considered a more general
nonfactorizable Ansatz of the form

V f (λ, τ ) = V f 0(λ)e−a(λ)τ 2
(101)

for the tachyon potential. Analysis of the behavior of the
background and meson spectrum (similar to what was out-
lined above but more general) suggests however that a(λ)

should be constant [257]. A specific observation is that for
the mass gap of mesons to grow linearly (or even as a power
law) with quark mass, a(λ) should be a constant and the
asymptotic behavior of log V f at large τ needs to be ∼ τ 2

[275]. Second, we have considered more general power laws
than the standard square root for the DBI action. Interest-

ingly, it turns out that the requirements discussed above can
be satisfied simultaneously only for the square root action
[257].

I am now ready to summarize the results of the IR analysis.
An optimal choice for the asymptotics of the functions was
found to be

Vg ∼ λ4/3(log λ)1/2, V f 0(λ) ∼ λvp (102)

κ(λ) ∼ λ−4/3(log λ)1/2, w(λ) ∼ λ−4/3(log λ)−w�,

with

vp ≈ 2, w� < −1

2
. (103)

Interestingly, the final results for the powers gp, κp and
wp in (102) exactly agree with the powers expected from
string theory, even if they were derived purely based on phe-
nomenology [257]. Even the result for vp is close to the num-
ber expected for five dimensional DBI in the Einstein frame,
i.e., vp = 7/3. That is, taking the potentials predicted from
string theory at large coupling, and modifying them such that
they go to constants at small coupling, already gives a good
first guess for all the potentials. One just needs to add sub-
leading logarithmic corrections in the IR in order to improve
the agreement with QCD.

One remark is in order: the logarithmic corrections
in (102) mostly arose from the requirement of linear con-
finement and Regge-like behavior of the spectra. That is,
while linear confinement arises from stringy behavior of
QCD in the IR, in the V-QCD model it is obtained by tuning
the asymptotic potentials without any obvious connection to
string dynamics. Therefore the motivation to choose exactly
the logarithmic behavior of (102) is perhaps not that strong.
Nevertheless, I choose to use exactly these asymptotics in
order to have phenomenology which is as close to QCD as
possible. Notice also that choosing the logarithmic correc-
tions differently would mean only a minor modification in
the IR asymptotics in the potentials, which is unlikely to
cause significant changes in the next steps of the analysis
which I will discuss below.

The tachyon asymptotics for the preferred choice of poten-
tials is a power law in r [257]:

τ(r) ∼ τ0(rΛIR)Cτ

[

1 + O
(

1

r2

)]

(104)

Here the coefficient Cτ is fixed: it can be determined in
terms of the subleading terms in the IR asymptotics of the
background and the potentials. The single free parameter τ0

indexes the regular solutions, and can be mapped to the quark
mass when the whole solution is know.

The summary for the geometry is then the following: the
UV asymptotics of the chirally broken vacuum solution is
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given by (76), (78), and (87). The divergence of the tachyon
in the IR decouples the flavor so that the geometry is inde-
pendent of the tachyon and given asymptotically in (94)
and (95), while the tachyon obeys (104). The background is
parametrized in terms of the sources ΛUV for the geometry
andmq for the tachyon, but thanks to the scale invariance, the
only nontrivial parameter is the dimensionless ratiomq/ΛUV

as in QCD. Equivalently, the solution may be parametrized by
the IR parameters ΛIR and τ0, where only varying τ0 affects
the solution nontrivially due to the scale invariance. This lat-
ter parametrization is what one often uses when solving the
background numerically due to practical reasons. When the
whole solution is known, the IR parameters can be mapped
to the UV parameters (and vice versa).

5.4.3 Comparison with lattice

Having determined the asymptotics of the potentials both at
small and large λ, one needs to tune the potentials in the mid-
dle so that the model agrees quantitatively with QCD. The
main available data are lattice data for the thermodynamics of
QCD (at small density) and experimental data for QCD spec-
trum. The thermodynamics and the spectrum have been fitted
separately in [276] and in [277], respectively, and were shown
to lead to remarkably similar fit results for the potentials. The
spectrum fit was carried out in connection to the analysis of
Regge trajectories in IHQCD and V-QCD [273,278–282].
An overall fit which would include all available finite tem-
perature (thermodynamical) data and zero temperature data
for the spectrum and decay constants, is work in progress.
Because the main topic of this review is thermodynamics at
finite temperature and density, I will here concentrate on the
fit to the finite temperature lattice data.

For the fit we will use Ansätze having separate UV and
IR terms:

F(λ) =
NUV∑

k=0

Fk

(
λ

λ̂0

)k

(105)

+e−λ̂0/λ

(
λ

λ̂0

) f p (

log

(

1 + λ

λ̂0

)) f� NIR∑

k=0

fk

(

λ̂0

λ

)k

Here F(λ) stands for any of the functions Vg(λ), V f 0(λ),
1/κ(λ), and 1/w(λ), and NUV and NIR are small integers (we
will use slightly different values for different potentials). For
κ and w we use the reciprocal because these functions vanish
in the IR rather than blowing up. If NUV > f p one should
modify the UV term for example by adding extra suppression
factors (e.g. (1 + λ/λ̂0)

−1) to make sure that it is subleading
with respect to the IR term at large λ. Notice that the Ansatz
satisfies the requirements for both UV and IR asymptotics for
an appropriate choice of the coefficients. We choose vp = 2,
v� = 0, and w� = −1. Those coefficients Fk , fk which are

Fig. 6 Fitting Vg(λ) to the large Nc lattice data for pure Yang Mills.
Red, blue, and green curves are for (normalized) energy density, pres-
sure, and interaction measure (ε − 3p)/T 4, respectively. Solid curves
and error bars show the lattice data [283], and the dashed curves are our
fit. Figure taken from [276]

not fixed by the analysis of the asymptotics will be treated as
fit parameters. Apart from these values, we also determine
the Planck mass Mp and the overall energy scale ΛUV.

The fitting procedure is sequential: we first fit Vg(λ) to lat-
tice data for pure Yang–Mills, then V f 0(λ) for lattice data for
full QCD at zero density, and finally w(λ) to data at small
density. The remaining function κ(λ) is not fitted directly,
but it needs to satisfy a requirement arising from the decon-
finement transition temperature at zero density. The explicit
Ansätze and fit parameters are given in Appendix B. I will
give more details on how the thermodynamics is computed
in the holographic model in Sect. 6.1. I will only discuss the
fit results here.

The function to be fitted first is Vg . It is determined [276,
284] by comparing to pure Yang–Mills lattice data [283] in
the limit of large Nc, see Fig. 6. This is a three-parameter
fit, with one parameter being the overall normalization, i.e.,
Mp, and two parameters affect the shape of the curve. The
value of Tc determines ΛUV – this is not a real fit but merely a
choice of units. Notice that the data is well reproduced within
the error bars of the lattice data.

Then I move to the flavor sector where the most important
potential to be fitted is V f 0. I will determine it by comparing
to lattice data for thermodynamics of full (quarks+gluons)
QCD at zero density. There are however a few complica-
tions. First, there is useful lattice data only for Nc = 3 so the
fitting cannot be done directly in the Veneziano limit, so one
may suspect that some nontrivial 1/Nc effects are lost. But
for pure Yang–Mills it was shown in [283] that 1/Nc effects
are small: fitting the data at Nc = ∞ and at Nc = 3 would
give almost identical results in that case. This suggests that
the same is true in the Veneziano limit. Second, the lattice
data uses finite “physical” quark masses. We will use data
with 2+1 flavors, i.e., results from simulations with two light
quarks and the strange quark [285]. But in the holographic
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model we are working with the simplifying assumption that
all quarks have the same mass, and actually we will set the
mass to zero when fitting the data. We do this because the light
quark mass is much smaller than ΛQCD so adding it would be
such a small correction that it is not necessary within the pre-
cision of our approach (this is not true for specific observables
such as the pion mass, but should hold for all data we are using
here). We also expect that the effects of finite strange quark
mass can be largely absorbed into our fit parameters. Third,
the QCD deconfinement phase transition at physical quark
masses and zero density is a crossover, whereas the holo-
graphic model has a first order phase transition. The phase
transition in the model arises from change in the geometry
(as I shall discuss below) from a horizonless geometry end-
ing in the good singularity of (94) to a planar black hole, and
it is difficult (albeit possible [286]) to construct the theory
such that this is not a first order transition. However there are
physics reasons that suggest that one should not even try to
make the transition a crossover. Namely, the pressure in the
low temperature confined phase is dominated by the pressure
of (essentially free) mesons, with the pions giving the most
important contribution as they are the lightest states in the
spectrum. The pressure from the mesons is O((Nc)

0), so it is
suppressed with respect to the O(N 2

c ) pressure of the quark-
gluon plasma phase in the large Nc limit. Therefore it is not
captured by holographic models. This holds even for V-QCD:
even though the meson pressure ∼ N 2

f is comparable to the

gluon pressure ∼ N 2
c in the Veneziano limit, it arises from

string loop corrections that are not included in the model.
One can include these corrections by hand and show that this
can turn the first order transition into a higher order transition
[284]. We therefore anticipate that these loop corrections will
modify the result in the confined phase, and only fit the ther-
modynamics in the deconfined phase, i.e., for T > Tc where
Tc ≈ 155 MeV. Due to the anticipated loop corrections, the
crossover temperature of the lattice data will also be differ-
ent from the transition temperature of the holographic model
without the loops (which will be around 120 MeV).

The results of fitting V f 0 to the N f = 2 + 1 lattice data
for the interaction measure (ε −3p)/T 4 are shown in Fig. 7.
There are several curves because, as it turns out, the fit has a
flat direction: the data can be fitted well for a one-parameter
curve in the parameter space, and this one-parameter free-
dom is represented by a family of different fits. The solid
parts of the curves are for T > Tc and are fitted to lattice
data, whereas the dashed curves are not fitted. The dashed
curves are expected to be replaced by thermodynamics of
meson gas after their contribution is included in the model.
As we set the quark mass to zero, the curves arise from a
chirally symmetric configuration with τ = 0, so that the
curves indeed only depend on V f 0(λ) (and Vg(λ)). This is
however not completely true: the pressure in the model is

Fig. 7 Fitting V f 0(λ) to the QCD lattice data for the interaction mea-
sure. The red dots and error bars show the lattice data [285], and blue
curves are our fits. Figure taken from [276]

actually the difference of the pressures between the decon-
fined and confined phases, and the (constant) pressure of the
chirally broken confined phase also depends on κ(λ). That is,
there is dependence on κ(λ) through one additional parame-
ter, which is determined so that the transition temperature is
consistent with the fit. Notice that it is also possible to fit [287]
the 2+1 flavor QCD lattice data for the interaction measure in
top-down frameworks based on modified Klebanov–Strassler
constructions [288,289].

Finally, we fit the function w(λ). This function is the cou-
pling of the gauge fields, and therefore controls the thermo-
dynamics at finite density. It is also important for the direct
photon production in heavy-ion collisions [290]. We fit it
to the leading nontrivial cumulant of the pressure, i.e., the
baryon number susceptibility:

χ2(T ) = χB(T ) = d2 p

dμ2

∣
∣
∣
∣
μ=0

. (106)

The fits are shown in Fig. 8 with lattice data from [44]. The
blue (green) curves are fits with three (four) parameters.

For the various fits shown in Figs. 7 and 8 we have cho-
sen a sample of three potential sets having different value of
the most important parameter W0. See Appendix B. These
potentials will be referred to as 5b, 7a, and 8b in the follow-
ing.

To conclude this section, let me comment on the quality
of the fits. A priori, one might think that since the number
of fitted parameters is large, we would have been able to
fit any data, and the seemingly good quality of the fits is
rather unremarkable. However this is not the case: our fits
are very stiff, meaning that the dependence on all param-
eters is weak. The shape of the curves for all parameters
is first and foremost a prediction of gauge/gravity dual-
ity, and precise match with QCD data only requires only
a small tuning of the fits. The family of curves that the
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Fig. 8 Fitting w(λ) to the QCD lattice data [44] for the cumulant χB .
The red dots and error bars show the lattice data, and blue and green
curves are our fits. Figure taken from [276]

Fig. 9 Final potentials after the fit (potentials 7a)

model is able to produce is strictly limited, and it is there-
fore remarkable that the lattice data happens to be among
the curves that can be fitted. Moreover, we note that all
the potentials resulting from the fit are simple monotonic
functions, see an example in Fig. 9, rather than compli-
cated “tailored” functions required to reproduce the data.
In particular, notice that the bump of the interaction mea-
sure slightly above the critical temperature in Fig. 7 is nicely
reproduced without any need of special tuning of Vg and
V f 0.

6 Thermodynamics and dense nuclear matter in V-QCD

In this section, I will discuss the applications of the V-
QCD model to the thermodynamics of hot and dense QCD.
The stress will be in the implementation of nuclear mat-
ter and applications to neutron stars. But before moving to
nuclear matter, it is necessary to review the standard for-
mulation of the model at finite temperature and chemical
potential, as well as the description of quark matter in the
model.

6.1 Dense quark matter in V-QCD

I will now discuss the “standard” V-QCD setup at finite tem-
perature and density [191,268]:

Sbg
V-QCD = M3

p N
2
c

∫

d5x
√− det g (107)

×
[

R − 4 (∂λ)2

3λ2 + Vg(λ)

]

−x f M
3
p N

2
c

∫

d5x V f 0(λ)e−τ 2
(108)

×
√

− det(gμν + κ(λ)∂μτ∂ντ + w(λ)F̂μν)

where going to finite charge and chemical potential requires
turning on the temporal component of the gauge field:

At (r) = Φ(r), Frt = Φ ′(r), μ = Φ(r = 0) (109)

and for the metric we use, as above,

ds2 = e2A(r)
(

dr2

f (r)
− f (r)dt2 + dx2

)

. (110)

Our convention is that the UV boundary lies at r = 0.
The first task is to identify all possible geometries appear-

ing at various values of T and μ (restricting to homogeneous
and time-independent configurations). As it turns out, there
are two possibilities for the geometry:

1. Horizonless geometry ending at a “good” kind of IR sin-
gularity at r = ∞. We call such geometries “thermal gas”
solutions because they are dual to the confined (hadron
gas) phase. This geometry is independent of the temper-
ature and chemical potential (the solution for the gauge
field is Φ(r) = const. = μ). The entropy is zero (as there
is no black hole).

2. Black hole geometry with a “planar” horizon, i.e., a hori-
zon at constant r for all values of t and xi . That is,
f (rh) = 0 for some r = rh . The temperature and entropy
density are determined through black hole thermodynam-
ics:

T = 1

4π
| f ′(rh)|, s = 1

4G5
e3A(rh), (111)

with M3
p N

2
c = 1/(16πG5). Recall that black holes are

dual to deconfined phases in QCD.

At zero quark mass both geometries come as two variants:
hairless τ = 0 and hairy τ �= 0 solutions, corresponding
to chirally symmetric backgrounds and to backgrounds with
spontaneous chiral symmetry breaking, respectively. At finite

123



Eur. Phys. J. C (2022) 82 :282 Page 31 of 53 282

quark mass there is, naturally, only chirally broken solu-
tions with τ �= 0 because the tachyon has a nonzero source.
Depending on potentials and parameter values, there may be
several solutions with τ �= 0 at the same quark mass, but the
solution without tachyon nodes is unique and has the lowest
action [268,275].

I will be mostly discussing the solutions at zero quark
mass in this review. There are therefore four different phases
chirally symmetric and broken thermal gas phases, and hairy
and hairless black holes phases. However, for the potentials
obtained in Sect. 5, only two of these phases appear: the
chirally broken (tachyonic) thermal gas, which is dual to
the chirally broken confined phase, and the hairless, chirally
symmetric black hole solution, which is dual to the chirally
symmetric quark-gluon plasma phase.

Let me then discuss the solutions at finite chemical poten-
tial more closely. The equation of motion for Φ can be inte-
grated to give

− eAV f w
2Φ ′

√

1+e−2A f κ(τ ′)2−e−4Aw2(Φ ′)2
= const. ≡ n̂ (112)

so that

Φ ′(r) = − n̂

eAw2V f

√
√
√
√

1 + e−2A f κ(τ ′)2

1 + n̂2

e6Aw2V 2
f

. (113)

Recall that here V f (λ, τ ) = V f 0(λ)e−τ 2
. The constant n̂ is

related to the charge density n (or to be precise, the quark
number density) by

n = n̂

16πG5
. (114)

For the thermal gas backgrounds, the only regular solution
has n̂ = 0 so that Φ = const. This is natural as there is no
black hole to source the charge. One can show that the IR
behavior with constant Φ is regular in the sense that it can be
obtained from charged small black holes in the limit where
their size goes to zero. The thermodynamics in the thermal
gas phase is therefore trivial: the pressure is constant (which
will be set to zero) and there is no matter in this phase. This
is a large Nc effect that I already discussed in Sect. 5: the
pressure in this phase comes from hadron gas, is suppressed
by 1/N 2

c with respect to the pressure in the high temperature
phase, and would arises from stringy loop corrections that are
not included in the model (as they are subleading in 1/Nc).

The charged black hole backgrounds, we require that
Φ(r = rh) = 0, so that

μ = −
∫ rh

0
dr Φ ′ (115)

Fig. 10 The phase diagram for a set of potentials fitted to QCD data
(potentials 7a)

=
∫ rh

0
dr

n̂

eAw2V f

√
√
√
√

1 + e−2A f κ(τ ′)2

1 + n̂2

e6Aw2V 2
f

.

That is, in this case nonzero chemical potential requires
nonzero charge and vice versa.

The phase diagram can be obtained by numerically solving
the equations of motion. The easiest way is to use a shooting
method starting from the IR: either from the IR singularity
(in the case of thermal gas backgrounds) or the horizon (in
the case of black holes). The grand potential density Ω =
−p can be in principle computed from the (regularized) on-
shell action. However, in practice it turns out to be easier to
integrate the first law of thermodynamics:

dΩ = −sdT − ndμ. (116)

Since, as I pointed out above, the thermal gas solutions can
be obtained as a limit from the black hole solutions, the first
law is enough to determine the differences between the grand
potentials in various phases, which is all that is needed for
the phase diagram. As the grand potential (or equivalently
pressure) in the thermal gas phase is constant, it is convenient
to normalize the results such that this constant is zero. This
also agrees with the usual conventions on QCD side.

The resulting phase diagram for a choice of potentials,
constructed as outlined in Sect. 5, is shown in Fig.10.6 I
remind that the transition temperature T ≈ 120 MeV at μ =
0 differs from the crossover temperature ≈ 155 MeV of QCD
due to the missing pressure contribution from meson loops in
the confined phase. Moreover, there is not yet nuclear matter
in this diagram, it will be considered below.

There is one more interesting feature which deserves
attention. Namely, the zero temperature limit of the decon-
fined phase is a “quantum critical” line realized through an

6 This diagram differs from that of [191] because different potentials
were used.
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AdS2 geometry [191]. The AdS2 geometry is given by

ds2 = dr2

c f (r0 − r)2 − c f Λ̂
4(r0 − r)2dt2 + Λ̂2dx2 (117)

where Λ̂ is an energy scale and c f is a constant which can
be computed from the action. At T = 0 exactly, the flows
ending in the AdS2 geometry are realized through corrections
to (117) in a transseries form, i.e., in powers of r0 − r and
(r0 − r)α where α is a positive coefficients which can be
expressed in term of the potentials and their derivatives (see
[291] for details).

An important point about the AdS2 geometry is that it
has nonvanishing entropy. Consequently, entropy remains
nonzero as T → 0 in the quark matter phase. This may
signal that this phase is not the true vacuum in this region,
but should be replaced by a different background that could
be dual to a color superconducting or color-flavor locked
phase. Indeed it is know that the AdS2 geometry can lead to
instabilities. Studying these is a topic of ongoing research.

6.1.1 Equation of state in quark matter phase

I then turn my attention to the equation of state. I described
in Sect. 5.4.3 how the model is fitted to precisely agree with
the thermodynamics at small chemical potentials obtained
from lattice simulations of QCD with N f = 2 + 1 flavors.
Therefore agreement with the QCD equation of state is guar-
anteed in the region where lattice data is available, but it is
interesting to see how well extrapolations of the equation of
state based on holography work at higher values of chemical
potentials, up to the region relevant for neutron stars.

Extrapolations of lattice data to finite chemical potential
by using holography have been carried out in the literature
by using the Einstein-Maxwell-dilaton models [292–296]. In
these studies, main topics have been locating the QCD criti-
cal point and studying the properties of the plasma near the
critical point. In this review, I am however mainly interested
in another region, namely the region of low temperatures and
high densities, which is relevant for neutron star cores.

The equation of state for dense and cold V-QCD quark
matter can be extracted by using the numerical techniques
which were sketched above. I show the results for the three
potentials of Appendix B in Fig. 11. The EOSs from all
these potentials agree with the polytropic interpolations (see
Sect. 2) at high density, i.e., they stay within the blue band
spanned by phenomenologically viable polytropic EOSs. At
low densities the curves exit the band: this is not a problem but
expected since at low density the thermodynamically dom-
inant phase should have nuclear matter, which we have not
considered yet. Therefore the quark matter EOS is feasible
for essentially all values of temperature and chemical poten-
tial (apart from subleading disagreement with perturbation

Fig. 11 The quark matter EOS from the V-QCD model for a selection
of potentials compared to the band of allowed EOSs from polytropic
interpolations

theory at asymptotically high T and μ). At this point it can
be already used to make predictions of the whole phase dia-
gram when combined with other EOS for the nuclear matter
side. Such analysis was carried out at zero temperature in
[276] and at finite temperature in [297].

6.1.2 Magnetic field and anisotropy

Before going to the discussion of nuclear matter, let me
briefly comment on two other applications of the model,
which may also be also be extended for nuclear matter in
the future. The first is the effect of adding external (homo-
geneous) magnetic field and anisotropy in the quark gluon
plasma [298–303]. See also the review [304]. The study is
motivated in part by non-central heavy ion collisions, where
the collision creates a strong magnetic field perpendicular to
the beam and impact parameter, and the plasma is anisotropic
since it expands faster in the beam direction, and there is also
anisotropy in the transverse plane due to the collision being
off-central or if Uranium ions are used. Another motivation
is to understand the so-called “inverse magnetic catalysis”:
Normally, the chiral condensate in QCD is expected to be
enhanced with increasing magnetic field in QCD, which is a
well-understood an model-independent result. Lattice stud-
ies however show that near the critical deconfinement tem-
perature of QCD, increasing magnetic field suppresses the
condensate [305–307]. This unexpected phenomenon is the
inverse magnetic catalysis, and it remains poorly understood.

Choosing the magnetic field to lie in the x3 direction, it can
be added in the model simply by turning on the corresponding
bulk gauge field

F12 = −F21 = B (118)

with no dependence on the holographic coordinate. An
anisotropy may be imposed by adding an “external” axion
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field a with action as in (53), and considering a linear back-
ground solution a(x) = a⊥x2 or a(x) = a‖x3 depending on
the orientation of the anisotropy. Such linear solutions cre-
ate an anisotropy without introducing x-dependence in the
EOMs [308,309].

Some of the main results from analyzing such configura-
tions in V-QCD were the following:

– We showed [300] that the V-QCD models are able to
produce (magnetic and) inverse magnetic catalysis in
good agreement with lattice data, and demonstrated in
the holographic model that backreaction of the flavors to
the gluon dynamics is important for this phenomenon,
again in agreement with lattice results [310].

– We predicted that the inverse catalysis is weakened with
increasing chemical potential and absent for high chem-
ical potentials [301].

– We showed that turning on an anisotropy (while setting
the magnetic field to zero) creates a similar effect as the
magnetic field, i.e., we confirmed the “inverse anisotropic
catalysis” [302] that was conjectured in [311]. This sug-
gests that the inverse magnetic catalysis is due to the
anisotropy created by the magnetic field rather than direct
interaction with the field. We demonstrated that turning
on the magnetic field and the anisotropy at the same time
supports this idea, leading to expected strong interference
(only) when the anisotropies created by the magnetic field
and the axion are in the same direction [303].

The geometry of the model encodes the parameter depen-
dence in an interesting way. Turning on any nonzero a⊥ or a‖
causes the vacuum IR geometry to change from that of (94)
to AdS4 ×R. Turning on a strong magnetic field gives rise to
an approximate intermediate geometry AdS3 ×R

2 along the
holographic RG flow. The changes in the geometry can be
probed by analyzing the quark–antiquark potential and the
entanglement entropy for a stripe for various values of the
parameters [303].

Our results complement those obtained in the literature in
other models, see, e.g., [312–317].

6.1.3 Transport in quark matter phase

The second application is transport in quark matter. By using
the holographic dictionary, it is straightforward to analyze
(among other things) the viscosities and conductivities in the
high density phase, see [291,318] where the results for the
D3–D7 model were also analyzed. (For analysis of trans-
port and thermalization at zero density, see [319–323]). For
example, the shear viscosity satisfies the standard relation
η = s/4π , and the bulk viscosity may be found by employ-
ing the method of Eling and Oz [324].

I present the result for two values of chemical potential
and low values of the temperature in the quark matter phase
(with zero quark mass so that chiral symmetry is intact) in
Fig. 12. Different colors present the three different choices of
potentials given in Appendix B. The finite value of η as T →
0 reflects the fact that the entropy is finite as I pointed out
above. That is, these results are for the unpaired quark matter
phase, and for very low values of T one expects pairing which
is not (yet) included in the model. The plots also include the
thin gray curves which are four parameter fits to the potential
7a data by transseries, i.e., (integer) powers of T and T α , with
α being the parameter defined through the asymptotic flow
around the AdS2 point I discussed above. The convergence of
the fit confirms the expectation from the asymptotic analysis
around the AdS2 point that the low temperature asymptotics
is indeed a transseries.

The behavior of the transport coefficients in V-QCD is
totally different from the predictions of perturbative QCD.
For the shear viscosity, for example, the leading order per-
turbative QCD result is known [325] and it is larger than the
V-QCD curves by several orders of magnitude at small tem-
peratures, decreases rapidly with temperature, and is smaller
then the V-QCD prediction by orders of magnitude at temper-
atures around the QCD scale. This night not be particularly
surprising, since the plotted region is far from the region
where perturbative analysis is reliable. The complete lack of
agreement however demonstrates that even qualitative fea-
tures of the perturbative results are not to be trusted. Let
me also point out that the viscosities computed here are the
strongly interacting contributions only. For a realistic mat-
ter in neutron stars there are additional contributions, among
other things, from the electron gas and weak interactions of
the matter. For the bulk viscosity, the latter are dominant over
the contribution from strong interaction by orders of magni-
tude (see, e.g., [326]).

6.2 Nuclear matter from a homogeneous bulk field

Having established the background, I move to the main topic
of this section: the implementation of nuclear matter in V-
QCD. As I have reviewed above, there are several ways to
attack this problem. Here I will only consider the approach
where nuclear matter is modeled through a homogeneous
bulk field [274], which was reviewed in Sect. 4.4. This is
due to two main reasons: First, we will be interested in neu-
tron stars and their cores where the density of nuclear mat-
ter is high, so that treating it as homogeneous matter rather
than individual baryons appears natural. Second, the homo-
geneous approach is much simpler than even computing the
solution for a single baryon in the model. And to obtain a
reasonable model at high density, one needs to consider an
ensemble of baryons with complicated interactions which
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Fig. 12 The shear viscosity (left) and bulk viscosity divided by temperature (right) as a function of temperature. Dashed (solid) curves are for
μB = 450 MeV (μB = 600 MeV). Green, red, and violet curves use potentials 5b, 7a, and 8b, respectively. The thin gray curves are given by
transseries fits to the 7a data

would be extremely challenging. I will review here the main
points of the analysis, see [274] for more details.

6.2.1 The probe approximation

The approach for homogeneous nuclear matter follows the
ideas outlined in Sect. 4.4. I will consider adding nuclear
matter in the confined chirally broken phase of V-QCD, i.e.,
the light blue phase of Fig. 10. In order to simplify the treat-
ment further, I will also work in the probe approximation,
i.e., expanding the DBI action to first nontrivial order in the
non-Abelian gauge fields and neglecting the backreaction of
the baryons to the metric. Replacing the DBI action by a
quadratic action may sound like a drastic approximation, but
is actually well motivated. First, as I argued in Sect. 4, the
higher order corrections in the gauge fields are suppressed
for individual baryons at large coupling in the WSS model.
Second, the BPST instanton is self dual, meaning ∗F = ±F
in terms of differential forms where ∗ is the Hodge dual, and
for such self-dual configurations the square root of the deter-
minant in the DBI action can in simple cases be computed
explicitly and one finds that the leading order expansion of
the action is exact [327,328]. In the case of V-QCD the pres-
ence of the tachyon however adds an extra complication, and
the homogeneous configuration may not follow the proper-
ties of individual solitons. However, these observations sug-
gest that dealing with the full non-Abelian DBI action is not
worth the effort, since the approach involves rather drastic
approximations in any case.

At this point, it is useful to explicitly separate the vectorial
Abelian term Φ̂ from the non-Abelian terms. In order to do
this, we replace, with slight abuse of notation,

AL/R(xM ) �→ Φ̂(r)Idt + AL/R(xM ), (119)

where xM stands for dependence on all coordinates. Here,
anticipating that the configuration will be homogeneous, we
also assumed that Φ̂ only depends on the holographic coor-
dinate. Actually, in order for the division of the field into
the Abelian and non-Abelian terms to be well-defined, we
require

∫

d4x tr
(

F (L)
r t + F (R)

r t

)

= 0, (120)

i.e., that the averaged Abelian vectorial component of the
field strengths for the latter term in (119) vanish for all values
of r . After this, developing the DBI action (56) to first non-
trivial order in the field strengths F (L/R) and the gauge fields
AL/R appearing explicitly through the covariant derivatives
of the tachyon yields

SDBI = −M3Nc

∫

d5x V f 0(λ)e−τ 2√− det g
√
R (121)

×
[

1 + κ(λ)τ 2

2

(

g̃−1
)MN

s
trAM AN

−w(λ)2

8

(

g̃−1
)MN

s

(

g̃−1
)PQ

s

×tr
(

F (L)
N P F

(L)
QM + F (R)

N P F
(R)
QM

) ]

.

Recall that T = τ(r)I. We also used a shorthand notation for
the expression

R = 1 + e−2A f κ(λ)(τ ′)2 − e−4Aw(λ)2(Φ̂ ′)2 (122)

and for the symmetric part of the inverse of the effective
TDBI metric

(g̃−1)s = e−2A diag
(

f R−1, (123)

− f −1R−1(1 + e−2A f κ(λ)(τ ′)2), 1, 1, 1
)
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with the order of the components (r, t, x1, x2, x3). Notice
that here we only developed the non-Abelian terms of the
DBI, and kept nonlinear action for the Abelian component
Φ̂ ′, which appears in R. In principle Φ̂ ′ will be of the same
size as the non-Abelian components which suggest that we
should also expand the dependence on it as a series. I however
think that the full expression of (121) is a better approxima-
tion than its leading series expansion around Φ̂ ′ = 0. The
arguments on the dependence of the DBI on the soliton dis-
cussed above suggest that only the non-Abelian components
should be treated as small. Moreover keeping the full depen-
dence on Φ̂ ′ does not violate any principle, and the action
in (121) is quite compact while the expanded version would
be messy.

The Chern–Simons term of (65) is also important for
nuclear matter, because, as we shall see explicitly, it couples
the winding number of the soliton to the baryon number (as it
is obtained from the dictionary). We use here the expression
from [249]. There is however, an issue: using their formula
as such does not quite work for us. In brief, the details of
the complicated CS five form Ω5 are not important, but it
involves a tachyon potential ∝ e−τ 2

, similar to that appear-
ing in the DBI sector of (108) and of (121). As it turns out,
for consistent nuclear matter solution the potential of the CS
term should vanish faster than the DBI counterpart for large
τ . This discrepancy is not a problem since the derivation of
this reference involves some assumptions which are satisfied
for at least superconformal backgrounds but not necessarily
for the V-QCD model. Presumably we should stick to the
bottom-up framework also here and treat the potentials of
the CS terms as “free parameters”. Here we will do what is
apparently the simplest modification to fix this and replace
τ �→ √

bτ with b > 1 in the CS term, which guarantees the
nice IR behavior.

The expression for the baryon number can be computed by
following the dictionary. By using the EOM for the Abelian
field Φ̂, the variation of the on-shell action of the model is
given by7

δS = −δΦ̂(r)
δS

δΦ̂ ′(r)

∣
∣
∣
∣
r=0

= −δμ
δS

δΦ̂ ′(r)

∣
∣
∣
∣
r=0

(124)

where we assumed that the setup is consistent such that no
contributions from IR boundary arise. The baryon number is
identified as

NB = − 1

Nc

∫

d3x
∂L
∂Φ̂ ′

∣
∣
∣
∣
r=0

= 1

Nc

∫

d3xdr
∂LCS

∂Φ̂
(125)

7 To be precise one should consider here a more general variation of the
action since in general changing μ affects all fields through couplings in
the EOMs. However one can show that the other fields do not contribute
to the variation of the action unless one also varies their sources, in
consistency with the first law of thermodynamics.

where the 1/Nc factor arises because the source for Φ̂

is the quark (rather than baryon) chemical potential, L is
the Lagrangian density of the full action and LCS is the
Lagrangian density for the CS term. In order to obtain the
last expression in (125), we used the Φ̂ EOM as well as the
fact that only the CS action depends on Φ̂ directly whereas
other terms depend only on the derivative Φ̂ ′(r). Inserting
here the expression of Ω5 from [249] we obtain

NB = 1

24π2

∫

d3xdr H4 (126)

where

H4 = tr d
[

e−bτ 2( − 3i AL ∧ F (L) + 3i AR ∧ F (R)

+AL ∧ AL ∧ AL − AR ∧ AR ∧ AR

+bτ 2(AL − AR) ∧ (AL − AR) ∧ (AL − AR)

+3biτdτ ∧ (AL ∧ AR − AR ∧ AL)

−2ib2τ 3dτ ∧ (AL ∧ AR − AR ∧ AL)
)]

. (127)

6.2.2 Homogeneous ansatz

We are now ready to insert the homogeneous Ansatz of
nuclear matter. As usual with this Ansatz, we restrict to the
case of two light flavors, N f = 2. This appears to con-
flict with taking the Veneziano limit, but notice that this
was already in practice broken when we decided to treat the
nuclear matter as a probe, so taking N f = 2 does not lead to
any major additional limitations.

For the case with explicit left and right handed fields, the
Ansatz is given by

Ai
L = −Ai

R = h(r)σ i . (128)

One can consider higher N f , but this is does not work as
nicely as N f = 2 because the link between rotations and
(full) flavor symmetry is lost. An approach which would still
make use of the link would be to consider SU(2) subsectors
of the full symmetry, e.g., only a single subgroup or using a
block diagonal Ansatz consisting of several SU(2)’s (which
is most symmetric if N f is even), but this is not the most
general homogeneous Ansatz.

This Ansatz leads to the same issue as in the WSS model
discussed above: the baryon number obtained from (126)
reads

NB = − 2

π2

∫

d3xdr

× d

dr

[

e−b τ(r)2
h(r)3(1 − 2b τ(r)2)

]

. (129)

It is a total derivative (as it should) and will integrate to zero
if h(r) is smooth because h(r) must vanish at the boundary in
order to avoid turning on sources in the field theory. To cure
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this in our case we introduce a discontinuity at a generic point
r = rc in the bulk. Actually, we will choose a solution such
that h(r) = 0 for r > rc. The choice in the IR for this field
is not unique (there are also two other choices with nonzero
h(r)) but our results will be insensitive to these choices.

The value of rc is found by minimizing the action. The
interpretation is similar to the case of WSS discussed in
Sect. 4.4: The soliton centers of the true minimum config-
uration are expected to lie around r = rc. Away from the
centers, at high density, even the true minimum is presum-
ably close to homogeneous. The approximation is therefore
drastic only near r = rc.

After inserting the Ansatz, the action reads

Sh = SDBI + SCS (130)

= −2M3
p Nc

∫

d5x V f 0(λ)e−τ 2
e5A

√
R

×
[

1 + 6κ(λ)τ 2e−2Ah2 + 6w(λ)2e−4Ah4

+3

2
w(λ)2e−4A f R−1 (

h′)2
]

(131)

−2Nc

π2

∫

d5x Φ̂
d

dr

[

e−b τ 2
h3(1 − 2b τ 2)

]

. (132)

This actions appears to have a bad singularity at r = rc since
the discontinuity of h leads to a delta function in h′. We adopt
a prescription where we ignore all localized contributions to
the action at r = rc. Near this point our approximation is
expected to fail, so we think it is better to ignore the contri-
butions from this region than trying to estimate them within
an approach that is dubious. This is however likely to lead to
an underestimate of the value of the DBI action.

One can argue that minimizing the action leads to a finite
rc (in the confining phase) as follows. Solving the EOM in
terms of the bulk charge

ρ = − ∂L
∂Φ̂ ′ (133)

gives

ρ =
{

ρ0 + 2
π2 e

−b τ 2
h3(1 − 2b τ 2) , (r < rc)

2
π2 e

−b τ 2
h3(1 − 2b τ 2) , (r > rc)

(134)

where

ρ0 = ρ(r = 0)

= 2

π2 e
−b τ(rc)2

(1 − 2b τ(rc)
2)

[

h(rc+ε)3 − h(rc−ε)3
]

(135)

is the baryon number density. At fixed density we therefore
see that the discontinuity of h(r) is roughly proportional to
eb τ(rc)2

, which gives a rough lower bound for the size of h

near r = rc. If rc → 0, due to the UV asymptotics (87)
we have τ(rc) → 0. Therefore one finds that h is roughly
constant, in which case the action (130) diverges due to the
factors eA ∼ 1/r arising from the metric. In the IR, for
confining backgrounds the tachyon diverges, see (104), and
the exponential exp(bτ 2) blows up fast. Consequently h will
grow exponentially if we take rc → ∞, and the h4 term in the
action will cause it to diverge. since the action diverges (with
the same sign) at both rc → 0 and at rc → ∞, its extremum
is indeed at finite positive rc. Let me also remark that it is the
coupling of the nuclear matter to the tachyon which prevents
it from falling in the IR. There is a rough similarity to the
WSS model: In that case, the baryon is stopped from falling
to the IR by the flavor branes, as is seen clearest in the non-
antipodal case for which the flavor branes do not extend down
to the tip of the geometry (see [39,154,155]). The IR fusion
of the flavor branes in the WSS model corresponds to the
blow up of the tachyon in V-QCD as I discussed in Sect. 5,
which stops the baryons from falling in the IR in V-QCD.

6.2.3 Complete model and phase diagram

We are now ready to write down the complete V-QCD model
for dense QCD which contains both (homogeneous) nuclear
and quark matter. To avoid double counting we first subtract
the background term

Sh0 = −M3Nc

∫

d5x V f 0(λ)e−τ 2

×√− det g
√

1 + e−2A f κ(λ)(τ ′)2 (136)

from the nuclear matter action. The full action then reads

SV-QCD = Sbg
V-QCD + cb(Sh − Sh0), (137)

with Sbg
V-QCD given in (107) and (108). The nuclear matter

term is treated in the probe limit (only) in the sense the back-
reaction to the metric is neglected, and the metric is solely
solved from the first term. That is, we do not require that the
second term is small: it may in principle contribute to the
free energy at the same level as the first term even though
typically the contribution of the second term is numerically
suppressed. We also included [329,330] the coefficient cb,
which will be determined by comparing to data, for two rea-
sons: First, for the quark matter contribution (arising from
Sbg

V-QCD) we will in effect set Nc = N f = 3, i.e., consider also
the strange quarks, which makes sense as they are active for
the temperatures and chemical potentials of the quark matter
phase. But for the nuclear matter we used N f = 2 to avoid
extra complications, so in order to scale the nuclear matter
result to a higher number of active quarks, one can simply
multiply by the factor cb. Second, the implementation with
the homogeneous Ansatz is a somewhat drastic approxima-
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Fig. 13 The phase diagram including nuclear matter (blue region) for a
choice of potentials fitted to lattice data (potentials 7a) and for parameter
choices b = 10 and cb = 1. Figure taken from [274]

tion, in particular near r = rc, which may underestimate the
action for nuclear matter. So cb may also correct issues due
to the approximation.

Finally, I have some technical remarks. The U(1) gauge
fields Φ in Sbg

V-QCD and Φ̂ in Sh are actually the same field,
but I used different notation because in the case of nuclear
matter we neglect the backreaction of the charge to the met-
ric. Notice that they are not turned on simultaneously, but
Φ (Φ̂) is nonzero only in quark (nuclear) matter phase so
our setup is consistent. Also, there is a constant of integra-
tion which we have not specified in the nuclear matter phase.
Namely Φ̂ is obtained from ρ of (134) by direct integra-
tion, but determining the constant of integration is somewhat
involved (see [274] for details). We actually first Legendre
transform the probe action from the grand canonical to the
canonical ensemble where the action is a function of ρ, min-
imize the action in this ensemble, and transform back to the
grand canonical which “automatically” fixes the constant of
integration such the it is consistent with the first law of ther-
modynamics.

Let me then analyze the phase diagram. Apart from the
phases of Fig. 10, we now have a third phase:

– Horizonless thermal gas solution with probe h conden-
sate in the bulk. This geometry is still independent of the
temperature. It is dual to a confined phase with nuclear
matter.

The phase diagram may be determined numerically by
carefully following the holographic dictionary. I show the
result in Fig. 13 using potentials 7a defined in Appendix B,
i.e., the same potentials as in Fig. 10. I set here simply cb = 1
and chose b = 10 for which the vacuum to nuclear matter
transition is around the correct value of the (quark) chemi-
cal potential, i.e., one third of the proton mass (minus small
binding energy). The transition from the confined vacuum to
the nuclear matter phase, as well as all the other transitions,

Fig. 14 The speed of sound at zero temperature as a function of the
chemical potentials for potentials 7a, b = 10, and cb = 1. Figure taken
from [274]

is of first order, which is as expected for QCD at zero tem-
perature. Recall that there is no temperature dependence in
the confined phases which is reflected by the transition line
between the thermal gas and nuclear matter phases being a
vertical line.

In Fig. 14 I show the speed of sound at zero temperature
in the nuclear and quark matter phases. The result is nontriv-
ial and differs significantly from the value of c2

s = 1/3 in
conformal theories, which is shown as the dashed horizontal
line. Interestingly, in the dense nuclear matter phase below
the nuclear to quark matter transition, there is clear excess
over the conformal value. That is, the EOS is stiff. This is
important because, as I discussed in Sect. 2.3, a stiff EOS
in this regime is required in order to satisfy the lower bound
for MTOV arising from the neutron star mass measurements.
Notice that the conformal value is also exceeded in the quark
matter phase.

In conclusion, despite using rough approximations, the
results from the model with nuclear matter are encouraging:
the phase diagram has the expected structure and the EOS
appears feasible for neutron star applications. I will demon-
strate below that this is indeed the case.

Before discussing the results for the homogeneous
approach further, let me however comment on other possible
approaches for nuclear matter in V-QCD. We also considered
an even simpler approach, where nucleons were treated as
pointlike sources (basically arising from localized D0 branes)
for the Φ̂ field, in [274]. We were not able to estimate the
coupling of the baryons to the tachyon and tachyon potential
in this case, so we left it out, and we were forced to stabilize
the nuclear matter by making a nonstandard choice for the
gauge field coupling w(λ), in some tension with the compar-
ison to lattice data. Interestingly, in this case, we obtained
phases were the charge could arise both from the baryons
and from behind a black hole horizon, that could be inter-
preted as quarkyonic phases. Moreover, the low density ther-
mal gas and high density quark matter phases were separated
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by several second order phase transitions rather then the first
order transitions of the homogeneous approach, which is sug-
gestive of the quark-hadron continuity [240]. Similar results
were obtained in the WSS model in [239,242]. Let me stress
however, that we had to choose potentials which were in
slight conflict with lattice data to obtain the same in V-QCD.

Another approach for baryons and nuclear matter is, nat-
urally, the construction of the solitons dual to individual
baryons in V-QCD. This is work in progress.

6.3 Hybrid equations of state

Using a homogeneous bulk field to model nuclear matter
is expected to work best at high densities, where nucleons
are close and their wave functions start to overlap. At lower
densities, in particular densities well below the nuclear sat-
uration density, it is better to treat nuclear matter as a fluid
of individual baryons. As I pointed out above, this is some-
what challenging in holography, even though there are some
encouraging results for the WSS model. But this is not a prob-
lem for us, since the results at low density are known to quite
a good accuracy by using other, more traditional methods,
such as effective field theory. Therefore we take the approach
where we abandon gauge/gravity duality at low densities, and
use various nuclear theory models for the EOS in this region
instead. We use the V-QCD model only at higher densities,
i.e., well above the nuclear saturation density ns . Combining
the models like this, we aim to create hybrid EOSs where
we use the potentially best available modeling in all regions
[329,330].

To make this approach concrete, we choose the follow-
ing nuclear theory models at the lowest densities, ordered
roughly from soft to stiff: the soft variation of the Hebeler–
Lattimer–Pethick–Schwenk (HLPS) EOSs [83], the Akmal–
Pandharipande–Ravenhall (APR) model [52], Skyrme Lyon
(SLy) model [331,332], HLPS intermediate, as well as
the IUF [333], and DD2 [334] variations of the Hempel–
Schaffnerr-Bielich model [53]. For V-QCD, we use the vari-
ants defined by the three potentials from Appendix B, which
are in order of stiffness 5b, 7a, and 8b. At the density ntr rang-
ing from 1.2ns to 2.2ns we match the nuclear theory models
with the V-QCD (nuclear matter) EOS. We require continuity
of the pressure and baryon number density at the transition,
which fixes the parameters b and cb of the homogeneous
nuclear matter.

In summary, the resulting hybrid EOS depends on three
things:

1. Choice of nuclear theory model at low density, which
naturally affects mostly the low density nuclear matter
regime (densities around and below the saturation den-
sity).

Fig. 15 Predictions of the hybrid EOS setup. The light blue band is
spanned by all interpolating EOSs satisfying the astrophysical bounds,
and the light red band is spanned by the hybrid V-QCD EOSs satis-
fying the same bounds. The curves show the three variants of the V-
QCD(APR) EOSs as indicated by the legend. The horizontal lines with
arrows show roughly the different regimes of the hybrid EOSs

Fig. 16 Speed of sound for the three variants of hybrid V-QCD(APR)
EOSs

2. Choice of the transition density, which mostly affects the
EOS in the intermediate regime, slightly above the tran-
sition density, i.e., roughly in the range from n = 1.5 ns
to 2ns).

3. Choice of the V-QCD potentials: 5b, 7a, or 8b. This choice
mostly affects the EOS in the high density regime, i.e.,
around 2ns and above, which contains both dense nuclear
and quark matter as well as the transition between them.

As the uncertainties are largest in the high density region,
where the holographic model is used, it is natural to choose
samples of the EOSs which represent this uncertainty. For
this we use the APR EOS, the transition density ntr = 1.6ns ,
and only vary the V-QCD potential. This gives rise to the
soft, intermediate, and stiff V-QCD(APR) EOSs, obtained
with the potentials 5b, 7a, and 8b, respectively. These EOSs
have been published in the CompOSE database [335], see,
e.g., https://compose.obspm.fr/eos/198.
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I show the predictions from the hybrid EOS setup in
Fig. 15. As in Fig. 11, the light blue band is spanned by
all viable EOSs, obtained by using polytropic interpolations
between the low density nuclear models and high density
perturbative QCD results. I also imposed the observational
constraints that MTOV > 2.0M� and Λ1.4 < 580. We notice
that the holographic hybrid EOSs, in particular the three
V-QCD(APR) variants, lie easily within this band, and are
consistent with the known low and high density behaviors.
The light red band is spanned by all the holographic hybrid
EOSs, i.e., allowing variation of the transition density ntr and
low density models, and also requiring agreement with the
astrophysical observations. Since the red band is significantly
narrower than the blue band, imposing the constraints from
the hybrid construction narrows down the band considerably.
This is mostly due to using the holographic model, but also
due to using a sample of nuclear theory models rather than
completely general EOS at low density, which excludes EOS
with somewhat “exotic” behavior at low density.

The speed of sound for representative choices V-QCD
(APR) soft, intermediate, and stiff is shown in Fig. 16. Notice
that at n = ntr the speed of sound is discontinuous. Some
level of discontinuity is expected because we only require
continuity of the pressure and baryon number density at
matching, i.e., a second order transition. But the low density
models matches poorly with the holographic model so that
the discontinuity is quite sizable (also for other hybrids than
those using the APR low density EOS), which might mean
that neither the nuclear theory nor the holographic model
work well in this region on intermediate density. The uncer-
tainty following from this is however accounted for by the
variation of ntr in the setup. We also note that there is a gap
where the speed of sound is not plotted: this arises because
the density jumps at the first order phase transition. On the
nuclear matter side the speed of sound is remarkably high,
even up to c2

s ≈ 0.6 for the stiff variant. As I noted above
this means relative stiffness of the EOSs and makes it easy
to construct physically feasible EOSs. Interestingly, the val-
ues of the speed of sound both for dense nuclear matter and
for quark matter above the transition are close to the predic-
tions of another nonperturbative framework, the functional
renormalization group approach [77–79].

Finally, notice that the phase transition from nuclear to
quark matter is strongly of first order for all hybrid EOS that
we have constructed. We find that the latent heat at the tran-
sition satisfies 700 MeV/fm3 � Δε � 2000 MeV/fm3. Note
that this prediction is insensitive to the astrophysical bounds
but we note that the highest values are obtained by combin-
ing the extremely soft HLPS soft variant at low densities to
the stiffest 8b version of V-QCD, which leads to EOSs that
appear somewhat unnatural and have an extreme jump in
the speed of sound at the matching density ntr . With EOSs

having more natural behavior we find values of Δε below
1500 MeV/fm3.

For the baryon number density in the nuclear matter phase
at the transition we find that 4.2 � nb/ns � 9.4. Again the
largest values are obtained by combining HLPS soft with the
8b version of V-QCD. For more natural setups nuclear matter
densities stay below 8ns .

7 Applications of holography to neutron stars

I then discuss the applications of gauge/gravity duality to
neutron stars. I will mostly focus on results obtained from
the V-QCD model. However, before discussing these results,
I will give a brief review of the various other approaches
discussed in the literature.

7.1 Overview

There is already a high number of papers in the literature dis-
cussing the applications of gauge/gravity duality to neutron
star physics. Many of the early studies concentrate on the
WSS model. However as it turns out, EOSs for nuclear mat-
ter made of point-like noninteracting solitons [233,234] do
not lead to stable neutron stars at least for reasonable ranges
of radii [336] (see however [337]). In the closely related D4-
D6 model [338] (i.e., the Witten background of (23) with
different probe flavor brane setup than in WSS) solutions
have been found [336] but radii of the stars were larger than
expected for realistic stars. Flavors with different masses in
this setup were studied in [339]. Neutron stars from instan-
ton gas in the WSS model (taking into account effects due to
soliton widths) were considered in [340], and seen to lead to
more realistic stars, in particular if pressure from an external
crust was added. Neutron stars containing matter made of
“multiquark” states in the WSS model were considered in
[341–343].

There has been also work in other backgrounds. Recently,
instanton gas in six dimensional AdS soliton background,
together with a model for color superconducting phase [183]
was considered in [344] and shown to lead to potentially
more realistic EOSs and mass radius relations.

A somewhat orthogonal direction is that of [345,346]
where it was argued that a degenerate fermion state in CFT
can be dual to a higher dimensional “neutron star” in the bulk,
and the gravitational collapse of the star could be interpreted
as a transition from the high density degenerate state into
a thermal state, i.e., similar to the nuclear to quark matter
transition in QCD. The neutron star was however found to
be unstable in the type IIB AdS5 × S5 background, but it
was argued that it can be reliably embedded in M-theory on
AdS4 × S7.

123



282 Page 40 of 53 Eur. Phys. J. C (2022) 82 :282

More recently EOSs where one combines low density
nuclear matter result from effective theory to predictions of
holographic models at high density have been considered.
This was done by combining the soft, intermediate, and stiff
HLPS EOSs [83] with the prediction of the D3–D7 model
[142] in [347]. The first order transition between the nuclear
matter and holographic quark matter was seen to be strong.
Consequently, the stable stars only contained regular nuclear
matter and stars with holographic quark matter cores were
unstable. The estimated location of the transition was rea-
sonable: the density of nuclear matter at the transition was
found to be between 2 and 7 times nuclear saturation den-
sity. This study was generalized by varying the quark mass
parameter in [348]. The results included stars with exotic
structure with quark matter near or at the crust and nuclear
matter in the core, or stars made completely of quark mat-
ter (following the Bodmer–Witten assumption of stability
of quark matter at low density [349,350]). The stars passed
astrophysical constraints, but interestingly violated the uni-
versal I-Love-Q relations [89]. Similar approach was also
considered in a phenomenologically adjusted D3–D7 setup
[190] containing an intermediate chirally broken deconfined
“massive quark” phase [189]. Color superconducting phases
[181] were included recently in [351], where it was also found
that the intermediate massive quark phase can be made stiff
enough to support holographic quark cores. Apart from D3–
D7 models, HLPS EOSs have been used with quark mat-
ter from a holographic Einstein-Maxwell-dilaton model in
[352]. In this case holographic quark cores were unstable.

The key to forming stable compact stars with holographic
matter, as one can learn from the examples discussed above,
is sufficiently stiff EOS (i.e., high speed of sound) in some of
the phases. Indeed, it is difficult to construct viable EOSs
without exceeding the conformal “bound” of c2

s = 1/3
for the speed of sound [110]. This motivated the study of
stiff phases in holographic models. Examples were found
in [353], where top-down (N = 4 SYM at finite R-charge
density) and bottom-up (Einstein-Maxwell-dilaton) models
were considered and seen to have speeds of sound in excess
of the conformal value. Such models were shown to pro-
duce speeds of sound arbitrarily close to the speed of light
in [354]. Other examples of stiff phases, which have also
led to explicit models of neutron stars with holographic mat-
ter, are the stiff massive quark phase of [189,351] and the
homogeneous nuclear matter phase in V-QCD [274], which
I discussed above in Sect. 6. Next I will discuss the results
from this latter approach in more detail.

7.2 Properties of static neutron stars

I start the discussion of the results from applying the hybrid
V-QCD EOS to neutron stars by considering nonrotating
stars. The first task is to solve the TOV equation, using the

Fig. 17 Mass-radius relations for the hybrid EOSs. Notation is in
Fig. 15: the light blue band is determined by all interpolating EOSs
satisfying the astrophysical bounds, and the light red band is deter-
mined by the hybrid V-QCD EOSs satisfying the same bounds. The
blue, dashed red, and dotted green curves are the mass-radius relations
for soft, intermediate, and stiff V-QCD(APR) EOSs, respectively. I also
show experimental results for neutron star masses and radii, see text for
details

hybrid EOSs from Sect. 6.3 as an input. The results are
shown in Fig. 17, following the notation of the EOS plot
in Fig. 15 [329,330]. I also compare to some of the avail-
able radius measurements from the NICER experiment for
the pulsars J0030+0451 [96,97] and J0740+6620 [98,99],
which is among the most massive known pulsars, and the
result from the analysis of X-ray burst cooling tail spectra
for the source 4U 1702-429 [100].

Because the holographic EOSs are stiff, the obtained radii
of the neutron stars are larger than in approaches based on
extrapolating the results of chiral perturbation theory [355].
This holds at its clearest at large masses, but even at M =
1.4M� we obtain that

10.9 km � R1.4 � 12.8 km, (138)

whereas [355] obtained 11.0+0.9
−0.6 km (90% credible interval).

Moreover, the lowest radii are obtained by using the soft
HLPS hybrids which include a dramatic change in stiffness
at the HLPS/V-QCD matching density. Excluding such EOSs
lifts to lower bound from 10.9 km to 11.7 km. That is, the
remaining possible variation in the radius is roughly 1 km.
Interestingly, our values of radii are also in good agreement
with the direct radius measurements shown in Fig. 17.

In Fig. 18 I show the results for the other key parameter,
the tidal deformability Λ, using the three variants of the V-
QCD(APR) EOSs. I also compare to the LIGO/Virgo result
Λ1.4 = 190+390

−120. At low masses, the variation between the

123



Eur. Phys. J. C (2022) 82 :282 Page 41 of 53 282

Fig. 18 Tidal deformability for the V-QCD(APR) hybrid EOSs, as a
function of the neutron star mass, compared to the LIGO/Virgo result
for the tidal deformability Λ1.4 at M = 1.4M�

variants is small because we keep the low density nuclear
matter model as well as the transition density ntr fixed, and
even at M = 1.4M� the variation is moderate. Varying the
choice for the low density model, i.e., taking into account all
hybrid EOSs that we have constructed, leads to more vari-
ation in the tidal deformability. But our results still predict
higher value for Λ1.4 than the measurement:

Λ1.4 � 232, (139)

i.e., the lower bound is higher than the central value reported
by LIGO/Virgo. And again the lowest numbers for Λ1.4

among the hybrids arise from somewhat dubious construc-
tions with HLPS soft involving a drastic jump in stiff-
ness. Other hybrids produce higher values, and using only
them would give Λ1.4 � 326. For comparison, the soft V-
QCD(APR) variant has Λ1.4 ≈ 478.

7.3 Properties of rotating neutron stars

Let me then consider the effects of rotation in neutron stars.
First one can start with slow rotation, which is character-
ized in terms of the moment of inertia I and the quadrupole
moment Q. These can also be estimated from the results for
the tidal deformability Λ (which is related to the leading non-
trivial Love number k2) by using the approximately universal
“I-Love-Q relations” [89]. We have computed I and Q and
checked that these relations hold for our hybrid EOSs within
the precision of � 0.5% [330].

But neutron stars can also be in rapid, relativistic rota-
tion. Rapidly rotating neutron stars are created in neutron star
mergers, and even though the speed of rotation slows down

Fig. 19 Mass-radius curves for the V-QCD(APR) EOSs including
rotating stars. Blue (green dotted) curves are for the soft (stiff) V-
QCD(APR) EOS. The (dashed and solid) black curves mark lines where
the maximal central density is reached. The circles show the maximal
nonrotating MTOV and rotating Mmax masses. Shown is also experimen-
tal data for masses and radii of compact objects. See text for detailed
explanation

rapidly after the merger due to various instabilities, this is
still a slow process with respect to the typical timescales of
the actual merger event, which range from one millisecond to
one second [356]. There is however also other topical moti-
vation: the recent observation GW190814 of gravitational
waves by LIGO/Virgo from a merger of a black hole with
a compact object having a mass of 2.59+0.08

−0.09M� [105]. The
mass of the secondary component falls into the mass gap: it is
not clear whether it was a neutron star or a black hole. While
it is possible that it was a slowly rotating neutron star, this
requires a rather extreme EOS [357,358]. The mass result
is also at odds with the maximum bound of the nonrotating
mass MTOV inferred from GW170817 [107–109]. But it is
also possible that this object was a rapidly rotating neutron
star, since rotation leads to enhanced bound for the maximum
mass (see, e.g., [359–361]).

In order to study this scenario with the hybrid V-QCD
EOSs, we solved the properties of rapidly rotating neutron
stars [362]. The results for the masses and equatorial radii
Re are shown in Fig. 19. We included the curves for the soft
and stiff (but not intermediate) variants. The thick curves are
the extremal cases, given by nonrotating stars at low radius,
by maximally rotating stars (mass shredding, Kepler limit) at
large radius, and the onset of instability at large mass. For the
soft EOS, the instability (thick black dashed curve) is due to
reaching the nuclear to quark matter phase transition. For the
stiff EOS, the maximum mass is set by the secular instability
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Fig. 20 Mass ratios Mmax/MTOV for the hybrid EOSs. The colors refer
to different low density models as indicated by the legend. Triangles,
squares, and diamonds stand for soft, intermediate, and stiff versions of
V-QCD (potentials 5b, 7a, and 8b), respectively, with varying ntr . For
the open markers the maximal mass is below the GW190814 band of
Fig. 19. The large black markers show the results for the standard soft,
intermediate, and stiff V-QCD(APR) variants with ntr = 1.6ns , as well
as the original APR EOS. The green, red, and blue bands show earlier
estimates for the ratio Mmax/MTOV [364], for the maximum of MTOV
[108], and the minimum of MTOV [359], respectively

which can be estimated by the stability condition

∂M(nc, J )

∂nc
> 0, (140)

where nc is the central baryon number density and J is the
total angular momentum. The thin lines show the curves at
three choices of constant rotation frequency. Here 716 Hz is
the highest rotation frequency observed in any pulsar to date,
set by the pulsar PSR J1748-2446ad [363]. I also show exper-
imental data for masses and radii, including the same neutron
star measurements as in Fig. 17 and the mass result for the
secondary component of GW190814 from LIGO/Virgo.

The interpretation that the M = 2.59+0.08
−0.09M� object of

GW190814 is a slowly rotating neutron star is inconsistent
with the hybrid EOSs, but it may have been a rapidly rotating
neutron star. The required rotation frequencies are however
high: pretty much the maximal rotation frequency is required
for the soft variant, and frequencies above 1 kHz are needed
for the stiff variant, which are well above the highest observed
rotation frequency of any known pulsar.

A key observable for rotating neutron stars is the ratio
of the highest mass Mmax over the maximum mass of static
nonrotating stars MTOV. I show the results for this ratio for
all hybrids that pass the astrophysical bounds in Fig. 20.8 We

8 Notice that the intermediate V-QCD(APR) EOS discussed in this
review slightly differs from the intermediate EOS of Ref. [362].

find that the ratio is

Mmax

MTOV
= 1.227+0.031

−0.016 (141)

where the central value (horizontal black line in Fig. 20) was
obtained by polynomially fitting the spin dependence of the
maximum mass for all hybrids. The error band was obtained
as the maximal deviation from the with among all hybrid
EOSs. Our results are somewhat higher than the earlier esti-
mate Mmax

MTOV
= 1.203 ± 0.022 [364], shown as the green band

and line, which was based on EOSs without phase transitions.
That is, even though all neutron stars are fully hadronic with
our EOSs, the presence of the phase transition still affects the
ratio considerably, which is possible as the instability due to
the onset of the quark-hadron affects both Mmax and MTOV

even for fully hadronic stars. In particular the soft variants,
where the maximum mass is determined by the nuclear to
quark matter phase transition, tend to lie above the earlier
estimate.

7.4 Neutron star mergers with holographic EOS

The EOS is the basic input for the time evolution of neu-
tron star mergers. We have analyzed the neutron star merg-
ers by using the hybrid holographic EOSs as an input in full
four dimensional simulations of mergers in [329]. We used
publicly available codes in our simulations: the LORENE
code for initial data, and Einstein toolkit for the evolution in
general relativity with the WhiskyTHC code for relativistic
hydrodynamics. Here I will both review briefly the general
properties of the merger and the observables, and illustrate
by using the results obtained with the holographic EOSs. See
[356] for an extensive review.

For the EOSs we picked the intermediate (potentials 7a) V-
QCD(SLy) variants with ntr = 1.61ns and ntr = 1.94ns , and
studied equal mass mergers of neutron stars with the masses
ranging from 1.3M� to 1.5M�. The high mass simulations
(M = 1.5M�) lead to a collapse to a black hole immediately
after the merger. In the low mass simulations (M = 1.3M�)
a rapidly rotating neutron star remnant is formed, which is
stable at least within the timescale of the simulation. For the
simulation at M = 1.4M� and with ntr = 1.61ns , a differ-
entially rotating hypermassive neutron star is first formed,
which then collapses into a black hole about 7.8 ms after
the merger. These three cases therefore exhaust the possible
basic scenarios expected in the merger [356]. As an example,
I show snapshots of the latter simulation with M = 1.4M�
and with ntr = 1.61ns with the intermediate hypermassive
neutron star in Fig. 21. These plots show the rest mass den-
sity ρ = mnn, where mn is the neutron mass and n is the
baryon number density, on the plane of rotation.
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Fig. 21 Snapshots of the rest mass density profile of the merging neutron stars (both having the mass M = 1.4M�) in the plane of rotation. Left:
Density right after merger. Middle: Hypermassive neutron star about 5 ms after the merger. Right: Mass distribution right after black hole formation

Fig. 22 Gravitational waves (h22+ at the distance of 40 Mpc) obtained
from numerical simulations with the intermediate V-QCD(SLy) EOS
with ntr = 1.61. The top, middle, and bottom rows show the signal
from simulations with M = 1.3M�, 1.4M�, and 1.5M�, respectively

Arguably the most important observable that can be
extracted from the simulations is the outgoing gravitational
wave. As it turns out, a relevant quantity which can be
extracted from the asymptotics of the simulated metric is
the Newman–Penrose or Weyl scalar ψ4 [365]. It is related
to the perturbation of the metric for the two polarizations of
the waves in the standard transverse-traceless gauge as

ψ4 = ∂2
t (h+ − ih×) . (142)

Both ψ4 and h+,× may be expressed as expansions in the
spin-weighted spherical harmonics sY�m(θ, φ) with s = −2.
One may then extract from the numerical solution the value
of the coefficient of the dominant mode with � = m = 2,
denoted by ψ22

4 , and use (142) to convert this to the coeffi-
cients h22+ and h22× .

I show the coefficient h22+ , extracted from the simulations
and extrapolated to the distance of 40 Mpc, i.e., the estimated
distance to GW170817 [10], in Fig. 22. The three curves are
for different masses so that in the top diagram the remnant
is a neutron star, in the middle diagram a short-lived hyper-
massive neutron star is formed, and in the bottom diagram
the system immediately collapse into a black hole after the
merger. In these plots, the merger takes place at t = 0. The
gravitational wave signal before that arises from the inspiral
phases and has quite regular form. Notice that the time scales
of the three curves are different.

After the merger, in the top and middle curves there is a
nontrivial signal which has higher frequency than the inspiral.
This part carries nontrivial information on the structure of the
merging stars and therefore the EOS. In the bottom curve (as
well as in the middle curve for t � 7 ms), the signal ends in
a brief ring down as the black hole forms.

A standard method to analyze the spectrum of the signal
further is to compute the power spectral density. To this end,
we first carry out a Fourier transform

h̃+,×( f ) =
∫

dt h22+,×(t) e−2π i f t . (143)

The power spectral density is then obtained by computing
the average over polarizations:

h̃( f ) ≡
√

|h̃+( f )|2 + |h̃×( f )|2
2

. (144)
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Fig. 23 The power spectral density for the merger of two M = 1.3M�
neutron stars with the V-QCD(SLy) EOS with ntr = 1.61. The dashed
and solid curves are with and without including the inspiral part of the
signal. I also compare to the sensitivity of advanced LIGO/Virgo and
the projected sensitivity of the Einstein telescope assuming the distance
40 Mpc of GW170817

I show the power spectral density for the merger of two M =
1.3M� neutron stars in Fig. 23, i.e., for the signal of Fig. 22
(top). I plot 2h̃( f )

√
f assuming the estimated distance to

GW170817, i.e., 40 Mpc. The dashed (solid) curve is the
signal with (without) the inspiral part. We therefore see that
the signal for f � 2 kHz arises mostly from the inspiral,
whereas the signal from f � 2 kHz arises mostly from the
remnant.

The postmerger part of the signal shows, for mergers with
a neutron star remnant, three characteristic peaks at frequen-
cies f1,2,3. The origin of these peaks is relatively simple
[366]: After the merger the cores of the two neutron stars
oscillate, causing variation of the mass of inertia of the whole
remnant. The extremal rotation frequencies of the system due
to the oscillation of the mass of inertia give rise to f1 and
f3. After a while the oscillations cease, and the final rota-
tion frequency gives the most prominent f2 peak. Another
interesting frequency is the instantaneous frequency of the
gravitational signal at the time of the merger fmrg, which is
typically close to f1 [367].

We find that the holographic EOS favor relatively low
characteristic frequencies of the power spectral densities. For
example, the signal of Fig. 23, which uses the V-QCD(SLy)
EOS with ntr = 1.61ns , has f2 ≈ 2.53 kHz, the same
simulation with the V-QCD(SLy) EOS and ntr = 1.94ns
gives f2 ≈ 2.80 kHz, whereas using the “pure” SLy EOS
gives f2 ≈ 3.19 kHz. Also the other frequencies are shifted
towards zero with respect to the SLy results. These results
reflect the stiffness of the holographic EOS at high densities.

I also remark that, whenever a collapse to a black hole
happened in the simulations, it was always triggered by the
phase transition to quark matter, which may be detectable
by analyzing the gravitational wave signal [368,369]. There-

Fig. 24 The prediction for the peak frequency f2 as a function of neu-
tron star mass for equal mass mergers from the approximate relations
derived in [367] using the hybrid EOSs as input. Notation as in Figs. 15
and 17: the light blue (red) band is spanned by all (hybrid holographic)
EOSs satisfying the astrophysical bounds. The curves show the predic-
tions for the three V-QCD(APR) variants

fore only limited amounts of quark matter was produced in
the simulations. This is expected because the V-QCD quark
matter EOS above the transition is quite soft so that forma-
tion of a quark matter of mixed phase leads to an immediate
collapse.

Notice also that the f2 peak in Fig. 23 lies well above
the sensitivity estimate for advanced LIGO/Virgo when the
distance to the event is the same as for GW170817, so
it is expected that the postmerger signal will be observed
for future events. For GW170817 only the inspiral signal
was detected. Studies of the electromagnetic signal from the
GW170817 kilonova [11] suggest that a (rather long lived)
hypermassive neutron star was formed in the event, so that a
nontrivial postmerger signal was generated in the event, but
missed detection (see, e.g., [106,370,371]). This happened
because at the time of the event the sensitivity of the experi-
ment was a bit lower than that marked in the figure.

The main feature of the electromagnetic signal from
GW170817 was its relative brightness, which implies that
a large amount (around 0.05M�) of matter was ejected dur-
ing and after the merger [372–377]. This is actually the rea-
son, together with the delay of the observed gamma ray burst
GRB 170817A [11], that the hypermassive remnant must
have been long lived, otherwise not enough material would
have been ejected [106,370,371]. Notice that the amount of
ejected matter also affects the estimates for the maximum
of MTOV from GW170817 [107–109] which I discussed in
Sect. 2.4.

As I discussed above, the signal in Fig. 23 naturally
divides into the inspiral and postmerger regions, which
naively appear to be essentially independent. However this
not true: The inspiral signal contains information about the
EOS through its dependence on the tidal deformability Λ.
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Both the characteristic frequencies of the postmerger signal
and Λ depend on the stiffness of the EOS, so there are approx-
imate relations between them [367,378,379]. Such relations
were studied for the hybrid EOSs in [330], and we also com-
pared our numerical results from the simulations of [329]
to predictions from the relations of [367] and found devia-
tion of at most 7%. That is, our results with the intermediate
V-QCD(SLy) EOS with ntr = 1.61ns agreed well with the
relations at M = 1.4M� (0.3% deviation) but the deviation
was larger at M = 1.35M� and M = 1.3M� (6.7% and
6.0%, respectively) and close to the edge of the 2σ confi-
dence band of the fit. This deviation may be due to the fact
that our EOS contains a rather rapid change in stiffness at
densities right above the saturation density, as seen from the
jump in the speed of sound in Fig. 16.

We have also analyzed the results for the characteristic
frequencies for all the hybrid EOSs only based on approx-
imate relations and without running any simulations [330].
The results for f2 in equal mass mergers from this analysis
are shown in Fig. 24. As in Figs. 15 and 17, the red band is
the combined prediction from all the hybrid EOSs, and the
curves show the results for the three V-QCD(APR) variants.
Similarly to the mass-radius curve of Fig. 17 a part of the red
band arises from somewhat unlikely configurations with an
extreme jump in the speed of sound: in this case it is the part
of the band with highest frequencies. The upper left part of
the bands is cut off by the threshold for direct collapse into a
black hole, in which case the postmerger signal is a ringdown
and there is no f2. For equal masses the threshold means that
prompt collapse is found roughly when (following [367])

370 � Λ. (145)

This threshold also gives a rough bound on the EOSs: for
GW170817, for which the average mass was slightly below
1.4M�, studies of the electromagnetic signal discussed above
strongly suggest that a hypermassive neutron star was formed
instead of a direct collapse. That is, the softer EOSs (with
lower Λ and therefore higher f2 in Fig. 24) are disfavored
also by the electromagnetic signal from GW170817.

8 Conclusion and outlook

Physics of neutron stars and neutron star mergers is a rapidly
evolving field at the moment thanks to the wealth of incoming
experimental data from measurements of neutron stars and
neutron star mergers. The progress in experiments is com-
plemented by advances in numerical general relativity and
theoretical modeling of dense QCD which make it possible
to carry out increasingly realistic simulations of neutron star
mergers. There has also been increasing interest to fill the
holes of theoretical understanding of dense QCD by employ-

ing gauge/gravity duality in recent years. Reviewing progress
in this subfield was the main purpose of this article.

I reviewed the advances in applications of gauge/gravity
duality to dense QCD in neutron stars in various models,
concentrating on results from the V-QCD model which is a
rich bottom-up model that has been carefully fitted to lattice
and other QCD data. Within the V-QCD approach, several
details were seen to work particularly well:

1. The model was seen to be able to describe the lattice data
for QCD thermodynamics at small densities extremely
well (Figs. 6, 7, and 8).

2. Extrapolation of the quark matter equation of state from
the lattice QCD region towards higher densities, including
the regime relevant for neutron star cores also worked
(Fig. 11), and led to a feasible model for the quark matter
EOS at all temperatures and densities.

3. Including nuclear matter in V-QCD using a simple
approach with a homogeneous bulk field produced a phe-
nomenologically desirable, stiff EOS for dense nuclear
matter (Fig. 14).

4. Combining the V-QCD (nuclear and quark matter) EOS
with low density nuclear models led to the construction
of a family of feasible hybrid EOSs, many of which pass
all known bounds to the QCD EOS (Fig. 15).

By using the hybrid EOS, I narrowed down the band of avail-
able QCD EOSs in the cold and dense region. Notice in
particular the V-QCD is one of the few models where the
nuclear and quark matter EOSs, and the transition between
these two phases, can be analyzed within a single framework.
The model predicts that the transition is strongly of first order
at low temperatures. I also computed several predictions for
static and rotating neutron stars as well as for the gravitational
wave signal produced in neutron star mergers.

There are also several open questions and new direc-
tions yet to be explored through gauge/gravity duality. These
include

– Detailed analysis of the temperature dependence of the
EOS, in particular in the nuclear matter phase.

– Flavor dependence: quark masses (in particular the
strange quark mass) and coupling of the strongly coupled
QCD fluid to flavor dependent electroweak currents.

– Magnetic field dependence at large densities of nuclear
/quark matter, possibly with properly implemented flavor
dependence.

– Transport in the presence of magnetic field, both for
nuclear and quark matter.

– Construction of individual baryons as solitons in modern,
realistic bottom-up holographic models, as well as the
study of their properties.

123



282 Page 46 of 53 Eur. Phys. J. C (2022) 82 :282

– Proper overall simultaneous fit of particle spectra and
lattice thermodynamics with holography.

– Analysis of the interfaces between nuclear and quark mat-
ter, as well as nuclear matter and vacuum.

– Detailed analysis of color superconducting and other
paired phases at high density.

Many of these questions can be, and will be studied in near
future by using V-QCD and other (holographic) models.
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Appendix A: Precise dictionary of V-QCD

In this Appendix I write down the precise dictionary for V-
QCD (see also Table 1). First, to do this, I need to specify the
conventions for QCD. I take the QCD action to read

SQCD =
∫

d4x

[

− 1

2g2 Tr Gμν G
μν + iψ̄ /Dψ (A.1)

− ψ̄R Mq ψL − ψ̄L M†
q ψR

+ θ

32π2 εμνρσ
Tr Gμν Gρσ

]

where Tr is over the color indices, the flavor indices are
implicit, Mq is the (possibly complex) mass matrix, and I also
included the θ -angle. The dictionary between the operators
(Tr Gμν Gμν , εμνρσ

Tr Gμν Gρσ , J (L/R)i j
μ = ψ̄ i γμ(1 ±

γ5) ψ j/2 , and ψ̄ i (1±γ5) ψ j ) and the five dimensional fields
(λ, a, Ai j

L/R , and T i j ) can then be specified by writing down

the four dimensional coupling between the operators and the
boundary values of the fields [269]:

Sδ = −Nc

2

∫

r=δ

d4x
1

λ
Tr Gμν G

μν (A.2)

+ 1

32π2

∫

r=δ

d4x a εμνρσ
Tr(Gμν Gρσ )

+
∫

r=δ

d4x J (L)i j
μ Aμ i j

L +
∫

r=δ

d4x J (R)i j
μ Aμ i j

R

−KT

∫

r=δ

d4x
1

� δ
ψ̄R T ψL

−KT

∫

r=δ

d4x
1

� δ
ψ̄L T † ψR

where δ is a UV cutoff and the flavor indices i, j run from 1 to
N f . The coefficient KT is a O(1) number which determines
the normalization of the quark mass in the tachyon asymp-
totics but cannot be precisely determined. For simplicity, I
did not include the sources for the metric. The correspon-
dence between the boundary values of the fields and QCD
sources can be read off by comparing (A.1) and (A.2) The
generating functional QCD can be explicitly written as

ZQCD =
∫

DψDG exp

[

−
∫

d4x ψ̄ /Dψ + i Sδ

]

(A.3)

and the correspondence says that it equals to the on-shell
gravity partition function

Zgrav = ei S
(on-shell)
V-QCD . (A.4)

To be precise, the actions also contain the UV divergences of
QCD and needs to be renormalized. The holographic renor-
malization [118] for actions in this class has been studied in
detail in [380].

Appendix B: Choices of potentials for V-QCD

In this Appendix I specify the potential sets 5b, 7a, and 8b,
which define the soft, intermediate and stiff variants of the
V-QCD EOSs, respectively. I take V f (λ, τ ) = V f 0(λ)e−τ 2

and

Vg(λ) = 12

[

1 + V1λ + V2λ
2

1 + λ/λ0

+VIRe
−λ0/λ(λ/λ0)

4/3
√

log(1 + λ/λ0)

]

(B.5)

V f 0(λ) = W0 + W1λ + W2λ
2

1 + λ/λ0

+WIRe
−λ0/λ(λ/λ0)

2 (B.6)
1

κ(λ)
= κ0

[

1 + κ1λ
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Table 2 The parameters of the potentials 5b, 7a, and 8b

5b 7a 8b

W0 1.0 2.5 5.886

WIR 0.85 0.9 1.0

w0 0.57 1.28 1.09

w1 3.0 0 1.0

w̄0 65 18 22

8π2/λ̂0 0.94 1.18 1.16

κ̄0 1.8 1.8 3.029

κ̄1 −0.857 −0.23 0

ΛUV/MeV 226 211 157

180π2M3
p �3/11 1.34 1.32 1.22

+κ̄0

(

1 + κ̄1λ0

λ

)

e−λ0/λ (λ/λ0)
4/3

√

log(1 + λ/λ0)

]

(B.7)

1

w(λ)
= w0

[

1 + w1λ/λ0

1 + λ/λ0

+w̄0e
−λ̂0/λ

(λ/λ̂0)
4/3

log(1 + λ/λ̂0)

]

(B.8)

for the potentials appearing in (107) and in (130). Most of
the UV parameters were determined by comparing to the RG
flow of perturbation theory:

V1 = 11

27π2 , V2 = 4619

46656π4 , (B.9)

κ0 = 3

2
− W0

8
, κ1 = 11

24π2 , (B.10)

W1 = 8 + 3 W0

9π2 , W2 = 6488 + 999 W0

15552π4 . (B.11)

All the other parameters were determined by comparing to
lattice data as I explained in Sect. 5.4.3. All three potentials
use the same fit result for the parameters in Vg:

λ0 = 8π2/3, VIR = 2.05. (B.12)

The flavor sector fit parameters for the three potentials can
be found in Table 2. The AdS radius is given by

� = 1
√

1 − W0/12
. (B.13)
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